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Abstract

This paper is about a generalization of ensemble
methods for regression which are based on variants
of the basic AdaBoost algorithm. The generaliza-
tion of these regression methods consists in restrict-
ing the unit simplex for the weights of the instances
to a smaller set of weighting probabilities. The pro-
posed algorithms cover the standard AdaBoost-based
regression algorithms and standard regression as spe-
cial cases. Various imprecise statistical models can be
used to obtain the restricted set of probabilities. One
advantage of the proposed algorithms compared to the
basic AdaBoost-based regression methods is that they
have less tendency to over-fitting, because the weights
of the hard instances are restricted. Finally, some sim-
ulations and applications also indicate a better per-
formance of the proposed generalized methods.

Keywords. Regression, AdaBoost, algorithm,
linear-vacuous mixture model, Kolmogorov–Smirnov
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1 Introduction

Regression modeling is one of the main problems in
applied statistics. Roughly speaking, the aim is to
estimate a function f : X → Y, where X ⊂ Rm with
m ∈ N and Y ⊂ R, from a finite set of noisy sam-
ples (x1, y1), . . . , (xn, yn) ∈ X × Y for some n ∈ N. A
large number of regression methods were developed
in the last decades, many of which are based on the
minimization of a risk functional defined by a certain
loss function and by the probability distribution of the
data (see, e.g., [9, 18, 21]). In practice, the estimated
function is obtained by minimizing the so-called em-
pirical risk (possibly regularized), the sum of the loss
values for the given data points divided by n, which
can be interpreted as the risk functional associated
with the empirical distribution of the data. The em-
pirical distribution can be represented as the point
p̂ = (n−1, . . . , n−1) in the unit simplex with n ver-

tices denoted by S(1, n). In this paper, we focus on
this kind of regression methods within the proposed
algorithms, because it is very easy to incorporate in-
dividual weights for the instances, which is a core el-
ement of the algorithms we want to generalize. The
weighted estimates can simply be interpreted as min-
imizers of the risk functional associated with another
discrete probability distribution p = (p1, . . . , pn) of
the data than the empirical distribution p̂.

A very popular approach to regression is the ensemble
methodology. The popularity of ensemble methods
for regression stems from success of boosting meth-
ods for classification, in particular, of the well-known
AdaBoost (Adaptive Boosting) algorithm proposed
by [5]. AdaBoost is a general purpose boosting al-
gorithm that can be used in conjunction with many
different learning algorithms to improve their perfor-
mance. The basic scheme of the AdaBoost algorithm
for classification is the following: Initially, a standard
classifier is estimated, assigning identical weights to
all examples, then, in each of a previously fixed num-
ber of iterations, the weights of all misclassified ex-
amples are increased, while the weights of correctly
classified examples are decreased, before again com-
puting a classifier accounting for the unequal weights
of the instances. Thus, with each step, the classifier
focuses more and more on the difficult examples of the
training data set, thereby improving the classification
accuracy. The final result obtained by AdaBoost is
a weighted majority vote of the classifiers of each it-
eration, which has a better prediction performance
than each of the individual classifiers alone. Detailed
reviews of boosting methods can be found, e.g., in
[1, 3, 12, 14].

One of the first boosting algorithms for regression
is the so-called AdaBoost.R2 proposed in [2], where
real-valued residuals replace the 0–1 misclassification
errors in the evaluation of the estimates. However,
the base regression estimates are evaluated by the
weighted average of the absolute values of the resid-



uals scaled to [0, 1], which is a similar error measure
to the misclassification rate. Up to the recent years,
many more boosting methods for regression have been
developed, a recent survey is provided in [13]. In con-
trast to most of the ensemble-based algorithms us-
ing the weighted average of base regression estimates
as their final regression functions, [11] analyzed the
choice of the weighted median and proposed the cor-
responding algorithm called MedBoost. The author
proved boosting-type convergence of the algorithm
and gave clear conditions for the convergence of the
robust training error. Another interesting boosting
scheme for regression problems is proposed in [17],
where a threshold value for the residuals is introduced
to transform the real-valued errors back to the 0–1 er-
rors, which directly fit into the AdaBoost algorithm
for classification. This adaptation of the AdaBoost
algorithm is called AdaBoost.RT and its properties
were further investigated in [15].

A common feature of these boosting algorithms is that
they iteratively search for a discrete probability dis-
tribution of the training data such that the regression
error is minimized. The adapted weighting probabili-
ties may be arbitrary points in the unit simplex. This
can lead to over-fitting, when too large weights are
assigned to a few hard-to-learn examples. There are
different approaches to deal with this problem. One
way of overcoming the problem of over-fitting in the
context of regression is the so-called shrinkage regu-
larization, where the weights of the base regression
estimates are reduced, and thus, the learning rate of
the boosting algorithm (see, e.g., [7]). Another inter-
esting approach is based on restricting the weights,
e.g., by fixing a maximum size of the weights a priori.
In this paper, we follow this idea but we propose to
use imprecise statistical models like the linear-vacuous
mixture model or the Kolmogorov–Smirnov bounds to
restrict the set of weighting probabilities. To modify
the boosting algorithms accordingly, we replace the
adaption of the instances’ weighting probabilities with
the updating of weights in the convex linear combina-
tion of the extreme points of the restricted set. Thus,
we here present a general tool for modifying available
boosting algorithms and for constructing a number of
new ensemble-based methods which avoid the prob-
lem of over-fitting.

In the following two sections, we propose the corre-
sponding modifications of two popular boosting al-
gorithms: AdaBoost.R2 introduced in [2] and Ad-
aBoost.RT proposed in [17]. Section 4 reviews suit-
able imprecise probability models to obtain the re-
stricted set of weighting probabilities. Finally, we
present the results of simulations based on synthetic
data and on real data.

2 AdaBoost.R2 and its modification

At first, we modify the AdaBoost.R2 algorithm pro-
posed in [2]. The scheme of this boosting algorithm
for regression is presented as Algorithm 1. Given a

Algorithm 1 AdaBoost.R2

Require: Maximum number of iterations T and
training data set Z.

Ensure: α(t) and f̂ (t) for all t ∈ {1, . . . , T};
set t← 1 and p(t) ← (n−1, . . . , n−1);
repeat

estimate f̂ (t) using weighting probabilities p(t);
compute D(t) ← maxj∈{1,...,n} |yj − f̂ (t)(xj)|;
compute normalized errors for all i ∈ {1, . . . , n}:
ê
(t)
i ←

|yi−f̂(t)(xi)|
D(t) ;

calculate the overall error of f̂ (t):

ε(t) ←
∑n
i=1 p

(t)
i ê

(t)
i ;

if ε(t) > 0.5 then
T ← t− 1;

end if
compute contribution of f̂ (t) to the final result:

α(t) ← ln
(

1−ε(t)
ε(t)

)
;

adapt weights for all i ∈ {1, . . . , n}:
p
(t+1)
i ← p

(t)
i exp

(
−α(t)(1− ê(t)i )

)
;

normalize p(t+1) to be a proper distribution;
t+ +

until t > T
normalize α(1), . . . , α(T ) such that

∑T
t=1 α

(t) = 1;

compute regression function f̂ ←
∑T
t=1 α

(t)f̂ (t).

training data set Z = {(x1, y1), . . . , (xn, yn)} and a
regression method which is suitable for weighted es-
timation, the algorithm requires a maximum number
of iterations T ∈ N to be chosen a priori. Then, the
iteration index t is set to one and the weighting prob-

abilities p
(1)
i are set to n−1 for all i ∈ {1, . . . , n}. (Al-

ternatively, the vector p(1) could be randomly selected
from the unit simplex S(1, n).) In each iteration step

t ∈ {1, . . . , T}, a regression function f̂ (t) is estimated
using the weights p(t). In contrast to AdaBoost for
classification, where the estimated classifiers are eval-
uated by their average misclassification error, the re-
gression estimates are evaluated on the basis of the ab-
solute residuals |yi−f̂ (t)(xi)| with i ∈ {1, . . . , n}. Yet,
to obtain an overall error measure similar to the mis-
classification rate, the absolute residuals are divided
by the maximum value D(t) such that the weighted

sum ε(t) of the normalized residuals ê
(t)
1 , . . . , ê

(t)
n lies

in the interval [0, 1]. If ε(t) > 0.5, we exit the loop
and use only the first t − 1 regression estimates to
determine the final result. In the context of classifi-
cation this is a sensible stopping criterion, because it



means that classifiers with an error rate higher than
50% may not contribute to the combined result. How-
ever, in the regression context the usefulness of this
stopping criterion is less clear. Here, it corresponds
to stopping the iterations when the situation arises,
where the average normalized residual is larger than
50% of the maximum absolute residual. If ε(t) ≤ 0.5,
the overall error is used to determine the contribution
α(t) of the estimated function f̂ (t) in the combined re-
sult f̂ . Furthermore, the weighting probabilities of the
instances are adapted by the formula:

p
(t+1)
i = p

(t)
i exp

(
−α(t)(1− ê(t)i )

)
for all i ∈ {1, . . . , n}. Thus, the weights of examples
with relatively large residuals are increased, while the
others are decreased. As the last step within each

iteration, we normalize (p
(t+1)
1 , . . . , p

(t+1)
n ) to obtain a

proper weighting distribution where
∑n
i=1 p

(t+1)
i = 1.

Finally, when the loop is ended, the α(1), . . . , α(T ) are
adjusted such that

∑T
t=1 α

(t) = 1 and the combined

result f̂ =
∑T
t=1 α

(t)f̂ (t) is determined.

According to the adaption rule, the distribution of
weighting probabilities p can be an arbitrary point
in S(1, n) including its vertices. Indeed, as already
shown for the basic AdaBoost algorithm in [5], the
weighting probabilities of the examples tend to con-
centrate on instances which have large residuals com-
pared with the other data points and may be outliers.
Hence, the regression function will be estimated by
taking mainly these hard-to-learn examples into ac-
count. The obtained estimated function will perform
well on these extreme data points but may perform
rather poor on the other examples. This property is
called over-fitting, because the out-of-sample predic-
tion performance of such a regression estimate may
be very bad, as the actual functional relation is bet-
ter reflected by the neglected examples.

Let us now consider a set P of probability distri-
butions, which is a subset of the unit simplex, i.e.,
P ⊂ S(1, n). We assume that P is convex, i.e., it
is produced by finitely many linear constraints. This
implies that it is totally defined by its extreme points

q(k) = (q
(k)
1 , . . . , q

(k)
n ) for all k ∈ {1, . . . , r} with r ∈ N.

Thus, every probability distribution p ∈ P can be rep-
resented as

p =

r∑
k=1

λkq
(k),

where λ = (λ1, . . . , λr) is a vector of weights such that∑r
k=1 λk = 1.

The core idea of the modification of AdaBoost.R2 we
propose here is to adapt the weights in λ instead of up-
dating directly p. This does not mean that the weight-
ing distribution p is not updated in the iterations, but

it changes only within the set P and through adap-
tion of λ. For the weights λ1, . . . , λr there are no
additional restrictions, they move freely in the unit
simplex having r vertices denoted by S(1, r). Thus, in
the scheme of the modified algorithm presented as Al-

gorithm 2, we replace p(t) with
∑r
k=1 λ

(t)
k q(k). Instead

of initializing p(1) with the empirical distribution, we
set λ(1) = (r−1, . . . , r−1). (Alternatively, the vector
λ(1) could be randomly selected from S(1, r)). When

Algorithm 2 Imprecise AdaBoost.R2

Require: Maximum number of iterations T , training
data set Z and extreme points q(1), . . . , q(r) of P.

Ensure: α(t) and f̂ (t) for all t ∈ {1, . . . , T};
set t← 1 and λ(1) ← (r−1, . . . , r−1);
repeat

compute the vector of weighting probabilities:

p(t) ←
∑r
k=1 λ

(t)
k q(k);

estimate f̂ (t) using weighting probabilities p(t);
compute D(t) ← maxj∈{1,...,n} |yj − f̂ (t)(xj)|;
compute normalized errors for all i ∈ {1, . . . , n}:
ê
(t)
i ←

|yi−f̂(t)(xi)|
D(t) ;

compute error portions for all k ∈ {1, . . . , r}:
ε̂
(t)
k ←

∑n
i=1 ê

(t)
i q

(k)
i ;

calculate the overall error of f̂ (t):

ε(t) ←
∑r
k=1 λ

(t)
k ε̂

(t)
k ;

if ε(t) > 0.5 then
T ← t− 1;

end if
compute contribution of f̂ (t) to the final result:

α(t) ← ln
(

1−ε(t)
ε(t)

)
;

adapt weights for all k ∈ {1, . . . , r}:
λ
(t+1)
k ← λ

(t)
k exp

(
−α(t)(1− ε̂(t)k )

)
;

normalize λ(t+1) such that
∑r
k=1 λ

(t+1)
k = 1;

t+ +
until t > T
normalize α(1), . . . , α(T ) such that

∑T
t=1 α

(t) = 1;

compute regression function f̂ ←
∑T
t=1 α

(t)f̂ (t).

we substitute p(t) in the formula of the overall error
measure of the t-th regression estimate, we obtain the
following representation:

ε(t) =

n∑
i=1

ê
(t)
i p

(t)
i =

n∑
i=1

ê
(t)
i

r∑
k=1

λ
(t)
k q

(k)
i =

r∑
k=1

λ
(t)
k ε̂

(t)
k ,

where ε̂
(t)
k =

∑n
i=1 ê

(t)
i q

(k)
i can be interpreted as the

contribution of the k-th extreme point to the aver-
age normalized residual. It corresponds to the mean
value of the normalized residuals with respect to the
discrete distribution q(k) ∈ P. Moreover, the above
representation unveils a nice characteristic of the pro-
posed modification of the algorithm. In fact, it implies



that the n examples are transformed to r ≥ n virtual
data points (i.e., the extreme points) with associated

residuals ε̂
(t)
k and weights λ

(t)
k for all k ∈ {1, . . . , r}.

From this interpretation, it is straightforward to
derive the updating rule to obtain the weights

λ
(t+1)
1 , . . . , λ

(t+1)
r . In the same way as the weighting

probabilities of the data are adapted in Algorithm 1,
we increase the weights of those extreme points with

large errors ε̂
(t)
k and vice versa. Hence, we simply

adapt the updating rule given in AdaBoost.R2 and
update the weights of the extreme points by

λ
(t+1)
k = λ

(t)
k exp

(
−α(t)(1− ε̂(t)k )

)
for all k ∈ {1, . . . , r}. The λ

(t+1)
1 , . . . , λ

(t+1)
r are also

normalized to fulfill the condition
∑r
k=1 λ

(t+1)
k = 1.

Note that the obtained weighting probability distri-
bution p(t+1) again belongs to the set P because it
is a convex linear combination of the corresponding
extreme points.

Let us now consider the special case where we do not
have additional information, and thus, P = S(1, n).
In this case, there are r = n extreme points corre-
sponding to the vertices of the unit simplex, e.g., for
k = 1 we have q(1) = (1, 0, . . . , 0). Then, p(t) =

(λ
(t)
1 , . . . , λ

(t)
n ) and the k-th extreme point mean er-

ror ε̂
(t)
k = ê

(t)
k for all t ∈ {1, . . . , T}. Hence, we get

the following updated weights for all k ∈ {1, . . . , n}:

λ
(t+1)
k = p

(t)
k exp

(
−α(t)(1− ê(t)k )

)
= p

(t+1)
k ,

which coincide with those obtained in AdaBoost.R2.
This implies that the proposed algorithm is a gener-
alization of the standard AdaBoost.R2 and covers it
as the special case where the set of weighting proba-
bilities is not restricted.

The proposed Imprecise AdaBoost.R2 algorithm has
several positive features in comparison with the stan-
dard AdaBoost.R2. As the number of extreme points
of P is always larger than or equal to the number of
examples, the modified algorithm can have a larger
number of parameters to adjust. In this case, the
weighting probabilities can be adapted in finer steps
within the set P. Furthermore, when we have only a
few examples, the overall errors ε(t) of the f̂ (t) with
t ∈ {1, . . . , T} can only be determined with much un-
certainty due to the high variance of the estimates. As
a result, the weights may change very quickly and the
algorithm may become unstable. The proposed mod-
ification of the AdaBoost.R2 algorithm is less affected
by this problem if P is a proper subset of S(1, n), be-
cause in this case the weights cannot be too large and
hence neither the differences between the weighting

probabilities of an instance in two subsequent itera-
tion steps. Finally, any set of discrete probabilities
defined by linear constraints can be used in the algo-
rithm. This allows to introduce any prior information
of this kind about the training data. In Section 4, we
discuss a selection of imprecise statistical models to
derive P, but in principle it can be any convex subset
of S(1, n). Moreover, it is possible to further gener-
alize the proposed Imprecise AdaBoost.R2 algorithm
and allow the set P to be changed in every iteration
step according to some rule, for instance, by means of
Bayesian updating.

3 Threshold AdaBoost algorithm and
its modification

In this section, we consider the AdaBoost.RT algo-
rithm introduced in [15]. This algorithm is based on
the idea that the training examples can be classified
into two classes by comparing the accuracy of the pre-
dicted values with a predefined relative error thresh-
old. Then, the evaluation of the regression estimates
f̂ (t) within the iterated loop of the algorithm can be
done on the basis of the average misclassification er-
ror like in the basic AdaBoost algorithm for binary
classification. Algorithm 3 outlines the scheme of the
AdaBoost.RT algorithm.

In contrast to the normalized absolute residuals of Ad-
aBoost.R2, here the regression errors ê

(t)
1 , . . . , ê

(t)
n are

given by the absolute values of the relative residuals,
for each t ∈ {1, . . . , T}. These residuals are compared
to a threshold value τ ∈ R≥0. The corresponding ex-
amples are considered as misclassified if their residual
exceeds τ and as correctly classified otherwise. Thus,
as in AdaBoost for classification, each estimated func-
tion f̂ (t) is evaluated by its overall misclassification

rate ε(t) =
∑
{i:ê(t)i >τ} p

(t)
i . Furthermore, the weights

are updated according to a rule depending on τ . The
weights associated with examples with small relative
residuals are decreased, while those of the examples
considered as misclassified remain constant. By nor-

malizing p
(t+1)
1 , . . . , p

(t+1)
n to obtain a probability dis-

tribution, the weighting probabilities of the misclassi-
fied examples are, in fact, increased.

An important feature of the algorithm is that it does
not stop when the overall error rate ε(t) is greater
than 0.5. In AdaBoost.RT it is not necessary to ex-
plicitly state a stopping criterion, because the com-
putation scheme for the weights α(t) of the regression
estimates in the combined result implies that poor es-
timates are almost neglected and vice versa. That

is, if ε(t) is high, so is β(t) =
(
ε(t)
)l

for some l ∈ N,

and thus, α(t) = − ln
(
β(t)

)
will be very small com-



Algorithm 3 AdaBoost.RT

Require: Maximum number of iterations T , training
data set Z, threshold τ and power coefficient l.

Ensure: α(t), β(t) and f̂ (t) for all t ∈ {1, . . . , T};
set t← 1 and p(t) ← (n−1, . . . , n−1);
repeat

estimate f̂ (t) using weighting probabilities p(t);
compute relative errors for all i ∈ {1, . . . , n}:
ê
(t)
i ←

∣∣∣yi−f̂(t)(xi)
yi

∣∣∣;
calculate the overall error rate of f̂ (t):

ε(t) ←
∑
{i:ê(t)i >τ} p

(t)
i ;

compute β(t) ←
(
ε(t)
)l

;

compute contribution of f̂ (t) to the final result:
α(t) ← − ln

(
β(t)

)
;

adapt weights for all i ∈ {1, . . . , n} by:

if ê
(t)
i ≤ τ then

p
(t+1)
i ← p

(t)
i β(t);

else
p
(t+1)
i ← p

(t)
i ;

end if
normalize p(t+1) to be a proper distribution;
t+ +

until t > T
normalize α(1), . . . , α(T ) such that

∑T
t=1 α

(t) = 1;

compute regression function f̂ ←
∑T
t=1 α

(t)f̂ (t).

pared to better estimates of other iterations. In [15]
it is also argued that even if ε(t) > 0.5 for some of
the estimates in the ensemble, the final output of the
ensemble-based algorithm is better than that of a sin-
gle regression estimate. That is why AdaBoost.RT
does not have a stopping rule like the AdaBoost.R2
algorithm, although it would fit the framework of this
algorithm very well, as the evaluation is based on a
pseudo misclassification error rate.

In spite of the virtues of AdaBoost.RT, it has the
shortcoming that the threshold must be selected a
priori, because the performance of the algorithm is
sensitive to τ . If τ is too low, then it is generally
very difficult to get a sufficient number of correctly
predicted examples. Furthermore, the standard Ad-
aBoost.RT algorithm has the same tendency to over-
fitting as the AdaBoost.R2 algorithm due to the too
large set of weighting probabilities. In order to over-
come this disadvantage, we propose a modified version
of AdaBoost.RT where the set of weighting probabil-
ities is restricted to the convex set P with extreme
points q(k) = (q

(k)
1 , . . . , q

(k)
n ) with k ∈ {1, . . . , r}. The

scheme of the modified AdaBoost.RT is presented as
Algorithm 4. Again, we can interpret the proposed
modification as replacing the n training data with r
virtual examples (i.e., the extreme points of P) with

residuals ε̂
(t)
k and weights λk for all k ∈ {1, . . . , r}.

Then, the overall error rates ε(t) are obtained as∑
{k:ε̂(t)k >τ} λ

(t)
k .

Algorithm 4 Imprecise AdaBoost.RT

Require: Maximum number of iterations T , train-
ing data set Z, threshold τ , power coefficient l and
extreme points q(1), . . . , q(r) of P.

Ensure: α(t), β(t) and f̂ (t) for all t ∈ {1, . . . , T};
set t← 1 and λ(1) ← (r−1, . . . , r−1);
repeat

compute the vector of weighting probabilities:

p(t) ←
∑r
k=1 λ

(t)
k q(k);

estimate f̂ (t) using weighting probabilities p(t);
compute relative errors for all i ∈ {1, . . . , n}:
ê
(t)
i ←

∣∣∣yi−f̂(t)(xi)
yi

∣∣∣;
compute error portions for all k ∈ {1, . . . , r}:
ε̂
(t)
k ←

∑n
i=1 ê

(t)
i q

(k)
i ;

calculate the overall error rate of f̂ (t):

ε(t) ←
∑
{k:ε̂(t)k >τ} λ

(t)
k ;

compute β(t) ←
(
ε(t)
)l

;

compute contribution of f̂ (t) to the final result:
α(t) ← − ln

(
β(t)

)
;

adapt weights for all k ∈ {1, . . . , r} by:

if ε̂
(t)
k ≤ τ then

λ
(t+1)
k ← λ

(t)
k β(t);

else
λ
(t+1)
k ← λ

(t)
k ;

end if
normalize λ(t+1) such that

∑r
k=1 λ

(t+1)
k = 1;

t+ +
until t > T
normalize α(1), . . . , α(T ) such that

∑T
t=1 α

(t) = 1;

compute regression function f̂ ←
∑T
t=1 α

(t)f̂ (t).

Let us again consider the special case without addi-
tional information about the weighting probabilities,
and thus, P = S(1, n) with r = n vertices. Then, for

all t ∈ {1, . . . , T} we obtain p(t) = (λ
(t)
1 , . . . , λ

(t)
n ) and

λ
(t+1)
k = p

(t+1)
k for all k ∈ {1, . . . , n}, while the k-th

extreme point mean error is given by ε̂
(t)
k = ê

(t)
k and

ε(t) =
∑
k:ε̂

(t)
k >τ

p
(t)
k . Hence, also the standard Ad-

aBoost.RT algorithm is a special case of its proposed
modification.

4 Imprecise statistical models

In this section, we briefly review a selection of impre-
cise statistical models which can be used to determine
the set of weighting probabilities P ⊂ S(1, n). In par-
ticular, we consider two different imprecise neighbor-



hood models around the empirical distribution p̂ of
the training data and one statistical approach derived
from the Kolmogorov–Smirnov test. Every imprecise
neighborhood model is characterized by a common pa-
rameter ν, which in some cases can be interpreted as
the (subjective) probability that the elicited probabil-
ity distribution p is incorrect. Further interpretations
of the parameter ν are, for example, as the size of
possible errors in p or the amount of information on
which the model is based.

4.1 The linear-vacuous mixture model

The linear-vacuous mixture or imprecise ν-
contaminated models produce the set P(ν, p) of prob-
abilities π = (π1, . . . , πn) such that πi = (1−ν)pi+νbi
for some ν ∈ [0, 1] and for all i ∈ {1, . . . , n}, where
p = (p1, . . . , pn) is the elicited probability distribution
and (b1, . . . , bn) can be any probability distribution in
S(1, n). The set P(ν, p) is a convex subset of the unit
simplex; it coincides with S(1, n) when ν = 1, while
P(ν, p) = {p} if ν = 0. For p = p̂ = (n−1, . . . , n−1),
the set P(ν, p̂) has r = n extreme points qk ∈ S(1, n)
with k ∈ {1, . . . , n}, which are all of the same form:
the k-th element is given by (1 − ν)n−1 + ν and the
other n − 1 elements are equal to (1 − ν)n−1. For
example, the extreme point q2 is given by the vector

q2 =

(
1− ν
n

,
1− ν
n

+ ν, . . . ,
1− ν
n

)
.

4.2 The pari-mutuel model

Another imprecise neighborhood model is the im-
precise pari-mutuel model [22, Subsection 3.3.5], for
which the set of probability distributions is defined as

PP (ν, p) = {π ∈ S(1, n) : πi ≤ (1+ν)pi ∀ i ∈ {1, . . . , n}},

where ν ∈ [0,+∞) and p = (p1, . . . , pn) is the elicited
distribution. The set P(ν, p) consists of all probability
distributions π such the weighting probabilities of the
points do not exceed a constant multiple of the proba-
bilities given by the distribution p. The set P(ν, p) can
also be obtained from PP (ν, p) by reflecting P(ν, p)
about the point p. Lower and upper probabilities of
the i-th point are given by max {0, (1 + ν)pi − ν} and
min{(1+ν)pi, 1}, respectively. The difference between
the upper and lower probabilities is ν, as long as pi is
far enough from 0 or 1.

When we consider the empirical distribution p̂ =
(n−1, . . . , n−1) as the elicited distribution, the ex-
treme points of the set PP (ν, p̂) depend on the chosen
parameter ν as expressed in the following proposition.

Proposition 1 Let z1, . . . , zn with n ∈ N be a set of
univariate data and let PP (ν, p̂) be the set of proba-

bilities according to a pari-mutuel neighborhood model
around the empirical distribution p̂ = (n−1, . . . , n−1)
of the data for some ν ∈ [0,+∞).

(1) If ν ≤ (n− 1)−1, then the set PP (ν, p̂) has r = n
extreme points qk ∈ S(1, n) with k ∈ {1, . . . , n},
which are of the following form: the k-th element
is given by (1 + ν)n−1 − ν and the other n − 1
elements are equal to (1 + ν)n−1.

(2) If (n− 1)−1 < ν < (n− 1), then the set PP (ν, p̂)
has r = s

(
n
s

)
extreme points, where s ∈ N and it

is defined by the inequality

1

n− s+ 1
≤ 1 + ν

n
≤ 1

n− s
.

The extreme points have the same form: n − s
elements have value (1 + ν)n−1, there is one ele-
ment given by 1−(n−s)(1+ν)n−1, and the other
s− 1 elements are equal to zero.

(3) If ν ≥ (n− 1), then PP (ν, p̂) = S(1, n).

The third part of this proposition is obvious, because
in this case the upper probabilities of all points are
equal to one. The proofs of parts (1) and (2) can be
found in [19, Propositions 1 and 3].

4.3 Kolmogorov–Smirnov bounds

A statistical approach to constructing bounds for the
set of weighting probabilities can be derived from con-
fidence bounds for the probability distribution of the
data. Such confidence bounds can be obtained by in-
verting the so-called Kolmogorov–Smirnov test.

Let F denote the cumulative distribution function as-
sociated with the unknown probability measure P of
some univariate data z1, . . . , zn with n ∈ N and F̂n
their empirical cumulative distribution function. The
Kolmogorov–Smirnov test is a nonparametric test for
the null hypothesis that z1, . . . , zn have been gen-
erated by some particular distribution F0. As test
statistic the supremum vertical distance of F̂n and F0

is considered. It can be shown that the distribution
of this test statistic under the null hypothesis is inde-
pendent of F0. The quantiles kn,1−γ of the test dis-
tribution are available in tables for a certain range of
sample sizes and some different test levels γ ∈ (0, 1).
For large n, the quantiles can be approximated by
a simple formula. The null hypothesis is rejected at
level γ ≥ PF0(||F̂n − F0||∞ > kn,1−γ) if the observed
supremum distance given by

max
1,...,n

max

{
i

n
− F0(z(i)), F0(z(i))−

i− 1

n

}
,



where z(1) ≤ z(2) ≤ . . . ≤ z(n), is larger than kn,1−γ .
By considering all distribution functions such that the
test does not reject the null hypothesis at the chosen
γ, we obtain a 1 − γ confidence band for F which is
of the form

C1−γ = {F ′ : Fn(z) ≤ F ′(z) ≤ Fn(z) ∀z},

with

Fn(z) = max{F̂n(z)− kn,1−γ , 0} and

Fn(z) = min{F̂n(z) + kn,1−γ , 1}.

As the quantiles of the exact test distribution are not
available for all sample sizes and all test levels, sev-
eral modifications of the above confidence band have
been suggested, replacing kn,1−γ by an upper approx-
imation dn,1−γ , e.g., the upper bounds provided by
the so-called Dvoretzky–Kiefer–Wolfowitz inequality,
resulting in more conservative but easy-to-compute
confidence bands for F . Therefore, we use dn,1−γ
as the general notation in the following, but refer to
the limiting functions Fn(z) and Fn(z) of all confi-
dence bands of the above type (with dn,1−γ instead
of kn,1−γ) as Kolmogorov–Smirnov bounds. See [23,
Section 2] and [10, Subsection 8.9.3] for more details.

It has been shown in [20] that it is possible to derive a
set of probability mass functions PK(γ) corresponding
to the confidence band for the cumulative distribution
function of the type C1−γ . The set PK(γ) is a convex
subset of S(1, n) with s

(
n
s

)
extreme points, where s ∈

N is determined from the condition

ndn,1−γ < s ≤ 1 + ndn,1−γ .

Every extreme point has s− 1 elements of size 0, one
element with the value (s−ndn,1−γ)(n(1−dn,1−γ))−1,
and n− s elements of size (n(1− dn,1−γ))−1.

5 Numerical experiments

To study how well the proposed algorithms may solve
practical problems, we conduct several numerical ex-
periments. Thereby, we use weighted Support Vec-
tor Regression (SVR, see, e.g., [16, 18]) with absolute
loss function and Gaussian kernel as regression esti-
mator within the algorithms and we determine the
set of weighting probabilities by means of the linear-
vacuous mixture model. We make different simula-
tions to study the impact of the choice of ν on the
performance of the proposed regression methods, be-
fore we apply them to analyze two data sets from the
UCI Machine Learning Repository [4].

From each of the (synthetic or real) data sets we ran-
domly select two distinct subsets: a training data set

of n examples to learn the model, and a test data set
of ntest instances to evaluate the performance of the
algorithms. For the synthetic data, the performance
is assessed by two measures: the square roots of the
Mean Square Prediction Error (RMSPE) and of the
average Residual Sum of Squares (RRSS), which are
defined by

RMSPE =

√∑ntest

i=1 (f(xi)− f̂(xi))2

ntest
and

RRSS =

√∑ntest

i=1 (yi − f̂(xi))2

ntest
,

respectively, where f denotes the true function, f̂ is
the function estimated by one of the proposed algo-
rithms, and f̂(xi) is the predicted value of yi for each
i ∈ {1, . . . , ntest}. Both measures are computed on
the basis of the test data set in each simulation run.
As usual, the RMSPE and RRSS values are finally
averaged over the simulation runs. The smaller the
values of these average error measures are, the better
the corresponding regression method. Regarding the
numerical examples analyzing real data the RMSPE
cannot be computed, because the true function f is
unknown. Hence, in this case, we only compare the
overall RRSS obtained from repeatedly drawing train-
ing and test data sets. Furthermore, since the main
purpose of the numerical examples is to show the ap-
plication of the methods to simple and illustrative
problems, the hyperparameters are not optimized.

5.1 Synthetic data

The aim of analyzing synthetic data is to investigate
how the parameter ν of the linear-vacuous mixture
model introduced in the previous section influences
the performance of the regression methods based on
the modified boosting algorithms. Therefore, we con-
duct the simulations for five different choices of ν,
namely ν ∈ {0, 0.25, 0.5, 0.75, 1}. Recall that, when
ν = 1 then P = S(1, n), and thus, we have the stan-
dard basic boosting algorithm on the one extreme of
the ν range, whereas P = {p̂} for ν = 0, which re-
duces the modified boosting algorithms to the stan-
dard SVR with identical weights of examples.

In our simulations, we consider two different kinds
of data sets. The first is generated according to the
following setup. In each of 40 runs, we generate 200
examples (xj , yj) ∈ R2 for all j ∈ {1, . . . , 200} by

xj = 0.02(j − 1)− 2 and

yj = exp(−x2j ) + 0.5ηj ,

where ηj is a random number drawn from the uni-
form distribution on the interval [−1, 1]. Similar data



Table 1: Performance of the modification of Ad-
aBoost.R2 by different ν

ν RRSS RMSPE
0.0 0.456 0.344
0.25 0.428 0.311
0.5 0.427 0.31
0.75 0.435 0.32

1 0.443 0.329

Table 2: Performance of the modification of Ad-
aBoost.R2 by different ν adding the asymmetric noise

ν RRSS RMSPE
0.0 0.835 0.437
0.25 0.704 0.373
0.5 0.717 0.378
0.75 0.726 0.374

1 0.749 0.39

sets have been used, e.g., in [8]. From these 200 data
points, we randomly draw a training data set and a
distinct test data set. The number of training exam-
ples is n = 10 and the number of testing examples
ntest = 60. We then apply one of the proposed re-
gression methods to the training data and obtain an
estimate f̂ of the function f . Here, we set the num-
ber of iterations in the boosting algorithms to T = 20
and consider ν ∈ {0, 0.25, 0.5, 0.75, 1}. Finally, we
compute the performance measures.

As a variant of this synthetic data set, we consider
also an asymmetric noise. In contrast to the above
case, we here generate the random errors according to
the following rule: for all j ∈ {1, . . . , 200}, we draw
a random number aj ∈ [0, 1], then ηj is drawn from
[−1, 1] if aj < 0.7 and from the interval [0, 4] if aj ≥
0.7. All random numbers are generated according to
uniform distributions on the corresponding intervals.

Table 1 shows the performance measures RRSS and
RMSPE for the modified AdaBoost.R2 algorithm by
different values of the parameter ν. We observe that
the proposed regression method achieves the best re-
sults when the linear-vacuous model with ν = 0.5 is
used to restrict the set of weighting probabilities. Ta-
ble 2 shows the results for the data set with asym-
metric errors. Here, the best results are achieved
for ν = 0.25. The additional asymmetric noise pro-
duces some kind of outliers which the standard Ad-
aBoost.R2 tends to fit too well, because these points
are assigned high weights. As the proposed modi-
fication of the algorithm restricts these weights, the
problem of over-fitting is avoided.

Let us now analyze the simulation results for the

Table 3: Performance of the modification of Ad-
aBoost.RT by different ν

ν RRSS RMSPE
0.0 0.465 0.364
0.25 0.409 0.295
0.5 0.408 0.288
0.75 0.411 0.293

1 0.424 0.311

Table 4: Performance of the modification of Ad-
aBoost.RT by different ν adding the asymmetric noise

ν RRSS RMSPE
0.0 0.837 0.458
0.25 0.71 0.345
0.5 0.723 0.336
0.75 0.723 0.356

1 0.727 0.377

modification of AdaBoost.RT algorithm. By using
the same initial data as for the modification of Ad-
aBoost.R2, we get the performance measures for the
same scenarios. The case of the symmetric errors is
shown in Table 3 and the situation with the addi-
tional asymmetric noise is presented in Table 4. For
the analyses, we set the threshold to τ = 0.5 and
l = 2 (see Algorithm 4). Also for the modified Ad-
aBoost.RT, the values of ν implying the best perfor-
mance of the algorithm in the first and second er-
ror scenarios are ν = 0.5 and ν = 0.25, respectively.
Furthermore, we observe that the modification of Ad-
aBoost.RT slightly outperforms the modification of
AdaBoost.R2 in both data settings.

Hence, in the analyses of the first synthetic data set,
the proposed modifications of the AdaBoost-based al-
gorithms perform better than the original ones, cor-
responding to ν = 1, and better than the standard
SVR, corresponding to ν = 0. In addition to the
above analyses, we will consider another synthetic
data set, which is the well-known data set Fried-
man#1 [6]. In each of 40 simulation runs we generate
200 examples of 10 independent variables, which are
uniformly distributed in the interval [0, 1]. Only 5
of these 10 variables are selected randomly and then
used to produce the values of the output variable for
all j ∈ {1, . . . , 200} in the following way:

yj = 10 sin(πxj,1xj,2)+20(xj,3−0.5)2+10xj,4+5xj,5+ηj ,

where ηj is a random variable drawn from a standard
normal distribution. Here, we used 20 training exam-
ples and 40 test examples.

The RRSS and RMSPE measures obtained by us-
ing the modification of AdaBoost.R2 are shown in



Table 5: Performance of the modification of Ad-
aBoost.R2 for Friedman#1 data by different ν

ν RRSS RMSPE
0.0 3.12 2.8
0.25 3.08 2.74
0.5 3.06 2.72
0.75 3.07 2.723

1 3.09 2.75

Table 6: Performance of the modification of Ad-
aBoost.RT for Friedman#1 data by different ν

ν RRSS RMSPE
0.0 3.12 2.8
0.25 3.08 2.75
0.5 2.96 2.63
0.75 2.98 2.63

1 3.07 2.71

Table 5 and the results for the modification of Ad-
aBoost.RT with τ = 0.1 and l = 2 are given in Table
6. Here again, we find that the modification of the
AdaBoost.RT algorithm attains slightly lower average
errors than the regression method based on the mod-
ification of AdaBoost.R2. The value ν = 0.5 implies
the best performance of both generalized algorithms,
but here we observe that they outperform standard
boosting only with higher values of ν.

5.2 Real data

In addition to the simulations, we evaluate the per-
formance of the proposed regression methods by ana-
lyzing two publicly available data sets from the UCI
Machine Learning Repository [4]: Slump Test [25],
and Concrete [24]. The Slump Test data set contains
103 data points. There are seven input variables char-
acterizing the slump flow of concrete and three output
variables in the data set. Here, we use only the third
output variable: 28-day compressive strength. In the
Concrete Data Set there are 1 030 data points charac-
terizing the concrete compressive strength as a highly
nonlinear function of age and ingredients which in-
clude cement, blast furnace slag, fly ash, water, etc.
There are eight input variables and one output vari-
able, namely the concrete compressive strength.

We analyze both data sets with the proposed
algorithms, again for different choices of ν ∈
{0, 0.25, 0.5, 0.75, 1} and with T = 20. To evaluate
the average residual error measure RRSS we perform
a cross-validation with 40 repetitions, where in each
run, we randomly select n = 40 training data and
ntest = 40 test data. The results of the computations
are given in Table 7 for the modified AdaBoost.R2

Table 7: RRSS for the UCI data sets by using Ad-
aBoost.R2 with different ν

ν 0 0.25 0.5 0.75 1
Slump Test 9.08 8.79 8.75 8.85 9.08
Concrete 27 16.7 16.6 16.8 17

Table 8: RRSS for the UCI data sets by using Ad-
aBoost.RT with different ν

ν τ 0 0.25 0.5 0.75 1
Slump Test 0.08 9.14 8.74 8.51 8.48 8.75
Concrete 0.3 32.1 16.8 16.9 17.1 17.1

method and in Table 8 those for the generalized Ad-
aBoost.RT algorithm with l = 2. The obtained figures
confirm the results of the simulations and indicate a
superior fit of the proposed regression methods for
ν ∈ {0.25, 0.5, 0.75}. Thus, if the mixture probability
ν is neither too small nor too big both modified al-
gorithms perform better in terms of RRSS than their
basic counterparts, which correspond to ν = 1.

The results of the numerical examples indicate that
the value of ν does indeed affect the performance of
the proposed algorithms. Hence, in a practical set-
ting, the choice of this parameter should be made
very carefully, e.g., on the basis of a cross-validation
scheme.

6 Conclusion

We proposed the generalizations of two ensemble-
based boosting algorithms for regression where the
unit simplex for the weights of the instances is re-
stricted to a smaller set of weighting probabilities.
This smaller set is obtained by imprecise statistical
models like, e.g. the linear-vacuous mixture model.
The modified algorithms are more flexible and tend
less to over-fitting. Numerical experiments further
indicate that among the extreme cases (recall that for
ν = 0 it corresponds to standard SVR and for ν = 1
to the basic boosting algorithm), the standard Ad-
aBoost algorithms are always at least as good as the
standard SVR and often much better. Moreover, we
found that both modified algorithms perform better
than their standard counterparts, if the mixture prob-
ability ν is neither too small nor too big. The core idea
behind the presented modifications could be adapted
to deal with imprecise data, too, as the imprecise data
induce a set of compatible probability distributions.
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