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Abstract
This paper reviews the temporal sure preference princi-
ple as a basis for inference over time. We reformulate the
principle in terms of desirability, and explore its implica-
tions for lower previsions. We report some initial results.
Specifically, we present a simple condition for consistency
of the temporal sure preference principle with any given
collection of assessments, and we derive various bounds
on the natural extension. We also discuss some of the tech-
nical difficulties encountered.
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1 Introduction

Probabilistic inference has two components, one static
and one dynamic. The static component is a descrip-
tion of probabilistic judgements now, where we are free
to make any allocations of uncertainty that we consider
to be appropriate, expressed, for example, through buying
and selling prices on appropriate gambles, subject only to
the constraints imposed by coherence over the collection
of uncertainty judgements, precise or imprecise, that we
choose now to make. The dynamic component describes
how these uncertainty statements may change over time,
as we receive further information, reflect further on the in-
formation that is currently available to us, and so forth.

Aspects of the dynamic component are expressed within
the static component, for example through conditioning
statements, which express our current buying and selling
prices given various called-off bets which describe condi-
tions under which the bets will or will not take place. Such
conditioning is informative for our future judgements, but
does not determine them, partly as our future experiences
will not be summarisable as the observation of member-
ship of a partition that we could specify in advance of
our inferences, partly because we are always free to re-
flect further on the information that we have already re-
ceived and change our judgements to those that we feel

are in closer accord with the prior evidence, and partly
because, in any case, there is nothing in the usual proba-
bilistic formalism that forces an equivalence between cur-
rent views on certain called-off bets, and actual future un-
certainty assessments about the relevant quantities. This
should not be seen as a failure of conditional reasoning
itself—indeed, conditional reasoning is still a perfectly
valid and extremely useful formalism for embedding the
dynamic features of inference strictly within our current
static judgements as to how such an inference might pro-
ceed.

At this point, perhaps we should note that one might in-
deed not care about modelling future beliefs, and take the
stance that all future decisions are fully determined solely
by current beliefs about those random variables that affect
these decisions. For example, normal form decision mak-
ing is precisely concerned with such scenario: if a sub-
ject makes all future decisions right now, only his current
beliefs count, and his future beliefs are completely irrel-
evant. In practice however, beliefs are revised over time,
and it is rarely the case that future beliefs, which will de-
termine future decisions, are determined solely on the ba-
sis of called-off bets with respect to current beliefs, say
through repeated application of Bayes theorem. Analyz-
ing our current beliefs about our future beliefs, as in this
paper, is thus important if we now wish to know how we
will act in the future based on the actual, but now still un-
certain, beliefs that we will hold in the future.

Temporal coherence is concerned with the careful descrip-
tion of the relationships between the static and dynamic
features of probabilistic reasoning. We do not know what
our future uncertainty judgements will be, but we may now
express views about them. These views are, themselves,
probabilistic. The basic questions that we must ask are:

(i) Are there any constraints that are reasonable to im-
pose on our current judgements about our future
judgements?

(ii) How may such constraints be exploited within the
general approach to inference?

(iii) How does the conventional approach to probabilistic



reasoning, via conditioning, fit into the actual tempo-
ral evolution of beliefs?

This paper is a modest initial exploration of a particular de-
velopment of such temporal reasoning, based on the work
of [3, 4] and summarised in [5]. In particular, we discuss
some of the implications of temporal reasoning for infer-
ence with coherent lower previsions. We will only explore
questions (i) and (ii).

The key concept in studying temporal coherence is the
so-called temporal sure preference principle, which estab-
lishes a link between certain future preferences and current
preferences, thereby allowing us to say something now
about our future beliefs.

In imprecise probability theory, preferences come about
as a very natural way of modelling beliefs, and it has been
argued that the concept of desirability, that is, which gam-
bles we (possibly marginally) prefer to the zero gamble,
forms one of the most elegant mathematical and philo-
sophical foundations for imprecise probability [10, 11, 9].

The traditional way of looking at updating in the subjec-
tive approach to imprecise probability goes by means of
conditioning, that is, looking at called-off gambles. For
instance, very recently, Zaffalon and Miranda [12] pro-
vided a justification for conditioning and conglomerabil-
ity, through temporal reasoning, in a setting where future
beliefs are assumed to be fixed now.

However, in practice, future subjective beliefs rarely re-
flect past called-off gambles, and in fact there is no com-
pelling reason for this to be so, simply because there is
no compelling reason for them to be fixed now. Indeed, it
seems far more natural to start out from the premise that
future beliefs are inherently random, which leads to a more
general theory, but of course we also risk it to be far less
tractable—interestingly, in the precise case, the general-
ity gained leads to updating rules which are far more effi-
cient than computing with called-off gambles, particularly
for large scale problems (for instance, see [1]). Having
preference, in the form of desirability, at its foundations,
imprecise probability is a natural candidate for temporal
coherence. We hope it might lead us, as in the precise
case, to say something meaningful now about future be-
liefs, in a way that updating is more flexible, more real-
istic, and potentially also numerically easier, than the tra-
ditional called-off gamble approach (i.e. the generalized
Bayes rule [9, Sec. 6.4]).

This paper is organised as follows. Section 2 briefly sum-
marises the main results that we need for lower previsions
and desirability. Section 3 reviews temporal coherence and
its main implications for previsions. Section 4 explores an
approach to temporal coherence for lower previsions. We
conclude in Section 5.

2 Lower Previsions and Desirability

Let Ω denote a possibility space. A gamble is simply a
bounded random quantity, and is mathematically repre-
sented by a real-valued function on Ω. We will denote
gambles by capital letters X , Y , . . . . The set of all gam-
bles on Ω is denoted by L(Ω). The set of all gambles on
Ω that are constant on elements of some partition A is de-
noted by L(A).

As mentioned in the introduction, we will take desirability
to be the basic concept, and will use it for studying the
implications of temporal coherence on lower previsions.
To keep the treatment as simple as possible, however, we
will restrict ourselves to sets of almost-desirable gambles
induced by lower previsions.

The following serves to fix the notation and conventions
used in the paper. It is assumed that the reader is famil-
iar with lower previsions and desirability. We refer to [9]
for much more information on the topic. In particular,
throughout the paper, we will use the properties of coher-
ent lower previsions extensively [9, Sec. 2.6.1].

Specifically, let E be a coherent lower prevision on L(Ω)
(without loss of generality, through natural extension [9,
Sec. 3.1]), that is, E satisfies:

C1 E(X) ≥ inf X

C2 E(X + Y ) ≥ E(X) + E(Y )

C3 E(λX) = λE(X)

for all X , Y ∈ L(Ω) and all λ ≥ 0. The upper prevision
E corresponding to E is defined as:

E(X) = −E(−X). (1)

By P(Ω) we denote the set of all coherent lower previsions
on L(Ω).

With E we can then associate a set of (almost) desirable
gambles:

D := {X ∈ L : E(X) ≥ 0}. (2)

For simplicity of exposition, when in the following we say
desirable, we really mean almost-desirable. The following
conditions are satisfied:

D1 if X ≥ 0 then X ∈ D,

D2 if supX < 0 then X 6∈ D,

D3 if X ∈ D and Y ∈ D then X + Y ∈ D,

D4 if λ ≥ 0 and X ∈ D then λX ∈ D, and

D5 if X + ε ∈ D for all ε > 0, then X ∈ D.



Note that we can recover E from D through:

E(X) = sup{a ∈ R : X − a ∈ D} (3)

so in the following, we can use E and D interchangeably.

A lower prevision is called a prevision when it is self-
conjugate, that is, when E = E, in which case we simply
denote it by E. It is well known that previsions correspond
to expectation operators, and lower previsions correspond
to lower envelopes of expectation operators.

We will consider lower previsions at different points in
time—in fact, at just two points in time, 0 and t > 0.

By Ω we denote the possibility space at time 0: it rep-
resents our subjective judgement, now, about what events
are possible. Because Ω will include events involving fu-
ture beliefs, which we do not know, we emphasize that, in
general, a full specification of Ω is not possible.

We assume that we are able to specify a partition A of Ω
which generates all events relevant to the problem domain
at hand. Unlike Ω, the partition A is explicitly modelled,
and hence, represents the operational part of Ω. We as-
sume that our current assessments about the problem do-
main only involve gambles that are constant on the ele-
ments ofA, and we need not make any further assessments
about any other gambles, that is, we can specify a lower
prevision PA defined on some subset of L(A). In partic-
ular, we need not make any direct assessments about our
future beliefs—those will come in later through the tem-
poral sure preference principle.

We also assume the existence of a partition Bt of Ω, such
that exactly one of the elements of this partition will occur
at time t. We will not make any assumption about Bt, in
fact, operationally, it is usually impossible identify now
what Bt ought to be. One could consider an element of Bt
to be a possible possibility space at time t, thus elements
of Bt will be denoted by Ωt. For any ω ∈ Ω, by [ω]t
we denote the unique element Ωt of Bt that contains ω.
Perhaps we need to emphasize that we do not assume any
relationship between A and Bt. In particular, we do not
assume that, say, Bt refines A: this would mean that, at
time t, we would know which element A of A obtains,
and generally, of course this will not be the case.

By Et we denote our coherent lower prevision at time t—
its value is known to us at time t. So, E0 is our current
lower prevision, and embodies both our current assess-
ments PA concerning the problem domain at hand, as well
as any further principles taken into account, such as for
instance the temporal sure preference principle, which we
will discuss in detail later. However, Et is in fact a random
lower prevision now:1

Et(Ωt) ∈ P(Ωt) for any Ωt ∈ Bt, (4)
1Remember that P(Ωt) denotes the set of all coherent lower previ-

sions on L(Ωt).

whose value is only realised at time t.

When comparing gambles, as we will need to do further in
the paper, it is convenient that those gambles are expressed
with respect to the same possibility space. For this reason,
it is more convenient to consider Et as a mapping from Ω
to P(Ω):

Et(ω)(X) := Et([ω]t)(X|[ω]t
), (5)

for any ω ∈ Ω and X ∈ L(Ω). We will follow this con-
venient notation for the remainder of the paper. Note that
one may think of Bt as the partition generated by Et.

For any gamble X ∈ L(Ω), by Et(X) we denote the ran-
dom lower prevision of X at time t:

Et(X)(ω) := Et(ω)(X). (6)

Clearly, Et(X) ∈ L(Ω), and it is constant on the elements
of Bt.

Similarly, we writeDt for the set of desirable gambles cor-
responding to Et. So, Dt is a random set of gambles:

Dt : Ω→ ℘(L(Ω)) (7)

where

Dt(ω) := {X ∈ L(Ω): Et(ω)(X) ≥ 0}, (8)

and as with Et, the value of Dt is only realised at time t.2

Clearly, Dt is constant on the elements of Bt.

3 Temporal Coherence for Previsions

In this section, we review the existing theory of temporal
coherence for previsions.

3.1 Beliefs and Updating

By X , we denote a gamble whose value is unknown to
us. Of course, we may have present beliefs about X . We
assume that X is constant on the elements of the partition
A. Our present expectation for X is denoted by E0(X),
and our present variance for X is denoted by var0(X).
The subscript in E0 and var0 denotes time, where time 0
corresponds to the present.

AsX is unknown, we may try to learn aboutX by observ-
ing another random quantity, which we denote by Y : say
we actually observe the value of Y at time t > 0, whilstX
remains unknown to us at time t. Again, we assume that
Y is constant on the elements of the partition A—because

2We should note that Dt(ω), when defined as a subset of L(Ω) as
in Eq. (8), may not satisfy D5, however of course Dt(ω) will satisfy
D5 as a subset of L([ω]t). Also note that X ∈ Dt(ω) if and only if
I[ωt]X ∈ Dt(ω).



we assumed that Y is known at time t, it will also be con-
stant on the elements of Bt. Here too, we may have present
beliefs about Y , such as its present expectation E0(Y ) and
present variance var0(Y ). In fact, we may hold present
beliefs about X and Y jointly, such as for instance the
present covariance betweenX and Y , which we denote by
cov0(X,Y ).

As mentioned, whilst the value of Y will be known at time
t, X remains unknown. Consequently, we may also con-
sider, now, our future beliefs about X . However, because
the future has yet to obtain, those future beliefs are uncer-
tain in themselves. In other words, Et(X) and vart(X),
the actual expectation and variance of X which represents
our beliefs about X at time t, are gambles in themselves,
whose values are only known to us at time t:

Et(X) : Ω→ R, vart(X) : Ω→ R. (9)

For example, we can think about our current beliefs
about our future beliefs, and could consider for in-
stance our present expectation and variance of these
gambles: E0(Et(X)), E0(vart(X)), var0(Et(X)), and
var0(vart(X)).

The general problem of updating might then be concerned
with answering the following questions. First, what should
be the relationship between:

• our current beliefs about Et(X),
• our current beliefs about X , and
• our current beliefs about Y ?

More challengingly, what should be the relationship be-
tween:

• our actual beliefs Et(X) about X at time t, and
• any updating rule for X as a function of Y ?

3.2 The Temporal Sure Preference Principle

In order to establish relationships between current and fu-
ture beliefs, we must impose conditions that go beyond
coherence at a single time point. These conditions should
be sufficiently weak and compelling to be widely applica-
ble, while leading to a meaningful account of inference.

Any principle which asserts that beliefs now are com-
pelling for beliefs in the future is, by its nature, uncon-
vincing, as we cannot know what future information we
may receive or what the outcome of our future reflections
may be. The converse, however, is that we may often view
our future beliefs as compelling for our current beliefs, as
all such future reflections and information will be taken
into account in such future judgements. In order for future
judgements to influence our current judgements, we must
know what such future judgements are. We therefore in-
troduce the notion of a sure prefererence, at a future time,
as one which we are now sure that we will hold at that
time.

It may seem unreasonable, now, to think that we hold any
such sure preferences. However, it so happens that we do
indeed hold many such, and recognising them explicitly,
and formalising their implications for our current judge-
ments, provides a natural account of temporal reasoning.
For this reason, Goldstein introduced the following princi-
ple (see [3], [4], [5, Sec. 3.5]):

Principle 1 (The Temporal Sure Preference Principle I).
For any gambles U ∈ L(Ω) and W ∈ L(Ω), if you have
a sure preference for U over W at future time t, then you
should not have a strict preference for W over U now.

It is useful to briefly reflect on what it means to have a sure
preference for U over W at future time t. Remember, at
future time t, an element Ωt of Bt obtains, and we hold be-
liefs Et(Ωt) ∈ P(Ωt)—for now these beliefs are assumed
to be precise. A sure preference means a preference re-
gardless of the outcome Ωt in Bt. So in other words, we
are sure to prefer U to W at time t whenever

Et(Ωt)(U |Ωt
) ≥ Et(Ωt)(W |Ωt

) for all Ωt ∈ Bt, (10)

or equivalently, whenever

Et(U)(ω) ≥ Et(W )(ω) for all ω ∈ Ω, (11)

where we use the notation introduced earlier in Eqs. (5)
and (6).

The temporal sure preference principle should be con-
sidered as a prescription for a particular domain of dis-
course, rather than as a fundamental condition for ratio-
nality. There are various reasons why, in a particular ap-
plication, it might not hold. For example, we might con-
sider that, at the future time, we could undergo personal-
ity changes which render our future judgements suspect
to us now (the Doctor Jekyll and Mister Hyde scenario).
More prosaically, we might just recognise situations where
our future judgements are likely to be less reliable than
our current judgements (for example, the problem of for-
getting). Therefore, the intention of the temporal sure
preference principle is that it should be viewed as a very
weak, and widely applicable principle, whose relevance
we should consider for the problem at hand. If we con-
sider the temporal sure preference principle applicable in
our problem, then we may draw on the strong implications
of the principle to provide an account of temporal coher-
ence for this situation. We know of no weaker alternative
principle that allows a similar account of the inferential
process, for the many applications where we will be will-
ing to assert temporal sure preference.

The aim of this section is to study this principle in terms of
desirability [10, 11, 9], whilst at the same time reviewing
the main well-known consequences of the temporal sure
preference principle for previsions, in order to provide a
good understanding of the ideas and techniques involved
before we move on to lower previsions in Section 4.



If we take preference U � W to mean that U −W + ε
is desirable for all ε > 0 [9, Sec. 3.7.5, first paragraph],
and U � W to mean that U − W − ε is desirable for
some ε > 0 [9, Sec. 3.7.7, second paragraph], then it is a
trivial exercise to reformulate the above principle in terms
of desirability:3

Principle 2 (The Temporal Sure Preference Principle II).
For any gamble U ∈ L(Ω), if, for all ε > 0, U + ε is sure
to be desirable for us at future time t, then, for all ε > 0,
−U − ε should not be desirable for us now.

Perhaps it is useful to note already here that many varia-
tions of Principle 2 are possible. We will consider some
of those variations, which are all equivalent for previsions,
but which are no longer equivalent for lower previsions.

We give a quick proof of equivalence, which holds
generally—not just for sets of desirable gambles corre-
sponding to previsions, but for arbitrary sets of desirable
gambles; we do not even need to rely on coherence.
Proposition 3. Principles 1 and 2 are equivalent.

Proof. Suppose Principle 1 is satisfied. Suppose that, for all ε >
0, U + ε is sure to be desirable to us at future time t. This means
that, surely, U �t 0 at time t. Consequently, by Principle 1,
0 6�0 U now, or in other words, 0 − U − ε is not desirable now
for any ε > 0. In other words, Principle 2 is satisfied.

Conversely, suppose that Principle 2 is satisfied. Suppose that,
surely, U �t W at time t. This means that, for all ε > 0, U −
W +ε is surely desirable at time t. Consequently, by Principle 2,
for all ε, −U + W − ε is not desirable now. But this means
precisely that W 6�0 U , now. In other words, Principle 1 is
satisfied.

An obvious question at this point is: what kind of gambles
can be surely desirable at some future time t? Obviously,
any positive constant gamble would be, but that is hardly
useful, as we already know that these are desirable to us
now. For more interesting examples, consider cases where
U is a function of Et. For example, at time t, surely, the
gamble Et(X)−X+ ε is desirable for all ε > 0 (note that
at time t, Et(X) is a constant, whilst X is still a gamble).
The temporal sure preference principle then tells us that
the gamble −Et(X) +X − ε is not desirable to us now.

3.3 Implications

The next proposition, due to Goldstein [4, Theorem 1],
forms the basis for linking future beliefs about expecta-
tion and variance to current beliefs about expectation and
variance. The proof is short, and provides an excellent ex-
ample of how the temporal sure preference principle can
be invoked to make non-trivial statements about Et(X),
so we reproduce it below.

3The attentive reader will note that in Principle 2, we can actually take
desirability to be actual desirability, rather than almost-desirability.

Proposition 4. If Principle 2 is satisfied, then it must hold
that

E0((X − Et(X))2) ≤ E0((X − Y )2). (12)

where Y is surely known by time t.

Proof. Note that, for previsions, U �t W precisely when
Et(U)(ω) ≤ Et(W )(ω) for all ω ∈ Ω, and U 6�0 W precisely
when E0(U) ≤ E0(W ). Also, note that Et(U)(ω) = U(ω)
for any gamble U that is constant on the elements of Bt, such as
Et(X) and Y .

Consequently, for any ω ∈ Ω,

Et((X − Y )2 − (X − Et(X))2)(ω) (13)

= Et(−2XY + Y 2 + 2XEt(X)− Et(X)2)(ω) (14)

= −2Et(X)(ω)Y (ω) + Y 2(ω) + Et(X)2(ω) (15)

= (Et(X)(ω)− Y (ω))2 ≥ 0 (16)

where we have used the linearity of Et(ω). So, at time t,4

(X − Et(X))2 �t (X − Y )2. (17)

Whence, by Principle 2, now,

(X − Et(X))2 6�0 (X − Y )2, (18)

which yields the desired inequality.

Those readers familiar with the usual called-off argument
for conditional previsions may fear that we have, inad-
vertedly, relied on conglomerability of E0 to complete the
above argument. Perhaps, it is instructive to try follow this
misinterpretation to put such fears at rest. Indeed, in the
proof, we first show that, effectively,

(X − Y )2 − (X − Et(X))2 (19)

is desirable at time t. One might correctly, but confusingly,
understand that this means that the called-off gamble

IΩt

(
(X − Y )2 − (X − Et(X))2

)
(20)

is now desirable. In fact, it is sure to be desirable at time
t—if Ωt does not obtain, then it is zero and thus desir-
able, and if Ωt does obtain, then the reasoning in the proof
can be used to show that it is desirable as well—thus, by
the temporal sure preference, indeed, the called-off gam-
ble defined in Eq. (20) is desirable now. Then, assuming
conglomerability, we can glue all these called-off gam-
bles together to prove that the gamble in Eq. (19) is de-
sirable now. We simply emphasize here that the actual
proof works quite differently. In particular, the temporal
sure preference principle is only applied once, namely on
the gamble in Eq. (19): called-off gambles are never con-
sidered.

4It is interesting to compare Eq. (17) with the operational definition
of expectation of de Finetti [2], in which Eq. (17) is the definition of
Et(X), rather than a derived property.



The proof of Proposition 4, and the above discussion, al-
ready hint at a slightly simpler version of the temporal sure
preference principle:

Principle 5 (The Temporal Sure Preference Principle III).
For any gamble U ∈ L(Ω), if U is sure to be desirable for
us at future time t, then U should be desirable for us now:⋂

Ωt∈Bt

Dt(Ωt) =
⋂
ω∈Ω

Dt(ω) ⊆ D0. (21)

Proposition 6. Principle 5 implies Principle 2.

Proof. Assume that Principle 5 holds. If U + ε is sure to be
desirable at time t, for all ε > 0, then consequently, U + ε is
desirable now, for all ε > 0. If −U − δ would be desirable for
us now for some δ > 0, then U + δ/2− U − δ = −δ/2 would
be desirable as well, which would lead us to incur a sure loss, so
−U − δ cannot be desirable now for any δ > 0. In other words,
Principle 2 holds.

Proposition 7. If our set of desirable gambles corre-
sponds to a prevision, that is, if

D0 = {U : E0(U) ≥ 0} (22)

for some prevision E0, then Principle 5 is equivalent to
Principle 2.

Proof. Assume Principle 2 holds. If U is sure to be desirable at
time t, then obviously U + ε is also sure to be desirable at time
t, for all ε > 0. Consequently, −U − ε is not desirable now, for
all ε > 0, or in other words, E0(−U)− ε < 0 for all ε > 0. This
means that E0(U) ≥ 0, so U is desirable to us now.

In other words, for the remainder of this section, where we
are concerned with previsions only, we can assume Princi-
ple 5 without loss of generality. We will thus assume that
desirability is as in Eq. (22).

Proposition 4 has a number of very interesting conse-
quences:

Corollary 8. If Principle 5 is satisfied, then

E0(X − Et(X)) = 0. (23)

Proof. In Proposition 4, let Y := Et(X) + b where b ∈ R, and
take the minimum over b.

Note that Eq. (23) is very similar to the usual definition of
conglomerability as in for instance [9, p. 305, (C15)], so it
is worth emphasizing that Eq. (23) is not your usual con-
glomerability, because Et(X) is not necessarily obtained
through conditioning.

We can also say something about the expected future vari-
ance, that is, E0(vart(X)).

Corollary 9 (Adjusted Variance). If Principle 5 is satis-
fied, then it holds that:

var0(X − Et(X)) = E0(vart(X)) ≤ varY (X), (24)

with

varY (X) := var0(X)− cov0(X,Y )2

var0(Y )
, (25)

where Y is surely known by time t.

Proof. To prove the inequality in Eq. (24), take a+ bY for Y in
Proposition 4, and minimize over a and b.

Note that the usual formulation uses var0(X − Et(X)) only. It
is easy to see that this is E0(vart(X)), which seems easier to
interpret, and is also relevant for what comes later:

var0(X − Et(X)) = E0((X − Et(X)

− E0(X − Et(X)))2) (26)

and by Eq. (23) E0(X − Et(X)) = 0, so

= E0((X − Et(X))2) (27)

and again by Eq. (23) E0(·) = E0(Et(·)), so

= E0(Et((X − Et(X))2)) (28)

= E0(vart(X)). (29)

So, the temporal sure preference principle allows us to
quantify uncertainty about future variance.

In the proof of Corollary 9, the value for a+ bY where the
minimum is achieved is precisely the adjusted expectation:

Corollary 10 (Adjusted Expectation). If Principle 5 is sat-
isfied, then

Et(X) = EY (X) + St(X), (30)

where

EY (X) := E0(X) +
cov0(Y,X)

var0(Y )
(Y − E0(Y )), (31)

and

E0(St(X)) = 0, cov0(St(X),EY (X)) = 0. (32)

Proof. Take a + bY + cEt(X) for Y in Proposition 4, and do
the usual magic.

In other words, the temporal sure preference principle also
allows us to quantify a linear connection between observa-
tions and future beliefs.



If Y is the indicator of some event E, then EY (X) =
E(X|E), that is, adjusted expectation coincides with con-
ditional expectation. So, Eq. (30) also provides an inter-
pretation of the relation between conditioning and our ac-
tual posterior expectation.

The above results are only an initial tasting of the realm
of possibilities. Of considerable interest is that the above
treatment generalises almost trivially to the multivariate
case.

4 Temporal Coherence for Lower
Previsions

Let us now investigate the implications of the temporal
sure preference principle for lower previsions.

4.1 The Temporal Sure Preference Principle for
Lower Previsions

In the context of desirability, it makes sense to adopt Prin-
ciple 5, for at least two reasons:

1. The principle seems reasonably compelling. Indeed,
if U is sure to be desirable for us at time t, then it
does not matter whether we accept it already now, or
whether we accept it only at time t: the gamble has
the same outcome either way.

2. We may use it as a production rule in natural exten-
sion.

By the second point, we mean the following. As men-
tioned in the introduction, we assume a partition A which
represents what we could call the operational part of Ω.
Specifically, all direct assessments of lower previsions
PA0 (Y ), which represent our beliefs now, concern gam-
bles Y ∈ L(A). In other words, our initial assessments
are embodied by a lower prevision PA0 which is defined on
a subset of L(A). We can then consider the natural exten-
sion of EA0 to all gambles L(A); let us denote that natural
extension by EA0 . It is different from E0, which embodies
our beliefs about PA0 but also those implied by the tempo-
ral sure preference principle. Indeed, under Principle 5, all
gambles V for which

Et(V )(ω) ≥ 0 for all ω ∈ Ω, (33)

or briefly, for which Et(V ) ≥ 0, are desirable now. Con-
sequently,

E0(U) = sup
α∈R

Y ∈L(A) : EA
0 (Y )≥0

V ∈L(Ω) : Et(V )≥0

{α : U − α ≥ Y + V } (34)

for any gamble U ∈ L(Ω).

Before we proceed investigating actual inferences from the
above expression for natural extension, we need to address

a few concerns. First, there is no guarantee that Principle 5
is consistent with our initial assessments PA0 . Eq. (34)
provides us with a means to verify this: we merely have
to check that E0(0) < +∞ [9, p. 123, ll. 4–7]. Secondly,
there is no guarantee that Principle 5 does not modify EA0
on L(A). Thirdly, this form of natural extension is inher-
ently non-constructive: it involves an operator Et about
which we have not specified much at all. The next propo-
sition answers the first two concerns. The last concern of
course remains, but nevertheless, we will show that we still
can derive something non-trivial about Et, just as in the
precise case discussed earlier.

Proposition 11. If, for every A ∈ A, there is an ΩAt ∈ Bt
such that

Et(Ω
A
t )(A) = 1, (35)

then Principle 5 is consistent with PA0 , and, for all X ∈
L(A),

E0(X) = EA0 (X). (36)

Proof. If we can prove Eq. (36), then consistency follows im-
mediately.

Consider any X ∈ L(A). Clearly, E0(X) ≥ EA0 (X). We now
prove the converse inequality. Indeed,

E0(X) = sup
α∈R

Y ∈L(A) : EA
0 (Y )≥0

V ∈L(Ω) : Et(V )≥0

{α : X − α ≥ Y + V } (37)

= sup
α∈R

Y ∈L(A) : EA
0 (Y )≥0

V ∈L(Ω) : Et(V )≥0

{
α : (∀A ∈ A) (38)

(
X(A)− α ≥ Y (A) + sup

ω∈A
V (ω)

)}
(39)

so, if we can show that supω∈A V (ω) ≥ 0 whenever Et(V ) ≥
0, then

≤ sup
α∈R

Y ∈L(A) : EA
0 (Y )≥0

{α : X − α ≥ Y } (40)

= EA0 (X). (41)

We are left to show that supω∈A V (ω) ≥ 0 whenever Et(V ) ≥
0. In fact, we will show that supω∈A∩ΩA

t
V (ω) ≥ 0, by con-

traposition. Note that Eq. (35) already implies that A ∩ ΩAt is
non-empty.

Suppose that supω∈A∩ΩA
t
V (ω) < 0, then there would be an

ε > 0 such that for all ω ∈ A ∩ ΩAt ,

V (ω) < −ε. (42)

Therefore, necessarily, also

Et(Ω
A
t )(V ) ≤ Et(Ω

A
t )(IAcV ) + Et(Ω

A
t )(−IAε) = −ε (43)

because Et(Ω
A
t )(Ac) = 0, so Et(Ω

A
t )(IAcV ) = 0, and

Et(Ω
A
t )(A) = 1, so Et(Ω

A
t )(−IAε) = −ε. But Eq. (43) con-

tradicts the assumption that Et(V ) ≥ 0.



The consistency condition in Eq. (35) has a simple in-
terpretation: for every A ∈ A, we must allow for the
possibility that at time t, we will be certain that A has
obtained. Note that we only must logically allow for
this possibility—it may well have zero probability—so the
condition is really very weak.

We also immediately have the following important re-
sult, which effectively reformulates Principle 5 in terms
of lower previsions:5

Proposition 12. Principle 5 holds if and only if, for every
gamble U ∈ L(Ω),

inf
ω∈Ω

Et(U)(ω) ≤ E0(U). (44)

Proof. “only if”. Suppose Principle 5 holds. We could rely
on our expression for natural extension, Eq. (34), however it is
instructive to use only Principle 5 in the proof.

For any ε > 0, simply note that

U − Et(U) + ε ≤ U − inf
ω∈Ω

Et(U)(ω) + ε (45)

so U − infω∈Ω Et(U)(ω) + ε is sure to be desirable at time t,
because U − Et(U) + ε is. Consequently, we have that

E0

(
U − inf

ω∈Ω
Et(U)(ω) + ε

)
≥ 0 (46)

and because this holds for all ε > 0, we arrive at Eq. (44), after
using the constant additivity of E0.

“if”. Suppose Eq. (44) holds. Consider any gamble U ∈ L(Ω).
If U is sure to be desirable at time t, then Et(U)(ω) ≥ 0 for all
ω ∈ Ω. Consequently, by Eq. (44),

E0(U) ≥ inf
ω∈Ω

Et(U)(ω) ≥ 0 (47)

so U is desirable now. Principle 5 follows.

4.2 Implications

The treatment for previsions relied on the scoring defini-
tion of expectation, via Proposition 4. However, no proper
scoring rules exist for lower previsions [7]. We try to gen-
eralise Proposition 4 anyway. We do so in two ways: first
without scoring, and secondly using the relationship be-
tween expressions of the form (X − a)2, and lower and
upper variance—which is the closest notion to scoring we
have for lower previsions. There are certainly more ways
to go about it, but for this introductory paper, we will stick
to these two.

First, we derive the following imprecise counterpart of
Corollary 8.

Corollary 13. If Principle 5 is satisfied, then

E0(X − Et(X)) ≥ 0. (48)
5The attentive reader will note that the ‘only if’ part of the proof of

Proposition 12 remains valid, if in Principle 5, we take desirability to be
actual desirability, rather than almost-desirability.

Proof. By Eq. (44):

inf
ω∈Ω

Et(X − Et(X))(ω) ≤ E0(X − Et(X)). (49)

Now note that Et(X −Et(X))(ω) = 0 for all ω ∈ Ω, by coher-
ence of Et(ω).

Clearly, if we were to impose a conditioning interpreta-
tion, Eq. (48) corresponds to one of Walley’s conditions
for coherence [9, p. 303, (C11)].

Corollary 13 has a number of interesting immediate con-
sequences:

Corollary 14. If Principle 5 is satisfied, then

E0(X − Et(X)) ≤ 0, (50)

E0(Et(X)) ≤ E0(X) ≤ E0(Et(X)), (51)

E0(Et(X)) ≤ E0(X) ≤ E0(Et(X)). (52)

Proof. The first inequality holds by:

0 ≤ E0(−X − Et(−X)) = −E0(X − Et(X)). (53)

The second inequality holds because

E0(X − Et(X)) ≥ 0 (54)

=⇒ E0(X) + E0(−Et(X)) ≥ 0 (55)

=⇒ E0(X) ≥ E0(Et(X)) (56)

and

E0(−X − Et(−X)) ≥ 0 (57)

=⇒ E0(−X) + E0(Et(X)) ≥ 0 (58)

=⇒ E0(Et(X)) ≥ E0(X). (59)

The thrid one is proved similarly.

We can derive neither a lower bound on E0(Et(X)), nor
an upper bound on E0(Et(X)), for example, due to the
possibility of dilation [8].

Finally, let us see how far we can get with lower and upper
variance. We need the following lemma [9, p. 618, G2]:

Lemma 15. For every gamble X , there are previsions E1

and E2 in the credal set of E, such that for all a ∈ R:

var(X) := E((X − E1(X))2) ≤ E((X − a)2), (60)

var(X) := E((X − E2(X))2) ≤ E((X − a)2). (61)

In particular, for all a ∈ R, (X − a)2 − var(X) is desir-
able. Note that var(X) − (X − a)2 − ε is non-desirable,
however this does not help us very much—in fact, this
led us to investigate temporal sure preference also for
non-desirability, yet the resulting principle seems not very
compelling, and leads to serious issues.



Proposition 16. If Principle 5 is satisfied, then

E0(vart(X)) ≤ E0((X − Y )2), (62)

E0(vart(X)) ≤ E0((X − Y )2). (63)

Proof. By definition of variance,

Et
(
(X − Y )2 − vart(X)

)
≥ 0 (64)

(remember that Y is a known constant at time t). Whence, by
Eq. (44), also

E0((X − Y )2 − vart(X)) ≥ 0. (65)

Concluding, by coherence,

E0((X − Y )2) ≥ E0(vart(X)), (66)

and
E0((X − Y )2) ≥ E0(vart(X)). (67)

Again, we cannot say anything about, say, E0(vart(X)).

As for adjusted lower expectation, if we are happy to
bound, say, the upper expectation of the future lower vari-
ance, by Eq. (63), any function Y of observed quantities
at time t which aims to minimize E0((X − Y )2) could
be a candidate. A good choice of function of course de-
pends on the optimisation problem, and an obvious stum-
bling block is that even already for a simple linear form,
say a+ bY , E0((X − (a+ bY ))2) cannot be written as a
function of the imprecise expectation and imprecise vari-
ance of X and Y . In other words, at this point, we seem to
get stuck, although there might be interesting and feasible
solutions for specific cases, for instance, using techniques
from imprecise regression.

5 Conclusion

We have discussed the temporal sure preference principle
in the context of desirability and lower previsions. We
found more than one way to generalise the temporal sure
preference principle to lower previsions, so we used the
simplest version, related directly to desirability.

We have identified an expression for natural extension un-
der the suggested temporal sure preference principle. We
then derived a simple condition, which guarantees consis-
tency of the temporal sure preference principle with prior
specifications, and which also guarantees that those prior
specifications are not modified by adopting the temporal
sure preference principle, so we can still use the usual
(non-temporal) form of natural extension for gambles as
far as our current beliefs are concerned.

We have also derived a host of bounds on lower and upper
expectations of future lower and upper expecations and

variances. In this initial investigation, a particular chal-
lenge which remains is to provide lower and upper bounds
on all future lower and upper expectations and variances.

An obvious next step would be to investigate possible up-
dating rules implied by the temporal sure preference prin-
ciple, for example using ideas from imprecise regression.
The optimisation problems involved do not appear to have
nice closed solutions in general, essentially due to the non-
linearity of the lower and upper previsions. It would be
very interesting to find non-trivial imprecise instances of
lower previsions where such updating rules could be cal-
culated explicitly. In this paper, we had an initial look at
linear updating rules and lower and upper variance, but of
course there might be many more ways to go about it.

Temporal reasoning without conditioning also raises in-
teresting questions about the need for a possibility space.
In fact, it is one of the premises of temporal reasoning
that we cannot specify in advance what the possibility
space ought to be. In the current paper, it serves only
as a mathematical construct to establish a clear link with
Walley’s [9] approach to lower previsions and desirabil-
ity. We might be better off simply ignoring the possibility
space entirely, and instead working with random quanti-
ties directly, following the approach of de Finetti [2] and
Williams [10, 11].

Finally, one might wonder, why not also introduce a prin-
ciple for temporal coherence concerning non-desirability:
say, if a gamble is surely non-desirable at a future time t,
should it also be non-desirable now? One can show that,
for previsions, this principle is equivalent to the usual tem-
poral sure preference principle.

However, for lower previsions, this is no longer so, and it
leads us to infer additional constraints. In fact, it leads to
additional constraints that are usually not satisfied in the
standard theory when updating is taken to be condition-
ing. We simply note here that temporal reasoning on non-
desirability seems far less compelling, certainly so un-
der the standard interpretation that non-desirability merely
means that we do not say whether we accept a gamble
or not. Here, a reject-accept approach to desirability [6]
might lead to a better treatment.
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