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Abstract
This paper introduces a new type of statistical model:
the interval-valued linear model, which describes the
linear relationship between an interval-valued out-
put random variable and real-valued input variables.
Firstly, we discuss the notions of variance and covari-
ance of set-valued and interval-valued random vari-
ables. Then, we give the definition of the interval-
valued linear model and its least square estimation, as
well as some properties of the least square estimation.
Thirdly, we show that, whereas the best linear unbi-
ased estimation does not exist, the best binary linear
unbiased estimator exists and it is just the least square
estimator. Finally, we present simulation experiments
and an application example regarding temperature of
cities affected by their latitude, which illustrates the
application of our model.

Keywords. Interval-valued linear model, least
square estimation, best binary linear unbiased esti-
mation, Dp metric.

1 Introduction

Traditional statistical models have played a signifi-
cant role in a wide range of areas. However, in real
life situations, many problems cannot be handled by
traditional statistical models due to imperfectness of
data. Therefore, specialized statistical techniques are
needed. In many practical cases, we often have to face
a particular kind of imperfect data: interval-valued
data (e.g., [8], [9] and [13]).

Interval-valued data may represent uncertainty or
variability. In the former case, the interval data
represent incomplete observations, i.e., we just know
the true data belong to a range (an interval), rather
than the precise values. For example, assume that
researchers test the service life of a group of prod-
ucts, such as light bulbs. Since testing time is very
long, they cannot stay in the laboratory at any time.

They could come to the laboratory to see how many
bulbs are burnt out every two or three hours. Then,
the data regarding service life of bulbs they get are
interval-valued. In contrast, in the variability case,
an interval is not interpreted as a set containing a
single true value, but the observation themselves are
interval-valued. For instance, a weather forecast typ-
ically provides the highest and lowest temperature of
the next day, which is an interval including almost
all the useful information about tomorrow’s tempera-
ture. This interval reflects variability of temperature
of one day.

The linear model is probably the simplest and most
common statistical model. It describes a random out-
put variable determined by a few input variables and
an error term in a linear way. In this paper, we con-
sider the situation in which observations are interval-
valued, i.e., the random variable is an interval-valued
random variable, which is determined by real-valued
variables in a linear way. This interval-valued linear
model could play a significant role in dealing with im-
perfect data, e.g., to investigate how (interval-valued)
temperature is impacted by (point-valued) intensity
of solar radiation, air pressure, latitude of location ,
or the statistical relationship between interval-valued
service life of light bulbs and point-valued properties
of materials used in making bulbs.

Interval-valued random variables are a special kind of
set-valued random variables, whose values are com-
pact convex subsets of the real line R1. Since we
have at our disposal many results on the theory of
set-valued random variables (e.g., [16], [17] and [26]),
this is a suitable framework to tackle the problem ad-
dressed in this paper. For a long time, however, there
has been only a few works to discuss the variance
and covariance of set-valued random variables, since
the difference between two sets is difficult to define
and the hyperspace (e.g., the space of all intervals)
is not linear with respect to addition and multiplica-
tion. Vital [21] studied the metric for compact convex



sets via the support functions. In 2005, Yang and Li
[24], Yang [25] investigated the dp metric for sets and
the Dp metric in the space of set-valued random vari-
ables; they proposed to use the Dp metric to define
the variance and covariance of set-valued and interval-
valued random variables, which proved to be a good
approach to deal with this problem. In Chapter 5 of
[25], Yang also built a linear regression model with
interval-valued regression coefficients. The underly-
ing space in [24] and [25] is Rd. In 2008, Blanco et
al. [4] defined the dK-variance for interval-valued ran-
dom variables with underlying space R1, which is a
special case of [24] and [25].

Some other works about interval-valued and set-
valued statistical models are as follows. Tanaka
and Lee [19] introduced the interval linear regres-
sion model, which is not based on the interval-
valued random variable framework, and estimated the
coefficients using a quadratic optimization method.
Blanco-Fernandez et al. [5] and Sinova et al. [18] inves-
tigated the linear relationship between two interval-
valued random variables, considering the input vari-
able as two real-valued random variables (center and
radius of the interval). They gave the least square es-
timation of the coefficients under the d2 metric of in-
tervals. Blanco-Fernandez et al. [6] studied the strong
consistency and asymptotic distributions of the least
square estimator. Beresteanu and Molinari [3] in-
vestigated inference for partially observed models via
the asymptotic approach; they supposed the obser-
vations to be uncertain and proposed an estimation
method for the real-valued parameters. Hsu and Wu
[14] investigated interval-valued time series and gave
three evaluation criteria of estimation and forecast ef-
ficiency for interval-valued time series. Wang and Li
[22] introduced a new type of interval-valued time se-
ries (the interval autoregressive time series model) and
proposed methods for parameter estimation and fore-
casting based on the evaluation criteria in [14]. Wang
and Li [23] investigated set-valued and interval-valued
stationary time series, based on the definition of vari-
ance and covariance of set-valued and interval-valued
random variables introduced in [24] and [25].

In this paper, we start with the set-valued frame-
work and consider the interval-valued random vari-
able as a special case of set-valued random variable.
We then introduce the interval-valued linear model
and its least square estimation, prove its unbiased-
ness and discuss the best binary unbiased estimation.
Treating an interval-valued random variable as two
separate point-valued random variables (the left- and
right-endpoints of the interval, or the center and ra-
dius of the interval) is deemed to be unreasonable.
One reason is that it is quite easy to obtain estima-

tion or forecast results such that the left-endpoint is
larger than the right-endpoint or the center is neg-
ative, because these two linear models are unrelated.
In this paper, we also show the limitation of using two
separate linear models in terms of forecast efficiency
via a simulation experiment.

The organization of this paper is as follows. In Section
2, we define the variance and covariance of set-valued
random variables based on the dp metric for sets and
the Dp metric for interval-valued random variables.
In Section 3, we introduce the interval-valued linear
model and its least square estimator (LSE), prove the
unbiasedness of this LSE and give the covariance ma-
trix of this estimator. In Section 4, we show that the
best linear unbiased estimation does not exist in gen-
eral, but the best binary linear unbiased estimation
(BBLUE) exists and is unique, and the BBLUE is just
the LSE. In Section 5, we present a simulation study
to show the methodology, and illustrate the efficiency
of estimations introduced in Sections 3 and 4. We
then present another simulation experiment to com-
pare our model with using two separate linear models.
Finally, in Section 6, we use the interval-valued lin-
ear model to investigate the relationship between city
temperature and latitude. This example also shows
how this model can be used to deal with some prac-
tical problems.

Due to page limitation, we have to omit all the proofs
of theorems in Sections 3 and 4 in this paper.

2 Variance and Covariance of
Set-Valued Random Variables

2.1 dp Metric between Sets

In this section, we assume that (Ω,A, P ) is a prob-
ability space, (X , ‖ · ‖X ) is a Banach space, K(X )
is the family of all nonempty closed subsets of X and
Kkc(X ) is the family of all nonempty compact convex
subsets of X .

For any A,B ∈ K(X ), λ ∈ R, define

A+B = {a+ b : a ∈ A, b ∈ B},

λA = {λa : a ∈ A}.

If A,B ∈ Kkc(X ), then A+B ∈ Kkc(X ).

For each A ∈ Kkc(X ), the support function is defined
by

s(x∗, A) = sup{x∗(a) : a ∈ A}, x∗ ∈ X ∗,

where X ∗ is the dual space of X , i.e., the set of
all bounded linear functionals on X . For example,
if X = R1, X ∗ = R1. Take an interval [a, b] with



0 ≤ a < b, x ∈ R1, then s(x, [a, b]) =

{
bx, x ≥ 0
ax, x < 0

.

Regarding the support function, we have the following
properties:

s(x∗, A+B) = s(x∗, A) + s(x∗, B),

s(x∗, λA) = λs(x∗, A), λ ≥ 0.

For 1 ≤ p < ∞, take A,B ∈ Kkc(X ). We define the
metric dp on Kkc(X ) ([1], [16], [24]) by

dp(A,B) =

∫
S∗

|s(x∗, A)− s(x∗, B)|pdµ

1/p

,

where S∗ is the unit sphere of X ∗, i.e., S∗ = {x∗ ∈
X ∗ : ‖x∗‖X∗ = 1}, µ is a measure on (X ∗,B(X ∗)).
Remark 2.1. If X = R1, then Kkc(R1) = {[a, b] :
−∞ < a ≤ b < ∞} is the family of all intervals on
R1. If A1 = [a1, b1] = (c1; r1), A2 = [a2, b2] = (c2; r2),
where ci = (ai+bi)/2 and ri = (bi−ai)/2 for i = 1, 2,
then

A1 +A2 = [a1 + a2, b1 + b2] = (c1 + c2; r1 + r2)

kA1 = (kc1; |k|r1)

and

dp(A1, A2) = [|a2 − a1|p + |b2 − b1|p]1/p

= [|(c2 − c1)− (r2 − r1)|p

+|(c2 − c1) + (r2 − r1)|p]1/p.

2.2 Dp Metric Space of Set-Valued Random
Variables

A set-valued mapping F : Ω → K(X ) is called a set-
valued random variable (e.g., [11], [16]) if, for each
open subset O of X , F−1(O) ∈ A, where F−1(O) =
{ω ∈ Ω : F (ω) ∩ O 6= ∅} and ∅ is the empty set.
Any two set-valued random variables are considered
identical if F1(ω) = F2(ω) for almost every ω ∈ Ω
(for short, denoted by "a.s.(P )").

Let U [Ω,Kkc(X )] denote the family of set-valued ran-
dom variables taking values in Kkc(X ).

TheDp metric with respect to set-valued random vari-
ables is defined by

Dp(F1, F2) = [E(dpp(F1(ω), F2(ω)))]1/p,

where F1, F2 ∈ U [Ω,Kkc(X )] ([24]).

Remark 2.2. If X = R1, U [Ω,Kkc(R1)] is the fam-
ily of all interval-valued random variables. For Fi ∈
U [Ω,Kkc(R1)], Fi(ω) = [fi(ω), gi(ω)] = (ci(ω); ri(ω)),
where fi(ω), gi(ω) are random variables and fi(ω) ≤

gi(ω), and ci(ω) = (fi(ω) + gi(ω))/2, ri(ω) = (gi(ω)−
fi(ω))/2, i = 1, 2. By the definition of Dp, we have

Dp(F1(ω), F2(ω))

= [E|f2(ω)− f1(ω)|p + E|g2(ω)− g1(ω)|p]1/p

= [E|(c2(ω)− c1(ω))− (r2(ω)− r1(ω))|p

+E|(c2(ω)− c1(ω)) + (r2(ω)− r1(ω))|p]1/p.

Let Lp[Ω,Kkc(X )] = {F : E[‖F‖pdp ] < +∞, F ∈
U [Ω,Kkc(X )]}. Then we have the following theorem:

Theorem 2.1. (Lp[Ω,Kkc(Rd)], Dp) is a complete
metric space for each 1 ≤ p <∞. [24]

2.3 Variance and Covariance of Set-Valued
Random Variables

The expectation of set-valued random variable F was
introduced by Aumann [2].

Definition 2.1. For each integrable bounded set-
valued random variable F , which means sup{‖f‖ :
f ∈ F} has finite expectation, the Aumann integral
of F , denoted by E[F ], is defined by

E[F ] =

{∫
Ω

fdP : f ∈ SF
}
,

where SF = {f : f(ω) ∈ F (ω) a.s.(P ), and f is
integrable} is called the selection of set-valued ran-
dom variable F ,

∫
Ω
fdP is the usual Bochner integral.

The properties of the expectation of set-valued ran-
dom variables have been discussed in [11] and [16].

However, since the space of subsets of X is not a lin-
ear space with respect to the addition and multipli-
cation, the minus between two sets is difficult to de-
fine. Thus, extending the important notions of vari-
ance and the covariance to set-valued random vari-
ables is not a trivial task. Yang and Li [24] proposed
to define variance and covariance using the Dp metric
on U [Ω,Kkc(Rd)], based on the fact that the support
function of sets is subtractive. Later, Wang and Li
[23] extended these definitions to the more general
space U [Ω,Kkc(X )].

Definition 2.2. For each set-valued random variable
F ∈ U [Ω,Kkc(X )], the variance of F , denoted by
Var(F ), is defined as

Var(F ) = [D2(F,E(F ))]2

= E


∫
S∗

[s(x∗, F (ω))− s(x∗, E(F (ω)))]2dµ

 .

For two set-valued random variables F1, F2 ∈
U [Ω,Kkc(X )], the covariance of F1 and F2, denoted



by Cov(F1, F2), is defined as

Cov(F1, F2)

= E

{∫
S∗

[s(x∗, F1(ω))− s(x∗, E(F1))]

[s(x∗, F2(ω))− s(x∗, E(F2))]dµ

}
.

The correlation coefficient of F1 and F2, denoted by
ρ(F1,F2), is defined as

ρ(F1, F2) =
Cov(F1, F2)√

Var(F1) ·Var(F2)
.

The variance, covariance and correlation coefficient of
set-valued random variables have the following prop-
erties. The proofs of Theorem 2.3-2.6 can be found in
[23].
Theorem 2.2. The variance Var(F ) of F ∈
U [Ω,Kkc(X )] has the following properties:

(1) Var(C) = 0 for any constant C ∈ Kk(X ).

(2) Var(aF ) = a2Var(F ) for any a ≥ 0.

(3) Var(F1 +F2) = Var(F1)+2Cov(F1, F2)+Var(F2).

(4) (Chebyshev Inequality) P (d2(F,E(F )) ≥ ε)) ≤
Var(F )/ε2, for any ε > 0.
Theorem 2.3. The covariance Cov(F1, F2) of
F1, F2 ∈ U [Ω,Kkc(X )] has the following properties:

(1) Cov(aF1, F2) = Cov(F1, aF2) = aCov(F1, F2) for
any a ≥ 0.

(2) Cov(F1 + F2, F3) = Cov(F1, F3) + Cov(F2, F3),
Cov(F1, F2 + F3) = Cov(F1, F2) + Cov(F1, F3).
Theorem 2.4. For any two interval-valued random
variables X1(ω) = [a1(ω), b1(ω)] = (c1(ω); r1(ω))
and X2(ω) = [a2(ω), b2(ω)] = (c2(ω); r2(ω)), where
ci(ω) = (ai(ω) + bi(ω))/2 is the center and ri(ω) =
(bi(ω)− ai(ω))/2 is the radius of Xi(ω), i = 1, 2, the
following equalities hold:

Cov(X1(ω), X2(ω))

= Cov(a1(ω), a2(ω)) + Cov(b1(ω), b2(ω))

= 2Cov(c1(ω), c2(ω)) + 2Cov(r1(ω), r2(ω)).

Theorem 2.5. The correlation coefficient ρ of
F1, F2 ∈ U [Ω,Kkc(X )] has the following properties:

(1) |ρ| ≤ 1.

(2) If F1 and F2 are independent, then ρ = 0.

(3) ρ(F1, F2) = 1 if and only if F2 + λE(F1) =
E(F2) + λF1, a.s.(P ), ρ(F1, F2) = −1 if and only
if F2 + λF1 = E(F2) + E(λF1), a.s.(P ), where λ =√

Var(F2)/Var(F1).

Remark 2.3. For an interval-valued random variable
F ∈ U [Ω,Kkc(R1)], denoted as F (ω) = [f(ω), g(ω)] =
(c(ω); r(ω)), where f(ω), g(ω) are real-valued ran-
dom variables and f(ω) ≤ g(ω), c(ω) = (f(ω) +
g(ω))/2, r(ω) = (g(ω) − f(ω))/2, by the definition of
Aumann integral and variance of set-valued random
variables, we have

E(F (ω)) = [E(f(ω)), E(g(ω))] = (E(c(ω));E(r(ω)))

and

Var(F(ω))

= E(|f(ω)− E(f)|2) + E(|g(ω)− E(g)|2)

= E(|c(ω)− E(c)− (r(ω)− E(r))|2)

+E(|c(ω)− E(c) + (r(ω)− E(r))|2).

For interval-valued random variables F1, F2 ∈
U [Ω,Kkc(R1)],

Cov(F1(ω),F2(ω))

= E(|f1(ω)− E(f1)||f2(ω)− E(f2)|)
+E(|g1(ω)− E(g1)||g2(ω)− E(g2)|)

= E(|c1(ω)− E(c1)− (r1(ω)− E(r1))|
|c2(ω)− E(c2)− (r2(ω)− E(r2))|)
+E(|c1(ω)− E(c1) + (r1(ω)− E(r1))|
|c2(ω)− E(c2) + (r2(ω)− E(r2))|).

3 Interval-Valued Linear Model and
Least Square Estimation

In this section, we consider an interval-valued linear
model with the following general form

E(y) = Xβ, (1)

where y = (y1, y2, · · · , yn)T is an n × 1 vector of
interval-valued observations, X = (xij)

n,p
i=1,j=1 is an

n × p design matrix, β = (β1, β2, · · · , βp)T is a p × 1
interval-valued parameter vector.

Definition 3.1. If (yi;xi1, xi2, · · · , xip), i =
1, 2, · · · , n is a sample of interval-valued linear model
(1), the least square estimator of unknown parameters
β is the estimator which minimizes d2(y,Xβ).

By the definition of the dp metric, we have

d2
2(y,Xβ)

=

n∑
i=1

d2
2(yi, xi1β1 + xi2β2 + · · · ,+xipβp)



=

n∑
i=1

[
(cyi − xi1cβ1

− · · · − xipcβp
)

−(ryi − |xi1|rβ1 − · · · − |xip|rβp)
]2

+

n∑
i=1

[
(cyi − xi1cβ1 − · · · − xipcβp)

+(ryi − |xi1|rβ1
− · · · − |xip|rβp

)
]2

= 2

n∑
i=1

[
(cyi − xi1cβ1

− · · · − xipcβp
)2

+(ryi − |xi1|rβ1
− · · · − |xip|rβp

)2
]
,

where cA, rA represent the center and radius of inter-
val A, respectively. This is a quadratic function of
cβ1

, · · · , cβp
, rβ1

, · · · , rβp
and d2

2(y,Xβ) ≥ 0, so there
exists a minimum value, which satisfies

∂d2
2(y,Xβ)

∂cβj

= 0,
∂d2

2(y,Xβ)

∂rβj

= 0, j = 1, 2, · · · , p,

that is
n∑
i=1

(cyi − xi1cβ1
− · · · − xipcβp

)(−xij) = 0

n∑
i=1

(ryi − |xi1|rβ1 − · · · − |xip|rβp)(−xij) = 0,

j = 1, 2, · · · , p. Rewriting these equations in matrix
form, we get:{

XT cy = XTXcβ
|X|T ry = |X|T |X|rβ ,

(2)

where |X| = (|xij |)n,pi=1,j=1.

From the above discussions, we have the following the-
orem.

Theorem 3.1. If rank(X) = rank(|X|) = p, the
least square estimator for the interval-valued linear
model (1), denoted as β̂LS, is unique, and

β̂LS = ((XTX)−1XT cy; (|X|T |X|)−1|X|T ry). (3)

Furthermore, we can obtain the following theorems.

Theorem 3.2. The LSE β̂LS is an unbiased estima-
tor of β.

Theorem 3.3. If E(y) = Xβ, rank(X) =
rank(|X|) = p and Cov(cy) = σ2

1In, Cov(ry) = σ2
2In,

then the covariance matrix of β̂LS is

Cov(β̂LS) = 2σ2
1(XTX)−1 + 2σ2

2(|X|T|X|)−1.

4 Best Linear Unbiased and Binary
Linear Unbiased Estimation

4.1 Best Linear Unbiased Estimation

Given n interval-valued data from the interval-valued
linear model (1), yi = [ayi , byi ] = (cyi ; ryi), i =
1, 2, · · · , n, the best linear unbiased estimator is a lin-
ear combination of y1, y2, · · · , yn

β̂j = λj1y1 + λj2y2 + · · ·+ λjnyn
.
= λTj y, (4)

j = 1, 2, · · · , p, and the estimation is unbiased, that
is,

E(β̂j) = βj .

Assume βj = [aβj
, bβj

] = (cβj
; rβj

). By (1) and (4),
we have

E(β̂j) = λTj E(y)

= λTj (Xcβ ; |X|rβ) = (λTj Xcβ ; |λj |T |X|rβ),

where |λj | = (|λj1|, |λj2|, · · · , |λjn|)T . Therefore we
obtain

E(β̂) = (ΛXcβ ; |Λ||X|rβ), (5)

where Λ =


λT1
λT2
...
λTp

 =


λ11 λ12 · · · λ1n

λ21 λ22 · · · λ2n

· · · · · · · · · · · ·
λp1 λp2 · · · λpn



and |Λ| =


|λ11| |λ12| · · · |λ1n|
|λ21| |λ22| · · · |λ2n|
· · · · · · · · · · · ·
|λp1| |λp2| · · · |λpn|

 .

On the other hand, since β̂ is unbiased, we get

E(β̂) = (cβj
; rβj

). (6)

Therefore, by (5) and (6), we have

ΛX = Ip, |Λ||X| = Ip. (7)

Unfortunately, the solution of (7) does not exist in
general. For the case p > 1, consider the interval-
valued linear regression model as an example:

E(y) = β1 + β2X2,

where X2 = (x12, x22, · · · , xn2).

Let Λ =

(
λ11 λ12 · · · λ1n

λ21 λ22 · · · λ2n

)
and X =(

1 1 · · · 1
x21 x22 · · · x2n

)T
, then the second equation

of (7) is
n∑
i=1

|λ1i| = 1,

n∑
i=1

|λ1i||x2i| = 0,



n∑
i=1

|λ2i| = 0,

n∑
i=1

|λ2i||x2i| = 1.

It is obvious that these equations are contradictory.

For the case p = 1, E(y) =


x11

x21

...
xn1

β1, then (7)

becomes
n∑
i=1

λ1ixi1 = 1,

n∑
i=1

|λ1i||xi1| = 0.

Therefore, a linear unbiased estimator exists if and
only if xi1 ≥ 0, i = 1, 2, · · · , n.

4.2 Best Binary Linear Unbiased Estimation

From the above discussions, we know that, for the
interval-valued linear model (1), the best linear un-
biased estimation does not exist in general, which is
a major difference with the traditional linear model.
However, for the interval-valued linear model, we
could introduce another notion: the binary best lin-
ear unbiased estimation, which has some interesting
statistical properties.
Definition 4.1. The binary linear combination of
interval-valued data yi = [ayi , byi ] = (cyi ; ryi), i =
1, 2, · · · , n with coefficients ki, li (li ≥ 0) is defined
as

n∑
i=1

(kicyi ; liryi) =

(
n∑
i=1

kicyi ;

n∑
i=1

liryi

)
.

Definition 4.2. An estimator of an interval-valued
parameter is called binary linear estimator, if it is
a binary linear combination of interval-valued obser-
vations. Assume θ̂ is a binary linear estimator of
interval-valued parameter θ, if θ̂ is unbiased and for
any binary linear unbiased estimator θ∗ of θ,

Var(θ∗) ≥ Var(θ̂),

θ̂ is called best binary linear unbiased estimator of θ,
denoted as BBLUE.

If θ is a p × 1 vector of interval-valued parame-
ter, Var(θ∗) ≥ Var(θ̂) in this definition means that
Cov(θ∗)− Cov(θ̂) is a nonnegative definite matrix.
Theorem 4.1. If E(y) = Xβ, rank(X) =
rank(|X|) = p and Cov(cy) = σ2

1In, Cov(ry) = σ2
2In,

then the least square estimator β̂LS is the unique
BBLUE.
Theorem 4.2. If E(y) = Xβ, rank(X) =
rank(|X|) = p and Cov(cy) = σ2

1In, Cov(ry) = σ2
2In,

then for for all α ∈ Rp, αT β̂LS is the unique BBLUE
of αTβ.

Figure 1: Points indicate 100 observations and the
two lines represent the interval-valued linear regres-
sion function: y = [1.06, 2.02] + [1.66, 2.32]x.

5 Simulation Results

5.1 Test of Estimation Efficiency

In this section, we illustrate the interval-valued linear
regression model by simulation. Let β1 = [1, 2] =
(1.5; 0.5), β2 = [1.7, 2.3] = (2; 0.3) and

yi = β1 + xiβ2 + εi

= (1.5 + 2xi + cεi ; 0.5 + 0.3xi + rεi),

i = 1, 2, · · · , n, where cεi , rεi are N(0, 0.32) normal
independent random variables, so that E(yi) = β1 +
E(xi)β2. Therefore, we have

Ey = E


y1

y2

...
yn

 =


1 x1

1 x2

...
...

1 xn


(
β1

β2

)
= X

(
β1

β2

)
.

Firstly, we let the quantity of observations n be 100,
xi = 0.5 + 0.01i, i = 1, 2, · · · , 100. In one experi-
ment, we get a least square estimator β̂LS of β1, β2.
Figure 1 shows the simulation experiment, in which
β̂LS = ([1.06, 2.02], [1.66, 2.32])T . In Figure 1, the
points show the simulated data yi(xi) = [1, 2] +
[1.7, 2.3]xi + εi , xi = 0.5 + 0.01i, i = 1, 2, · · · , 100
and the two lines represent the interval-valued lin-
ear regression function computed by LSE (3): y =
[1.06, 2.02] + [1.66, 2.32]x.

We repeated this experiment 1000 times, aver-
age value of β̂

(1)
LS was [0.9959131, 1.996367] =

(1.49614; 0.5002269), with a sample mean square
error (sample MSE) equal to 0.0442. The aver-
age value of 1000 β̂

(2)
LS was [1.706118, 2.300196] =



Table 1: Average value and sample MSE of β̂(1)
LS .

mean value of β̂(1)
LS sample MSE of β̂(1)

LS

n=100 [0.9959131,1.996367] 0.0442
n=200 [1.002874,1.995194] 0.0236
n=300 [1.002542,2.006844] 0.0154

Table 2: Average value and sample MSE of β̂(2)
LS .

mean value of β̂(2)
LS sample MSE of β̂(2)

LS

n=100 [1.706118,2.300196] 0.0446
n=200 [1.705211,2.299007] 0.0220
n=300 [1.699598,2.295972] 0.0142

(2.003157; 0.297039) with a sample MSE is 0.0446.
Here the sample mean square error of β is defined

by 1
1000

1000∑
i=1

d2
2(β, β̂LS).

Then we let the quantity of observations n be 200 and
300. Regarding X, we let

xi = 0.5 + 0.01i, i = 1, 2, · · · , 100,

xi = xi−100, i = 101, 102, · · · , 200,

xi = xi−200, i = 201, 202, · · · , 300.

Similarly, we obtained estimators of β̂(1)
LS , β̂

(2)
LS by the

same method. The results are presented in Tables 1
and 2, which give the average value and the sample
MSE of 1000 estimators of β̂(1)

LS (real value is [1, 2])
and β̂(2)

LS (real value is [1.7, 2.3]) respectively. We can
see that the sample MSE decreases as the number of
observations increases.

5.2 Comparison with Other Models

When handling the point-valued input and interval-
valued output data, an easy and intuitive solution is to
fit the left- and right-endpoints (or the center and the
radius) of the interval-valued data to two point-valued
linear model, respectively (e.g., [5],[14] and [18]). As
a matter of fact, it is easy to see these two meth-
ods are equivalent. As already mentioned in the in-
troduction, a drawback of using two separate point-
valued linear model is that it is possible to obtain an
inter-valued estimation or forecast result such that the
left-endpoint is larger than the right-endpoint (or the
radius is negative). In this section, we present the
advantage of our model from another view via a sim-
ulation experiment: comparing the efficiency of the
forecast.

We generated the data in the same way as in Section
5.1 with β1 = [1, 2] = (1.5; 0.5), β2 = [1.7, 2.1] =
(1.9; 0.2) and

yi = β1 + xiβ2 + εi, (8)

in which xi = (−3 : 0.05 : 6) and cεi , rεi areN(0, 0.12)
independent random variables.

We then obtained the parameter estimation using
the least square estimation for interval-valued linear
model (3): β̂LS = ([0.9979, 2.0062], [1.7017, 2.1000])T ,
and the regression function

y = [0.9979, 2.0062] + [1.7017, 2.1000]x. (9)

In a second step, we fit (ayi , xi) and (byi , xi), where
ayi and byi are the left- and right-endpoints of yi, us-
ing two traditional point-valued linear models. Using
the least square estimation for the traditional linear
model, we obtain two fitted lines with equations:{

ay = 0.6398 + 1.8061x
by = 2.3642 + 1.9956x.

(10)

Finally, we generated some new data from (8) and
use (9) and (10) to forecast the output respectively.
Letting xi = (−3 : 0.2 : 6), we put xi back to (8),
we obtain the (real) interval-valued output yi, i =
1, 2, · · · , 46. Then, we substitute xi = (−3 : 0.2 : 6)
back to (9) and (10) and obtain the forecasts of
yi, i = 1, 2, · · · , 46 using the interval-valued LS es-
timation (denoted by ỹi) and two endpoints point-
valued LS estimation (denoted by ŷi), respectively.

The MSE of ỹi was 1
46

46∑
n=1

dw2 (ỹi, yi) = 0.0352 and the

MSE of ŷi was 1
46

46∑
n=1

dw2 (ŷi, yi) = 0.1290. The box

plots in Figure 2 show the median, the 25th and 75th
percentiles and the extreme data points of the 46 fore-
casts using interval-valued linear model and using two
separate linear models. Since the data are randomly
generated, the above procedure (from data generation
to forecast) is repeated 30 times, so that mean values
of the MSEs of the forecasts may be computed, which
are 0.0388 (using the interval-valued LS estimation)
and 0.1321 (using two endpoints point-valued LS es-
timation). Obviously, we can see that the interval-
valued linear model is better in the sense that it has
smaller forecasting error.

6 Application to Real Data

In this section, we use the interval-valued linear model
to investigate the relationship between temperature
and latitude. The data we gather are the highest and
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Figure 2: Box plots of forecasts results using
interval-valued linear model (left) and left- and right-
endpoints point-valued linear models (right).

Table 3: Temperatures and latitudes of 15 European
cities on 14-th of August, 2012.

City Latitude (◦)
Highest
Temp.
(◦C)

Lowest
Temp.
(◦C)

Athens 38 24 34
Madrid 40.4 19 31
Istanbul 41 23 30
Roma 41.9 23 33

Marsaille 43.3 19 31
Geneve 46.25 13 28
Paris 48.8 19 26
Brussel 50.8 14 25
London 51.5 14 21
Berlin 52.5 13 23
Moscow 55.75 14 24

Stockholm 59.3 12 20
St. Petersburg 59.9 13 22

Bergen 60.4 14 20
Reykjavik 64 11 17

Figure 3: Temperatures (in the form of interval) of
15 European cities. Each line segment represents the
temperature interval of a city.

the lowest temperatures of 15 cities in Europe on 14-
th of August, 2012, as shown in Table 3 and Figure
3.

Suppose that temperature (interval-valued, y) and
latitude (real-valued, x) follow the interval-valued lin-
ear model (1), that is

E(yi) = β1 + xiβ2, i = 1, 2, · · · , 15.

By least square estimation (3), which is also the best
linear unbiased estimation by Theorem 4.1, we can get
estimators of β1, β2. The linear relationship between
temperature y and latitude x is

y = [39.03− 0.45x, 56.01− 0.60x],

which is also shown in Figure 4. From Figure 4, we
can see that, as latitude increases the temperature
decreases, and the daily difference in temperature also
tends to decrease.

7 Conclusions

The linear model, which describes a random variable
determined by a few variables and error in a linear
way, plays an important role in statistics. However, in
the real world, there are also a great deal of phenom-
ena that are better described by an interval-valued
random variable determined by a few real-valued ran-
dom variables, e.g., temperature, stock price, service
life of a kind of products. The relation between the
interval-valued data and a few real-valued data can
sometimes be expressed by a linear model. Therefore,
we need a new type of statistical model to describe
this kind of relation. In this paper, we introduced
such a statistical model: the interval-valued linear



Figure 4: Data and linear relationship of temper-
ature and latitude of 15 cities in Europe on 14-
th of August, 2012. The two lines mean interval-
valued linear regression function y = [39.03196 −
0.451684x, 56.00954− 0.6037982x].

model, which considers interval-valued observations
determined by real-valued variables in a linear way.

Interval-valued random variables are a special kind of
set-valued random variables, whose values are com-
pact convex subsets of R1. In this paper, we investi-
gated the theory in the general set-valued framework
first, before focusing on the interval-valued random
variables, in order to obtain some theoretical results
in a wider range. In particular, we recalled the defini-
tion of variance and covariance of set-valued random
variables based on the dp metric of sets and the Dp

metric of interval-valued random variables. We then
introduced the interval-valued linear model and its
least square estimation (LSE), proved the unbiased-
ness of the LSE and gave the covariance matrix of
this estimator. We also showed that the best linear
unbiased estimation does not exist in general, but the
best binary linear unbiased estimation (BBLUE) ex-
ists and is unique, and the BBLUE is just the LSE.
The performances of this estimator were illustrated
using simulation experiments, and compared to those
of the simple approach that consists in fitting two
separate linear models using the endpoints of out-
put intervals. The obtained results suggest that our
approach yields better forecasting performance. Fi-
nally, we gave an example of the interval-valued lin-
ear model explaining how temperature is related by
latitude. This short example shows how our model
can be used and what type of practical problem can
be solved using the interval-valued linear model.

References

[1] Aubin, J. P. and H. Franbowska, Set-Valued Anal-
ysis, Birkhauser, 1990.

[2] Aumann, R., Integrals of set valued functions, J.
Math. Anal. Appl., vol: 12, pp. 1-12, 1965.

[3] Beresteanu, A. and F. Molinari, Asymptotic prop-
erties for a class of partially identified models,
Econometrica, vol: 76, pp. 763-814, 2008.

[4] Blanco, A., N. Corral, G. Gonzalez-Redriguez
and M. A. Lubiano, Some properties of the dK-
variance for interval-valued sets, D. Dubois et al.
(Eds.): Soft Methods for Hand. Var. and Impreci-
sion, ASC 48, pp. 331-337, 2008.

[5] Blanco-Fernandez, A., N. Corral and G. Gonzalez-
Redriguez, Estimation of a flexible simple linear
model for interval data based on set arithmetic,
Computational Statistics and Data Analysis, vol:
55, pp. 2568-2578, 2011.

[6] Blanco-Fernandez, A., A. Colubi and G. Gonzalez-
Redriguez, Confidence sets in a linear regression
model for interval data, Journal of Statistical
Planning and Inference, vol: 142, pp. 1320-1329,
2012.

[7] Clarke, B. R., Linear Model: the Theory and Ap-
plication of Analysis of Variance, Wiley, 2008.

[8] Denoeux, T. and M.-H. Masson, Multidimensional
scaling of interval-valued dissimilarity data, Pat-
tern Recognition Letters, 21: 83-92, 2000.

[9] Denoeux, T. and M.-H. Masson, Principal compo-
nent analysis of fuzzy data using autoassociative
neural networks, IEEE Transactions on Fuzzy Sys-
tems, 12 (3): 336-349, 2004

[10] Diamond, P. and P. Kloeden, Metric Space of
Fuzzy Sets, World Scientific, 1994.

[11] Hiai, F. and H. Umegaki, Integrals, conditional
expectations and martingales of multivalued func-
tions, J. Multivar. Anal., vol: 7, pp. 149-182, 1977.

[12] Maia, A., F. Carvalho and T. B. Ludermir,
Forecasting models for interval-valued time series,
Neurocomputing vol: 71 pp. 3344-3352, 2008.

[13] Masson, M.-H. and T. Denoeux, Multidimen-
sional scaling of fuzzy dissimilarity data, Fuzzy
Sets and Systems, 128 (3): 339-352, 2002.

[14] Hsu, H.L. and B. Wu, Evaluating forecasting per-
formance for interval data, Computers and Math-
ematics with Applications, vol: 56, pp. 2155-2163,
2008.

[15] Lai, T. L. and H. Xing, Statistical Model and
Methods for Financial Markets, Springer, 2007.

[16] Li, S., Y. Ogura and V. Kreinovich, Limit Theo-
rems and Applications of Set-Valuded and Fuzzy



Set-Valued Random Variables, Kluwer Academic
Publishers (Now Springer), Dordrecht, 2002.

[17] Molchanov, I., Theory of Random Sets, Springer,
2005.

[18] Sinova, B., A. Colubi, M. A. Gil and G.
Gonzalez-Rodriguez, Interval arithmetic-based
simple linear regression between interval data:
Discussion and sensitivity analysis on the choice
of the metric, Information Sciences, vol: 199, pp.
109-124, 2012.

[19] Tanaka, H. and H. Lee, Interval regression anal-
ysis by quadratic programming approach, IEEE
Transactions on Fuzzy Systems, vol: 6, no. 4,
1998.

[20] Tseng, F., G. Tzeng, H. Wu and B. Yuan, Fuzzy
ARIMA model for forecasting the foreign ex-
change market, Fuzzy Sets and Systems, vol: 118,
pp. 9-19, 2001.

[21] Vital, R.A., Lp metrics for compact, convex sets,
Journal of Approximation Theory, vol: 45, issue
3, pp. 280-287, 1985.

[22] Wang, X. and S. Li, The interval autoregressive
time series model, in the proceeding of IEEE-
FUZZ International Conference, pp. 2528-2533,
2011.

[23] Wang, X. and S. Li, Stationary set-valued and
interval-valued time series, preprint, 2011.

[24] Yang, X. and S. Li, The Dp-metric space of set-
valued random variables and its application to
covariances, International Journal of Innovative
Computing, Information and Control, vol: 1, pp.
73-82, 2005.

[25] Yang, X, The Dp-metric space of set-valued ran-
dom variables and its applications, Dissertation
for Sciences Master’s Degree, in May, 2005.

[26] Zhang, W., S. Li, Z. Wang and Y. Gao, Set-
Valued Stochastic Processes, Science Publisher (in
Chinese), 2007.


