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Two theories of conditional probability and non-conglomerability 

 
 
 

 
 
Abstract 
Conglomerability of conditional probabilities is 
suggested by some (e.g., Walley, 1991) as necessary for 
rational degrees of belief.   Here we give sufficient 
conditions for non-conglomerability of conditional 
probabilities in the de Finetti/Dubins sense.  These 
sufficient conditions cover familiar cases where P(⋅) is a 
continuous, countably additive probability.   In this 
regard, we contrast the de Finetti/Dubins sense of 
conditional probability with the more familiar account of 
regular conditional distributions, in the fashion of 
Kolmogorov.  
  
Keywords. Non-conglomerability,  conditional 
probability, κ-additive probability, regular conditional 
distribution. 
  
1 Introduction 
Consider a finitely, but not necessarily countably 
additive probability P(⋅) defined on a sigma-field of sets 
B, each set a subset of the sure-event Ω.  In other terms,  
<Ω, B, P> is a (finitely additive) measure space. 

We begin by reviewing the theory of conditional 
probability that we associate with de Finetti (1974) and 
Dubins (1975).   
 
Let B, C, D, E, F, G ∈  B, with B ≠ ∅ and  F ∩ G ≠ ∅.   
Definition 1.  A conditional probability P(⋅ | B) satisfies 
the following three conditions:  
(i) P(C ∪ D | B) = P(C | B) + P(D | B),   

whenever B ∩	
  C	
  ∩	
  D =	
  ∅; 
(ii) P(B | B) = 1.  
In order to regulate conditional probability given a non-
empty null event, i.e., one that itself may be of 
unconditional or conditional probability 0, we require the 
following. 
(iii) P(E	
  ∩	
  F	
  |	
  G)	
  =	
  P(E	
  |	
  F	
  ∩	
  G)P(F	
  |	
  G).	
  
	
  
Throughout, we follow the usual identification of 
unconditional probability with conditional probability 
given the sure-event,  P(⋅) = P(⋅ | Ω). 
 
 
 

 
 

 
This account of conditional probability is not the usual 
theory from contemporary Mathematical Probability, 
which we associate with Kolmogorov (1956).  That 
theory, instead, defines conditional probability through 
regular conditional distributions, as follows. 
 
Let A  be a sub-σ-field of B. 
Definition 2.  P(⋅ | A) is a regular conditional distribution 
[rcd] on B, given A provided that: 
1. For each ω ∈ Ω, P(⋅|A)(ω) is a countably additive 

probability on B. 
2. For each B ∈ B,  P(B| A)(⋅) is an A -measurable 

function. 
3. For each A ∈ A,   

P(A ∩ B)  =  ∫A P(B | A)(ω) dP(ω).  

That is, P(B| A) is a version of the Radon-Nikodym 
derivative of  P(⋅ ∩ B) with respect to P(⋅). 
 
Definition 3: An A-atom is the intersection of all 
elements of A that contain a given point ω of Ω. 
 
When P(A) > 0 and ω ∈ A ∈ A and A is an A-atom, then 

P(B | A)(ω) =  P(A ∩ B) / P(A). 
 
The theory of conditional probability that we use here 
differs from the received theory of Kolmogorovian 
regular conditional distributions in at least five ways: 
 
(1) The theory of regular conditional distributions 
requires that probabilities and conditional probabilities 
are countably additive. The theory of conditional 
probability from Definition 1 requires only that 
probability is finitely additive.  In this note we bypass 
this difference by exploring countably additive 
conditional probabilities. 

	
  
(2) When P(A) = 0 and A is not empty, a regular 
conditional probability given A is relative also to a sub-
sigma field	
  A	
  	
  ⊆	
  B,	
  where A	
  ∈	
  	
  A.	
  	
  	
  By contrast, in the 
theory of conditional probability, P( ⋅ | A), depends solely 
on the event A and not on any sub-field that embeds it.  
Example 2, below, illustrates this difference. 
 
 

      Teddy Seidenfeld             Mark J. Schervish              Joseph B. Kadane  
Carnegie Mellon University 

     teddy@stat.cmu.edu           mark@stat.cmu.edu           kadane@stat.cmu.edu  
 



(3) Dubins (1975) establishes that for each set Ω there is 
a full conditional probability function, P(B|A), defined 
whenever A ≠ ∅ and B are elements of B, the powerset 
of Ω.  However, some countably additive probabilities do 
not admit regular conditional distributions relative to a 
particular sub-sigma field A	
  	
  ⊆	
  B, even when each sigma-
field, A	
  and	
  B, is countably generated. The canonical 
example of a measure space that admits no rcd’s is 
obtained by extending the	
  σ-­‐field of Borel sets on [0,1] 
under Lebesgue measure, µ, with the addition of one 
non-measurable set.  
 
Denote the initial measure space by <[0,1], B,	
  µ>.  A 
familiar maneuver allows an extension of B to a larger σ-
field of sets, B’, generated by adding one Lebesgue non-
measurable set to B, and an extension of µ to a countably 
additive probability µʹ′ over B’.  However, there is no rcd 
µʹ′(·|A)(ω)	
  on	
  B’	
  given	
  A when, e.g., A = B.  (See 
Halmos, 1950, p. 211; Billingsley, 1986, Exercise 33.13; 
Breiman, 1968, p.81; Doob, 1953, p. 624; or Loeve, 
1955, p. 370 for variations on this common theme.)   
Though, for each B ∈	
  B, the extended measure space has 
Radon-Nikodym derivatives P(B |·) satisfying condition 
3, above, these resist assembly of pointwise probabilities 
into a countably additive probability distribution over B’ 
as required by condition 1.  	
   
 
In our (2001, Corollary 1) we show that, quite generally, 
a measure space admitting rcd's can be extended to 
another measure space admitting rcd's if and only if the 
latter lies within the measure completion of the former.	
  	
  	
  
In rejoinder to the existence problem, however, a 
sufficient condition for rcd’s to exist on B (given any sub 
σ-field A) is that B be isomorphic under a 1-1 measurable 
mapping to the σ-field of a random variable.  (See, 
Billingsley 1986, T.33.3; or  Breiman, 1968, T. 4.30.) 
 
(4) Blackwell (1955), Blackwell and Ryll-Nardzewski 
(1963) and Blackwell and Dubins (1975) introduce an 
additional constraint, propriety of an rcd, matching 
condition (ii) of de Finetti/Dubins’ theory of conditional 
probabilities. 
 
Definitions 4:  
• An rcd P(·|A)(ω) on B given A, is proper at ω   

if  P(A |A)(ω) = 1 whenever ω ∈ A ∈ A.   
• P(·|A)(ω) is improper at ω, otherwise. 
• P(·|A) is proper if P(·|A)(ω) is proper for each ω∈Ω. 

 
Definition 5: Say that a probability distribution is 
extreme if its range is the two point set {0,1}. 

 
Theorem 1 (Blackwell and Dubins, 1975) When B is a 
countably generated σ-field, no rcd on B given A is 

proper if there exists some extreme probability on A 
supported by no A-atom belonging to A. 
In other words, provided there exists even one extreme 
probability on A which is supported by none of its A-
atoms, then the sub-σ-field A is anomalous for all rcd’s 
on B given A in that they are improper, each and every 
one!   However, this result does not identify at how many 
points, ω, or how badly, the rcd is improper. The 
following result addresses that question. 

	
  
Assume that A is an atomic sub-σ-field of B, with A-
atoms a.  Denote by a(ω) that A-atom containing the 
point ω. 

 
Theorem 2 (our 2001): Let P be an extreme probability 
on A that is not supported by any of its A-atoms.  If an 
rcd P(·|A)(ω) on B given A exists, there is one where 
P{ω: P(a(ω)|A)(ω) = 0} = 1.  And, if B is countably 
generated, then this rcd is unique.  

 
Theorem 2 asserts that when B is countably generated 
and the antecedent of Theorem 1 is satisfied, then almost 
surely with respect to P, the rcd’s on B given A are 
maximally improper, in two senses simultaneously:   
• The set of points where propriety fails has measure 1 

under P.   
• For P-almost all points ω, P(a(ω)|A)(ω) = 0 when 

propriety requires that P(a(ω)|A)(ω) = 1. 
The following Corollary applies Theorem 2 when 
conditioning on the sub-sigma field associated with de 
Finetti’s theorem on exchangeability. 
 
Let Ω = {0,1}ℵ0 ; let B = the Borel subsets of Ω; and let P 
be a symmetric probability, in the sense of Hewitt and 
Savage (1955) defined as follows.  Let T be an arbitrary 
finite permutation of the positive integers, i.e., a 
permutation of the coordinates of Ω that leaves all but 
finitely many places fixed.  For B ∈ B, given T, define 
the set T-1B  = {ω: T(ω) ∈ B}.   
 
Definitions 6:  
• P is called a symmetric probability if P(T-1B) = P(B), 

for each B ∈	
  B	
  and T.    
• If B = T-1B for all (finite) permutations T, B is called 

a symmetric event. 
	
  

Let A be the sub-σ-field of B generated by the class T of 
all finite permutations of the coordinates of Ω, i.e., A is 
the σ-field of the symmetric events. A is atomic, with A-
atoms comprised by a countable set of sequences, each 
pair of sequences in the same atom differing by some 
finite permutation of its coordinates.  In all but two cases 
the A-atoms are countably infinite sets.  The two 
exceptions are the two constant sequences, which are 
singleton sets.	
  	
  



Corollary (see our 2001).  Each rcd P(·|A)(ω) on B given 
A, for a symmetric probability P, satisfies  

P{ω: P(a(ω) | A)(ω) = 0)} = 1,  
provided that P(<0,0,0,…. >) = P(<1,1,1…. >) = 0. 
 
For additional related results see (Berti and Rigo, 2007) 
 
(5) Our focus in this paper is on a fifth feature that 
distinguishes the de Finetti/Dubins theory of conditional 
probability and the Kolmogorovian theory of regular 
conditional probability.  This aspect of the difference 
involves conglomerability of conditional probability 
functions.   
 

Let E ∈ B, let N be an index set and let π = {hν: ν ∈ N} 
be a partition of the sure event where the conditional 

probabilities, P(E | hν), are well defined for each ν ∈ N.   
 

Definition 7:  The conditional probabilities P(E | hν) are 
conglomerable in π provided that, for each event E ∈  B 
and arbitrary real constants k1 and k2,  

  if k1 ≤ P(E | hν) ≤ k2 for each ν ∈ N, then k1 ≤ P(E) ≤ k2. 
  

In our (1984) we show that if P is merely finitely additive 
(i.e., if P is finitely but not countably additive) with 
conditional probabilities that satisfy Definition 1, then P 
fails conglomerability in some countable partition.  That 
is, for each merely finitely additive probability P there is 
an event E, an ε > 0, and a countable partition π = {hn: n 
= 1, …}, where P(E) > P(E | hn) + ε  for each hn ∈ π.   
 
The following illustrates a failure of conglomerability for 
a merely finitely additive probability P in a countable 
partition π = {hn: n ∈ {1, 2, …}}, where each element of 
the partition is not null, i.e., P(hn) > 0, n = 1, 2, … .   
 
Then, apart from the requirement of countable additivity, 
both theories agree on the relevant conditional 
probabilities: P(E | hn) = P(E∩ hn)/P(hn) is well defined.  
Thus, the failure of conglomerability in this example is 
due to the failure of countable additivity, rather than to a 
difference in how conditional probability is defined. 
 
Example 1 (Dubins, 1975): Let Ω  = {(i, n): i ∈ {1, 2} 
and n ∈ {1, 2, …}} and let B  be the powerset of Ω .   
Let event E = {{1, n}: n ∈ {1, 2, …}} and events hn = 
{{1,n}, {2,n}}, n = 1, ... .  Observe that the hn form a 
partition: π = {hn: n ∈ {1, 2, …}}.   
Partially define the (unconditional) probability P by  

(a) P({(i, n)}) = 1/2n+1 if i = 1, n = 1, 2, ... 
(b) P({(i, n)}) = 0 if i = 2, n = 1, 2, ... 
(c) P(E) = 0.5.   

So P is countably additive given E, and strongly finitely 
additive given Ec.   (A finitely additive probability is 

strongly finitely additive if there is a countable partition 
of the sure event each of whose elements is null.) 
Clearly, P(hn) =  P({(1,n)}) + P({2,n)}) =  1/2n+1 > 0 for 
each n ∈ {1, 2, …}.   
But P is not conglomerable in π, as:     
P(E | hn) = P(E ∩ hn)/P(hn) = 1, for each n ∈ {1, 2, …}, 
whereas P(E) = 0. 5. Example 1   
In our (1996), we discuss this example in connection 
with the value of information.   
 
The non-conglomerability of Example 1 extends to a 
non-trivial IP class, P.  Let P be the set of all finitely 
additive conditional probabilities whose unconditional 
probabilities P(⋅) = P(⋅ | Ω) satisfy conditions (a), (b) and 
(c) of Example 1.  The class P is convex in the usual 
sense, applied to unconditional probabilities.  That is, 
assume P contains two finitely additive conditional 
probabilities P1(⋅ | ⋅) and P2(⋅ | ⋅) with unconditional 
probabilities, respectively, P1(⋅) and P2(⋅).  Let 0 ≤ x ≤ 1.  
Then there is a finitely additive conditional probability 
P3(⋅ | ⋅) in P whose unconditional probability P3(⋅)  
satisfies P3(⋅) =  xP1(⋅) + (1-x)P2(⋅).  The cardinality of P 

is 2|

|ℜ|
, where |ℜ| is the cardinality of the continuum.  

This follows as P includes all finitely additive 
probabilities P where P( ⋅ | Ec) is a non-principal 
ultrafilter probability on the positive integers and there 

are 2|

|ℜ|
-many such non-principal ultrafilters.)  Each P ∈ 

P fails conglomerability in π exactly as in Example 1.  
Hence, with respect to lower and upper unconditional 
and conditional probabilities, the IP-set P fails to be 
conglomerable in the partition π.  In Section 5 we give 
sufficient conditions for an IP set of countably additive 
probabilities to experience non-conglomerability in an 
uncountable partition. 
 
2  Non-conglomerable σ-additive probability 
The focus of this note is non-conglomerability for 
countably additive probabilities.  In the appendix to our 
(1986) we show that for a continuous, countably additive 
probability defined on the continuum, and assuming 
conditional probabilities that satisfy Definition 1 rather 
than regular conditional distributions, then non-
conglomerability results by considering continuum-many 
different partitions of the continuum.  These alternative 
partitions are generated by sets of equivalent (non-
linearly transformed) random variables. 
Conglomerability cannot be satisfied in all the partitions.    
 
Here we generalize that result to a large class of 
countably additive probabilities, P, that are not κ-additive 
for some uncountable cardinal κ, by identifying for each 
such P specific partitions where P fails to be 
conglomerable. 
 



In the following presentation, let α, β, and γ be ordinals 
and λ and κ cardinals.  
Definitions 8:   
• A probability P is κ-additive if, for each increasing 

γ-sequence of measurable events, {Eα: α < γ ≤ κ}, 

where Eα ⊆ Eβ whenever α < β < γ , then 

P(∪α<γ Eα) = supα<γ P(Eα).  
That is, with γ ≤ κ, P is κ-additive provided that 
probability is continuous from below over γ-long 
sequences that approximate events from below.   
This definition agrees with the usual definition of 
countable additivity; let κ = ℵ0.   
 
• Say that P is not κ-additive when, for some event E 

and increasing γ-sequence that approximates E from 

below, P(∪α<γ Eα) > supα<γ P(Eα).    
• If P is κ-additive for each cardinal κ, then call P 

perfectly additive.   
 
Consider a countably additive probability P that is not κ-
additive for some cardinal κ.  Since the cardinals below a 
given cardinal form a well-ordered set, we consider the 
least cardinal κ for which P is not κ-additive.  And since 
we assume that P is countably additive, then κ is some 
uncountable cardinal – unless P is perfectly additive.  
Thus, assume that for an uncountable cardinal κ, P is not 
κ-additive but is λ-additive for each cardinal λ < κ.  
 
We make the following two structural assumptions on 
the measurable sets B.   
• We take the measure completion of P.  Each subset 

of a P-null event is measurable.   
That is, if E ∈ B with P(E) = 0 and F ⊆ E then F ∈ B.  
 
We require also that B includes sufficiently many events.  
• If E is not P-null and |E| = κ, then E can be 

partitioned into two measurable sets of the same 
cardinality 

That is, if P(E) > 0 then there exits E1, E2 ∈ B, E1∩E2 = 
∅, E1∪E2 = E, with |E1| = |E2|.  
Note that, given the first assumption, the second 
structural assumption can be satisfied in a variety of 
ways.  For example, assume that when E is a κ-sized 
non-null event, P(E) > 0, then there is a κ-sized, null sub-
event: There exists E1 ⊂ E, |E1| = κ, and P(E1) = 0.   
 
These two assumptions provide for a rich space of 
measurable events while stopping short of requiring P to 
be defined on a power set, which otherwise would 
require κ to be greater than a weakly inaccessible 
cardinal, by Ulam’s [1930] result for real-valued 
measurable cardinals.   
 

Here we identify a simple condition involving tiers of 
points that ensures P fails to be conglomerable in a 
partition of cardinality κ.   
Definition 9: A tier τ is a (measurable) set of points such 
that for each pair of points {ωi, ωj} ⊂ τ   (i≠j)  

0 < P({ωi}| {ωi, ωj}) < 1. 
 
Proposition:  Let P be σ-additive but not κ-additive (κ ≥ 
ℵ1), having conditional probabilities defined relative to 
non-empty sets in B, P(⋅ | B), and which satisfies the two 
structural assumptions on B identified above.  If there is 
an uncountable tier τ of points, |τ| ≥ κ with P(τ) > 0, then 
P fails to be conglomerable in a partition π with |π| = κ. 
 
Thus, rather than thinking that non-conglomerability is 
an anomalous feature of finite but not countably additive 
probabilities, and arises solely with finitely but not 
countably additive probabilities in countable partitions, 
here we argue for a different conclusion:  Let P(⋅ | ⋅) be a 
conditional probability according to Definition 1.  Non-
conglomerability of P’s conditional probabilities occurs 
in a partition whose cardinality |π| = κ matches the κ-
non-additivity of P. 
 
We summarize:  Let P be defined on a measurable space 
<Ω , B>, where B includes each of the points of the space, 

Ω  = {ωα: α < κ}, with α ranging over all ordinals less 
than κ.  That is, without loss of generality, assume Ω  has 
cardinality κ and where, if a measurable event E is null, 
i.e., whenever P(E) = 0, then B includes each subset of E, 
and where κ-sized non-null events can be split into two 
measurable κ-sized events.  Then if some tier of points is 
not null, P fails to be conglomerable in a partition of 
cardinality κ. 
  
Since P is not perfectly additive, it follows that κ is a 
regular cardinal: it has cofinality κ.  Otherwise, κ is 
singular with cofinality(κ) = λ < κ.   Then, using this λ-
sequence which is cofinal in κ, as P is λ-additive for each 
λ < κ, P would be κ-additive as well.  
 
3 Proof of the Proposition 
Suppose there exists a tier of points τ, |τ| = κ, with P(τ) > 
0.  Then P({ω}) = 0 for each ω ∈ τ, because P(τ) > 0 and 
P is λ-additive for each cardinal λ < κ.  Partition τ into 
two disjoint sets, T0 ∩ T1 = ∅ with T0 ∪ T1 = τ; each 
with cardinality κ, |T0| = |T1| = κ; and label them so that 
P(T0) ≤ P(T1) = d > 0.   

 
We identify a partition of cardinality κ where P fails to 

be conglomerable, which we write as π = {hα: α < κ} ∪ 

{hʹ′β: β < γ ≤ κ}, where {hα: α < κ} ∩ {hʹ′β: β < γ ≤ κ} = 



∅,  and where P(T1 | h) < d/2 for each h ∈ π.  Possibly 

the second set, {hʹ′β: β < γ ≤ κ}, is empty, as we explain 
below.  Each element h ∈ π is a finite set.  Each element 
hα  contains exactly one point from T1, and some positive 
finite number of points from T0, selected to insure that 

P(T1 | h) < d/2.  If the second set, {hʹ′β: β < γ ≤ κ}, is not 

empty, each hʹ′β = {ωβ} is a singleton with ωβ ∈ Ω – T1.   

So, if {hʹ′β: β < γ ≤ κ} is not empty, then P(T1 | hʹ′β) = 0 

for each hʹ′β.  Next we establish the existence of such a 
measurable partition π. 
 
By the Axiom of Choice, consider a κ-long well ordering 

of T1, {ω1, ω2, …, ωβ, …} with ordinal indices 0 < β < 
κ.  Define π by induction.  As each of T0, T1 is a subset 
of the tier τ, consider the countable partition of T0 into 
sets  
ρ1,n = {ω ∈ T0: (n-1)/n  ≤  P({ω1} |{ω1, ω})  <  n/(n+1)} 
for n = 1, 2 …  .   
 
Observe that ∪n ρ1,n = T0.  Since |T0| = κ ≥ ℵ1, by the 
pigeon-hole principle, consider the least n* such that ρ1,n* 
is infinite.  Let U1 = {ω1,1, …, ω1,m} be m-many points 
chosen from ρ1,n*.   Note that P({ω1} | U1 ∪ {ω1}) ≤  
n*/(m+n*).   Choose m sufficiently large so that 
n*/(m+n*) < d/2.  Let h1 =  U1 ∪ {ω1}. 
 

For ordinals 1 < β < κ, define hβ, by induction, as 

follows.  Denoting T0,1 = T0, and let T0,β = T0 – 

(∪0<α<β hα).  Since, for each α, 0 < α < β, by 

hypothesis of induction hα is a finite set, then  

|∪0<α<β hα| < κ.  So, |T0,β| = κ.  Since T0,β is a subset of 

τ, just as above, consider the countable partition of T0,β 
into sets    

ρβ,n  = {w ∈ T0,β: (n-1)/n  ≤  P({ωβ} |{ωβ, ω})  < 
n/(n+1)}  for n = 1, 2, … .     Again, by the pigeon-hole 

principle, consider the least integer n* such that ρβ,n* is 

infinite.  Let Uβ = {ωβ,1, …, ωβ,m} be m-many points 

chosen from ρβ,n*.   Note that  

P({ωβ} | Uβ ∪ {ωβ}) ≤  n*/(m+n*).    
Choose m sufficiently large that n*/(m+n*) < d/2.   

Let hβ =  Uβ ∪ {ωβ}.  Observe that T1 ⊂ ∪0<β<κ hβ 

and that for each 0 < β < κ, P(T1 | hβ) < d/2.  In order to 
complete the partition π, consider a catch-all set with all 

the remaining points ωβ ∈ Ω − ∪0<β<κ hβ.  Note that 

each such ωβ  is not a member of T1, if any such points 

exist.  Add each such point {ωβ} = hʹ′β  as a separate 
partition element of π.  Thus, if there are any such points, 

P(T1 | hʹ′β) = 0 < d/2.    
 
Hence, P is not conglomerable in π as P(T1) = d > 0, yet 
for each h ∈ π, P(T1 | h) < d/2.◊ Proposition 
 
4 An Example of the Proposition 
Next, we illustrate the Proposition and with it also the 
difference (2) between the theory of conditional 
probability according to Definition 1 and the theory of 
regular conditional distributions. 
 
Example 2:  Let <Ω, B> be the measurable space of 
Lebesgue measurable subsets of the half-open unit 
interval of real numbers: Ω = [0,1) and B is its algebra of 
Lebesgue measurable subsets.  Let P be the uniform, 
countably additive probability with constant density 
function ƒ(ω) = 1 for each real number 0 ≤ ω < 1, and 
ƒ(ω) = 0 otherwise.  So P({ω}) = 0 for each ω ∈ Ω.  
Evidently P is not κ-additive, because κ = |Ω| = |ℜ|. 
 
Consider the uniform density function ƒ to identify 
conditional probability given finite sets as uniform over 
those finite sets, as well.  That is, when F = {ω1, …, ωk} 
is a finite subset of Ω with k-many points, let P( ⋅ | F) be 
the perfectly additive probability that is uniform on these 
k-many points.  These conditional probabilities create a 
single tier, τ = Ω, because P({ω1} |{ω1, ω2}) = 0.5 for 
each pair of points in Ω.  
 
Consider the two events E = {ω: 0 ≤ ω < 0.9} and its 
complement with respect to Ω, Ec = {ω: 0.9 ≤ ω < 1}, 
where P(E) = 0.9.  Let g be the 1-1 (continuous) map 
between E and Ec defined by g(ω) = 0.9 + ω/9, for ω ∈ 
E.  Consider the κ-size partition of Ω by pair-sets, π = 
{{ω, g(ω)}: ω ∈ E}.   By assumption, P({ω} | {ω, g(ω)}) 
= 1/2  for each pair {ω, g(ω)} ∈ π.  But then P is not 
conglomerable in π.◊Example 2 
 
The theory of regular conditional distributions treats the 
example differently. We continue Example 2 from that 
point of view.    
 
Example 2 (continued) Consider the measure space <Ω, 
B , P> as above.  Let the random variable X(ω)= ω, so 
that X ~ U[0,1), X has the uniform distribution on Ω.  In 
order to consider conditional probability given the pair of 
points {ω, g(ω)}, let   

g(X) = (X/9) + 0.9  if 0 ≤ X < 0.9 



 g(X) =  9(X − 0.9)  if 0.9 ≤ X < 1. 
Define the random variable   

Y(ω)  = X(ω) + g(X(ω)) − 0.9. 
Observe that Y ~ U[0, 1.0).  Also, note that Y is 2-to-1 
between Ω and [0.0, 1.0).  That is Y = y entails that 
either ω = 0.9y or ω = 0.1(y + 9).   
 
Let the sub-sigma field A be generated by the random 
variable Y.  The regular conditional distribution relative 
to this sub-sigma field, P( B  | A)(ω), is a real-valued 
function defined on Ω that is A-measurable and satisfies 
the integral equation 

∫A P(B | A)(w) dP(ω) = P(A ∩ B)  
whenever A ∈ A and B ∈ B.  
 
In our case, then P[B | A](ω) almost surely satisfies:  

P(X = 0.9Y | Y)(ω) = 0.9 
and P(X = 0.1(Y + 9.0) | Y)(ω) =  0.1. 
Thus, relative to the random variable Y, this regular 
conditional distribution assigns conditional probabilities 
as if P({ω} | {ω, g(ω)}) = 0.9 for almost all pairs {ω, 
g(ω)} with 0 ≤ ω < 0.9.   However, just as in the Borel 
“paradox” (Kolmogorov, 1956), for a particular pair  
{ω, g(ω)}, the evaluation of P({ω} | {ω, g(ω)}) is not 
determinate and is defined only relative to which sub-
sigma field A embeds it.   
 
For an illustration of this last feature of the received  
theory of regular conditional distributions, consider a 
different pair of complementary events with respect to Ω.  
Let F = {ω: 0 ≤ ω < 0.5} and Fc = {ω: 0.5 ≤ ω < 1}.  So,  
P(F) = 0.5.   
 
Let  f(X) = 1.0 – X if  0 < X < 1. 
         =  0  if  X = 0. 
 
Analogous to the construction above, let  

Z(ω)  = |X(ω) – f(X(ω))|.   
So Z is uniformly distributed, Z ~ U[0, 1), and is 2-to-1 
from Ω onto [0, 1).  Consider the sub-sigma field A ʹ′ 
generated by the random variable Z.  Then the regular 
conditional distribution P( B  | A ʹ′)(ω), almost surely 
satisfies:  

P(X = 0.5 – Z/2 | Z ≠ 0 )(ω)  =  0.5 
and P(X = 0.5 + Z/2 | Z ≠ 0 )(ω)  =  0.5 
and for convenience,  

P(X = 0 | Z = 0) = P(X = 0.5 | Z = 0) = 0.5. 
 
However, g(.09) = .91 = f(.09) and g(.91) = .09 = f(.91).  
That is, Y = 0.1 if and only if Z = 0.82.  So in the 
received theory, it is permissible to have  

P(ω = .09 | Y = 0.1) = 0.9  
as evaluated with respect to the sub-sigma field 
generated by Y, and also to have  

P(ω = .09 | Z = 0.82}) = 0.5  

as evaluated with respect to the sub-sigma field 
generated by Z, even though the conditioning events are 
the same event.◊ Example 2 (continued) 

 
5   Non-conglomerability for an IP Bounded 
Density Ratio model 
Our focus in this note is on non-conglomerability for a 
single, σ-additive but non-κ-additive probability P that 
has conditional probabilities according to Definition 1, 
and where some non-null tier τ (i.e., P(τ) > 0) is 
composed of null points from Ω.  We highlight this case 
as we think it typifies how conditional probabilities given 
finite set of points are associated with familiar 
continuous statistical models.  Thus, we have 
demonstrated non-conglomerability in a particular 
partition for what we judge is the usual interpretation of 
conditional probabilities from a single continuous, 
countably additive probability distribution.   
 
The Proposition applies to each element of an IP model, 
when that model uses conditional probabilities from a 
countably additive, continuous probability that satisfy 
Definition 1.  This puts pressure, we think on those who 
(e.g., Walley, 1991) appear to require conglomerability 
in arbitrary partitions as a condition for coherent IP 
degrees of belief.  Here is a Corollary to the Proposition 
illustrating the point. 
 
Let P be a set of countably additive, but not κ-additive 
probabilities.  Assume each P ∈ P is defined on a 
common measurable space {Ω, B), where the points of Ω 
are the atoms of B, and where each P has conditional 
probabilities P(⋅ | ⋅) satisfying Defintion 1.  Assume that 
P satisfies the following Bounded Density Ratio [BDR] 
condition, which is a weakened variant of DeRobertis 
and Hartigan’s (1981) Density Ratio model: 
 
•  BDR There exist a set T ⊆ Ω where,  
(1) T can be partitioned into two sets T0, T1 with 	
  

|T0| = |T1| = κ and Inf	
  P	
  ∈P[P(T1)]	
  =	
  d	
  >	
  0.	
  	
  

(2) For each pair, ωα ≠ ωβ	
  ∈	
  T,	
  

Sup	
  P	
  ∈P	
  [	
  P({ωα}|{ωα,	
  ωβ})	
  ]	
  	
  <	
  1	
  
 
Note that the BDR condition requires only that the 
probability distributions that belong to P have bounded 
relative densities with respect to pairs of atoms from B.  
As a consequence of the BDR condition, with respect to 
each P ∈ P, the distinguished P-non-null set T belongs to 
one P-non-null tier.  
 



Corollary: When P is an IP BDR model, then P fails to 
be conglomerable.  Specifically, there exits a κ-sized 

partition by finite sets, π = {hα: |hα| < ℵ!,  α < κ} where 

Sup h ∈ π, P∈P[ P(T1 | h) ]  <  d = Inf P∈P[ P(T1) ]. 
 
Proof: The proof of the Corollary parallels the proof of 
the Proposition, with one change. That difference is in 

the sets ρβ,n.  For the Corollary, denoting these by ρʹ′β,n, 
we define them inductively as follows.   
Let ρʹ′1,n = {ω ∈ T0:   

     (n-1)/n  ≤  Sup P∈P[P({ω1} |{ω1, ω})  <  n/(n+1)} 
for n = 1, 2, … .  By BDR(2), the sets {ρʹ′1,n: n = 1, 2, …} 
partition T0.    
 
Consider the least n* such that ρʹ′1,n* is infinite.  Let U1 = 
{ω1,1, …, ω1,m} be m-many points chosen from ρʹ′1,n*.   
Note that for each P ∈℘ P({ω1} | U1 ∪ {ω1}) ≤  
n*/(m+n*).   Choose m sufficiently large so that 
n*/(m+n*) < d/2.  Let h1 =  U1 ∪ {ω1}.   So,  

Sup P∈P [ P(T1 | h1) ]  ≤  d/2 

Define hβ, by induction, just as in the proof of the 

Proposition.  For β < κ, define T0,β = T0 – (∪0<α<β hα).  

Consider the countable partition of the set T0,β into sets   

ρʹ′β,n  = {ω ∈ T0,β:  

P(n-1)/n  ≤  Sup P∈P [ P({ωβ} |{ωβ, ω}) ]  <  n/(n+1)} 
for n = 1, 2, … .  The proof of the Corollary then follows 
the proof of the Proposition, resulting in the required 

partition π. ◊ Corollary    
 
6 Concluding Remarks 

	
  
In a different paper (2012), we investigate the question of 
non-conglomerability for a single countably additive but 
κ-non-additive probability where no set of P-null points 
forms a P-non-null tier.  Though the mathematics for 
analyzing this case is rather different from the reasoning 
used in the Proposition presented here, we point the 
reader to some interesting features about tiers that we use 
to address this other case.   
 
Definition 10:  Consider the relation, ∼, of relative-non-
nullity on pairs of points in Ω.  That is, for two different 
points, ω1 ≠ ω2 they bear the relation ω1 ∼ ω2 provided 
that  
0 < P({ω1}| {ω1, ω2 }) < 1. 
We make ∼ into an equivalence relation by stipulating 
that, for each point ω, ω ν∼ ω.  
 
Next we state and prove an elementary fact. 

Fact:  ∼ is an equivalence relation. 
Proof:  Only transitivity requires verification.   Assume 
ω1 ∼ ω2 ∼ ω3.  That is, assume  
0 < P({ω1} | {ω1, ω2}), P({ω2}| {ω2, ω3}) < 1.   
Then by (iii) of Definition 1 for conditional probability:  
P({ω1}| {ω1, ω2, ω3}) =  

P({ω1}| {ω1, ω2}) P({ω1, ω2} | {ω1, ω2, ω3}).   
Also,   P({ω3}| {ω1, ω2, ω3}) =  

P({ω3} | {ω2, ω3}) P({ω2, ω3} | {ω1, ω2, ω3}).  
Now argue indirectly by cases. 
If  P({ω1} | {ω1, ω3}) = 0,  
then  P({ω1} | {ω1, ω2, ω3}) = 0  
and  P({ω1, ω2} | {ω1, ω2, ω3}) = 0,  
since, by assumption. P({ω1} | {ω1, ω2}) > 0.   
Then  P({ω2}| {ω1, ω2, ω3}) = 0 = P({ω2} | {ω2, ω3}), 
which contradicts	
  	
  ω2	
  ∼	
  ω3.	
  	
   
If  P({ω1} | {ω1, ω3}) = 1,  
then  0 = P({ω3} | {ω1, ω3}) = P({ω3} | {ω1, ω2, ω3}). 
Then  0 = P({ω2, ω3} | {ω1, ω2, ω3}),  
since  0 <  P({ω3}|  {ω2, ω3}).    
So,  0 = P({ω2}| {ω1, ω2, ω3}) = P({ω2} | {ω1, ω2}), 
which contradicts ω1 ∼ ω2.   
Hence 0 < P({ω1} | {ω1, ω3}) < 1, as required. ◊ Fact 

    
Thus, the equivalence relation ∼ partitions Ω into disjoint 
tiers τ of relative non-null pairs of points.  For each pair 
of points {ω1, ω2} that belong to different tiers, ωi ∈ τi  
(i = 1, 2), when τ1 ≠ τ2, then P({ω1} | {ω1, ω2}) ∈ {0,1}.     
If P({ω2} | {ω1, ω2}) = P({ω3} | {ω2, ω3}) = 1, then 
P({ω3} | {ω1, ω3}) = 1.  Thus, the tiers are linearly 
ordered by the relations ↑, ↓ defined as:   
Definitions 11:   
• τ1 ↑ τ2 if for each pair {ω1, ω2}, ωi ∈ τi (i = 1, 2), 

P({ω2 } | {ω1, ω2}) = 1.   
The reverse ordering also is linear.  We express this as  
• τ2 ↓ τ1 if for each pair {ω1, ω2}, ωi ∈ τi (i = 1, 2), 

P({ω2 } | {ω1, ω2}) = 1. 
That is, τ2 ↓ τ1 if and only if τ1 ↑ τ2.    
 
Next, consider the possibly empty set of P-non-null 
points.  Let τ* = {ω: P(ω) > 0).  Evidently, when ∅ ≠ τ* 
≠ τ, then τ*↓ τ, and τ* is the top element in the linear 
order of tiers.   
  
We note that this linear order of tiers plays an important 
role in Dubins (1975) proof of the existence of fully 
defined finitely additive conditional probabilities, i.e., 
where B is the powerset of Ω and P(B | A) is well-defined 
whenever ∅ ≠A, B are elements of B.  Also, it appears in 
both Levi’s (1980, §5.5) and Regazzini’s (1985) 
strengthened version of de Finetti’s criterion of 
coherence for conditional previsions.  Levi and 
Regazzini strengthen de Finetti’s coherence criterion for 
a called off gamble given a null event in order to have 
coherent conditional previsions that satisfy Definition 1.  



Under additional structural assumptions about B, 
including measurability of the intervals of tiers formed 
under ↓, in our (2012) we extend the Proposition to 
include non-conglomerability for such cases as well.  
This permits us to conclude that the anomalous 
phenomenon of non-conglomerability is a result of 
adopting the de Finetti/Dubins theory of conditional 
probability instead of the rival Kolmogorovian theory of 
regular conditional distributions.  Non-conglomerability 
is not a result primarily of the associated debate over 
whether probability is allowed to be merely finitely 
additive rather than satisfying countable additivity.   
 
Restated, our conclusion is the observation that (subject 
to structural assumptions on the algebra B) even when P 
is λ-additive for each λ < κ, if P is not κ-additive and has  
conditional probabilities that satisfy Definition 1, then P 
will experience non-conglomerability in a κ-sized 
partition.  And then such conditional probabilities will 
not satisfy condition (3) of the theory of regular 
conditional distributions.    

On the other hand, regular conditional distributions avoid 
non-conglomerability by allowing conditional probability 
to depend upon a sub-sigma field, rather than being 
defined given an event.  And, occasionally, they avoid 
non-conglomerability by abandoning the requirement of 
Propriety, which is clause (ii) of Definition 1 of the de 
Finetti/Dubins theory of conditional probabilities.   

Evidently, some countably additive continuous IP models 
that use the theory of conditional probabilities associated 
with Definition 1 require non-conglomerability in 
specific, uncountable partitions.  We think this is a better 
alternative than using IP models with conditional 
probabilities based on the theory of regular conditional 
distributions.  In future work on IP models with 
conditional probabilities, we hope to address the 
following question:  
• With respect to a given IP model that use conditional 

probabilities, in the sense of Definition 1, in which 
partitions is non-conglomerability mandated? 
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