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Abstract

The conditions for a 2-monotone lower prevision to be
uniquely updated to a conditional lower prevision are
determined. Then a number of particular cases are in-
vestigated: completely monotone lower previsions, for
which equivalent conditions in terms of the focal ele-
ments of the associated belief function are established;
random sets, for which some conditions in terms of
the measurable selections can be given; and minitive
lower previsions, that are shown to correspond to the
particular case of vacuous lower previsions.

Keywords. Coherent lower previsions, n-
monotonicity, belief functions, minitive measures,
natural extension, regular extension.

1 Introduction

The theory of imprecise probabilities contains a wide
variety of mathematical models that are of interest
in situations where it is unfeasible to determine the
probability model associated to an experiment with
certain guarantees. Under any of them, one important
problem is that of updating the model under the light
of new information. Unfortunately, this problem is
far from settled, and quite a number of different rules
have been proposed. Out of them, arguably some of
the most popular are Dempster’s rule of conditioning
[11], regular extension [4] and natural extension [27].

In order to be able to choose one rule above the oth-
ers, it is essential to have a clear interpretation of the
mathematical model we are using. In this paper, we
shall consider the behavioural approach championed
by Peter Walley [27], that has its roots in the works
on subjective probability by Bruno de Finetti [10].
This approach regards lower and upper probabilities
as supremum and infimum betting rates, and focuses
on a consistency notion between these betting rates
called coherence.

When we move to the conditional case, there is also

a notion of coherence that tells us if the conditional
betting rates are compatible with the unconditional
ones. However, this notion does not suffice to uniquely
determine the conditional models from the uncondi-
tional ones. This was showed for instance in [20],
where it was established that in general we may have
an infinite number of conditional models compati-
ble with the unconditional one, and that the small-
est and greatest such models are determined by the
procedures called natural and regular extension, re-
spectively. In this paper, we investigate under which
conditions there is only one conditional model that is
coherent with the unconditional one.

Walley’s theory is established in terms of lower and
upper previsions (or expectations), because these are
more informative than the lower and upper proba-
bilities that can be considered as a particular case.
We shall recall the basics from the theory of coher-
ent lower previsions in Section 2. Then we shall fo-
cus on a particular case of coherent lower previsions:
those satisfying the property of 2-monotonicity [2, 7].
Lower previsions with this property have the advan-
tage of being uniquely determined by their restrictions
to events (a 2-monotone lower probability) by means
of the Choquet integral.

After establishing a necessary and sufficient condition
for the uniqueness of the coherent extensions to the
conditional case in Section 3, we focus on two par-
ticular cases of 2-monotone lower previsions. First,
in Section 4 we consider completely monotone lower
previsions, that correspond to the Choquet integral
with respect to a belief function [7]; then we discuss
minimum-preserving lower previsions in Section 5.
Our results in this section illustrate one interesting
fact: that the coherence between unconditional and
conditional lower probabilities studied in [30] is not
equivalent to the coherence of the respective lower
previsions they determine by means of the Choquet
integral.

Due to limitations of space, proofs have been omitted.



2 Preliminary concepts

2.1 Coherent lower previsions

Consider a possibility space Ω, that we shall assume
in this paper to be finite. A gamble is a real-valued
functional defined on Ω. We shall denote by L(Ω) the
set of all gambles on Ω. One instance of gambles are
the indicators of events. Given a subset A of Ω, the
indicator function of A is the gamble that takes the
value 1 on the elements of A and 0 elsewhere. We shall
denote this gamble by IA, or by A when no confusion
is possible.

A lower prevision is a functional P defined on a set of
gambles K ⊆ L(Ω). Given a gamble f , P (f) is under-
stood to represent a subject’s supremum acceptable
buying price for f , in the sense that for any ε > 0 the
transaction f − P (f) + ε is acceptable for him.

Using this interpretation, we can derive a notion of
coherence:
Definition 1. A lower prevision P : L(Ω) → R is
called coherent if and only if it satisfies the follow-
ing properties for every f, g ∈ L(Ω) and every λ > 0:

(C1) P (f) ≥ min f .

(C2) P (λf) = λP (f).

(C3) P (f + g) ≥ P (f) + P (g).

The interpretation of this notion is that the accept-
able buying prices encompassed by {P (f) : f ∈ L(Ω)}
are consistent with each other. In the particular
case when P satisfies (C3) with equality for every
f, g ∈ L(Ω), it is called a linear prevision. Any coher-
ent lower prevision is the lower envelope of the set of
linear previsions that dominate it, i.e.,

P (f) = min{P (f) : P linear prevision, P ≥ P}.

The conjugate functional P of a coherent lower previ-
sion P , given by P (f) = −P (−f) for every f ∈ L(Ω),
is called a coherent upper prevision. It corresponds to
the upper envelope of the set of linear previsions that
dominate P .

A coherent lower prevision defined only on indicators
of events is called a coherent lower probability. In
particular, the restriction of a linear prevision to in-
dicators of events corresponds to a (finitely additive)
probability measure. Hence, coherent lower previsions
are simply lower envelopes of closed and convex sets
of probability measures, and as such they can also be
given a Bayesian sensitivity analysis interpretation.

One particular case of coherent lower previsions are
the vacuous ones. They correspond to the case where

we have the information that the outcome of the ex-
periment belongs to some set A (and nothing else).
In that case, our coherent lower prevision is given by

P (f) = min
ω∈A

f(ω) ∀f ∈ L(Ω). (1)

Although a linear prevision is uniquely determined
by the probability measure that is its restriction to
events, this is not the case for lower previsions: a
coherent lower probability will have in general more
than one coherent extension to the set of all gam-
bles. This is the reason why the theory is estab-
lished in terms of gambles instead of events. Inter-
estingly, there are some cases where the restriction to
events uniquely determines the coherent lower previ-
sion. One particular case that shall be important in
this paper is that where the restriction to events is
0–1-valued:

Lemma 1. [27, Note 4, Section 3.2.6] Let P be a
coherent lower prevision on L(Ω) whose restriction to
events is 0–1-valued. Then P is the unique coherent
extension of its restriction to events, and it is given
by

P (f) = sup
F :P (F )=1

inf
ω∈F

f(ω);

moreover, the class {F ⊆ Ω : P (F ) = 1} is a filter.

This applies in particular for the vacuous lower pre-
visions in Eq. (1).

2.2 Conditional lower previsions

Given a partition B of the possibility space Ω, a condi-
tional lower prevision on L(Ω) is a functional P (·|B)
on L(Ω) that to any gamble f and any B ∈ B assigns
the value P (f |B), that represents a subject’s supre-
mum acceptable buying price for f , if he comes to
know later that the outcome of the experiment be-
longs to the subset B of Ω. Thus, P (·|B) is a func-
tional on L(Ω) for every B ∈ B. By putting all these
values together, we end up with the gamble

P (f |B) :=
∑
B∈B

IB(f − P (f |B)).

Similarly to conditions (C1)–(C3), we can establish a
notion of coherence for conditional lower previsions.
Definition 2. A conditional lower prevision P (·|B) on
L(Ω) is separately coherent when

(SC1) P (f |B) ≥ minω∈B f(ω),

(SC2) P (λf |B) = λP (f |B),

(SC3) P (f + g|B) ≥ P (f |B) + P (g|B)



for every f, g ∈ L(Ω), λ > 0 and B ∈ B.

The behavioural interpretation of this notion is that
the acceptable conditional buying prices encompassed
by P (·|B) are consistent with each other for every
fixed set B in the partition B. Together they imply
P (B|B) = 1 ∀B ∈ B.

If we start with a coherent lower prevision P and con-
sider a partition B of the space Ω, there is in general
not a unique way of updating P into a separately co-
herent conditional lower prevision P (·|B). This is re-
lated to the problem of conditioning on sets of prob-
ability zero, which has attracted a lot of attention in
the literature [3, 13, 18]; see also [27, Chapter 6] for
the approach considered in this paper. In the next
section we detail how the conditional lower prevision
may be derived and we formulate the problem we shall
study in this paper.

2.3 Formulation of the problem

Consider now a coherent lower prevision P on L(Ω),
let B be a partition of Ω and assume we want to up-
date P into a separately coherent conditional lower
prevision P (·|B) on L(Ω).

One strategy to derive P (·|B) from P is to verify that
the assessments present in these two lower previsions
are compatible with each other. This gives rise to the
concept of joint coherence, which is studied in much
detail in [27, Chapters 6 and 7]. In this case, where we
are dealing with finite spaces, we have the following
characterisation:

Proposition 1. [27, Theorem 6.5.4] Consider a co-
herent lower prevision P and a separately coherent
conditional lower prevision P (·|B) on L(Ω), where Ω
is a finite space. They are jointly coherent when

P (B(f − P (f |B))) = 0 ∀f ∈ L(Ω), B ∈ B. (2)

The above equation is called the Generalised Bayes
Rule, because it reduces to the well-known Bayes’ rule
in the precise case. It holds trivially when P (B) = 0,
so any conditional lower prevision P (·|B) is compati-
ble with P in that case; on the other hand, if P (B) > 0
then for every gamble f there is a unique real number
µ such that P (B(f − µ)) = 0, so there is only one
conditional lower prevision P (·|B) that is compatible
with P .

The most interesting case is that where the condi-
tioning event has zero lower probability and positive
upper probability, i.e., that of P (B) = 0 < P (B). In
that case, there is usually an infinite number of con-
ditional lower previsions that are compatible with P ;
there were characterised in [20], where it was proven

that they are bounded by the so-called natural and
regular extensions.

Definition 3. Given B ∈ B, the natural extension
E(·|B) induced by P is given by:

E(f |B) :=

{
infP≥P {P (f |B)} if P (B) > 0
minω∈B f(ω) otherwise

for any gamble f ∈ L(Ω).

The natural extension is vacuous when the condition-
ing event has zero lower probability, and is uniquely
determined by Eq. (2) otherwise. Although it pro-
duces a conditional lower prevision that is coherent
with P , it is arguably too uninformative. A more in-
formative alternative is called the regular extension:

Definition 4. Given B ∈ B, the regular extension
R(·|B) induced by P is given by:

R(f |B) :=

{
infP (B)>0,P≥P {P (f |B)} if P (B) > 0
minω∈B f(ω) otherwise

for any gamble f ∈ L(Ω).

Hence, regular extension corresponds to applying
Bayes’ rule whenever possible on the set of precise
models compatible with our conditional lower previ-
sion, and to take then the lower prevision of the re-
sulting set of conditional previsions. It has been pro-
posed as an updating rule in a number of works in the
literature [4, 8, 14, 15, 17, 28].

It turns out that the natural and the regular exten-
sions characterise the set of conditional lower previ-
sions that are jointly coherent with P :

Proposition 2. [20, Theorem 9] Let P be a coherent
lower prevision on L(Ω) and B a partition of Ω such
that P (B) > 0 for any B ∈ B. Then a separately co-
herent conditional lower prevision P (·|B) is coherent
with P if and only if P (f |B) ∈ [E(f |B), R(f |B)] for
every f ∈ L(Ω) and every B ∈ B.

In this paper we shall not deal with the case P (B) = 0
because then any conditional model P (·|B) satisfies
the Generalised Bayes Rule with P .

The conditional lower previsions determined by the
natural and regular extension may not coincide when
P (B) = 0 < P (B) (see for instance Example 2 later
on). In this paper, we are going to characterise their
equality for one interesting particular case of coherent
lower previsions: the 2-monotone ones. As particular
cases, we shall consider completely monotone lower
previsions, random sets and possibility measures.



3 Updating 2-monotone lower
previsions

One important instance of coherent lower previsions
are the n-monotone ones, that were first introduced
by Choquet in [2]:
Definition 5. A coherent lower prevision P on L(Ω)
is called n-monotone if and only if

P

(
p∨
i=1

fi

)
≥

∑
∅6=I⊆{1,...,p}

(−1)|I|+1P

(∧
i∈I

fi

)
(3)

for all 2 ≤ p ≤ n, and all f1, . . . , fp in L(Ω), where
∨ denotes the point-wise maximum and ∧ the point-
wise minimum.

In particular, a coherent lower probability P :
P(Ω)→ [0, 1] is n-monotone when

P

(
p⋃
i=1

Ai

)
≥

∑
∅6=I⊆{1,...,p}

(−1)|I|+1P

(⋂
i∈I

Ai

)
(4)

for all 2 ≤ p ≤ n, and all subsets A1, . . . , Ap of Ω.

Although a coherent lower prevision is not determined
uniquely by its restriction to events, it is when we re-
quire in addition the property of n-monotonicity, in
the following sense: given a n-monotone lower prob-
ability, its natural extension is the only n-monotone
extension to L(Ω). It corresponds moreover to the
Choquet integral [12] with respect to this fuzzy mea-
sure [7, 26], so we have that

P (f) := (C)
∫
fdP = inf f +

∫ sup f

inf f

P (f ≥ t)dt

for every gamble f .

A coherent lower prevision on L(Ω) that is n-
monotone for all n ∈ N is called completely mono-
tone, and its restriction to events is a belief function;
its conjugate P is a plausibility function. One exam-
ple of completely monotone coherent lower previsions
are the vacuous ones in Eq. (1); another one is given
by the linear previsions, that moreover satisfy Eq. (3)
with equality for every n.

In particular, a coherent lower prevision P on L(Ω) is
2-monotone if and only if it satisfies Eq. (3) for n = 2,
that is, if and only if

P (f ∨ g) + P (f ∧ g) ≥ P (f) + P (g)

for every f, g ∈ L(Ω). On the other hand, we de-
duce from Eq. (4) that a coherent lower probability
on P(Ω) is called 2-monotone whenever

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B) ∀A,B ⊆ Ω.

In this section, we are going to determine under which
conditions a 2-monotone lower prevision P on L(Ω)
can be uniquely updated to a conditional lower pre-
vision P (·|B) that is coherent with P , in the sense of
Eq. (2). In order to do this, we shall use the formula
for the conditional lower probability determined by
regular extension:

Proposition 3. [26, Theorem 7.2] Let P be a 2-
monotone lower prevision on L(Ω), and consider B ⊆
Ω such that P (B) > 0. Then for any event A,

R(A|B) =

{
P (A∩B)

P (A∩B)+P (Ac∩B)
if P (Ac ∩B) > 0,

1 otherwise,
(5)

and R(·|B) is a 2-monotone lower probability.

Interestingly, we shall show in Example 3 later on that
in general R(·|B) need not be 2-monotone on gambles.
As we shall see, we can only guarantee 2-monotonicity
on gambles when the conditioning event has zero lower
probability and positive upper probability.

To see that Eq. (5) does not hold without the assump-
tion of 2-monotonicity, consider the following exam-
ple:
Example 1. Consider Ω = {a, b, c, d} and let P1, P2 be
the linear previsions determined by the mass functions
p1, p2 given by

a b c d
p1 0.5 0.5 0 0
p2 0.25 0.25 0.25 0.25

It has been showed in [26, Section 6] that the lower
envelope P of {P1, P2} is a coherent lower prevision
that is not 2-monotone. Consider B = {a, b} and
A = {a}. Then P (Ac ∩B) = P ({b}) = 0.5 > 0, and

P (A ∩B)
P (A ∩B) + P (Ac ∩B)

=
0.25

0.25 + 0.5
=

1
3

;

on the other hand any P ≥ P is given by αP1 + (1−
α)P2, where α ∈ [0, 1]; since P1({a}) = P1({b}) and
P2({a}) = P2({b}), it follows that any P ≥ P must
satisfy P ({a}) = P ({b}) too, whence R(A|B) = 0.5.
Hence, Eq. (5) does not hold. �

From Proposition 3 we deduce the following:

Proposition 4. Let P be a 2-monotone lower previ-
sion on L(Ω) and consider B ⊆ Ω such that P (B) =
0 < P (B). Then for any gamble f

R(f |B) = min
ω∈C

f(ω),

where C is the smallest subset of B satisfying
R(C|B) = 1.



Interestingly, this shows that, if the lower prevision P
satisfies 2-monotonicity, when the conditioning event
B has zero lower probability and positive upper prob-
ability, the regular extension R(·|B) is a completely
monotone lower prevision, even if the lower prevision
P we start from is not completely monotone.

Using these results, we can determine in which cases
the natural and regular extensions coincide:
Proposition 5. Let P be a 2-monotone lower previ-
sion on L(Ω), and consider B ⊆ Ω with P (B) > 0 =
P (B). The following are equivalent:

1. E(f |B) = R(f |B) for every f ∈ L(Ω).

2. E(A|B) = R(A|B) for every A ⊆ Ω.

3. P ({ω}) > 0 for every ω ∈ B.

We immediately deduce the following:
Theorem 1. Let P be a 2-monotone lower previ-
sion on L(Ω), and let B be a partition of Ω. Then
E(·|B) = R(·|B) if and only if P ({ω}) > 0 ∀ω ∈ B ⊆
Ω s.t. P (B) = 0 < P (B).

To see that this result cannot be extended to arbitrary
coherent lower previsions, it suffices to consider the
coherent lower prevision P in Example 1, B = {c, d}
and A = {c}: we get E(A|B) = 0 < 0.5 = R(A|B).

4 Coherent updating of completely
monotone lower previsions

We consider next the case where the lower prevision
P on L(Ω) is completely monotone.

One of the most important rules in that case is Demp-
ster’s rule of conditioning [11, 24], where, given a plau-
sibility function P on P(Ω) and a conditioning event
B with P (B) > 0, the conditional plausibility is de-
fined by

P (A|B) :=
P (A ∩B)
P (B)

.

However, this conditional upper probability is not co-
herent with the unconditional upper probability P
[31]; see also [27, Section 5.13] and [29]. Thus, Demp-
ster’s rule is not interesting from the behavioural
point of view, and we shall focus in this section on
the natural and the regular extensions instead.

Given a conditioning event B with P (B) > 0, its reg-
ular extension is determined by Eq. (5). This formula
has also been established in a few papers ([14, Theo-
rem 3.4]; [15, Proposition 4]; see also [4, 11]). More-
over, it has been established in [14, 15, 25] that the
restriction of R(·|B) to events is a belief function for
every B ⊆ Ω such that P (B) > 0.

The equality between the natural and the regular ex-
tensions of P is characterised by Theorem 1. In this
section, we give equivalent conditions in terms of the
focal elements of P .
Definition 6. [24] Given a belief function P on P(Ω),
its Möbius inverse m : P(Ω)→ [0, 1] is given by

m(A) =
∑
B⊆A

(−1)|A\B|P (B) ∀A ⊆ Ω.

It holds that P (A) =
∑
B⊆Am(B), and m is called a

basic probability assignment within the evidential the-
ory of Shafer. For the plausibility function P that is
conjugate to P , it holds that P (A) =

∑
B∩A 6=∅m(B)

for every A ⊆ Ω.

For the results in this section, it shall be interesting
to work with the focal elements of the belief function:
Definition 7. [24] Given a belief function P with
Möbius inverse m, a subset B ⊆ Ω is called a focal
element when m(B) > 0. The union F of all the
focal elements of P is called the core of P .

We shall be particularly interested in those belief
functions whose focal elements cover the possibility
space Ω:
Definition 8. A belief function P with core F is called
full when F = Ω.

Since P (F c) =
∑
B focal:B∩F c 6=∅m(B) = 0, given a

belief function that is not full, any set included in F c

will have zero upper probability. Equivalently, if P is
a full belief function, any subset B of Ω has a positive
upper probability.

Recall that for any conditioning event B, it holds that
E(·|B) = R(·|B) if P (B) > 0 or P (B) = 0. Hence, the
natural and regular extensions will agree as soon as
there is no conditioning event with zero lower prob-
ability and positive upper probability. This case is
characterised by the following definition:
Definition 9. A belief function is called non-atomic if
for every focal element B, it holds that m({ω}) > 0
for every ω ∈ B.

The reason for this terminology is that given such a
belief function there is no setB with |B| ≥ 2 satisfying
P (B) > 0 and P (A) = 0 for every A ( B. See
[1, 19] for related concepts. Non-atomic and full belief
functions can be characterised in the following way:

Proposition 6. Let P be a belief function on P(Ω).

1. P is non-atomic if and only if for any B ⊆ Ω
either P (B) = 0 or P (B) > 0.

2. P is full if and only if for any B ⊆ Ω, P (B) > 0.



3. P is full and non-atomic if and only if P (B) > 0
for every B ⊆ Ω.

When the conditioning event B has zero lower proba-
bility and positive upper probability the equality be-
tween the natural and the regular extensions is char-
acterised by Proposition 5: we need that P ({ω}) > 0
for every ω ∈ B; in the case of belief functions, this is
equivalent to B ⊆ F , the core of the belief function.
From this we deduce the following result:

Proposition 7. Let P be a completely monotone
lower prevision on L(Ω), and let µ denote the belief
function that is the restriction of P to events. Then,
E(·|B) = R(·|B) for every B ⊆ Ω if and only if µ is
either full or non-atomic.

This result allows to provide an example where the
natural and the regular extensions do not coincide:
Example 2. Consider Ω = {a, b, c, d}, and let P be
the completely monotone lower prevision given by

P (f) = min{f(b), f(c)} ∀f ∈ L(Ω).

The restriction to events of P is the belief function as-
sociated to the basic probability assignment m where

m({b, c}) = 1 and m(C) = 0 for every C 6= {b, c}.

Obviously, this belief function is not full. If we take
B = {a, b} and A = {b}, then any probability P ≥ P
satisfying P (B) > 0 must satisfy P ({b}) > 0, be-
cause P ({a}) ≤ P ({a}) = 0. But then P will satisfy
P (A|B) = 1, and from this we deduce that

R(A|B) = 1 > 0 = E(A|B),

where the last equality holds because P (B) = 0.
Hence, the natural and regular extensions do not co-
incide. �

Moreover, for completely monotone lower previsions
we can give an alternative expression of the regular
extension to that in Proposition 4.

Proposition 8. Let P be a completely monotone
lower prevision, and let F be the core of its associ-
ated belief function. Then for any B ⊆ Ω such that
P (B) = 0 < P (B),

R(f |B) = min
ω∈B∩F

f(ω) ∀f ∈ L(Ω).

Let us recall again that the condition P (B) = 0 <
P (B) we consider in this theorem implies that the
belief function is not non-atomic.

From Proposition 7 we immediately derive the follow-
ing theorem.

Theorem 2. Let P be a completely monotone lower
prevision on L(Ω) and let B be a partition of Ω. If
the restriction to events µ of P is either full or non-
atomic, then E(·|B) = R(·|B).

Note that the sufficient condition in this theorem is
not necessary: it may be that µ is neither full nor
non-atomic and µ(B) > 0 for every B in the partition
B, and then E(·|B) = R(·|B).

4.1 Random Sets

One context where completely monotone lower pre-
visions arise naturally is that of measurable multi-
valued mappings, or random sets [11, 23].
Definition 10. Let (X,A, P ) be a probability space,
(Ω,P(Ω)) a measurable space, where Ω is finite, and
Γ : X → P(Ω) a non-empty multi-valued mapping. It
is called a random set when it satisfies the following
measurability condition:

Γ∗(A) := {x ∈ X : Γ(x) ⊆ A} ∈ A ∀A ⊆ Ω.

Its associated lower probability P∗Γ : P(Ω) → [0, 1] is
a belief function and is given by

P∗Γ(A) = P (Γ∗(A)) ∀A ⊆ Ω. (6)

The focal elements of P∗Γ are given by

{A ⊆ Ω : P (Γ−1(A)) > 0},

and its Möbius inverse is given by m = P ◦ Γ−1. The
conjugate plausibility measure is denoted by P ∗Γ and
it is called the upper probability of the random set Γ.
It satisfies

P ∗Γ(A) = 1− P∗Γ(Ac) = P ({x : Γ(x) ∩A 6= ∅}),

where the set {x : Γ(x) ∩ A 6= ∅} is the upper in-
verse of A by Γ, and is usually denoted by Γ∗. The
Choquet integral with respect to P∗Γ is a completely
monotone lower prevision on L(Ω), and it corresponds
to the natural extension of P∗Γ from P(Ω) to the set
of all gambles. If we want to update this completely
monotone lower prevision, we can use the natural or
the regular extensions, that, by Proposition 7, coin-
cide if and only if P∗Γ is either full or non-atomic.
These properties can be easily characterised in terms
of the images of Γ:
Proposition 9. Let (X,A, P ) be a probability space,
Ω a finite set and Γ : X → P(Ω) a random set with
associated lower probability P∗Γ. Let F denote the
core of P∗Γ.

1. P∗Γ is full ⇔ F = Ω ⇔ P ∗Γ(B) > 0 for all B ⊆
X ⇔ P ∗Γ({ω}) > 0 for all ω ∈ Ω ⇔ P ({x : ω ∈
Γ(x)}) > 0 for all ω ∈ Ω.



2. P∗Γ is non-atomic ⇔ ∀ω ∈ F, P (Γ−1(ω)) > 0.

Moreover, E(·|B) = R(·|B) for all B ⊆ Ω if and only
if P∗Γ is either full or non-atomic.

One interesting interpretation of random sets is the
epistemic one, where they are seen as models for the
imprecise knowledge of a random variable [16]. In
that case, our information about this random variable
is provided by the measurable selections of Γ: those
measurable mappings U : X → Ω such that U(x) ∈
Γ(x) ∀x ∈ X. We shall denote by S(Γ) the set of
measurable selections of Γ and by P (Γ) the set of the
probability measures they induce on P(Ω). This set
is included in the class M(P∗Γ) of probabilities that
dominate P∗Γ. Although both sets do not coincide in
general, when Ω is finite it can be checked that:

Proposition 10. [21, Theorem 1] Let Γ :
X → P(Ω) be a random set, where Ω is fi-
nite. Then Ext(M(P∗Γ)) ⊆ P (Γ) and M(P∗Γ) =
Conv(Ext(M(P∗Γ))).

Moreover, from [11], M(P∗Γ) has a finite number of
extreme points, that are related to the permutations
of the final space.

The epistemic interpretation can be carried on to-
wards the regular extension, in the following sense:

Proposition 11. Let (X,A, P ) be a probability space,
Ω a finite set and Γ : X → P(Ω) a random set with
associated lower probability P∗Γ. Consider B ⊆ Ω
with P ∗Γ(B) > 0. Then, for every f ∈ L(Ω),

R(f | B) = min{PU (f | B) : U ∈ S(Γ), PU (B) > 0}.

To conclude this section, we use random sets to es-
tablish that, even if the conditional lower probability
derived from a completely monotone lower prevision
by Generalised Bayes Rule is a belief function [14, 15],
when we move from events to gambles we do not nec-
essarily obtain a completely monotone lower previ-
sion.
Example 3. Consider the probability space
(X,P(X), P ), where X = {a, b, c, d, e}, and
P is the probability measure determined by
the equalities P (a) = P (b) = 1/8, and
P (c) = P (d) = P (e) = 1/4. Let Γ be the
multi-valued mapping Γ : X → P({1, 2, 3, 4}) given
by Γ(a) = {1},Γ(b) = {2},Γ(c) = {1, 4},Γ(d) =
{2, 4},Γ(e) = {3, 4}.

Let P∗Γ denote the lower probability induced by
this random set. This is a belief function, and the
lower prevision P on L({1, 2, 3, 4}) given by P (f) =
(C)

∫
fdP∗Γ is a completely monotone lower previ-

sion.

It follows from Eq. (6) that

P∗Γ({1, 2, 3}) = P ({a, b}) =
1
4
> 0.

As a consequence, the natural and regular extensions
coincide, and we deduce from Proposition 11 that

R(f |{1, 2, 3}) = min{PU (f |{1, 2, 3}) : U ∈ S(Γ)}.
(7)

Let us consider the gamble f on {1, 2, 3, 4} given by
f(ω) = 4 − ω for all ω ∈ {1, 2, 3, 4}. Then since f =
1 I1,2,3+1 I1,2+1 I1, its Choquet integral with respect
to R(·|{1, 2, 3}) would be

1 +R({1, 2}|{1, 2, 3}) +R({1}|{1, 2, 3}).

We deduce from Eq. (7) that

R({1}|{1, 2, 3}) =
1
6

and R({1, 2}|{1, 2, 3}) =
1
2

;

as a consequence, (C)
∫
f dR(·|{1, 2, 3}) = 5/3.

On the other hand, the smallest value of
{PU (f |{1, 2, 3}) : U ∈ S(Γ)} is given by
7/4 > 5/3. This means that R(f |{1, 2, 3}) >
(C)

∫
fdR(·|{1, 2, 3}).

But it has been established in [7, 26] that if we have a
2-monotone lower probability on all events (as is the
case for R(·|{1, 2, 3}), the only 2-monotone extension
to all gambles is the Choquet integral. This means
that the conditional lower prevision R(·|{1, 2, 3}) is
not 2-monotone on L({1, 2, 3}). �

5 Coherent updating of
minimum-preserving previsions

We consider now the particular case of com-
pletely monotone lower previsions that are minimum-
preserving, i.e., lower previsions P such that

P (f ∧ g) = min{P (f), P (g)}

for every pair of gambles f, g on Ω. They correspond
to the Choquet integral with respect to their restric-
tion to events, which is a necessity measure N . Their
conjugate upper previsions P are the Choquet inte-
gral with respect to the possibility measure Π that is
determined by N using duality, and are maximum-
preserving.

From Proposition 7, we deduce the following:

Corollary 1. Let P be a minimum-preserving coher-
ent lower prevision. Then E(·|B) = P (·|B) for all
B ⊆ Ω if and only if either of the following conditions
holds:

(i) P ({ω}) > 0 for all ω ∈ Ω.



(ii) P ({ω}) = 1 for some ω ∈ Ω.

The result in Corollary 1 can be simplified further tak-
ing into account that de Cooman and Aeyels proved
in [5] (see also [6]) that a coherent upper prevision P
on L(Ω) is maximum-preserving if and only if its re-
striction to events is a 0–1-valued possibility measure.
Then, if we define F := {ω : P ({ω}) = 1}, it turns
out that F is the only focal element of the possibility
measure P , and m(F ) = 1. Hence, P is the vacuous
lower prevision on F , that is,

P (f) = min
ω∈F

f(ω) ∀f ∈ L(Ω).

Now, given a conditioning event B ⊆ F , there are a
number of possibilities:

• B ⊆ F c. Then P (B) = 0 and both the natural
and regular extensions are vacuous.

• B ∩ F 6= ∅ 6= B ∩ F c. Then P (B) = 0 < 1 =
P (B), whence E(·|B) is vacuous on B and R(·|B)
is vacuous on B ∩ F . Hence, in that case the
natural and regular extensions do not coincide.

• B ⊆ F . Then both E(·|B) and R(·|B) are vacu-
ous on B.

Note that in this case P is only non-atomic when F is
a singleton (i.e., when P corresponds to the expecta-
tion operator with respect to a degenerate probability
measure), and P is full if and only if F = Ω, meaning
that P corresponds to the vacuous model. Hence, we
only have the equality between the natural and the
regular extensions for all B ⊆ Ω in these two extreme
cases.

We summarise the coherent updating of a minimum-
preserving lower prevision in the following theorem.
Theorem 3. Let P be a minimum-preserving lower
prevision on L(Ω), and consider a partition B of Ω.
Consider F ⊆ Ω such that P (f) = minω∈F f(ω)∀f ∈
L(Ω). Given B ∈ B and f ∈ L(Ω),

1. E(f |B) =

{
minω∈B f(ω) if F * B

minω∈F f(ω) if F ⊆ B.

2. R(f |B) =

{
minω∈B∩F f(ω) if B ∩ F 6= ∅
minω∈B f(ω) if B ∩ F = ∅.

3. E(f |B) = R(f |B) if and only if either B∩F = ∅
or B ∩ F c = ∅.

4. A separately coherent conditional lower prevision
P (·|B) is coherent with P if and only if

min
ω∈B

f(ω) ≤ P (f |B) ≤ min
ω∈B∩F

f(ω)

for every f ∈ L(Ω), B ∈ B s.t B ∩ F 6= ∅.

From Theorem 3, the bounds determined by natural
and regular extension are both minimum-preserving,
and as a consequence they correspond to the Cho-
quet integral of their respective restrictions to events.
However, it is easy to see that not every separately
coherent conditional lower prevision between them is
minimum-preserving.

5.1 Comparison with the updating of
possibility measures

The results in this paper allow us to show one interest-
ing phenomenon: that, even if a minimum-preserving
lower prevision P is the natural extension of its re-
striction to events N , the coherence of N with a con-
ditional lower probability N(·|B) is not equivalent to
the coherence of the lower previsions P , P (·|B) that
each of them determines by natural extension. This
is the reason behind the apparent contradiction with
the results in [30]: it is showed there that Dempster’s
rule is a coherent updating rule for updating a pos-
sibility measure, even if it can be more informative
than the conditional possibility we obtain by regular
extension.

To make this clearer, let us study the results in [30]
in more detail. The authors consider two finite sets
X and Y, and let Ω = X × Y. They take a possibil-
ity measure Π(·, ·) on P(Ω) and look for the smallest
and greatest conditional possibility measures Π(·|Y )
that satisfy coherence with Π. Note that, since we
are dealing with upper previsions now, it follows from
conjugacy and Proposition 2 that a conditional up-
per prevision P (·|B) is coherent with P if and only if
P (f |B) ∈ [R(f |B), E(f |B)] for every gamble f and
every B ⊆ Ω s.t. P (B) > 0, where R(·|B) and E(·|B)
are the conjugate upper previsions of the regular and
natural extensions, respectively.

In [30], the focus is on conditional upper probabili-
ties instead of previsions, and in particular on those
conditional possibility measures Π(·|Y ) that satisfy
coherence with the unconditional possibility measure
Π. They prove in [30, Theorem 4] that the great-
est such conditional possibility measure is given by
natural extension, while the smallest such conditional
possibility measure is determined by Dempster’s rule,
which produces the possibility measure associated to
the following possibility distribution:

πDE(x|y) =

{
π(x,y)
π(y) if π(y) > 0

1 if π(y) = 0.

Then in [30], it is advocated to use the harmonic mean
between Dempster’s rule and natural extension as an
informative updating rule for updating a possibility



measure Π. This harmonic mean determines the pos-
sibility measure defined by the possibility distribution
πHM (x|y) given by{

2π(x,y)
π(x,y)+π(y)+1−max{π(x,y),Π({y}c) if π(y) > 0

1 if π(y) = 0.

However, this rule may be dominated by the regular
extension, that produces the conditional possibility
measure πRE(x|y) given by

π(x,y)
π(x,y)+1−max{π(x,y),Π({y}c) if π(yc) < 1

0 if Π({y}c) = 1, π(y) > π(x, y) = 0
1 otherwise,

and as a consequence it is not a valid updating rule if
we are working with upper previsions instead of upper
probabilities. Consider the following example:
Example 4. Consider X = {x1, x2},Y = {y1, y2} and
let Π be the possibility measure associated to the
possibility distribution π(x1, y1) = 0.3, π(x1, y2) =
1, π(x2, y1) = 0.5 and π(x2, y2) = 0.2. Then
it can be checked that the conditional possibility
measure determined by the harmonic mean satis-
fies πHM (x2|y2) = 0.235, whereas both the natural
and the regular extensions produce πNE(x2|y2) =
πRE(x2|y2) = 0.285. Thus, the conditional possi-
bility measure determined by the harmonic mean is
dominated by the one produced by regular extension,
and as a consequence the conditional upper prevision
determined by means of the Choquet integral with
respect to ΠHM (X|Y ) is not coherent with the un-
conditional upper prevision associated to Π. �

6 Conclusions

In this work we have considered the problem of up-
dating a coherent lower prevision into a conditional
one, while preserving the property of coherence. This
problem has a simple solution when the conditioning
event has a positive lower probability, as showed by
Walley in [27]: it suffices to apply Generalised Bayes
Rule. However, when the conditioning event has zero
lower probability and strictly positive upper proba-
bility, there may be an infinite number of coherent
updated models. In that case, it becomes necessary
to determine a rule to elicit the appropriate one for
the problem at hand. Here, we have studied in which
cases we can skip this situation, because the proce-
dures of natural and regular extension give rise to the
same updated model. We have considered the partic-
ular case when our unconditional model satisfies the
property of 2-monotonicity, which guarantees that the
lower prevision is the Choquet integral of the coherent
lower probability that is its restriction to events, and

we have obtained necessary and sufficient conditions
for the equality between the natural and regular ex-
tensions. As particular cases, we have also considered
the updating problem for completely monotone lower
previsions, random sets and minimum-preserving pre-
visions.

It is interesting to remark that the conditional lower
probabilities determined by the natural and regu-
lar extension preserve the property of n-monotonicity
from the unconditional model; in fact, when the con-
ditioning event has zero lower probability and posi-
tive upper probability, they are moreover minimum-
preserving. However, the conditional lower previsions
they determine are not necessarily 2-monotone, even
if we start from a completely monotone coherent lower
prevision, as we have showed in Example 3. On the
other hand, the properties of the natural and the reg-
ular extension are not shared in general by all the
conditional models that are coherent with the uncon-
ditional one.

Finally, let us stress once again that, even if the prop-
erty of 2-monotonicity means that the lower previ-
sion is uniquely determined by its lower probability,
the problem of coherently updating 2-monotone lower
probabilities is not equivalent to that of updating 2-
monotone lower previsions; this can be seen from the
results in Section 5.1.

With respect to the open problems arising from this
work, perhaps the most important one would be the
extension of our results to infinite spaces. Although
some work in this direction was already carried out
in [20], we expect the problem to be much more dif-
ficult; one of the reasons is that the coherence condi-
tion between the unconditional and conditional lower
previsions must take into account the property of con-
glomerability. See [27, Chapter 6] and [22] for more
details. Another interesting line of research may be
the extension of our work to the updating by means
of several partitions. In that case, we should distin-
guish between the notions of weak and strong coher-
ence studied by Walley in [27, Chapter 7].
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Turin, 1970.

[10] B. de Finetti. Theory of Probability: A Critical In-
troductory Treatment, volume 1. John Wiley & Sons,
Chichester, 1974. English translation of [9].

[11] A. P. Dempster. Upper and lower probabilities in-
duced by a multivalued mapping. Annals of Mathe-
matical Statistics, 38:325–339, 1967.

[12] D. Denneberg. Non-Additive Measure and Integral.
Kluwer Academic, Dordrecht, 1994.

[13] L. E. Dubins. Finitely additive conditional probabil-
ities, conglomerability and disintegrations. The An-
nals of Probability, 3:88–99, 1975.

[14] R. Fagin and J. Y. Halpern. A new approach to up-
dating beliefs. In P. P. Bonissone, M. Henrion, L. N.
Kanal, and J. F. Lemmer, editors, Uncertainty in Ar-
tificial Intelligence, volume 6, pages 347–374. North-
Holland, Amsterdam, 1991.

[15] J.-Y. Jaffray. Bayesian updating and belief functions.
IEEE Transactions on Systems, Man and Cybernet-
ics, 22:1144–1152, 1992.

[16] R. Kruse and K. D. Meyer. Statistics with vague data.
D. Reidel Publishing Company, Dordrecht, 1987.

[17] V. P. Kuznetsov. Interval Statistical Methods. Radio
i Svyaz Publ., 1991. (in Russian).

[18] I. Levi. The enterprise of knowledge. MIT Press,
Cambridge, 1980.

[19] M. Marinacci and L. Montrucchio. Introduction to
the mathematics of ambiguity. In I. Gilboa, edi-
tor, Uncertainty in economic theory. Routledge, New
York, 2004.

[20] E. Miranda. Updating coherent lower previsions on
finite spaces. Fuzzy Sets and Systems, 160(9):1286–
1307, 2009.

[21] E. Miranda, I. Couso, and P. Gil. Upper probabilities
and selectors of random sets. In P. Grzegorzewski,
O. Hryniewicz, and M. A. Gil, editors, Soft methods
in probability, statistics and data analysis, pages 126–
133. Physica-Verlag, Heidelberg, 2002.

[22] E. Miranda, M. Zaffalon, and G. de Cooman. Con-
glomerable natural extension. International Journal
of Approximate Reasoning, 53(8):1200–1227, 2012.

[23] H. T. Nguyen. An introduction to random sets. Chap-
man and Hall, 2006.

[24] G. Shafer. A Mathematical Theory of Evidence.
Princeton University Press, Princeton, NJ, 1976.

[25] C. Sundberg and C. Wagner. Generalized finite dif-
ferences and Bayesian conditioning of Choquet capac-
ities. Advances in Applied Mathematics, 13(3):262–
272, 1992.

[26] P. Walley. Coherent lower (and upper) probabilities.
Technical Report Statistics Research Report 22, Uni-
versity of Warwick, Coventry, 1981.

[27] P. Walley. Statistical Reasoning with Imprecise Prob-
abilities. Chapman and Hall, London, 1991.

[28] P. Walley. Inferences from multinomial data: learning
about a bag of marbles. Journal of the Royal Statisti-
cal Society, Series B, 58:3–57, 1996. With discussion.

[29] P. Walley. Measures of uncertainty in expert systems.
Artificial Intelligence, 83(1):1–58, 1996.

[30] P. Walley and G. de Cooman. Coherence of rules for
defining conditional possibility. International Journal
of Approximate Reasoning, 21:63–107, 1999.

[31] P. Williams. On an new theory of epistemic proba-
bility. British Journal for the Philosophy of Science,
29:375–387, 1978.


