Bivariate P–Boxes

Enrique Miranda, Ignacio Montes University of Oviedo, Spain {mirandaenrique, imontes}@uniovi.es Renato Pelessoni, Paolo Vicig University of Trieste, Italy {renato.pelessoni, paolo.vicig}@econ.units.it

Abstract

Given a random number X, a probability box or p-box $(\underline{F}_X, \overline{F}_X)$ is a couple of cumulative distribution functions (cdfs) s.t. $\underline{F}_X \leq \overline{F}_X$ [1, 4]. Here and in what follows, we impose no continuity property on any cdf, which is therefore a dF-coherent probability (a finitely, not necessarily σ -additive precise probability) on the monotone family of events $D_1 = \{A_x | x \in \mathbb{R}\} \cup \{\emptyset, \Omega\}, A_x = (X \leq x), \forall x \in \mathbb{R}$. A p-box therefore naturally extends to an imprecise probability framework the description of uncertainty about X by means of a cdf.

In this note we investigate properties of the generalisation of p-boxes, suited to describe couples (X, Y) of random numbers and to be called bivariate p-boxes. We focus on analogies between bivariate p-boxes and traditional joint distribution functions, and on how bivariate p-boxes may be obtained from marginal uncertainty judgements.

Definitions. Given (X, Y), let $A_{x,y} = (X \le x \land Y \le y)$. A map $F : D_2 = \{A_{x,y} : x, y \in \mathbb{R}\} \cup \{\emptyset, \Omega\} \to [0; 1]$ is standardized if F is non-negative, componentwise non-decreasing, $F(\emptyset) = 0$, $F(\Omega) = 1$. Later on, we shall also write F(x, y) instead of $F(A_{x,y})$. $(\underline{F}, \overline{F})$ is a bivariate p-box if each of $\underline{F}, \overline{F}$ is standardized and $\underline{F} \le \overline{F}$. $(\underline{F}, \overline{F})$ is a coherent p-box (a p-box that avoids sure loss (ASL)) iff, further, both \underline{F} and \overline{F} are jointly coherent (ASL) [5], lower and upper respectively, probabilities on D_2 . We say that $\underline{F}, \overline{F}$ are jointly coherent (ASL) when the lower probability \underline{P} defined as $\underline{P}(A_{x,y}) = \underline{F}(x, y)$ on $S = \{A_{x,y} | x, y \in \mathbb{R}\}, \underline{P}(A_{x,y}^c) = 1 - \overline{F}(x, y)$ on $S^- = \{A_{x,y}^c | x, y \in \mathbb{R}\}$ is coherent (ASL) on $S \cup S^-$.

A first major difference between coherent bivariate and univariate p-boxes is that \underline{F} , \overline{F} need not be dF-coherent precise probabilities. This clearly depends on the structure of D_2 , an only partially ordered set unlike D_1 , but there are relationships with 2-monotonicity too:

Proposition 1 Let \underline{P} be a 2-monotone lower probability on some lattice $L \supset D_2$, and \overline{P} its conjugate (hence, 2-alternating) upper probability.

- a) If \underline{F} is the restriction of \underline{P} , \underline{F} is dF-coherent [3].
- b) If \overline{F} is the restriction of \overline{P} , it is not necessarily dF-coherent, while its corresponding upper tail function is.
- c) Conversely, if $(\underline{F}, \overline{F})$ is given and $\underline{F}, \overline{F}$ are jointly dF-coherent, the natural extension of $(\underline{F}, \overline{F})$ is not necessarily 2-monotone.

As well-known, a joint cdf F is characterised by some conditions, including a *rectangle inequality* $F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1) \ge 0$, $\forall x_1 \le x_2, y_1 \le y_2$. With a p-box $(\underline{F}, \overline{F})$, we have four rectangle inequalities:

- [R1] $\underline{F}(x_2, y_2) \underline{F}(x_1, y_2) \underline{F}(x_2, y_1) + \overline{F}(x_1, y_1) \ge 0$
- $[R2] \ \overline{F}(x_2, y_2) \underline{F}(x_1, y_2) \underline{F}(x_2, y_1) + \underline{F}(x_1, y_1) \ge 0$
- $[\mathbf{R3}] \ \overline{F}(x_2, y_2) \underline{F}(x_1, y_2) \overline{F}(x_2, y_1) + \overline{F}(x_1, y_1) \ge 0$
- $[\mathbf{R4}] \ \overline{F}(x_2, y_2) \overline{F}(x_1, y_2) \underline{F}(x_2, y_1) + \overline{F}(x_1, y_1) \ge 0.$

These inequalities interact variously with coherence or ASL of either a p-box $(\underline{F}, \overline{F})$ or its components $\underline{F}, \overline{F}$, taken separately:

Proposition 2 a) $[R1] \div [R4]$ are necessary for coherence of $(\underline{F}, \overline{F})$.

- b) Neither of them is, in general, necessary for ASL of $(\underline{F}, \overline{F})$; \underline{F} (being standardized) always avoids sure loss, while \overline{F} avoids sure loss if [R2] holds.
- c) In the case that X, Y are both two-valued, $[R1] \div [R4]$ are also sufficient for coherence of $(\underline{F}, \overline{F})$, while [R1] is necessary and sufficient for $(\underline{F}, \overline{F})$ to be ASL.

An important situation originating bivariate p-boxes is when marginal cdfs for X and Y are given, and there is uncertainty about the kind of interaction between X and Y. More generally, we may think that marginal p-boxes $(\underline{F}_X, \overline{F}_X), (\underline{F}_Y, \overline{F}_Y)$ are assessed for X and Y. Then, under these assumptions,

Proposition 3 Let C be a set of copulas. Define the bivariate p-box $(\underline{F}, \overline{F})$ as $\underline{F}(x, y) = \inf_{C \in \mathcal{C}} C(\underline{F}_X(x), \underline{F}_Y(y)), \overline{F}(x, y) = \sup_{C \in \mathcal{C}} C(\overline{F}_X(x), \overline{F}_Y(y))$. Then $(\underline{F}, \overline{F})$ is coherent.

While the above proposition may be viewed as a sort of imprecise counterpart of Sklar's Theorem [2], in the part ensuring that a certain function (copula) of two univariate cdfs returns a joint distribution having the given cdfs as marginals, it has to be stated that the correspondence breaks down on the reverse side, when wishing to view any bivariate p-box as depending on its arguments through a function (not necessarily a copula or subcopula) of its marginals. This is in general not possible, outside some special cases.

Fréchet upper and lower bounds also play a very important role in obtaining joint p-boxes from marginal ones, even in the n-variate case. In fact,

- **Proposition 4** a) Given F_1, F_2, \ldots, F_n (marginal cdfs, for X_1, X_2, \ldots, X_n respectively), the lower Fréchet bound $\underline{F}^L(x_1, x_2, \ldots, x_n) = \max(F_1(x_1) + F_1(x_2) + \ldots + F_n(x_n)) n + 1, 0)$ is a coherent lower probability (also dF-coherent, as well-known [2], when n = 2).
- b) Given the n marginal p-boxes $(\underline{F}_1, \overline{F}_1), \ldots, (\underline{F}_n, \overline{F}_n)$, their natural extension on $D_n = \{X_1 \leq x_1 \land \ldots \land X_n \leq x_n | x_1, \ldots, x_n \in \mathbb{R}\} \cup \{\emptyset, \Omega\}$ is the n-dimensional p-box $(\underline{F}^L, \overline{F}^U)$, where $\underline{F}^L(x_1, x_2, \ldots, x_n) = \max(\underline{F}_1(x_1) + \underline{F}_2(x_2) + \ldots + \underline{F}_n(x_n)) n + 1, 0)$, while $\overline{F}^U(x_1, x_2, \ldots, x_n) = \min(\overline{F}_1(x_1), \overline{F}_2(x_2), \ldots, \overline{F}_n(x_n))$ is the Fréchet upper bound (which is dF-coherent, $\forall n$).

Keywords. P-boxes, coherent lower/upper probabilities, rectangle inequalities, copulas, Fréchet bounds.

References

- S. Ferson, V. Kreinovich, L. Ginzburg, D.S. Myers and K. Sentz. Constructing probability boxes and Dempster-Shafer structures. Technical Report SAND2002-4015, Sandia National Laboratories, 2003.
- [2] R. B. Nelsen. An Introduction to Copulas. Springer, 2006.
- M. Scarsini. Copulae of Capacities on Product Spaces. Distributions with Fixed Marginals and Related Topics. IMS Lecture Notes, Institute of Mathematical Statistics, 28:307–318, 1996.
- M. C. M. Troffaes and S.Destercke. Probability boxes on totally preordered spaces for multivariate modelling. *International Journal of Approximate Reasoning*, 52(6):767-791, 2011.
- [5] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991