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Abstract
Lower previsions defined on a finite set of gambles can
be looked at as points in a finite-dimensional real vector
space. Within that vector space, the sets of sure loss avoid-
ing and coherent lower previsions form convex polyhedra.
We present procedures for obtaining characterizations of
these polyhedra in terms of a minimal, finite number of
linear constraints. As compared to the previously known
procedure, these procedures are more efficient and much
more straightforward. Next, we take a look at a procedure
for correcting incoherent lower previsions based on point-
wise dominance. This procedure can be formulated as a
multi-objective linear program, and the availability of the
finite characterizations provide an avenue for making these
programs computationally feasible.

Keywords. Coherence, avoiding sure loss, linear constraint,
polytope, enumeration, projection, multi-objective linear
programming, incoherence, dominance.

1 Introduction

In the theory of coherent lower previsions (for an overview,
see Walley 1991 or Miranda 2008), its coherence condi-
tion takes a central role: it defines which models—lower
previsions—are fully rational, meaning that they do not im-
plicitly encode commitments—in terms of buying prices for
gambles—that are more demanding than the ones explicitly
made. The consequences of this criterion have been exten-
sively studied both in the unconditional and the conditional
case, in finite and infinite spaces.

In this paper, we study the coherence criterion for uncondi-
tional lower previsions defined on a finite set of gambles,
which in turn are essentially defined on a finite possibil-
ity space. What can we still add in this restricted setting?
Results that make new numerical applications feasible,
namely, procedures for obtaining a characterization of co-
herence in terms of a minimal, finite number of linear con-
straints that are more efficient than the existing one. These
results are presented in Section 4. Note that our procedures

give an answer to the question “Which lower previsions are
coherent?”, and should not be confused with verification
procedures, which deal with the question “Is this specific
lower prevision coherent?”. Of course, the characterization
our procedures generate can be used for verification pur-
poses, but this may be reasonable only if many verifications
need to be performed

One may wonder what new kinds of applications are possi-
ble once we have a minimal linear constraints characteriza-
tion? In Section 5, we provide one example in a proposal
for a method to correct an incoherent lower prevision down-
ward to make it coherent. Similarly to natural extension,
this method is formulated in terms of pointwise dominance
of lower previsions.

Because of the finitary context of this paper and its aim to be
an enabler for numerical applications, it is advantageous to
reformulate a number of variants of the coherence criterion
and the related criterion of avoiding sure loss in matrix
terms; we do this in Section 3.

We make use of polytope theory concepts throughout this
paper. We also make use of multi-objective linear program-
ming both for our downward correction method as well as
for some of our procedures to obtain the minimal linear
constraints characterization. Therefore, we start out with
short primers on these topics in Section 2.

2 Primers

2.1 Polytope Theory Essentials

Let us review some concepts and techniques from polytope
theory (for more information, see, e.g., Grünbaum 1967,
Ziegler 1995, or Fukuda 2004). Any convex polyhedron in
a n-dimensional space can be described in two ways:

As an H-representation {x ∈Rn ∶ Ax ≤ b}: A set of k linear
constraints (inequalities/half-spaces) defined by a matrix
A in Rk×n and a column vector b in Rk; denoted compactly
as [A,b], where the comma denotes horizontal concatena-
tion of matrices.
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As a V-representation {x ∈Rn ∶ x =V µ ∧ µ ≥ 0 ∧ w⊺µ = 1}:
A set of ` points and rays, defined by a matrix V in Rn×`
and a row vector w in R`, with the zero components
indicating rays; denoted compactly as [V ;w], where the
semicolon denotes vertical concatenation of matrices.

The two representations are dual in the sense that [A⊺;b⊺] is
the V-representation of some polyhedron and [V⊺,w⊺] is the
H-representation of some—possibly different—polyhedron.
This duality is also present in the algorithms of polytope
theory.

On the right, we give a simple
2-dimensional polyhedron, in
gray, in both a visual H- and
V-representation.

H- and V-representations may contain redundant con-
straints and points or rays, i.e., those that are implied by the
other constraints or the other points or rays. Non-redundant
extreme points or rays are called vertices and extreme rays.
In our illustration, there is one redundant constraint in the
H-representation and one redundant point in the V-repre-
sentation. Let i be the total number of constraints or points
and j the non-redundant number; redundancy removal al-
gorithms essentially require solving i linear programming
problems of size n× j (Clarkson 1994).

Moving between the H- and V-representations is done using
vertex enumeration algorithms and the dual facet enumer-
ation algorithms. There are enumeration algorithms with
a complexity linear in n, k, and ` (Avis & Fukuda 1992).
Nevertheless, enumeration is inherently highly complex, as
` can be exponential in k and vice versa.

Projecting a polyhedron is straightforward in V-represent-
ation: project the vertices and then remove the redundant
ones. However, in H-representation the best technique de-
pends on the polyhedron’s properties: the classical ap-
proach, Fourier–Motzkin elimination, is inefficient and on
top of that generates a lot of redundant constraints; another
approach, block elimination, is inefficient when the num-
ber of vertices is high, which is common. The equality set
projection approach is claimed to be useful in such cases
(Jones et al. 2004), but our input data caused errors in the
available code (Kvasnica et al. 2006).

Below, we assume that the output of enumeration and pro-
jection algorithms is minimal, i.e., non-redundant.

2.2 Multi-Objective Linear Programming

We here give a brief introduction to multi-objective lin-
ear programming (for more information, see, e.g., Ehrgott
2005). We assume familiarity with standard, single objec-
tive linear programming (if not, have a quick look at a
standard reference such as Bertsimas & Tsitsiklis 1997).

Any multi-objective linear program can be put in the fol-

lowing form:
maximize y =Cx,

subject to Ax ≤ b and x ≥ 0.
(1)

In this program, x denotes the n-dimensional real opti-
mization vector, y is the m-dimensional objective vector,
and Ax ≤ b is a set of k linear constraints; so we assume
C ∈ Rm×n, A ∈ Rk×n, and b ∈ Rk as given. Vector inequali-
ties should be read as follows: x ≥ z ⇔ min(x− z) ≥ 0 and
x > z ⇔ x ≥ z ∧ x ≠ z. Here, min (max) selects its argument
vector’s minimum (maximum) component value.

Whereas in single objective linear programming, with m= 1,
all optimization vectors x are completely ordered by the
single objective, whenever m > 1, they are only partially or-
dered through the standard ordering of the objective vectors.
Consequently, whereas in single objective linear program-
ming all optimal solutions are equivalent from the objective
value point of view, in multi-objective linear programming
there are in general multiple sets of incomparable ‘Pareto’
optimal (or ‘efficient’)—i.e. C-undominated—solutions.

The sets of feasible optimization and objective vectors are
X ∶= {x ∈Rn ∶ Ax ≤ b ∧ x ≥ 0} and Y ∶= {Cx ∶ x ∈ X}, respec-
tively. Furthermore,X ∗ ∶= {x ∈X ∶ (∀z ∈X ∶Cx /<Cz)} is the
set of C-undominated solutions, and so Y∗ ∶= {Cx ∶ x ∈ X ∗}
is the set of undominated objective vectors. The sets of
extreme points of the sets of undominated solutions and
objectives are extX ∗ and extY∗, respectively.

Let us give a simple graphical illustration (with n =m = 2)
below right to clarify the concepts just introduced. The sets

x1

x2 X

X ∗

C1

C2

y1

y2

Y

Y∗
ŷ

y̌

X and Y are shaded gray. The
sets X ∗ and Y∗ are shown as
black lines. The members of
extX ∗ and extY∗ are shown
as black dots. The vectors
C1 and C2—rows of C—that
point towards higher objective
vector component values are
drawn free: only their direc-
tion and magnitude matter.

In the picture of the objec-
tive vector space, we have
included the so-called ideal
point ŷ and nadir point y̌, the
upper and lower envelopes of
Y∗, respectively. They pro-
vide bounds on the values at-
tained by the undominated ob-
jective vector components.

The main computational tasks
are, in non-decreasing order of complexity:

M1. Finding the ideal point ŷ, which can be done by solv-
ing a linear program maximizing each of the compo-
nents of y separately.



M2. Finding the nadir point y̌ (for algorithms, see Ehrgott
& Tenfelde-Podehl 2003 and Alves & Costa 2009).

M3. Finding the extreme points extY∗ and the whole set
Y∗ of undominated objective vectors (for algorithms,
see Benson 1998 and Ehrgott et al. 2012; these are
relatively efficient only if m is small compared to n).

M4. Finding the extreme points extX ∗ of the set of op-
timal optimization vectors (for algorithms, MOLP
simplex solvers, see, e.g., Evans & Steuer 1973, Strij-
bosch et al. 1991, or Ehrgott 2005, Sec. 7).

M5. Finding the whole set X ∗ of optimal optimization
vectors (for algorithms, based on post-processing the
MOLP simplex solver output, see, e.g., Yu & Zeleny
1975 or Isermann 1977).

3 Matrix Formulations
of Avoiding Sure Loss and Coherence

Consider a finite possibility space Ω and a finite set of
gambles K ⊂RΩ on this possibility space. The elements of
K can be looked at as vectors; we group them as columns
in a gamble matrix K ∈RΩ×K. We use the same notation
for scalars and constant vectors; the identity matrix is de-
noted I; there will be no ambiguity in this paper because
we leave their size implicit. The columns of K⊺ are the
degenerate previsions, so {K⊺

µ ∶ µ ≥ 0 ∧ 1⊺µ = 1} is the set
of linear previsions. Any lower prevision P defined on K
can be looked at as a column vector in RK. Similarly, min
and max can also thought of at as column vectors in RK.

A lower prevision P on K is said to avoid sure loss (cf.,
e.g., Walley 1991, §2.4) if and only if

∀λ ≥ 0 ∶ P⊺λ ≤max(Kλ), (2)

or, based on dominance by a linear prevision (cf. Walley
1991, §3.3.3(a)), if

∃µ ≥ 0 ∶ P ≤K⊺
µ ∧ 1⊺µ = 1, (3)

or, by introducing slack variables, if

∃µ,ν ≥ 0 ∶ P =K⊺
µ − Iν ∧ 1⊺µ = 1. (4)

This last form shows that the set of all sure loss avoiding
lower previsions is a convex polyhedron by providing a
V-representation

[V
w] ∶= [K⊺ −I

1⊺ 0⊺] . (5)

Now, let S denote the set of matrices obtained from the
identity matrix by changing at most one 1 to −1. Then a
lower prevision P on K is called coherent (cf., e.g., Walley
1991, §2.5) if and only if

∀S ∈ S ∶ ∀λ ≥ 0 ∶ P⊺Sλ ≤max(KSλ), (6)

or, by formal analogy to Equation (3) and because S⊺= S, if

∀S ∈ S ∶ ∃µS ≥ 0 ∶ SP ≤ SK⊺
µS ∧ 1⊺µS = 1, (7)

or, by introducing slack variables and because S−1 = S, if

∀S ∈ S ∶ ∃µS,νS ≥ 0 ∶ P =K⊺
µS−SνS ∧ 1⊺µS = 1. (8)

This last form shows that the set of all coherent lower
previsions is an intersection of ∣K∣ +1 convex polyhedra
with V-representations

[VS
wS

] ∶= [K⊺ −S
1⊺ 0⊺] , (9)

and therefore is a convex polyhedron. Furthermore, co-
herence implies that min ≤ P ≤ max (cf. Walley 1991,
§2.6.1(a)), so the set of coherent lower previsions is a
bounded polyhedron, i.e., a polytope.

We will later on in this paper use the Lower Envelope
Theorem (see, e.g., Walley 1991, §2.6.3):
Theorem. The lower envelope P of a subset Q of the
coherent lower previsions on a set of gamblesK is coherent.
(So P f ∶= infQ∈QQ f for each gamble f in K.) ⊲

We give a proof based on Equation (7)—a version of the
coherence criterion a shallow search of ours left unencoun-
tered in the literature:
Proof. By coherence of the Q inQ, we have a vector µQ,S such
that SQ ≤ SK⊺

µQ,S for each S in S. By the lower envelope def-
inition, for S ∶= I, we have P ≤ Q ≤ K⊺

µQ,I for any Q in Q. For
other S, let gS denote the gamble corresponding to the −1 diagonal
component in S. Let QS be a coherent lower prevision from Q
such that PgS = QSgS. Then SP ≤ SQS ≤ SK⊺

µQS,S. ◻

In the literature on verification procedures—which are typi-
cally formulated in the more general conditional context—,
there is a clear separation between algorithms based on
criteria formulations of the type of Equations (2) and (6)
(cf. Walley et al. 2004), and those of the type of Equations
(3)–(4) and (7)–(8) (see, e.g., Vicig 1996 and Biazzo &
Gilio 2000). This separation is also present in the char-
acterization procedures we present; the latter type leads
to the procedures in Section 4.1, the former to those in
Section 4.2.

4 Computing Constraints Efficiently

Building on earlier work with lower probabilities (Walley
1991, App. A; Quaeghebeur & De Cooman 2008; Quaeghe-
beur 2009), we presented a procedure for obtaining char-
acterizations of the polytope of coherent lower previsions
in terms of a minimal, finite number of linear constraints
(Quaeghebeur 2010). However, the procedure is such that a
relatively large number of redundant constraints are gener-
ated, which at a later step need to be removed—a computa-
tionally demanding task. Moreover, the procedure and its
derivation is somewhat involved.



It is possible to derive procedures in a more direct way.
Some of these more direct procedures turn out to be compu-
tationally more efficient as well, resulting in running times
that are up to an order of magnitude shorter.

What are our concrete goals? We wish to find minimal
H-representations for the set of all lower previsions P

A. that avoid sure loss ([ΛA,αA]),
B. that avoid sure loss and for which P ≥min ([ΛB,αB]),
C. that are coherent ([ΛC,αC]).
So for each goal, we want to obtain a block matrix [Λ ,α]
that stands for the linear constraints ΛP ≤ α .

These goals are formulated based on experimental results
from earlier work (Quaeghebeur & De Cooman 2008;
Quaeghebeur 2009, 2010): For coherence, we observed
that the V-representations have a much larger size than the
H-representations, and to such a degree that it currently
seems impractical to generate and use them. We observed
that avoiding sure loss with lower bound constraints leads
to a smaller H-representation than plain avoiding sure loss.
As the lower bound constraints are uncontroversial in most
contexts, it may be useful to use this combination as a
‘lighter’ proxy for plain avoiding sure loss.

Below, we first discuss the direct procedures and follow this
up with a look at improved versions of our earlier, involved
approach. We close the section with a short discussion of
our numerical experiments.

4.1 Straightforward Procedures

The straightforward procedures for Goal A go as follows:

A1. Apply a facet enumeration algorithm to the V-repre-
sentation of the polyhedron of lower previsions that
avoid sure loss in Equation (5) to obtain [ΛA,αA].

A2. As can be seen from Equation (3), we know an
H-representation for pairs [P;µI] of which the P-
components are lower previsions that avoid sure loss:

[AI,P AI,µI b0] ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I −K⊺ 0
−I 1
1⊺ 1
−1⊺ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Project this H-representation onto the P-part to obtain
[ΛA,αA].

The straightforward procedures for Goal B build on those
for Goal A:

B1. Start from the resulting H-representation of Proce-
dure A1 and add the lower bound constraints to it,
i.e., the block row [−I,−min(K)⊺], where the mini-
mum is taken column-wise. Because some constraints
may have become redundant because of this, perform
redundancy removal to obtain [ΛB,αB].

B2. Idem as Procedure B1, but now starting from the H-
representation resulting from Procedure A2.

The straightforward procedures for Goal C are based on the
similarities of the underlying problem with that of Goal A:

C1. Recall that the polytope of coherent lower previsions
is the intersection of ∣S∣ = ∣K∣+1 polyhedra, one for
each value of S. So apply a facet enumeration algo-
rithm to the V-representation as given in Equation (9)
for each S to obtain the corresponding H-representa-
tions [AS,bS]. An H-representation of the intersection
polyhedron of polyhedra given as H-representations
is the vertical concatenation of these matrices. (In-
tersection of polyhedra in V-representation, or mixed
representations is not straightforward.) Perform redun-
dancy removal on this concatenation H-representation
to obtain [ΛC,αC].

C2. As can be seen from Equation (7), for each S we also
know an H-representation for pairs [P;µS] of which
the P-component belongs to the polyhedron corre-
sponding to S already mentioned in Procedure C1:

[AS,P AS,µS b0] ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

S −SK⊺ 0
−I 1
1⊺ 1
−1⊺ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Project this H-representation onto the P-part to obtain
the H-representation [AS,bS] already encountered in
Procedure C1, the remainder of which is to be followed
here as well.

C3. Equation (7) also shows that we can actually create a
single H-representation for pairs [P;µ] of which the
P-components are coherent lower previsions:

[AP Aµ b] ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

AI,P AI,µI b0
⋮ ⋱ ⋮

ASg,P ASg,µSg
b0

⋮ ⋱ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

where Sg ∈ S, with g in K, has negative diagonal g-
component. Projecting this H-representation onto the
P-part again gives us [ΛC,αC]. Because of the block
diagonal structure of the set of columns to be removed
by projection, this procedure is essentially identical to
Procedure C2 from the computational point of view.

Comparing the two main procedure types, enumeration-
based (A1, B1, C1) and projection-based (A2, B2, C2, C3),
our numerical experiments showed that the enumeration-
based ones were faster by at least an order of magnitude. It
is not yet clear whether this is inherent or whether this is
due to the fact that the enumeration implementation used
(the double description method of Fukuda & Prodon 1996)
is efficient, and the facet projection implementations used
(Fourier–Motzkin and block elimination) are not.



4.2 A More Involved Type of Procedure

All of the procedures in the previous section were based
on Equations (3)–(4) and (7)–(8). In these expressions, P
appears free, i.e., without being multiplied by a variable
vector such as λ , this in contrast to the other expressions
characterizing avoiding sure loss and coherence, Equations
(2) and (6). This allowed us to consider P as variable as
well, directly leading to the straightforward procedures.

In our earlier work (Quaeghebeur 2010), we created a pro-
cedure starting from the expressions with bound P. It is,
by the standard set by the best performing of the straight-
forward procedures, inefficient. However, it is possible to
create bound-P-based procedures that are relatively effi-
cient; we present the ones we found here, as the techniques
used might be useful in other contexts as well.

We first make an assumption, namely that all gambles
are non-constant and non-negative with zero minimum,
or NNZM. In Appendix 4.3 immediately following this
section we show that for coherent lower previsions this as-
sumption is non-limiting and how to move between general
gamble sets and NNZM gamble sets. The assumption is,
however, limiting for lower previsions that only avoid sure
loss. Note that P ≥min becomes P ≥ 0 for an NNZM set of
gambles K; i.e., positivity constraints.

We do not develop procedures for Goal A here and move
straight to Goal B, which because of the limiting nature of
the NNZM assumption must be seen as preparation for the
procedures for Goal C:

B3. We can rewrite Equation (2) as

∀γ ∈R ∶ ∀λ ≥ 0 ∶ max(Kλ) = γ ⇒ P⊺λ ≤ γ, (13)

which, because K is NNZM, can be normalized to

∀λ ≥ 0 ∶ max(Kλ) = 1 ⇒ P⊺λ ≤ 1. (14)

Now, again because K is NNZM, Kλ is pointwise
strictly increasing in λ . So we know that the feasible
set {λ ≥ 0 ∶Kλ ≤ 1} is bounded and that apart from 0,
all its vertices satisfy max(Kλ) = 1. So in our proce-
dure, we first vertex enumerate

[A b] ∶= [ K 1
−I 0] , (15)

and then use this V-representation [V ;w] for the λ ’s to
construct an H-representation [V⊺,w⊺] for lower pre-
visions. Add positivity constraints [−I,0]; then after
redundancy removal we obtain [ΛB,αB].

B4. Because we assume K is NNZM, P ≥ 0, so we know
that all pointwise dominated vertices of the feasible set
{λ ≥ 0 ∶ Kλ ≤ 1} encountered in Procedure B3 result
in redundant constraints (cf. the implicand in Equa-
tion (14)). So we can use the MOLP

maximize λ ,

subject to Kλ ≤ 1 and λ ≥ 0,
(16)

to select only the undominated vertices. Gather them
as columns in a matrix V̂ and construct the H-repre-
sentation [V̂⊺,1] to replace [V⊺,w⊺] of Procedure B3.

B5. Because Kλ is pointwise strictly increasing in λ , we
can replace the MOLP (16) by

maximize Kλ ,

subject to Kλ ≤ 1 and λ ≥ 0.
(17)

We are now ready to present the procedures for Goal C,
which strongly parallel those for Goal B:

C4. We can rewrite Equation (6) as

∀S ∈ S ∶ ∀λ ≥ 0 ∶ ∀γ ∈R ∶
max(KSλ) = γ ⇒ P⊺Sλ ≤ γ,

(18)

which, because K is NNZM and only a single column
of KS is non-positive, but with zero maximum, can be
normalized and rewritten as

∀S ∈ S ∶ ∀κ ∈RK ∶

Sκ ≥ 0 ⇒ {
max(Kκ) = 1 ⇒ P⊺κ ≤ 1,

max(Kκ) = 0 ⇒ P⊺κ ≤ 0.

(19)

Now, again because K is NNZM, Kκ is pointwise
monotone strictly increasing in κ . So we know that the
set {Sκ ≥ 0 ∶Kκ ≤ 1} is bounded and that apart from 0,
all its vertices satisfy max(Kκ) = 1. We also know
that the set {0 ≤ Sκ ≤ 1 ∶Kκ ≤ 0} is bounded and that
all its vertices satisfy max(Kκ) = 0. So the procedure
consists in, for every S in S, vertex enumerating

[AS,0 bS,0] ∶=
⎡⎢⎢⎢⎢⎢⎣

K 0
−S 0

S 1

⎤⎥⎥⎥⎥⎥⎦
, [AS,1 bS,1] ∶= [ K 1

−S 0] ;

(20)

then use the resulting V-representations [VS,1;wS,1]
and [VS,0;wS,0] to construct the H-representations
[V⊺

S,1,w⊺S,1] and [V⊺
S,0,0]. Vertically concatenate

these H-representations for every S to obtain an H-rep-
resentation for the set of coherent lower previsions on
K and apply redundancy removal to obtain [ΛC,αC].

Entirely analogously to what was done in Procedures B4
and B5, we can use MOLPs to generate undominated vertex
versions of [VS,γ ;wS,γ] for all S in S and γ in {0,1}:

C5. The κ-variant:

maximize κ,

subject to Kκ ≤ γ , Sκ ≥ 0 and, if γ = 0, Sκ ≤ 1.
(21)

C6. The Kκ-variant:

maximize Kκ,

subject to Kκ ≤ γ , Sκ ≥ 0 and, if γ = 0, Sκ ≤ 1.
(22)



In principle, the MOLP-based procedures (B4, B5, C5, and
C6) should be more efficient than the vertex enumeration
ones (B3, C4), as for both the same polytope needs to be
mapped, but for the MOLPs only in part, which also results
in less redundant constraints to be removed later on. In
our numerical experiments, the vertex enumeration variant
turned out to be quite efficient: the number of redundant
constraints it produces is about the same as the number of
non-redundant ones; for our earlier procedure, this quickly
grew beyond a difference of an order of magnitude. How-
ever, the results for Procedures B4 and C5 were not as
good: the M3-solver at our disposal (Löhne 2012) could
not deal in reasonable time with sets of gambles that the
enumeration-based procedures digested almost instantly
(its author explained that it was not designed for large ob-
jective vectors). Procedures B5 and C6 could not be tested
due to an apparent lack of publicly available M4-solvers.

4.3 Appendix: the NNZM Assumption & Coherence

Given a general set of gambles K, let K̄ be the subset of
constant gambles and Ǩ the subset of non-constant gambles.
Let b̄ be the vector with the values of the constant gambles
and K̂ an NNZM set of gambles associated with Ǩ. The
restrictions of a lower prevision P on K̄∪Ǩ∪K̂ to these sets
are P̄, P̌, and P̂. (Properties of coherent lower previsions
used here can be found in Walley 1991, §2.6.1(b),(c).)

If P is coherent, we know that Pβ = β for any constant gam-
ble β and so the constraints are P̄ = b̄. For any other gamble
f in K we have the linking constraint P̌ f − P̂( f −min f ) =
min f . Fix K̂ ∶= { f −min f ∶ f ∈ Ǩ}; this set is NNZM. Let
ÂP̂ ≤ b̂ be the constraints for the polytope of coherent lower
previsions P̂ on K̂, then, using the linking constraints, the
corresponding constraints for P̌ on Ǩ are ÂP̌ ≤ b̂+ Âmin.
So the full H-representation of the set of coherent lower
previsions [P̄; P̌] on K is

[AK bK] ∶=
⎡⎢⎢⎢⎢⎢⎣

I b̄
−I −b̄

Â b̂+ Âmin

⎤⎥⎥⎥⎥⎥⎦
. (23)

4.4 Quantitative Results of Numerical Experiments

Above, we have already mentioned some qualitative evalu-
ations and comparisons of the different procedures. Here
we present more quantitative results. Our CPU-bound nu-
merical (floating point) experiments were run on an Intel
i7-2620M processor. (The Python scripts we developed are
publicly available: Quaeghebeur, pycohconstraints.)

Our experiments showed that the sparsity σ , i.e., the frac-
tion of zero components in the gamble matrix K, has an
important influence on the running times of our procedures.
The graph below indicates that the running time of Pro-
cedure C1 decreases exponentially as a function of the
sparsity. The approximate equidistance of the curves of

doubling possibility space cardinality ∣Ω ∣ indicates that the
running time increases approximately linearly as a func-
tion of ∣Ω ∣. The curves are least-squares fits to the data
points obtained from randomly generated NNZM gamble
sets with values taken from {0, . . . ,9}. To give an idea of
the variance, we have also plotted the data points for ∣Ω ∣ in
{4,32,1024,8192} as gray dots.
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The same gamble sets were also processed using Proce-
dure C4; the running times were typically 1.5 times, but
sometimes 4 times longer. The other procedures were or-
ders of magnitude too slow for reliable testing.

In the graph below, the approximate equidistance of the
lines for ∣K∣ in {3,6,9} and for ∣K∣ in {4,8,12}, respec-
tively, indicates that the running time of Procedure C1 in-
creases (at least) exponentially as a function of ∣K∣. Again
to give an idea of the variance, we have plotted the data
points for ∣K∣ in {4,8,12} as gray dots.

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

10−3

100

103

∣K∣ = 3

∣K∣ = 4
∣K∣ = 6

∣K∣ = 8
∣K∣ = 9

∣K∣ = 12

σ

[s]C1, ∣Ω ∣ = 6

5 Correcting Incoherent Lower Previsions

Now that we have procedures for obtaining minimal linear
constraint characterizations for lower previsions that avoid
sure loss or are coherent, we are ready to look at what lies
beyond: sure loss and other forms of incoherence.

Automatic methods for learning lower previsions from data
ideally produce coherent lower prevision, but some may
not—possibly for good reasons. Also, when eliciting lower
previsions from experts—but not in imprecise probability
theory—, it is not reasonable to expect the result to be co-
herent or perhaps even avoid sure loss. For incoherent, but
sure loss avoiding lower previsions, we can apply natural



extension to perform a pointwise upward correction that
makes explicit all implicit commitments. This is appropri-
ate when the user of the automatic method or the elicitee
provide informed consent. Otherwise a conservative, down-
ward correction may be more acceptable.

Downward changes of a lower prevision imply a reduction
in both explicit and implicit commitments. When it is not
possible to decide on the changes with input from the user
or the elicitee, automatic downward correction methods are
an option, after informed consent. We here propose one
such automatic downward correction method.

5.1 Forms of Incoherence

Let us briefly give a categorization of the possible forms
of incoherence. To this end, consider a two-gamble ex-
ample on a possibility space {a,b,c}: consider the set
K ∶= {g1,g2}, with g1 ∶= [1;1/2;0] and g2 ∶= [0;1;1/2]. Using

Pg10 1
2

1

Pg2

0

1
2

1
Pb

Pamin

Pc

a procedures from Sec-
tion 4, we have obtained
the constraints, drawn us-
ing bestubbled lines, de-
limiting the shaded con-
vex polytope of coherent
lower previsions. Its ver-
tices have been named:
the vacuous lower previ-
sion min and for every
atom ω in {a,b,c} the de-
generate prevision Pω ∶= [g1ω;g2ω], the columns of K⊺.

We recalled at the end of Sec-
tion 3 that coherent lower pre-
visions P are bounded, i.e., that
min ≤ P ≤ max. Our first cate-
gory of incoherent previsions are
those that are out of bounds. On
the right, we shaded the mag-
nitude-wise smallest part of this
unbounded region in gray.

Equations (3)–(4) and (7)–(8) showed us
that the convex set of linear previsions can
take a central role in both the definitions
of avoiding sure loss and coherence. For
our example, it is in gray on the right.

More concretely, Equation (8) made it clear that the poly-
tope of coherent lower previsions is an intersection of
polyhedra corresponding to avoiding sure S-loss—i.e., S-
dominance by a linear prevision—, one for each S in S.
Below, we show, in gray, the part of these polyhedra within
bounds, accompanied by their respective S-matrix and the
extreme rays of the dominance cone it implies. With each
S there corresponds a set whose members incur sure S-loss.
The set of incoherent lower previsions is their union.

[1
1] [−1

1] [1 −1]

To get a feel for what constellations can occur when faced
with larger sets of gambles, we extend our two-gamble
example with a gamble g3 ∶= [1/2;0;1]. Below, we give the
polytope of coherent lower previsions. It is bounded by
the cuboid defined by the min and max points. Its edges
in the coordinate planes are shown using thin dashed lines.
The new vertices can be characterized for g in {g1,g2,g3}
by PAg ∶= minω∈A gω . The range of values attained by the
vertex lower previsions is {0,1/2,1}.

Pg1

Pg2

Pg3

min

P{b,c}

Pb

Pa

Pc

P{a,b}
P{c,a}

Below, we furthermore give the ∣S∣ = ∣K∣ + 1 = 4 sets of
lower previsions that avoid sure S-loss.

This illustration shows that some lower previsions within
bounds may incur sure S-loss for all S; max, for example.

5.2 Bringing Lower Previsions Within Bounds

Correcting a lower prevision P that is out of bounds to
one that is within bounds is trivial: We replace it by the
pointwise closest such lower prevision BP, so for every

P

BP QBQ

gamble f in K we have

BP f ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min f P f ≤min f ,
max f P f ≥max f ,
P f otherwise.

(24)
This correction method may
produce both downward and
upward pointwise changes.

From now on we assume that all lower previsions are within
bounds.



5.3 Maximal Dominated Coherent Lower Previsions

Our proposal for the downward correction of an incoherent
lower prevision P is the lower envelope of the maximal
coherent lower previsions dominated by P. In other words,
it is the nadir point DP of the MOLP (cf. Section 2.2):

maximize Q,

subject to ΛCQ ≤ αC and Q ≤ P.
(25)

This proposal is essentially the same as the specific so-
called prudential correction PH mentioned by Pelessoni &
Vicig (2003, §3.4). They generalize the interval-probability
concept F-Hülle (see Weichselberger 2001, 342ff. and
375ff.; translated as F-cover in Weichselberger 2000). How-
ever, they only aim to apply this correction when sure loss
is avoided; we make no such restriction.

P

DP

Q

DQ

On the right, the method is illustrated
for two incoherent lower previsions
that are within bounds; extreme max-
imal dominated coherent lower previ-
sions are shown as gray-filled dots.

We should not conclude from these il-
lustrations that the extreme maximal
coherent lower previsions dominated
by the given incoherent lower previ-
sion can always be reached by reduc-
ing single components; a graphical
counterexample is given below.

Pg1

Pg2

Pg3

DP

P

The lower prevision DP satisfies the necessary require-
ments:

i. It is a downward correction as a lower envelope of
lower previsions dominated by P.

ii. It is coherent by the Lower Envelope Theorem.

Furthermore, as a nadir point it has a number of further
desirable properties:

iii. The correction it embodies is neutral in the sense
that no tradeoff between corrections for the different
components of P is made; this makes it especially
suited for unguided corrections.

iv. It is the maximal such neutral correction—the vac-
uous lower prevision min is another—and therefore
preserves as much of the commitments expressed by
P as possible.

v. The set of coherent lower previsions dominated by
an incoherent lower prevision P is non-decreasing
with pointwise increasing P. So the more incoherent
a lower prevision, the more imprecise its correction.

It is actually not necessary to calculate [ΛC,αC] in order to
find DP, because we have a full constraint based characteri-
zation of coherence with the H-representation (12). So an
alternative to the MOLP (25) is the following MOLP:

maximize Q,

subject to AQQ+Aµ µ ≤ b and Q ≤ P,
(26)

where we use the notation of Equation (12). (Weichsel-
berger 2001, 468ff, also proposes an as of yet untested
algorithm that is essentially based on a representation such
as the one given by Equation (12).) This problem has
(∣K∣+1) ⋅ ∣Ω ∣ more variables than the MOLP (25), which
has ∣K∣ variables. It has (∣K∣+1)⋅(∣K∣+∣Ω ∣+2) constraints,
whereas the MOLP (25) typically has of the order of 3 ⋅ ∣K∣
constraints. This results in a greater average running time
for the nadir computation using the alternative MOLP, even
if we take the setup time—calculating [ΛC,αC] (cf. Sec-
tion 4.4) versus generating [AQ,Aµ ,b] (about 10−3s)—into
account. This can be seen in the graphical summary of the
results of our numerical experiments, which we are going
to describe next. (The Octave/Matlab scripts we developed
are publicly available: Quaeghebeur, mcohconstraints.)
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In this experiment, for each value of ∣K∣ in {2, . . . ,10},
we generated about 10 NNZM gamble sets K—as in Sec-
tion 4.4—with sparsity σ fixed at approximately 1/2, on a
possibility space Ω with ∣Ω ∣ = 5. Next, we calculated the
corresponding [ΛC,αC]—using Procedure C1—and gen-
erated the corresponding [AQ,Aµ ,b]. Finally, for each K,
we generated about 10 incoherent lower previsions within
bounds to correct. This we did using both the MOLP (25)
and the MOLP (26), resulting in about 100 computation
time samples per ∣K∣ for each of both approaches. Each of
these sample sets is summarized using a box plot indicat-
ing minimum, lower quartile, median, upper quartile, and



maximum; its arithmetic mean is indicated with a lozenge.
Black left-leaning box plots are used for the results ob-
tained with the MOLP (25); darkgray right-leaning ones
for those obtained with the MOLP (26).

With the M3-solver we used (Löhne 2012), average com-
putation time seems to increase exponentially as a function
of ∣K∣. Surprisingly, the number of extreme maximal domi-
nated coherent lower previsions is not a major factor. This
is illustrated by the number of these extreme points found
for the minimum and maximum computation times—put
in italics near the respective box plot whiskers—and the
maximum number of extreme points in the sample—listed
in italics at the top edge of the plot axis.

The M3-solver does compute all these extreme points, so
we suspect that it is highly inefficient for the task at hand.
Therefore we believe substantial efficiency gains can be
achieved by switching to an M4-solver, which we expect
to be output sensitive, i.e., to depend on the number of
extreme points. Nadir point calculation algorithms that do
not need to calculate all these extreme points (e.g., Alves
& Costa 2009) should provide a further increase in effi-
ciency. Because elicited lower previsions can be expected
to generally be closer to coherent than our randomly gener-
ated ones, we also expect them to generally dominate less
extreme points and thus, because of output sensitivity, be
faster to correct. We already observed this phenomenon for
randomly generated sure loss avoiding lower previsions.

5.4 Least Dominating Coherent Lower Prevision

For completeness’s sake, let us also have a look at upward
correction using the MOLP approach. Given an incoherent
lower prevision P, we consider the set of minimal pointwise
dominating coherent lower previsions; this is the solution
to the following MOLP:

minimize EP,

subject to ΛCEP ≤ αC and EP ≥ P.
(27)

Because of the Lower Envelope Theorem, there is only one
such EP, so we may replace this vector objective by the
scalar objective ∑g∈KEPg, reducing the problem to a plain
LP. This coherent lower prevision EP is the one least domi-

P
EP Q

nating P, to wit, its
natural extension
(cf. Walley 1991,
§3.1). This plain
LP method for ob-
taining it is illus-
trated on the right.

Again, we can use the H-representation (12) to formulate
an alternative to the MOLP (27):

minimize EP,

subject to AEPEP+Aµ µ ≤ b and EP ≥ P.
(28)

Thanks to the block structure of the constraint matrix, it is
straightforward to deduce some well-known facts:

i. It is necessary that P avoids sure loss for a solution
EP to exist (cf. right-hand side illustration above).

ii. For each gamble g in K, we can calculate the corre-
sponding natural extension component EPg separately
as max{g⊺µ ∶ P ≤K⊺

µ ∧ µ ≥ 0 ∧ 1⊺µ = 1}.

These facts raise the currently still open question of whether
there exist specific classes of incoherent lower previsions P
for which the calculation of DP can be simplified, e.g., to
separate calculations for each component.

6 Conclusions

We hope that you are now convinced of the fact that the
availability of a finite, minimal linear constraints character-
ization of coherence opens doors for many new numerical
applications dealing with the set of coherent lower previ-
sions. In our application, downward correction of incoher-
ent lower previsions, we saw that it proved useful to keep
the running time of the inherently computationally complex
implementation of our proposed method a bit in check. We
determined that currently, sets of up to 5 gambles can be
dealt with sufficiently fast even for interactive applications.
In a domain where complex systems are often decomposed
into smaller ones linked in some network structure, this is
not overly restrictive.

We also hope that this paper has kindled your interest in
the application of multi-objective linear programming to
imprecise probability problems. We believe that beyond the
two applications of them presented in this paper, there are
bound to be more in our research field because of the com-
mon underlying assumption that incomparability should be
modeled, not avoided.

There are some unfinished strands in this paper:

i. Testing an efficient projection implementation (cf.
Kvasnica et al. 2006).

ii. Finding and testing a MOLP simplex solver (cf. M4)
and a nadir computation algorithm (cf. M2).

iii. Theoretically investigate whether DP can be calcu-
lated more efficiently if P satisfies some additional
conditions beyond being within bounds.

We hope these are picked up by us, or others, in the future.
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