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Abstract
Given a coherent lower prevision P , we consider the prob-
lem of computing the smallest coherent lower prevision
F ≥ P that is conglomerable, in case it exists. F is called
the conglomerable natural extension. Past work has showed
that F can be approximated by an increasing sequence
(En)n∈N of coherent lower previsions. We close an open
problem by showing that this sequence can be made of
infinitely many distinct elements. Moreover, we give suffi-
cient conditions, of quite broad applicability, to make sure
that the point-wise limit of the sequence is F in case P is
the lower envelope of finitely many linear previsions. In
addition, we study the question of the existence of F and
its relationship with the notion of marginal extension.

Keywords. Coherent lower previsions, conglomerability,
conglomerable natural extension, natural extension, mar-
ginal extension.

1 Introduction

When the possibility space Ω is infinite and you express
your beliefs through a coherent lower prevision P , you may
want to consider a partition B of Ω made of infinitely many
conditioning events. In this case it may happen that P is
not coherent, in Walley’s sense, with any lower prevision
conditional on B; we say that P is not conglomerable.1

Conglomerability is a concern for Walley’s theory, because
its failure makes it impossible to update P . More generally
speaking, conglomerability should arguably be a rationality
requirement for a probabilistic model under a dynamic
interpretation of conditioning that relates present and future
commitments, as detailed in [9].2

If we endorse conglomerability as a rationality requirement
and consider a non-conglomerable coherent lower prevision
P , it becomes interesting to consider the conglomerable

1We consider the case of a fixed partition B in this paper, so we do not
deal with full conglomerability. See [6, Sections 6.8 and 6.9] for more
details on the latter notion.

2On the other hand, there are also works on conditional previsions
where conglomerability is not imposed [1, 3, 7]; we refer to [6, Section 6.8]
for some discussion on this topic.

natural extension of P , if it exists: that is, the weakest
conglomerable coherent lower prevision F that extends P .
Thus, it plays the analogous role that the natural extension
of a lower prevision (which avoids sure loss) plays with
respect to coherence. Some recent work [5] has showed
that F can be approximated though a sequence of coherent
lower previsions (En)n∈N such that P ≤ E1 ≤ E2 ≤
· · · ≤ Ei ≤ · · · ≤ F . It is known already that if the
sequence becomes stable, that is, if Ei−1 = Ei for some
i, then Ei = F ; and, conversely, if the sequence breaks
down, which means that Ei cannot be produced for some i,
then F does not exist.

However, some fundamental questions have been left open
with regard to the sequence (En)n. One of them is whether
or not it may be infinite—without ever becoming stable. If
that is the case, then the next question is whether or not
the point-wise limit Q of the sequence equals F . In fact, in
principle it could be the case that Q is not conglomerable
while F exists; this would mean that you should re-start a
new sequence from Q in order to get to F (and possibly
another, and another, and another, etc.).

After some introductory concepts we give in Section 2, we
start a preliminary analysis in Section 3: we show that some
basic procedures, like taking point-wise limits, or convex
combinations, of conglomerable models do not preserve
conglomerability in general. In Section 4 we discuss the
question of the existence of F and its relationship with
some pre-existing concepts about coherent lower previsions.
In particular, Example 3 yields one more negative, and yet
important, result: that F may not exist even when P avoids
partial loss with its conditional natural extension P (·|B),
i.e., the model obtained by conditioning P in the least-
committal way.

In Section 5 we close the first question mentioned above:
we construct in Example 4 a model P whose related se-
quence (En)n is infinite. In this case the limit Q of the
sequence equals F , which does not allow us to close the
second question, which remains thus open.

In Section 6 we deepen the study, preliminarily started in
[5], on the relationship between marginal extension and the
conglomerable natural extension. We consider in particular



the relationship between (En)n and the sequence (Mn)n,
whereMn := En−1(En−1(·|B)) is the marginal extension
of En−1 and its conditional natural extension En−1(·|B).
It turns out that (Mn)n is also an increasing sequence of
coherent lower previsions that is dominated by F ; however
we show in Example 5 that the point-wise limit Q′ of the
sequence (Mn)n may differ from F . In addition, by detail-
ing the relationships among P , Q, Q′ and F we deduce in
Proposition 8 that if (En(·|B))n converges uniformly to the
conditional natural extension Q(·|B) of Q, then Q = F .

In Section 7 we focus on the special case where P is domin-
ated by a set of linear previsions with finitely many extreme
points. This allows us to deduce two new simple conditions,
which seem to be quite broadly applicable, that make sure
that (En(·|B))n converges uniformly to Q(·|B), and hence,
through Proposition 8, that Q = F . This analysis shows in
particular that, when P is the lower envelope of two linear
previsions, there is a procedure to determine whether F
exists, and in this case we always have that Q = F .

We report our summary views in Section 8. Due to limita-
tions of space, proofs have been omitted.

2 Introduction to Imprecise Probabilities

Let us introduce the basics of the theory of coherent lower
previsions that we use in this paper. We refer to [6] for an
in-depth study, and for a behavioural interpretation of the
following notions in terms of buying and selling prices.

Consider a possibility space Ω. A gamble is a bounded
map f : Ω → R. The set of all gambles is denoted by
L(Ω), or simply by L when there is no ambiguity about the
possibility space we are working with.

A lower prevision P is a real-valued functional defined on
some set of gambles K ⊆ L. When the domain K of P
is a linear space—closed under point-wise addition and
multiplication by real numbers—P is called coherent when
it satisfies the following conditions:

C1. P (f) ≥ inf f ∀f ∈ K;

C2. P (λf) = λP (f) ∀f ∈ K, λ ≥ 0;

C3. P (f + g) ≥ P (f) + P (g) ∀f, g ∈ K.

Given a partition3 B of Ω, a conditional lower prevision
on L is a functional P (·|B) :=

∑
B∈B BP (·|B) such that

for every set B ∈ B, P (·|B) is a lower prevision on L.
P (·|B) is called separately coherent when P (·|B) is coher-
ent and P (B|B) = 1 for every B ∈ B. For every gamble
f , P (f |B) is the gamble on Ω that takes the value P (f |B)
on ω ∈ B, and this for every B ∈ B.

3See also [7] for an alternative approach where the conditioning is
made on a class of events that do not necessarily form a partition.

For every lower prevision P and every conditional lower
prevision P (·|B), we use the notations: GP (f) := f −
P (f), GP (f |B) := B(f − P (f |B)) and GP (f |B) :=
f−P (f |B) =

∑
B∈BGP (f |B). If we consider a coherent

lower prevision P on L and a separately coherent condi-
tional lower prevision P (·|B) on L, they are called coher-
ent4 if and only if for every gamble f and every B ∈ B,

P (GP (f |B)) ≥ 0, (CNG)
P (GP (f |B)) = 0. (GBR)

This second condition is called the generalised Bayes rule,
and if P (B) > 0 it can be used to uniquely determine the
value P (f |B): in that case there is only one value satisfying
(GBR) with respect to P . On the other hand, (CNG) is a
conglomerability condition based on the behavioral idea
thatGP (f |B) is a combination of (possibly infinitely many)
acceptable transactions, and should be then an acceptable
transaction, too.

A particular case of coherent P , P (·|B) is that made of
the vacuous unconditional and conditional lower previ-
sions, given by P (f) = infω∈Ω f(ω) and P (f |B) =
infω∈B f(ω) for all f ∈ L and all B ∈ B.

On the other hand, a coherent lower prevision P and a
separately coherent conditional lower prevision P (·|B) on
L are said to avoid partial loss (APL) when

sup
[
GP (f) +GP (g|B)

]
≥ 0 (1)

for every pair of gambles f, g ∈ L. Eq. (1) holds whenever
P (·|B) is the vacuous conditional lower prevision irrespect-
ive of the coherent lower prevision P , because in that case
GP (f |B) ≥ 0 for any gamble f .

A particular case of coherent lower previsions is that
of linear previsions. A linear prevision is a functional
P : L → R satisfying conditions C1 and C2, and con-
dition C3 with equality for all gambles f, g ∈ L. Its re-
striction to P(Ω), the powerset of Ω, is a finitely additive
probability, and P is the corresponding expectation op-
erator. The set of all linear previsions is denoted by P.
Given a lower prevision P on K, its associated credal
set is M(P ) := {P ∈ P : (∀f ∈ K)P (f) ≥ P (f)}, and
each P in M(P ) is said to dominate P . A lower previ-
sion for which M(P ) 6= ∅ is said to avoid sure loss. It
is coherent if and only if P = minM(P ). Similarly, a
conditional linear prevision is a functional P (·|B) on L
such that P (B|B) = 1 and P (·|B) is a linear prevision for
every B ∈ B.

Given a coherent lower prevision P , we define by

P (f |B) :=

{
infω∈B f(ω) if P (B) = 0

min{P (f |B) : P ∈M(P )} otherwise
(2)

4See [6, Section 6.3.2] for a definition of coherence on more general
domains, and also [6, Theorem 6.5.3].



its conditional natural extension. P (f |B) is a separately
coherent lower prevision, defined for every B ∈ B and
every f ∈ L, which always satisfies (GBR) with P . Thus,
P , P (·|B) are coherent if and only if (CNG) holds for
every gamble f . When that is the case, we say that P is
a conglomerably coherent lower prevision. We refer to [6,
Sections 6.8 and 6.9] for a thorough study of conglomer-
ability. For the purposes of this paper, the most important
property is that a conglomerably coherent lower prevision
is one that can be updated to a conditional lower prevision
while satisfying Walley’s notion of coherence, so it is essen-
tial if we want to use Walley’s approach in the conditional
case.

Conglomerability holds trivially whenever P (B) = 0 for
all but a finite number of conditioning events B ∈ B.
Moreover, (CNG) always holds whenever the support of the
gamble f , which is given by S(f) := {B ∈ B : Bf 6= 0}
is finite. In particular, this means that conglomerability
holds trivially for finite partitions.

3 Basic Properties of Conglomerability

Let us begin by making a preliminary study of conglom-
erably coherent lower previsions. Unlike the family of co-
herent lower previsions (see [6, Section 2.6]), the set of
conglomerably coherent lower previsions is not closed un-
der convex combinations or point-wise limits. We begin by
focusing on this second property:
Example 1. Consider a partition B of Ω and two linear
previsions P1, P2 on L such that P1 is conglomerable and
P2 is not for a countable partition B := {Bn : n ∈ N}
such that P1(Bn), P2(Bn) > 0 for all n. (In this paper N
denotes the set of positive natural numbers.)

Define Qn on L by Qn(f) := P2(fI∪n
i=1Bi

) +
P1(fI∪i>nBi); it can easily be checked that Qn is a lin-
ear prevision. Moreover, Qn(f |Bm) is equal to P2(f |Bm)
if m ≤ n and to P1(f |Bm) if m > n, whence
Qn(Qn(f |B)) = Qn(f).

This means that the linear prevision Qn is conglomerable
for every n. On the other hand, limnQn(f) = P2(f) for
every f , so the limit of the sequence (Qn)n is not a con-
glomerable prevision.

The above comments also show that the coherence of an
unconditional and a conditional lower prevision is not pre-
served by point-wise limits: since Qn(Bm) > 0 for all
m,n ∈ N, we deduce that Qn is coherent with its condi-
tional natural extension Qn(·|B), which is a linear previ-
sion. However, the point-wise limit of the sequence (Qn)n,
that is, the linear prevision P2, is not coherent with its condi-
tional natural extension P2(·|B) because P2 is not conglom-
erable. It also follows that limnQn(f |Bm) = P2(f |Bm)
for all m ∈ N, f ∈ L, whence P2(·|B) is the limit of
Qn(f |B). ThusQn, Qn(·|B) are coherent for all n but their

point-wise limits P2, P2(·|B) are not. �

Next, we investigate if the property of conglomerability is
preserved by taking convex combinations. As discussed by
Walley in [6, Theorem 6.9.1], a sufficient condition for a lin-
ear prevision P to be conglomerable is that it is countably
additive on B, in the sense that

∑
B∈B P (B) = 1. This

means in particular that a convex combination of two lin-
ear previsions P1, P2 that are countably additive on B will
again be countably additive with respect to this partition,
and as a consequence it will also be conglomerable.

However, there are also conglomerable linear previsions
P that are not countably additive on B [6, Examples 6.6.4,
6.6.5], and they can be used to show that conglomerability
is not necessarily preserved by convex combinations:
Example 2. Consider Ω := N ∪ −N, Bn := {−n, n} and
the partition B := {Bn : n ∈ N}. Let P1, P2 be two linear
previsions whose restrictions to events satisfy

P1(Bn) =

{
1

2n if n odd,
0 if n even,

P1({2n}n∈N) = 1
3 ,

P2(Bn) =

{
1

2n−1 if n even,
0 if n odd,

P2({2n− 1}n∈N) = 1
3 ;

that is, P1 (resp., P2) is countably additive on ∪n∈NB2n−1

(resp., ∪n∈NB2n) and purely finitely additive on ∪n∈NB2n

(resp., ∪n∈NB2n−1). Assume moreover that P1({n}) =
P1({−n}) and P2({n}) = P2({−n}) for every n.

For any gamble f on Ω, it holds that P1(G1(f |B)) ≥
P1(G1(fI∪n∈NB2n−1

|B)), taking into account that
P 1(·|B2n) is vacuous for every n and as a con-
sequence G1(fI∪n∈NB2n) ≥ 0. Moreover, if we
consider the set D := ∪n∈NB2n and the partition
B′ := {D} ∪ {B2n−1 : n ∈ N} of Ω, it follows that∑
B′∈B′ P1(B′) = 1. Applying [6, Theorem 6.9.1], it

follows that P1 is conglomerable with respect to B′, and
from this we deduce that P1(G1(fI∪n∈NB2n−1

|B)) =
P1(G1(fI∪n∈NB2n−1

|B′)) ≥ 0. As a consequence, P1

is conglomerable. Similarly, so is P2. However, if we
consider the linear prevision P := 0.5P1 + 0.5P2, it
holds that P (f |Bn) = f(n)+f(−n)

2 ∀n ∈ N, f ∈ L.
Given f := 2I−N, it follows that P (f |Bn) = 1 for
every n, whence P (G(f |B)) = 1

3 −
2
3 < 0, since

P1(N) = P2(N) = 2
3 by construction. This shows that P

is not conglomerable. �

4 On the Existence of the Conglomerable
Natural Extension

The above preliminary results illustrate the fact that con-
glomerably coherent lower previsions do not share many
of the properties of coherent lower previsions. Another in-
stance of this is that a lower prevision P that avoids sure
loss has always a smallest dominating coherent lower pre-



vision, but it may not have a dominating conglomerably
coherent lower prevision. This is easy to see by means of
a linear prevision P that is not conglomerable: any con-
glomerably coherent lower prevision F that dominates P
should also coincide with P , because of linearity, and as a
consequence such an F does not exist.

Although in Section 3 we have showed that the limit of a
sequence of conglomerable lower previsions may not be
conglomerable, it follows from [6, Theorem 6.9.3] that the
lower envelope of a family of conglomerable lower previ-
sions is again conglomerable. Hence, if P has a dominating
conglomerable model, then there is also a smallest dom-
inating conglomerable model. We shall refer to it as the
conglomerable natural extension of P .
Definition 1. Let P be a coherent lower prevision on L and
let B be a partition of Ω. The (B-)conglomerable natural
extension of P is the smallest coherent lower prevision
F ≥ P that is conglomerable with respect to B.

As we have showed before, the conglomerable natural ex-
tension of a lower prevision P may not exist. Taking this
into account, it becomes interesting to provide sufficient
conditions for its existence. We begin by investigating the
relationships among a number of consistency notions from
[6, Chapters 6 and 7]:
Proposition 1. Let P be a coherent lower prevision on L,
B a partition of Ω, and P (·|B) a separately coherent lower
prevision. Consider the following possibilities:

(a) P , P (·|B) are coherent.

(b) P , P (·|B) are dominated by coherent Q,Q(·|B).

(c) The conglomerable natural extension of P exists.

(d) P , P (·|B) are dominated by Q,Q(·|B) that avoid par-
tial loss.

(e) P , P (·|B) avoid partial loss.

Then (a)⇒(b)⇒(d)⇔(e) and (b)⇒(c). If, in addition,
P (·|B) is the conditional natural extension of P , then
(c)⇒ (b) holds as well, and if in particular P is linear then
we have also that (b)⇒ (a) and (d)⇒ (b), so all of them
are equivalent conditions.

Now, if we consider a coherent lower prevision P , it fol-
lows that its conglomerable natural extension exists if and
only if there is a coherent lower prevision F ≥ P that is
conglomerable. Since conglomerability is equivalent to the
coherence with the conditional natural extension, it follows
that the conglomerable natural extension of P exists if and
only if P , P (·|B) are dominated by coherent Q,Q(·|B),
where P (·|B) denotes the conditional natural extension
of P . We deduce from Proposition 1 that the following
implications hold:

P conglomerable ⇒ F exists⇒ P , P (·|B) APL, (3)

where F is the conglomerable natural extension of P , in-
troduced in Definition 1. Moreover, F exists if and only if
P , P (·|B) avoid conglomerable partial loss, in the sense
of [4, Definition 21]. The converses of the implications
in (3) do not hold in general: on the one hand, there are
previsions P that are not conglomerable but whose con-
glomerable natural extension exists (one instance is that
in Example 4 later on). Next we show that the converse
of the second implication does not hold either. In other
words, the conditions of avoiding partial loss and avoiding
conglomerable partial loss are not equivalent in general. In
order to build this example, we need to define the notion of
unconditional natural extension:
Definition 2. Let P be a coherent lower prevision and
P (·|B) be a separately coherent conditional lower prevision
on L. Their unconditional natural extension E1 is given on
f by the supremum α such that

f − α ≥ GP (g) +GP (h|B) for some g, h ∈ L.

Then E1 is a coherent lower prevision on L if and only
if P , P (·|B) avoid partial loss. Moreover, if P (·|B) is the
conditional natural extension of P and E1(·|B) is that of
E1, then any coherent Q,Q(·|B) that dominate P , P (·|B)
must also dominate E1, E1(·|B). Thus, the conglomerable
natural extensions of P and E1 coincide.
Example 3. Consider Ω := N ∪ −N, Bn := {n,−n} and
B := {Bn : n ∈ N}. Let P1 be a σ-additive linear prevision
on L determined by P1(n) := P1({−n}) := 1

2n+1 .

Let P be a finitely additive probability on P(N) satisfy-
ing P ({n}) = 0 for all n, P ({2n + 1 : n ∈ N}) = 0.
We can use it to define a linear prevision P2 on L whose
restriction to events is the finitely additive probability
given by P2(B) := 3

4P (Π1(B)) + 1
4P (Π2(B)), where

Π1(B) := B ∩N and Π2(B) := −(B ∩−N). Define then
the linear prevision P3 := 1

2P1 + 1
2P2.

Let now P ′ be another finitely additive probability on P(N)
such that P ′({n}) = 0 for all n, P ′({2n+ 1 : n ∈ N}) =
0.5, so that P ′(Ieven) = 0.5 too. Let P4 be the linear previ-
sion on L whose restriction to events is the finitely additive
probability

P4(B) :=
1

4

∑
n∈B∩N

1

2n
+

3

4
P ′(−(B ∩ −N)).

Take P := min{P3, P4}. Then P (Bn) =
min

{
1

2n+1 ,
1

2n+2

}
> 0 ∀n ∈ N, whence

P (f |Bn) = min
{
f(n)+f(−n)

2 , f(n)
}
∀f ∈ L, n ∈ N.

Fix a gamble f and let C := ∪n:f(n)<f(−n)Bn, so that
P (f |Bn) = f(n) if Bn ⊆ C and P (f |Bn) = f(n)+f(−n)

2
otherwise. Then G(f |B) = G(f · C|B) +G(f · Cc|B) ≥
G(f · Cc|B) because G(f |Bn) ≥ 0 if Bn ⊆ C.

Denote Pα := αP3 +(1−α)P4. We are going to determine
for which α ∈ [0, 1] it holds that Pα(G(f |B)) ≥ 0 for



all f . Taking into account the above observation, we can
conclude that Pα(G(f |B)) ≥ 0 ∀f ∈ L if and only if
Pα(G(f |B)) ≥ 0 ∀f ∈ L s.t. f(n) ≥ f(−n) ∀n.

Take thus f s.t. f(n) ≥ f(−n) for all n (in this case C is
empty). Then{

G(f |Bn)(n) = f(n)−f(−n)
2 ≥ 0,

G(f |Bn)(−n) = f(−n)−f(n)
2 ≤ 0.

(4)

If we denote g := G(f |B), it holds that g(n) = −g(−n),
whence P1(gIN) + P1(gI−N) = 0. On the other hand,
P2(gIN) + P2(gI−N) = 3

4P (g+) + 1
4P (g−), where

g+ : N→ R
n ↪→ g(n)

and
g− : N→ R

n ↪→ g(−n) = −g(n).
(5)

Thus P2(gIN) + P2(gI−N) = 1
2P (g+) ≥ 0; as a con-

sequence, P3(G(f |B)) ≥ 0 for every gamble f .

Now, if in particular we fix n ∈ N and let f :=
2I{2n+1,2n+3,... }, then, using (4) again, G(f |B) =
I{2n+1,2n+3,... } − I{−2n−1,−2n−3,... } and P1(G(f |B)) =
0 = P2(G(f |B)), because we have chosen P such that
P ({2n+ 1 : n ∈ N}) = 0. Thus, P3(G(f |B)) = 0.

On the other hand, for this gamble f we obtain that
P4(G(f |B)) =

∑
k≥n

1
2(2k+1)+2 − 3

8 < 0 for n big enough.

This implies that Pα(G(f |B)) < 0 for all α 6= 1. As a
consequence {Pα : Pα(G(f |B)) ≥ 0 ∀f} = P3 = E1,
taking into account thatM(P ) = {Pα : α ∈ [0, 1]} and
using [5, Proposition 13]. Since the natural extension E1

of P , P (·|B) exists, it follows that P , P (·|B) avoid partial
loss. But P3 is not conglomerable: given g := 2I−N, we
can use the expression of P3(·|Bn) (available from that of
P (·|Bn)) to see that P3(g|Bn) = [2I−N](n)+[2I−N](−n)

2 =
2
2 = 1, so thatGP3(g|B) = −IN + I−N and P3(G(g|B)) =
− 1

4 < 0. Thus P3, P3(·|B) do not avoid partial loss, and
applying (3) we deduce that the conglomerable natural ex-
tension of P3 does not exist. But since P3 is the natural ex-
tension of P , P (·|B), the conglomerable natural extension
of P coincides with that of P3. Hence, the conglomerable
natural extension of P does not exist either. �

We can get more, and different, results in the special case
where the conditional natural extension of P is linear.

Proposition 2. Let P be a coherent lower prevision on
L and assume that its conditional natural extension is a
linear prevision P (·|B). Then:

(a) P , P (·|B) avoid partial loss if and only if P , P (·|B)
avoid conglomerable partial loss.5

(b) P is conglomerable if and only if it is a lower envelope
of conglomerable linear models.

5This has essentially been showed already in [5, Proposition 15].

From [6, Theorem 6.9.3], a lower envelope of a family of
conglomerable lower previsions is again a conglomerable
lower prevision; the converse is not true: [6, Example 6.6.9]
shows that it may be that P is a conglomerably coherent
lower prevision but no dominating model is. One interesting
particular case where an assessment of conglomerability is
compatible with an envelope theorem is when we are deal-
ing with marginal extension models [6, Theorem 6.7.4]: any
marginal extension is a conglomerable model that is a lower
envelope of a family of conglomerable linear previsions.
Proposition 2 provides an instance of this case.

5 Approximation by a Sequence

In [5], it was devised a procedure to approximate the con-
glomerable natural extension (if it exists) of a coherent
lower prevision P : we consider the sequence of coherent
lower previsions (En)n, where E0 := P and for every
n ≥ 1, En is the (unconditional) natural extension of
En−1, En−1(·|B), where En−1(·|B) is the conditional nat-
ural extension of En−1, given by Eq. (2).

Proposition 3. [5] Assume that the conglomerable natural
extension F of P exists. Then:

1. (En)n is an increasing sequence of coherent lower
previsions, and (En(·|B))n is an increasing sequence
of separately coherent conditional lower previsions.

2. Given their point-wise limits Q,Q(·|B), it holds that
Q(·|B) is the conditional natural extension of Q.

3. Q ≤ F , and Q = F ⇔ Q is conglomerable.

Moreover, it was showed in [5, Example 5] that the se-
quence may not stabilise in the first step, or, in other words,
that the natural extension of P , P (·|B) does not always
coincide with the conglomerable natural extension.

In terms of credal sets, we have the following:

Proposition 4. [5, Propositions 13 and 14] Let P be a co-
herent lower prevision on L, B a partition of Ω and P (·|B)
its conditional natural extension. Let E be the uncondi-
tional natural extension of P , P (·|B). Then

M(E) = {P ∈M(P ) : P (GP (f |B)) ≥ 0 ∀f ∈ L}
=M(P ) ∩M(M), where M := P (P (·|B)).

In this section, we are going to study the above sequence
in more detail. It follows that if the sequence stabilises in
a finite number of steps, i.e., if Q = En for some n, then
Q is the conglomerable natural extension of P . However,
as we shall see later, it may happen that the sequence is
infinite. In order to provide an example, we are going to
give a tool first that will allow us to build sequences that
can be made both conglomerable and non-conglomerable,
depending on the choice of two parameters.



Proposition 5. Let P1 be a σ-additive probability on L(N)
such that P1({n}) > 0 for all n ∈ N; let P2 be a finitely
additive probability on P(N) such that P2({n}) = 0 for
all n ∈ N. We consider Ω := N ∪ −N and B := {Bn :
n ∈ N}, with Bn := {n,−n}. Given a gamble h in L(Ω),
we let h+, h− be derived from h as in Eq. (5). Consider
α, β ∈ [0, 1] and let Q1, Q2 on L(Ω) be given by

Q1(h) := αP1(h+) + (1− α)P1(h−) and

Q2(h) := βP2(h+) + (1− β)P2(h−).

Consider also γ ∈ (0, 1) and let Q := γQ1 + (1− γ)Q2.
Then Q is conglomerable⇔ α = β.

We exploit Proposition 5 to show that the sequence (En)n
may not stabilise in a finite number of steps.

Example 4. Consider Ω := N ∪ −N, B := {Bn : n ∈ N},
with Bn := {n,−n}, and the linear previsions on L(Ω)

P1({n}) := P1({−n}) :=
1

2n+1
for all n ∈ N

P2(h) :=
1

2

∑
n

h(n)
1

2n
+

1

2
P (h−)

P3(h) :=
3

4
P (h+) +

1

4
P (h−)

P4(h) :=
1

2
P1(h) +

1

2
P3(h),

where P is a finitely additive probability on N s.t.
P ({n}) = 0 for all n ∈ N and h+, h− are determined by
Eq. (5). Given α ∈ [0, 1], we set Qα := αP2 + (1− α)P4.
It follows that

Qα(h) =
1

2

[
1 + α

2
P̃1(h+) +

1− α
2

P̃1(h−)

]
+

1

2

[
3− 3α

4
P (h+) +

1 + 3α

4
P (h−)

]
,

where we denote by P̃1 the linear prevision given by
P̃1({n}) := 1

2n for all n ∈ N. Proposition 5 yields:

Qα is conglomerable⇔ 1 + α

2
=

3− 3α

4
⇔ α = 0.2.

Let P be the lower envelope of the credal set {Qα :
α ∈ [a, b]} for given a, b s.t. 0 < a < 0.2 < b < 1.
The conglomerable natural extension of P exists since
P ≤ Q0.2. We aim at analysing whether the sequence
of coherent lower previsions P ,E1, E2, . . . , originated by
P , yields the conglomerable natural extension in the limit
and whether or not the sequence itself stabilises in a finite
number of steps.

We start by detailing the form of the conditional nat-
ural extension of P . Since Qα(f |Bn) = 1+α

2 f(n) +
1−α

2 f(−n) ∀f ∈ L and P (Bn) > 0, it follows from
Eq. (2) and [6, Theorem 6.4.2] that for every gamble f ,

P (f |Bn) =

{
1+a

2 f(n) + 1−a
2 f(−n) if f(n) ≥ f(−n)

1+b
2 f(n) + 1−b

2 f(−n) if f(n) ≤ f(−n).

If we denote A := {n ∈ N : f(n) ≤ f(−n)}, then{
GP (f |Bn)(n) = 1−b

2 [f(n)− f(−n)] ≤ 0

GP (f |Bn)(−n) = 1+b
2 [f(−n)− f(n)] ≥ 0

whenever n ∈ A, and{
GP (f |Bn)(n) = 1−a

2 [f(n)− f(−n)] ≥ 0

GP (f |Bn)(−n) = 1+a
2 [f(−n)− f(n)] ≤ 0

when n /∈ A. Now we would like to check for which values
of α it is the case that Qα(GP (f |B)) ≥ 0 for all f ∈ L,
because from Proposition 4 we have thatM(E1) = {Qα :
Qα(GP (f |B)) ≥ 0 for all f ∈ L}.

Given a gamble f , its associated set A = {n ∈ N : f(n) ≤
f(−n)}, andC := ∪n∈ABn, it holds that f = fIC+fICc ,
whence GP (f |B) = GP (ICf |B) +GP (ICcf |B). Denote
g′ := GP (ICf |B), g′′ := GP (ICcf |B). We proceed to
determine when Qα(g′) ≥ 0, Qα(g′′) ≥ 0.

• Let us consider Qα(g′). If n /∈ A, then g′(−n) =
g′(n) = 0; if n ∈ A, then g′(−n) = 1+b

2 [f(−n) −
f(n)] and g′(n) = 1−b

2 [f(n) − f(−n)]. As a con-
sequence, g′(−n) = − 1+b

1−bg
′(n) ≥ 0. Then:

P2(g′) =
∑
n

g′(n)
1

2n+1
+

1

2
P (g′−) and

P4(g′) =
∑
n

g′(n)
1

2n+1
· −b
1− b

+P (g′−)·1
4
·2b− 1

1 + b
.

This implies that Qα(g′) is equal to∑
n

g′(n)
1

2n+1︸ ︷︷ ︸
≤0

· α− b
1− b︸ ︷︷ ︸
≤0︸ ︷︷ ︸

≥0

+P (g′−) · 1

4︸ ︷︷ ︸
≥0

·3α+ 2b− 1

1 + b
,

so that 3α+ 2b− 1 ≥ 0⇒ Qα(g′) ≥ 0. On the other
hand, if 3α+2b−1 < 0, we can always find g′, by let-
ting g′− tend to 1 with n→∞, such that P (g′−) = 1,
using that P is a finitely additive probability that is
not σ-additive. And this is compatible with making∑
n g
′(n) 1

2n+1 as small as we want by making the
first m images equal to zero, where m is an arbitrary
positive number: it holds that limm P (g′I∪n≥mBn) =

P (g′) while limm

∑
n≥m g

′(n) 1
2n−1 = 0. We con-

clude that we can always find some g′ such that
Qα(g′) < 0 when 3α+ 2b− 1 < 0.

• Let us focus on Qα(g′′). It holds that g′′(n) =
− 1−a

1+ag
′′(−n) ≥ 0. Then:

P2(g′′) =
∑
n

g′′(n)
1

2n+1
+

1

2
P (g′′−) and

P4(g′′) =
∑
n

g′′(n)
1

2n+1
· −a
1− a

+P (g′′−)·1
4
·2a− 1

1 + a
.



This implies that Qα(g′′) is given by∑
n

g′′(n)
1

2n+1
· α− a

1− a︸ ︷︷ ︸
≥0

+P (g′′−) · 1

4︸ ︷︷ ︸
≤0

·3α+ 2a− 1

1 + a
,

so that 3α+2a−1 ≤ 0⇒ Qα(g′′) ≥ 0. On the other
hand, if 3α+ 2a−1 > 0, we can reason as in the case
of Qα(g′) to conclude that we can always find some
g′′ such that Qα(g′′) < 0.

Let us consider the case where 3α + 2b − 1 ≥ 0 and
3α + 2a − 1 ≤ 0 (note that we can attain this case given
that 3b + 2b − 1 ≥ 0 and 3a + 2a − 1 ≤ 0 if and only
if a ≤ 0.2 ≤ b). Then Qα(g′) ≥ 0, Qα(g′′) ≥ 0 and
therefore Qα(g) ≥ 0; using Proposition 4 we obtain that
Qα ∈M(E1). On the other hand, in the case where 3α+
2b − 1 < 0 or 3α + 2a − 1 ≤ 0, we know that there is
g′ s.t. Qα(g′) < 0, and g′′ s.t. Qα(g′′) = 0 (it is enough
to use an f , in the definition of g′′, s.t. f(n) = f(−n)
for all n /∈ A); applying again Proposition 4, we obtain
that Qα /∈M(E1). Analogous considerations hold for the
remaining cases.

Thus, recalling that M(P ) = {Qα : α ∈ [a, b]},
with 0 < a < 0.2 < b < 1, it follows that
M(E1) is given by the linear previsions Qα where α ∈[
max

{
a, 1−2b

3

}
,min

{
1−2a

3 , b
}]
. Note that if a < b then

it must be the case that [max{a, 1−2b
3 },min{ 1−2a

3 , b}] (
[a, b], because it is not possible that both a ≥ 1−2b

3 and
b ≤ 1−2a

3 hold. This means that at least one of the two ex-
treme points of [a, b] must change. Moreover, note that the
new interval will have still to contain the value 0.2 properly,
in the sense that 0.2 will have to be an interior point of the
new interval, because

a < 0.2 < b⇒ max

{
a,

1− 2b

3

}
< 0.2 and

a < 0.2 < b⇒ min

{
b,

1− 2a

3

}
> 0.2.

Thus, the infinite sequence P ,E1, E2, . . . is in correspond-
ence with an infinite sequence of intervals of strictly de-
creasing length, each one containing 0.2 properly.

Let us show now that 0.2 is actually the limit of this se-
quence. We must consider a number of cases:

• If in the passage fromM(P ) toM(E1) both extreme
points of the interval change, then we go from [a, b]
to [ 1−2b

3 , 1−2a
3 ], and the length of the new interval is

two thirds of the length of the previous one.

• Assume otherwise that that in the passage
from M(P ) to M(E1) only the left extreme
of the interval [a, b] changes (if it were the
right extreme, we would eventually obtain ana-
logous conclusions). We can then rewrite the

interval as [max{a, 1−2b
3 },min{ 1−2a

3 , b}] =

[ 1−2b
3 ,min{ 1−2a

3 , b}]. If we now do one more
step, to get to M(E2), we see that the left ex-
treme cannot change and hence the new interval
will be [ 1−2b

3 , 1+4b
9 ]. Hence, in two steps we go

from [a, b] to [ 1−2b
3 , 1+4b

9 ], and the length of the
latter interval is 10b−2

9 . Now, since a ≤ 1−2b
3 , we

deduce that 3a + 2b ≤ 1, and as a consequence
3
2 ·

10b−2
9 = 5b−1

3 ≤ b− a. This means that the length
of [ 1−2b

3 , 1+4b
9 ] is at most two thirds of the length of

[a, b].

By iterating the argument, we conclude that every two steps
the length of the intervals decreases at least exponentially
fast by 2

3 . As a consequence, given that 0.2 is always in-
cluded in the intervals, the sequence (En)n will converge
towards Q0.2, which, being conglomerable, is the conglom-
erable natural extension of P . �

6 Conglomerability and Marginal
Extension

The previous example shows that the sequence (En)n may
not stabilise in a finite number of steps. When Q does not
coincide with En for any n, it is an open problem whether
Q always coincides with the conglomerable natural ex-
tension or not. Here, we shall give a number of sufficient
conditions for the equality Q = F . We shall show that one
particular case of interest is that where Q is a marginal
extension model and we are going to explore in more de-
tail the connection between conglomerably coherent lower
previsions and marginal extensions. We begin by proving
an elementary and yet interesting result:

Proposition 6. Let P be a coherent lower prevision on
L, B a partition of Ω and P (·|B) the conditional natural
extension of P . Define M := P (P (·|B)). Then M ≤ P ⇔
P conglomerable.

It is possible to find examples that show that not every
conglomerably coherent lower prevision is a marginal ex-
tension, or, in other words, that we do not necessarily have
the equality P = M .

Next, we investigate the properties of the sequence of
marginal extensions (Mn)n associated to (En)n, where
Mn := En−1(En−1(·|B)) for every n > 1 and M1 :=
P (P (·|B)). It follows from Proposition 4 thatM(En) =
M(En−1) ∩M(Mn), so Mn ≤ En for all n. Since the
sequence (En(·|B))n is also increasing, we deduce that
so is the sequence (Mn)n. Thus, (Mn)n is an increasing
sequence of conglomerable and coherent lower previsions
that is dominated by F , the conglomerable natural exten-
sion of P . Moreover, if En is not conglomerable, then it
cannot be Mn ≥ P , because then it would be Mn = F ,
and therefore also En = F would be conglomerable.



However, it may be that the conglomerable natural exten-
sion is not a marginal extension model, and therefore that
the increasing sequence of marginal extensions stabilises
on a model that is not the conglomerable natural extension,
as the following example shows.

Example 5. Consider Ω := N ∪ −N, Bn := {n,−n} and
B := {Bn : n ∈ N}. Let P be a finitely additive probability
on P(N) s.t. P ({n}) = 0 for all n, and P1 a σ-additive
probability on P(Ω) s.t. P1({n}) = P1({−n}) = 1

2n+1

for all n. Consider also the linear previsions

P2(h) :=
1

2

∑
n

h(n)
1

2n
+

1

2
P (h−)

P3(h) :=
3

4
P (h+) +

1

4
P (h−)

P4(h) :=
1

2
P1(h) +

1

2
P3(h),

where h ∈ L and h+, h− are derived by Eq. (5). Finally,
let P := min{P1, P2, P4}. Given f := I−N, it holds
that: P (f) = min

{
1
2 ,

1
2 ,

3
8

}
= 3

8 . In [5, Example 5]
it is showed that the unconditional natural extension of
P , P (·|B) is given by

E1 = min

{
P1, P4,

1

3
P2 +

2

3
P4

}
,

that the conditional natural extension of E is given by

E1(h|Bn) = min

{
h(n) + h(−n)

2
,

2h(n) + h(−n)

3

}
,

and that P4(GE(h|B)) < 0 for some h, so E1 is not con-
glomerable.

On the other hand, it can be showed that both
P1(GE1

(·|B)) ≥ 0 and P5(GE1
(·|B)) ≥ 0. It follows

from Proposition 4 that the unconditional natural exten-
sion E2 of E1, E1(·|B) is dominated by the lower envel-
ope of {P1, P5}, from which we obtain that E2(·|Bn) ≤
min{P1(·|Bn), P5(·|Bn)} and in particular that E2(h|Bn)
is dominated by

min

{
h(n) + h(−n)

2
,

2h(n) + h(−n)

3

}
= E1(h|Bn)

for every h ∈ L and every n ∈ N, which implies that
E2(h|Bn) = E1(h|Bn) for every gamble h. Applying [5,
Proposition 16], we deduce that E2 is conglomerable and
therefore it is the conglomerable natural extension of P .

Now, if we reconsider f := I−N, then E2(f |Bn) = 1
3

for all n, so if E2 was a marginal extension model, we
would have E2(f) = E2(E2(f |B)) = E2( 1

3 ) = 1
3 . But

we know that E2(f) ≥ P (f) = 3
8 >

1
3 . This shows that

the sequence of marginal extensions may not stabilise on
the conglomerable natural extension. �

Let us study in more detail the sequence (Mn)n of marginal
extensions. We begin by characterising their relationship
with Q in terms of credal sets.

Proposition 7. Let Q := limnEn and let Q′ :=

limnQ(En(·|B)). ThenM(Q′) = ∩nM(Mn), whence:

1. M(Q) =M(P )∩(∩nM(Mn)) =M(P )∩M(Q′).

2. Q′ conglomerable⇔ Q′ = Q(Q(·|B)).

Thus, the limit of the increasing sequence (Mn)n is the
coherent lower prevision Q′ = limnQ(En(·|B)). Taking
this into account, we can establish a sufficient condition for
the conglomerable natural extension to be the limit of the
sequence of marginal extensions:

Proposition 8. Let Q,Q′ be given as in Proposition 7, and
consider the following possibilities:

(a) Q(·|B) is the uniform limit of (En(·|B))n.

(b) Q = Q′ = F .

(c) Q′ is conglomerable.

(d) Q is conglomerable.

(e) Q = F .

Then (a)⇒ (c)⇒ (d)⇔ (e) and (b)⇒ (c). If in particular
Q′ ≥ P , then:

1. (b)⇔ (c)⇔ Q′ = Q(Q(·|B)).

2. (d)⇔ (e)⇔ Q = Q(Q(·|B)).

3. (a)⇒ (b)⇔ (c)⇒ (d)⇔ (e).

7 The Finitary Case: Sufficient Conditions

As we have showed in Example 4, the sequence (En)n of
coherent lower previsions that provides a lower bound on
the conglomerable natural extension may not stabilise in a
finite number of steps. On the other hand, in Proposition 8
we have showed that a sufficient condition for (En)n to
converge towards the conglomerable natural extension is
the uniform convergence of the sequence of conditional
lower previsions. In this section, we give two sufficient
conditions for this uniform convergence.

We focus on the case of an initial lower prevision P char-
acterised by an associated credal setM(P ) that contains
finitely many extreme points. We call this a finitary model,
or a finitary lower prevision.

In other words, we consider finitely many linear previsions
P1, . . . , Pk on L and let P := min{P1, . . . , Pk}. Then
M(P ) = {Pᾱ : ᾱ ∈ ∆}, where ∆ := {(α1, . . . , αk) :

αi ≥ 0 ∀i,
∑k
i=1 αi = 1} is the (k − 1)-dimensional

simplex, and simplifying the notation by letting Pᾱ :=
α1P1 + · · ·+ αkPk, with ᾱ := (α1, . . . , αk). We consider



as usual a partition B of Ω and the sequence (En)n of
coherent lower previsions that we use to approximate the
conglomerable natural extension F of P (provided that
it exists), and Q = limnEn. We aim at giving sufficient
conditions for Q to coincide with F .

If there is m ∈ N such that Em = Em−1, then limnEn =
Em = F and in particular Q = F . Otherwise, if the se-
quence never stabilises, thenEn � En+1 for all n, whence
M(En) ) M(En+1). For each natural number n, we
have that M(En) = {Pᾱ : ᾱ ∈ ∆n}, where ∆n is a
closed and convex subset of ∆.

Hence (∆n)n is a strictly decreasing sequence of closed
and convex subsets of ∆; since ∆ is a compact subset of
Rk, we deduce that limn ∆n =: ∆′ is a compact subset of
∆, that determines moreover Q = limnEn.

Next, we are going to use these sets to give a sufficient
condition for the uniform convergence of the sequence of
conditional natural extensions. One important issue here
is that of the positivity of the lower probabilities of the
conditioning events: as we have showed in (2), Q(f |B)
can only be non-vacuous when Q(B) > 0, and similarly
for En. Then it may be that Q(B) > 0 for all B in B while
for every n there is an infinity of B for which En(B) = 0,
thus preventing the uniform convergence. Our next result
shows that for finitary models this is not an issue:

Lemma 9. If P = min{P1, . . . , Pk}, then there is some
natural number n such that, for every B ∈ B, Q(B) >
0⇒ En(B) > 0.

Since the conglomerable natural extension of P coincides
with that of En for every n ∈ N, we are going to assume
that P (B) > 0 whenever Q(B) > 0; otherwise, it suffices
to start the sequence at the n for which the condition in
Lemma 9 holds.

Let us give now two sufficient conditions for the uniform
convergence of the sequence (En(·|B))n.

Theorem 10. Under any of the following conditions:

1. ∃N > 0 s.t. P (B)
P (B) < N ∀B ∈ B,

2. ∃ν > 0 s.t. minki=1 αi ≥ ν > 0 ∀ᾱ ∈ ∆′,

Q(f |B) is the uniform limit of (En(f |B))n ∀f ∈ L and
therefore Q is the conglomerable natural extension of P .

It can be checked that neither of these sufficient conditions
is necessary for the limit to be conglomerable.
Remark 1. The second of these sufficient conditions is
particularly revealing in the binary case, where we con-
sider the lower envelope of two linear previsions, P :=
min{P1, P2}. If we denote Pα := αP1 + (1− α)P2, then

we can identify each ∆n with a subset of [0, 1]:

M(P ) : = {Pα : α ∈ [0, 1]},
M(En) : = {Pα : α ∈ [an, bn]} and
M(Q) : = {Pα : α ∈ [a, b]},

where 0 ≤ an ≤ bn ≤ 1 for all n, and (an)n ↑ a, (bn)n ↓
b. There are a number of possibilities:

• If a = b = 1, then Q = P1, so the conglomerable
natural extension exists if and only if it coincides with
Q = P1.

• If a = b = 0, then Q = P2, so the conglomerable
natural extension exists if and only if it coincides with
Q = P2.

• If a, b ∈ (0, 1), then Theorem 10 implies that
(En(f |B))n converges uniformly to Q(f |B), and as a
consequenceQ is the conglomerable natural extension
of P .

• If a = 0 and b ∈ (0, 1), then we can deduce from
Theorem 10 that (Pbn(f |B))n converges uniformly to
Pb(f |B) for every gamble f , and from this we deduce
that Q is the conglomerable natural extension of P . A
similar result applies when a ∈ (0, 1) and b = 1.

This means that if we consider a binary model P =
min{P1, P2} and that the conglomerable natural extension
of P exists, then it necessarily coincides with Q. �

8 Conclusions

The importance of the conglomerable natural extension
can be appreciated when one realises that it is the analog,
for a theory of probability based on conglomerability, of
the deductive closure in logic. Unfortunately, this paper
shows that such a closure is not finitary, in the sense that
to compute the conglomerable natural extension F of a
coherent lower prevision P , one might have to create an
infinite sequence (En)n of distinct approximating coherent
lower previsions.

Moreover, at the moment it is still an open problem whether
the point-wise limit Q of such a sequence actually attains
F in general. However, in the special case where P is the
envelope of finitely many linear previsions, this paper gives
sufficient conditions for Q = F that seem to have quite
broad applicability. This gives reasons to believe that Q
will equal F in many cases of practical interest.

Yet, solving the mentioned problem in general seems to us
the most important question, and a very difficult one too,
that should be addressed by future research.
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ilità subordinate. Rendiconti del Reale Instituto Lombardo,
63:414–418, 1930.

[2] B. de Finetti. Teoria delle Probabilità. Einaudi, Turin, 1970.
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