
8th International Symposium on Imprecise Probability: Theories and Applications, Compiègne, France, 2013

Model checking for imprecise Markov chains

Matthias C. M. Troffaes
Durham University, UK

matthias.troffaes@gmail.com

Damjan Škulj
University of Ljubljana, Slovenia

damjan.skulj@fdv.uni-lj.si

Abstract

We extend probabilistic computational tree logic for
expressing properties of Markov chains to imprecise
Markov chains, and provide an efficient algorithm for
model checking of imprecise Markov chains. Thereby,
we provide a formal framework to answer a very wide
range of questions about imprecise Markov chains, in
a systematic and computationally efficient way, whilst
at the same time improving and simplifying model
checking for a fairly broad class of Markov decision
processes.

Keywords. imprecise Markov chain, model checking,
parse tree, logic, computation

1 Introduction

In a nutshell, model checking [2] is a model-based
technique which automates the verification of the re-
liability of a system. To do so, firstly we need a spec-
ification of the system model, and secondly a spec-
ification of system properties. The system is then
deemed reliable if the model satisfies those properties.
Model checking can be performed manually, for in-
stance through peer review, however, for larger mod-
els, this can take a lot of time and can cost a lot
of money. Moreover, peer review typically does not
catch all errors. Therefore, there is a strong need for
automating the model checking process.

Interestingly, in model checking literature, a lot of
work has been done for so-called Markov decision pro-
cesses—these are Markov chains where the transition
probabilities depend on non-deterministic choices,
about which we are completely vacuous, and so in
fact they are quite closely related to imprecise prob-
ability [4, 13, 14, 11, 12].1 Indeed, so-called impre-
cise Markov chains have been studied by many au-
thors. Hartfiel [7, 6] proposed Markov set-chains mod-

1In operations research, the term Markov decision process
has an entirely different meaning.

els, where transition matrices form matrix intervals.
He does not connect his work with imprecise prob-
ability formally, but uses several methods similar to
those developed in imprecise probability theory. An-
other more recent case where interval probabilities are
involved in the study of Markov chains, outside the
formal theory of imprecise probability, is described in
[8]. In that work, the interval probabilities are formed
by abstraction of a precise Markov chain, that is by
merging states. Also this model could be seen as an
imprecise Markov chain. A more formal connection
between Markov chains and interval probabilities was
established by Kozine and Utkin [9], and generalised
by Škulj [10] and De Cooman et al. [5]. In [5], lower
and upper expectation operators are used instead of
sets of probabilities, leading to simpler calculations
and more elegant proofs. We follow their approach as
well.

In this paper, we investigate model checking tech-
niques for imprecise Markov chains. Although, the-
oretically, these models can already be checked using
existing techniques for Markov decision processes [2,
Sec. 10.6] [1], in this paper we follow [5] and restrict
ourselves to a very special type of Markov decision
process, namely those imprecise Markov chains for
which bounds on transition probabilities can be cal-
culated simply by means of linear programming.

Indeed, imprecise Markov chains can be formally con-
nected to Markov decision processes as follows: the
extreme points of the set of transition probabilities in
the imprecise Markov chain correspond to the set of
actions in the Markov decision process. Existing tech-
niques for Markov decision processes require the set
of actions to be finite. Interestingly, in our approach,
the set of extreme points is not required to be finite,
as our model checking algorithm does not depend on
the cardinality of the set of extreme points. A sec-
ond advantage of our approach is that we express our
algorithm directly in terms of constraints (lower and
upper expectations), rather than in terms of extreme

points or, actions, if you like. This is computationally
much more efficient than model checking algorithms
which work with actions directly, because it is well
known that the number of extreme points is usually
much greater than the number of constraints required
to describe the same set (for example, see [3]). Even in
those cases where the number of constraints is larger,
one can still use the extreme points to calculate lower
and upper expectations, whence our approach never
does worse than existing algorithms which use actions
directly.

From the model checking perspective, this paper con-
tributes algorithms that are potentially much faster
than traditional methods for Markov decision pro-
cesses, in essence because we can circumvent sets of
probabilities, and instead focus on the constraints.
The algorithm is also simpler, and resembles much
more closely the one for precise Markov chains. From
the imprecise probability perspective, the contribu-
tion of this paper is the development of a formal
framework to answer a very wide range of questions
about Markov chains in a computationally efficient
way. In doing so, we put various existing results from
the literature about imprecise Markov chains into a
common framework.

This paper is structured as follows. Section 2 reviews
the existing theory of model checking for Markov
chains. Section 3 explains how the logic and model
checking algorithm can be adapted to suit imprecise
Markov chains. Section 4 has an example. We con-
clude in Section 5.

2 Model Checking for Markov Chains

Before we move on to imprecise Markov chains, in this
section, we briefly review the standard model checking
framework for Markov chains [2, Chapter 10]. For
simplicity, in this paper, we will restrict ourselves to
finite state discrete time Markov chains.

2.1 Model Specification: Transitions,
Labelling, Paths, Probabilities

Definition 1 (Markov Chain) A (finite state, dis-
crete time) Markov chain consists of:

• a finite set of states S,

• an initial probability P0(s) for all s ∈ S, and

• transition probabilities P(s, t) for all (s, t) ∈ S2.

For specifying properties of Markov chains, it is useful
to introduce labels as well:

Definition 2 (Labelling) Consider a finite set of
atomic propositions AP . A labelling of states is then
simply a mapping L : S → ℘(AP) which associates a
set of atomic propositions with every state.

An atomic proposition is just a convenient way to
specify a subset of states. For example, in a reliability
problem, we could have

AP = {system working, system broken}, (1)

with states of the Markov chain labelled accordingly.
In more advanced problems, it is sometimes conve-
nient to allow each state to carry more than one
atomic proposition. A trivial labelling is L(s) = {s}
for every s ∈ S; this is what we will usually assume,
unless otherwise stated.

The digraph of a Markov chain is a graph where each
state is represented by a vertex, and each possible
transition (P(s, t) > 0) is an edge—this is the picture
we generally draw for a Markov chain.

A path is then simply an infinite sequence of states on
the digraph:

π = s0s1s2 · · · ∈ SN. (2)

The trace of a path is its induced sequence of labels:

trace(s0s1s2 · · ·) = L(s0)L(s1)L(s2) · · · ∈ ℘(AP)N.
(3)

A cylinder set is a set of paths with a common prefix:

cyl(s0s1 · · · sn) = {s0s1 · · · snsn+1sn+2 · · · :
sn+1sn+2 · · · ∈ SN}. (4)

For example, the set of paths starting from state s is
the cylinder set

cyl(s) = {s0s1s2 · · · ∈ SN : s0 = s}. (5)

Cylinder sets play a central role in Markov chains be-
cause these are the sets for which we can very easily
calculate their probability:

Pr(cyl(s0s1 · · · sn)) = P0(s0)

n−1∏
i=0

P(si, si+1). (6)

Also of interest is the probability of a cylinder set
conditional on knowing the initial state s0:

Pr(cyl(s0s1 · · · sn) | s0) =

n−1∏
i=0

P(si, si+1). (7)

state formula meaning
s � true always satisfied
s � a a ∈ L(s)
s � ¬Φ not s � Φ
s � Φ ∧Ψ s � Φ and s � Ψ
s � PJ(φ) Pr(s � φ) ∈ J
path formula meaning
π �©Φ π[1] � Φ
π � Φ∪∪∪Ψ ∃j ≥ 0:(

(∀0 ≤ k < j : π[k] � Φ)
and π[j] � Ψ

)
π � Φ∪∪∪ ≤nΨ ∃0 ≤ j ≤ n :(

(∀0 ≤ k < j : π[k] � Φ)
and π[j] � Ψ

)
Table 1: Semantics of state and path formulas.

2.2 Property Specification: Probabilistic
Computation Tree Logic

A formal and very useful way of specifying properties
of Markov chains goes via probabilistic computation
tree logic, where we distinguish between two types of
properties:

1. Properties of states of the system:

s � Φ if state s satisfies state formula Φ. (8)

2. Properties of paths of the system:

π � φ if path π satisfies path formula φ. (9)

State formulas are denoted by upper case greek letters
Φ, Ψ, and so on. Path formulas are denoted by lower
case greek letters φ, ψ, and so on.

State and path formulas Φ and φ are taken from a
grammar with the following syntax:

Φ ::= true | a | Φ1 ∧ Φ2 | ¬Φ | PJ(φ)
(10)

φ ::=©Φ | Φ∪∪∪Ψ | Φ∪∪∪ ≤nΨ (11)

where © (“next”) and ∪∪∪ (“until”) operators must be
directly preceded by a PJ operator. The semantics, or
meaning, of these formulas is summarized in Table 1,
where

Pr(s � φ) = Pr({π ∈ cyl(s) : π � φ} | s) (12)

and π[i] = si for π = s0s1 · · · . The usual operators
can be derived from the above ones:

Φ ∨Ψ := ¬((¬Φ) ∧ (¬Ψ)) Φ or Ψ (13)

♦Φ := true∪∪∪ Φ eventually Φ (14)

�Φ := ¬(♦(¬Φ)) always Φ (15)

as well as bounded versions ♦≤n and �≤n of ♦ and
�, implication, exclusive or, equivalence, and so on.

For a non-trivial example of a state formula, consider
a system modelled by a Markov chain whose states are
labelled with atomic propositions taken from AP =
{working,broken} = {w, b}. The property

s � P[0.99,1]

(
♦≤20

(
w ∧ P[0,0.01](w ∪∪∪ ≤10b)

))
(16)

is then satisfied when, starting from state s, with
probability at least 0.99, within 20 steps, the system
reaches a working state, from which the probability
that the system breaks down within the next 10 steps
is less than 0.01. Model checking provides an auto-
mated method for verifying any such formula.

Before we move on to the algorithm, one technical
issue that arises is is whether PJ(φ) is well defined, or
more specifically, whether the probability Pr(s � φ)
(see Eq. (12)) exists. The key observation is:

Theorem 1 For every state s and every path formula
φ,

{π ∈ cyl(s) : π � φ} (17)

is a countable union of cylinder sets.

The above theorem, along with the fact that the prob-
ability specification in Eqs. (6) and (7) can be ex-
tended to a σ-field containing all countable unions of
cylinder sets, imply that Pr(s � φ) exists; see for in-
stance [2, Lemma 10.39] for a proof of Theorem 1.

2.3 Model Checking: Automated Algorithm

The central question we aim to answer is: given a
state s and a state formula Φ, does s satisfy Φ? In a
nutshell, the algorithm works as follows:

• traverse the parse tree of Φ, visiting all subformu-
las, starting at the leaves of the tree and working
back to its root,

• at each subformula Ψ, calculate set of states
which satisfy Ψ

Sat(Ψ) = {s′ ∈ S : s′ � Ψ}, (18)

• check that s ∈ Sat(Φ).

Figure 1 shows the parse tree of the formula on the
right hand side of Eq. 16, and Figure 2 demonstrates
how we evaluate Sat through the parse tree.

P[0.99,1](♦≤20•)

∧

w P[0,0.01](• ∪∪∪ ≤10•)

w b

Figure 1: Parse tree of the formula on the right hand
side of Eq. 16.

(i) P[0.99,1](♦≤20•)

∧

w P[0,0.01](• ∪∪∪ ≤10•)

B := Sat(w) C := Sat(b)

(ii) P[0.99,1](♦≤20•)

∧

D := Sat(w) E := Sat(P[0,0.01](B ∪∪∪ ≤10C))

(iii) P[0.99,1](♦≤20•)

F := Sat(D ∧ E)

(iv) Sat(P[0.99,1](♦≤20F))

Figure 2: Evaluating Sat through the parse tree.

Effectively, we calculate Sat(Ψ) by applying the fol-
lowing formulas recursively:

Sat(true) = S (19)

Sat(a) = {s ∈ S : a ∈ L(s)} (20)

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ) (21)

Sat(¬Φ) = S \ Sat(Φ) (22)

Sat(PJ(φ)) = {s ∈ S : Pr(s � φ) ∈ J} (23)

where

Pr(s �©Φ) = P(s,Sat(Φ)) =
∑

t∈Sat(Φ)

P(s, t) (24)

and, under certain regularity conditions,

Pr(s � Φ∪∪∪Ψ) = lim
n→∞

Pr(s � Φ∪∪∪ ≤nΨ). (25)

Note that there are efficient ways to determine Pr(s �
Φ ∪∪∪ ≤nΨ) for large n. There are also methods for
evaluating Pr(s � Φ ∪∪∪ Ψ) directly, under arbitrary
conditions; for details we refer to [2, pp. 761–762].

Thus, the only probability we yet have to evaluate
is Pr(s � Φ ∪∪∪ ≤nΨ). Let C := Sat(Φ) and B :=
Sat(Ψ), and for simplicity assume a trivial labelling
L(s) = {s}, so we can write Pr(s � C ∪∪∪ ≤nB) for
Pr(s � Φ∪∪∪ ≤nΨ).

• If s ∈ B then Pr(s � C ∪∪∪ ≤nB) = 1.

• Otherwise, if s 6∈ C then Pr(s � C ∪∪∪ ≤nB) = 0.

• Otherwise, s ∈ C \B, and

Pr(s � C ∪∪∪ ≤nB) = Pr∗(s �©nB) (26)

= Pn
∗ (s,B) (27)

=
∑
t∈B

Pn
∗ (s, t) (28)

where Pr∗ and P∗ denotes the probabilities associated
with the modified Markov chain where all states, ex-
cept those in C \B, have been made absorbing. There
are many efficient ways to evaluate the n-step transi-
tion probability matrix Pn

∗ (s, t).

3 Model Checking for Imprecise
Markov Chains

3.1 Model Specification: Credal Sets and
Upper Transition Operator

Definition 3 (Imprecise Markov Chain) A (fi-
nite state, discrete time) imprecise Markov chain con-
sists of:

• a finite set of states S,

• an initial credal set P0 on S, specified through
linear constraints on P0(·), and

• a transition credal set PPP(s) for each s ∈ S, spec-
ified through linear constraints on P(s, ·).

The sensitivity interpretation is that, at each step,
the transition is described by P(s, ·) ∈ PPP(s) but we
do not know which element.

Clearly, this model is not the most general one.
Firstly, it has separately specified rows [10], that is,
a separate model for transitions from each state. Sec-
ondly, it features non-stationarity (in the sensitivity
interpretation), as the actual transition probabilities
may change from step to step, and are only con-
strained to belong to their credal set at each step.
These assumptions make the model computationally
tractable, and almost as easy to work with as precise
Markov chains. Indeed, it turns out that for most
calculations of typical interest, we can entirely ignore
the credal sets, and instead work with a single opera-
tor that can be evaluated through linear programming
[5, 10].

Indeed, for typical calculations, we are interested in
lower and upper probabilities of events, or more gen-
erally, lower and upper expectations of random quan-
tities. Let L(S) denote the set of all random quanti-
ties, also called gambles, on S. Gambles are denoted
by lower case letters f , g, and so on.

For instance, we could be interested in the lower and
upper expectation of a gamble f on the next state,
given the current state s:

Definition 4 (Transition Operators) The opera-
tors T: L(S) → L(S) and T: L(S) → L(S) defined
by

(T(f))(s) := min
P(s,·)∈PPP(s)

∑
t∈S

P(s, t)f(t), (29)

(T(f))(s) := max
P(s,·)∈PPP(s)

∑
t∈S

P(s, t)f(t), (30)

are called the lower and upper transition operators.

A key point is that calculation of T(f) and T(f) is
efficient. In fact, once we have specified the linear
constraints that determine the credal sets PPP(s) for
each s ∈ S, Eqs. (29) and (30) can be evaluated via
linear programming [11, Chapter 3]. Many interesting
characteristics of the imprecise Markov chain can be
derived just from T [5]. To ease notation, we will
often write Tf for T(f).

More generally, we might be interested in the lower
and upper expectations of gambles on the state after

exactly n steps, given the current state s. For in-
stance, what is the upper probability of ending up in
B ⊆ S after exactly n steps? Let us use the usual
notation for the indicator gamble of a set B:

IB(s) :=

{
1 if s ∈ B,
0 if s 6∈ B.

(31)

Clearly, (TIB)(s) is the desired upper probability for
n = 1. By marginal extension [11, Sec. 6.7.2], it fol-
lows that T(TIB))(s) is the desired upper probability

for n = 2; we will use the notation T
2
IB for T(TIB).

Similarly, by (T
n
IB)(s), we denote the desired upper

probability for arbitrary n, found by repeated appli-
cation of T.

Definition 5 (n-Step Transition Operators)
The operators Tn : L(S)→ L(S) defined by

(Tnf)(s) =

{
(T(Tn−1f))(s) if n > 1

(Tf)(s) if n = 1
(32)

is called the n-step lower transition operator, and

(T
n
f)(s) =

{
(T(T

n−1
f))(s) if n > 1

(Tf)(s) if n = 1
(33)

is called the n-step upper transition operator.

For model checking, we will use the notation

Tn(s,B) := Tn(IB)(s) (34)

T
n
(s,B) := T

n
(IB)(s) (35)

to denote the lower and upper probability of ending
up in B given that we started in s.

3.2 Property Specification: Imprecise
Probabilistic Computation Tree Logic

The syntax and semantics of state and path formulas
is as before, with only two differences.

First, for simplicity, here, we will exclude ∪∪∪ from our
logic, to avoid technical issues with countable unions
of cylinder sets resulting from the ∪∪∪ operator. The©
and ∪∪∪≤n operators pose no problem. Consequently,
we can impose an upper bound on the number of
steps, after which we are no longer interested in the
Markov chain, so all sets and partitions involved can
be assumed to have finite cardinality. In this way,
we avoid a host of technical problems. Problems in-
volving infinite horizon require additional considera-
tions and will therefore be tackled elsewhere. In any
case, for practical applications, time-bounded proper-
ties will often be sufficient.

Secondly, and more crucially, we need to use a differ-
ent semantics for P:

s � PJ(φ) (36)

will mean that

[Pr(s � φ),Pr(s � φ)] ⊆ J (37)

where

Pr(s � φ) := Pr({π ∈ cyl(s) : π � φ} | s) (38)

Pr(s � φ) := Pr({π ∈ cyl(s) : π � φ} | s) (39)

and the right hand sides denote the lower and up-
per expectations corresponding to natural extension
[13, 14] [11, Sec. 8.1], where the Markov condition is
expressed through epistemic irrelevance [5].

3.3 Model Checking: Automated Algorithm

Again, the central question is: given a state s and
a state formula Φ, does s satisfy Φ? It is easy to see
that we can implement an algorithm exactly as before,
namely by evaluating Sat throughout the parse tree.

The non-trivial differences are:

Pr(s �©Φ) = T(s,Sat(Φ)) (40)

and

Pr(s � Φ∪∪∪ ≤nΨ)

=

1 if s ∈ Sat(Ψ)

0 if s 6∈ Sat(Φ) ∪ Sat(Ψ)

Tn
∗ (s,Sat(Ψ)) if s ∈ Sat(Φ) \ Sat(Ψ)

(41)

where the ∗ denotes the imprecise Markov chain with
all states outside Sat(Φ) \Sat(Ψ) being made absorb-
ing:

(T∗f)(s) =

{
(Tf)(s) if s ∈ Sat(Φ) \ Sat(Ψ),

f(s) otherwise.
(42)

The formulas for upper expectations are trivially sim-
ilar.

4 Example

Consider a Markov chain with the set of states S =
{s1, s2, s3, s4} and the lower and upper transition
probabilities:

L =

1 0 0 0
1
3

1
6

1
4 0

0 1
4

1
6

1
4

0 0 1
4

1
2

 , (43)

U =

1 0 0 0
7
12

5
12

1
2 0

0 7
12

1
2

7
12

0 0 1
2

3
4

 , (44)

that is,

PPP(si) = {P(si) : L(si) ≤ P(si) ≤ U(si)} (45)

where L(si) is the ith row of L, and U(si) is the ith
row of U . As mentioned, the corresponding transi-
tion operators T and T can be efficiently evaluated
through linear programming.

We are interested in verifying the property:

s2 � P[0.9,1]

(
♦≤2

(
P[0.4,1]

(
(s2 ∨ s3)∪∪∪ ≤6s1

)))
(46)

that is, starting from s2, with probability at least 0.9,
in at most two steps we end up in a state from which,
with probability at least 0.4, we end up in s1 in at
most 6 steps without visiting s4.

To answer the above question, we start with evaluat-
ing:

Sat(s2 ∨ s3) = {s2, s3} and Sat(s1) = {s1}. (47)

Next, we need:

Sat
(
P[0.4,1]

(
{s2, s3} ∪∪∪ ≤6{s1}

))
(48)

Clearly, s1 belongs to the set because:

Pr({s2, s3} ∪∪∪ ≤6{s1} | s1)

= Pr({s2, s3} ∪∪∪ ≤6{s1} | s1) = 1, (49)

and s4 does not belong to the set because:

Pr({s2, s3} ∪∪∪ ≤6{s1} | s4)

= Pr({s2, s3} ∪∪∪ ≤6{s1} | s4) = 0, (50)

For s2,

Pr({s2, s3} ∪∪∪ ≤6{s1} | s2) = T6
∗(s2, {s1}) (51)

= 0.4809 (52)

Pr({s2, s3} ∪∪∪ ≤6{s1} | s2) = T
6

∗(s2, {s1}) (53)

= 0.8685 (54)

so s2 belongs to the set, as [0.4809, 0.8685] ⊆ [0.4, 1].
For s3,

Pr({s2, s3} ∪∪∪ ≤6{s1} | s3) = T6
∗(s2, {s1}) (55)

= 0.1415 (56)

Pr({s2, s3} ∪∪∪ ≤6{s1} | s3) = T
6

∗(s2, {s1}) (57)

= 0.5934 (58)

so s3 does not belong to the set, as [0.1415, 0.5934] 6⊆
[0.4, 1]. Concluding,

Sat
(
P[0.4,1]

(
{s2, s3} ∪∪∪ ≤6{s1}

))
= {s1, s2}. (59)

Whence, finally, we need to calculate

Sat
(
P[0.9,1](true∪∪∪ ≤2{s1, s2})

)
. (60)

In fact, to verify Eq. (46), we only need to determine
whether s2 belongs to this set. Clearly it does, be-
cause

Pr(true∪∪∪ ≤2{s1, s2} | s2)

= Pr(true∪∪∪ ≤2{s1, s2} | s2) = 1, (61)

and obviously {1} ⊆ [0.9, 1].

5 Conclusion

We have provided a model checking algorithm for
imprecise Markov chains that is equally easy as the
corresponding algorithm for precise Markov chains.
Rather surprisingly, the same bag of tricks from the
precise case can be used for the imprecise case.

An interesting open problem is the evaluation of Φ∪∪∪Ψ,
where there is no bound on number of steps. Intu-
itively, it seems obvious that we can do this by evalu-
ating Φ∪∪∪≤nΨ for large enough n. How large should n
be? When is convergence guaranteed? Are there also
generally applicable direct methods as in the precise
case? We may also need to deal with the technical
issue of dealing with a countable number of partitions
to express the Markov condition, a case which is not
handled by Walley’s theory [11, Sec. 8.1], but covered
by Williams’s approach [13, 14].

Finally, there are additional optimisation tricks pos-
sible for precise Markov chains (see for instance [2,
Sec. 10.1.1, Remark 10.17]). Even though these
are somewhat technical, it would be interesting to
see whether we can recycle such tricks for imprecise
Markov chains as well.

Acknowledgements

We thank all reviewers for their constructive com-
ments, which have led to some improvements of the
paper.

References

[1] Christel Baier, Holger Hermanns, Joost-Pieter
Katoen, and Boudewijn R. Haverkort. Efficient

computation of time-bounded reachability prob-
abilities in uniform continuous-time Markov de-
cision processes. Theoretical Computer Science,
345(1):2–26, November 2005. doi:10.1016/j.

tcs.2005.07.022.

[2] Christel Baier and Joost-Pieter Katoen. Princi-
ples of Model Checking. The MIT Press, 2008.

[3] Sancho E. Berenguer and Robert L. Smith. The
expected number of extreme points of a random
linear program. Mathematical Programming,
35(2):129–134, 1986. doi:10.1007/BF01580643.

[4] George Boole. An investigation of the laws of
thought on which are founded the mathematical
theories of logic and probabilities. Walton and
Maberly, London, 1854.

[5] Gert de Cooman, Filip Hermans, and Erik
Quaeghebeur. Imprecise Markov chains and their
limit behavior. Probability in the Engineering
and Informational Sciences, 23(4):597–635, Oc-
tober 2009. arXiv:0801.0980, doi:10.1017/

S0269964809990039.

[6] D. J. Hartfiel. Markov Set-Chains. Springer-
Verlag, Berlin, 1998.

[7] D. J. Hartfiel and E. Seneta. On the theory of
Markov set-chains. Advances in Applied Probabil-
ity, 26(4):947–964, 1994. doi:10.2307/1427899.

[8] Joost-Pieter Katoen, Daniel Klink, Martin
Leucker, and Verena Wolf. Three-valued ab-
straction for probabilistic systems. The Journal
of Logic and Algebraic Programming, 81(4):356–
389, 2012. doi:10.1016/j.jlap.2012.03.007.

[9] Igor O. Kozine and Lev V. Utkin. Interval-valued
finite Markov chains. Reliable Computing, 8:97–
113, 2002. doi:10.1023/A:1014745904458.

[10] Damjan Škulj. Discrete time Markov chains with
interval probabilities. International Journal of
Approximate Reasoning, 50(8):1314–1329, 2009.
doi:10.1016/j.ijar.2009.06.007.

[11] Peter Walley. Statistical Reasoning with Impre-
cise Probabilities. Chapman and Hall, London,
1991.

[12] K. Weichselberger. Elementare Grundbe-
griffe einer allgemeineren Wahrscheinlichkeit-
srechnung I — Intervallwahrscheinlichkeit als
umfassendes Konzept. Physica, Heidelberg, 2001.
In cooperation with Thomas Augustin and An-
ton Wallner.

http://dx.doi.org/10.1016/j.tcs.2005.07.022
http://dx.doi.org/10.1016/j.tcs.2005.07.022
http://dx.doi.org/10.1007/BF01580643
http://arxiv.org/abs/0801.0980
http://dx.doi.org/10.1017/S0269964809990039
http://dx.doi.org/10.1017/S0269964809990039
http://dx.doi.org/10.2307/1427899
http://dx.doi.org/10.1016/j.jlap.2012.03.007
http://dx.doi.org/10.1023/A:1014745904458
http://dx.doi.org/10.1016/j.ijar.2009.06.007

[13] Peter M. Williams. Notes on conditional pre-
visions. Technical report, School of Math. and
Phys. Sci., Univ. of Sussex, 1975.

[14] Peter M. Williams. Notes on conditional pre-
visions. International Journal of Approximate
Reasoning, 44(3):366–383, 2007. doi:10.1016/

j.ijar.2006.07.019.

http://dx.doi.org/10.1016/j.ijar.2006.07.019
http://dx.doi.org/10.1016/j.ijar.2006.07.019

	Introduction
	Model Checking for Markov Chains
	Model Specification: Transitions, Labelling, Paths, Probabilities
	Property Specification: Probabilistic Computation Tree Logic
	Model Checking: Automated Algorithm

	Model Checking for Imprecise Markov Chains
	Model Specification: Credal Sets and Upper Transition Operator
	Property Specification: Imprecise Probabilistic Computation Tree Logic
	Model Checking: Automated Algorithm

	Example
	Conclusion

