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Abstract

In this paper we consider the problem of learning
credal networks from observations when the prior in-
formation is given by a set of prior densities instead
of a single one. We shall concentrate in the case in
which the prior information is given by a family of
Dirichlet distributions with uniform weights and dif-
ferent values of the equivalent sample size parameter.
Also the use of imprecise probability models to spec-
ify the prior probability regarding the different graphs
will be considered. The novelty is twice: first we as-
sume an additional information on the set of possible
values of the equivalent sample size parameter; and
second we give a formalization of the problem which
includes also as particular case different Bayesian ap-
proaches. Additionally, approximate and exact algo-
rithms based on the A∗ search procedure are provided
to compute the set of undominated decisions. Some
preliminary experiments are reported.

Keywords. Credal networks, learning, imprecise
sample size Dirichlet model, search algorithms.

1 Introduction

Learning Bayesian networks from a dataset of obser-
vations [15, 8, 12] is an important research challenge
that despite the important effort made in past years,
is far from having resulted in a satisfactory solution
in all situations. In particular, in some cases it is
assumed that providing a single network can be in-
sufficient, especially if the sample size is small, as
there can be several graphical structures with high
posterior probability given the data. Model averaging
approaches [7] provide a set of alternative networks
each one with its own posterior probability. Infer-
ences about any structural feature (for example the
presence of a link) are carried out by averaging in
the solution set. In this paper, we will show that
even if our decision consists in selecting one graph,
it makes sense to consider a set of alternative solu-

tions if we use imprecise probability models to specify
the prior probability regarding graphs and parameters
[18]. In this paper we present a new framework which
is based on imprecision in the prior probability about
the graph associated to the network and in the value
of the equivalent sample size of a BDeu score [2]. The
result of the learning problem will be a set of undom-
inated graphs (a multigraph credal network [5, 10]).
The approach is based on our previous work [10] but
assumes more information on the equivalent sample
size (ε-contaminated model of a uniform distribution)
and on the space of graphs. The main contributions
of this paper are the following: we provide a new for-
mulation of the learning problem depending on the
prior information and the set of possible decisions; we
transform the problems of computing undominated
solutions in simpler problems involving the optimiza-
tion of specific scores; and we propose different algo-
rithms both approximate and exact for the associated
optimization problems. Corani and Zaffalon [4] also
consider multigraph credal networks in a classification
problem. They are based on an imprecise prior infor-
mation on the space of graphs but their approach is
different of the one proposed in this paper and they
concentrate in the classification problem and not in
the computation of the graphs.

The paper is structured as follows: Section 2 reviews
the problem of learning Bayesian networks; Section 3
is devoted to credal networks; Section 4 introduces our
framework for learning multigraph credal networks
[10]; Section 5 proposes approximate and exact algo-
rithms to compute the set of undominated decisions;
Section 6 reports some very preliminary experiments;
while Section 7 is devoted to the conclusions.

2 Learning Bayesian Networks

Assume that we have a vector X = {X1, . . . , Xm} of
variables. A Bayesian network about variables X is
a directed acyclic graph G with a node for each vari-



able Xi and a list of conditional probability distribu-
tions (p(X1|Π1), . . . , p(Xm|Πm)), where Πi is the set
of parents of variable Xi in graph G [13] and p(Xi|Πi)
is a conditional distribution of variable Xi given Π.
Given the independence relationships represented by
G, the list of conditional distributions determines a
joint probability distribution about X as a product of
the conditional distributions (p factorizes with respect
to G):

p(X1, . . . , Xm) = p(X1|Π1) · . . . · p(Xm|Πm) (1)

The number of different values of variables in Πi is
denoted by qi, the set of possible values of Πi by
{πi1, . . . , πiqi}, the number of possible values of Xi is
denoted by ki, and the set of possible values of Xi by
{wi1, . . . , wiki}.

If we have a database of n observations D of variables
{X1, . . . , Xm}, learning a Bayesian network consists
first in estimating the graph G, and then estimating
the conditional probability distributions associated to
the graph [12]. In both cases, the most common ap-
proach is based on assuming a Dirichlet prior proba-
bility distribution for the values of each one of the con-
ditional probability distributions p(Xi|Πi = πij) with

parameters D(αi, . . . , αi) (the weights are the same
for the different values πij of the parents, but they
can be different for different variables). The value
si = kiα

i is called the equivalent sample size.

To estimate G, it is also assumed that there is a
prior probability about the different graph structures
(usually the uniform) and that the prior distributions
for the different conditional distributions are indepen-
dent. Under these conditions, it is possible to com-
pute p(G|D) which is a value proportional to (under
the uniform prior for the graphs):

p(G|D) ∝ P (D|G) =

m∏
i=1

qi∏
j=1

Γ(kiα
i)

Γ(nij + kiαi)

ki∏
l=1

Γ(αi + nijl)

Γ(αi)

(2)
where nij is the number of cases inD in which Πi = πij
and nijl the number of cases in D in which Πi = πj ,
Xi = wil , and Γ(.) is the gamma function. This value
is called the score of the graph given the data and will
be denoted as Score(G|D).

The problem is then to find the graph with maxi-
mum score, and usually a greedy search algorithm is
employed: given an initial graph, the set of graphs
obtained by adding, removing, and inverting a link is
computed, and for each one of them the score is found.
Then the current graph is changed to the graph of the
set with highest score, and the process is repeated
while a score greater than the score of the current
graph can be found.

Once a graph with highest score has been found, G,
the conditional probabilities can be estimated (pa-
rameter learning). If for each conditional probability
p(Xi|Πi = πij) we have a Dirichlet prior with param-

eters D(αi, . . . , αi) and these prior distributions are
independent, then the estimation can be done inde-
pendently for each conditional probability. The esti-
mated values are [12]:

p(Xi = wil |Πi = πij , D) =
nijl + αi

nij + kiαi
(3)

In both problems (learning the structure and the pa-
rameters), we have to specify how the weights, αi,
are computed. Usually the so called Bayesian Dirich-
let equivalent metric or BDeu [2] is used in which a
parameter s is fixed (the global equivalent sample size)
and then the weights for each variable are computed
as αi = s

qiki
. Though for the conditional probabilities

it is also common to consider the Laplace correction
which is equivalent to consider αi = 1. In this paper,
we will always consider αi = s

qiki
.

3 Credal Networks

A credal network [5] is a generalized Bayesian net-
work where the probabilities can be imprecise. More
concretely, a locally defined credal network [5] is a di-
rected acyclic graph G and a list (P1, . . . ,Pm) where
each Pi is a set of conditional distributions for vari-
able Xi given its parents in G. The joint credal set
associated to a credal network, is the set of probabil-
ity distributions p that can be obtained as a product
p(X1, . . . , Xm) = p1(X1|Π1) · . . . · pm(Xm|Πm), where
pi ∈ Pi. A credal network is a directed acyclic graph
G and a credal set of joint probability distributions
P such that any extreme probability p ∈ P factor-
izes with respect to G, i.e. it can be expressed as
p(X) = p1(X1|Π1) · . . . · p(Xm|Πm), where p(Xi|Πi)
is a conditional distribution of Xi given its parents in
G. Not every credal network is locally defined.

A credal network can be obtained by determining a
single graphical structure (either elicited from experts
or learned with a Bayesian procedure) and a set of
decomposable probability distributions learned with
an imprecise probability procedure, for example us-
ing the Imprecise Dirichlet Model (IDM) [19]. The
most simple application is the separable estimation
of the conditional probabilities, being the result a lo-
cally defined credal network where Pi is the set of
all the conditional probability distributions such that
p(Xi = wil |Πi = πij , D) ∈ [

nijl
nij+s

,
nijl+s
nij+s

], where s is

a global parameter (usually s = 1 or s = 2). This
procedure has a tendency to produce overly impre-



cise intervals when computing conditional imprecise
probabilities given observations in these credal net-
works [21]. There is another alternative application
of the IDM to learn the parameters: the global appli-
cation [21] which produces more precise results, but it
is more difficult to compute with it. There is a solu-
tion procedure for the naive credal classifier [21], but
there is no efficient algorithm available for computing
at the general case.

Sometimes the most natural result of learning is a
family of graphs instead of a single one [4, 10]. To en-
compass this case, we define a multigraph credal net-
work as a finite set a credal networks, i.e. a set of
graphs and with each graph having a set of probabil-
ity distributions that factorize according to the graph.
In our approach, usually each graph will have a single
probability distribution associated to it.

A multigraph credal network will be said to be locally
defined when the variables can be sorted in such a way
that for each variable Xi we have a family of possi-
ble sets of parents for this variable {Π1

i , . . . ,Π
li
i } were

Πj
i is always included in the set of variables preceding

Xi in the given order, and for each set of parents Πj
i

we have a set of conditional probability distributions
for Xi given Πj

i . A locally defined multigraph credal
network will have an associated multigraph credal net-
work: we only have to consider all the credal networks
obtained by selecting a possible set of parents Πj

i and
its corresponding set of conditional probability distri-
butions for each variable Xi. For a locally defined
multigraph we have to give the family of possible par-
ents and for each parent the set of possible conditional
distributions. However, if li is the number of possible
parents for Xi, the number of credal networks that
can be obtained by selecting a possible set of par-
ents for each variable is

∏m
i=1 li, which can be a very

large number. Then it is clear that the local definition
can be much more compact than the multigraph def-
inition. Furthermore, it is possible to directly make
inferences with the local definition [10].

To locally define a multigraph credal network, we need
to specify an order of the variables in such way that
the set of parents of a variable are selected from pre-
ceding variables. If we did not specify this order then,
there could be two variables Xi and Xj , a possible set
of parents of Xi, Πi, containing Xj and a possible set
of parents of Xj , Πj , containing Xi. The two set of
parents Πi and Πj are not compatible as they give rise
to a cycle. More complex cycles could be created by
circular relationships. So modularity would be lost,
as we could not locally specify a family of parent sets
for each variable without considering additional global
restrictions for them.

4 Learning Multigraph Credal
Networks

A directed acyclic graph G about variables X will be
represented by a finite list G = (Π1, . . . ,Πm) of the
set of parents of the different variables. The set of all
the acyclic directed graphs will be denoted as G.

To learn a multigraph credal network, we will follow a
variant of the Imprecise Sample Size Dirichlet Model
(ISSDM) introduced in [10]. As in the case of learning
precise Bayesian networks, our model is based on as-
suming prior distributionsD(αi, . . . , αi) for the condi-
tional probability distributions p(Xi|Πi = πij), where
αi = s

qiki
and s > 0 is the global equivalent sample

size. But now instead of an unique global equivalent
sample size s > 0, it will be assumed that there is a
finite set S of possible equivalent sample sizes1.

In [10] two basic applications of the Imprecise Sample
Size Dirichlet Model (ISSDM) have been considered:

• The global approach.- Given a graph G, the set of
prior distributions for the conditional probabili-
ties p(Xi|Πi = πij) is the set of Dirichlet distri-

butions D(αi, . . . , αi) that are obtained by con-
sidering a value s ∈ S and computing αi = s

qiki
.

• The local approach.- Given a graph G, the set of
prior distributions for the conditional probabili-
ties p(Xi|Πi = πij) is the set of Dirichlet distri-

butions D(αi, . . . , αi) that are obtained by con-
sidering a value si ∈ S for each variable Xi and
computing αi = si

qiki
.

The difference between the local and the global ap-
proach is that in the global we have to select the same
s ∈ S to compute the weights of the prior distribu-
tion for each variable Xi, and in the local approach,
we can select a different value si ∈ S for each vari-
able. The number of different prior distributions for
the parameters is higher in the local approach than in
the global approach. In the global approach it is |S|
(the cardinal of S) but in the local approach is |S|m.

In this paper we will follow the local approach. So,
given a graph G, we will consider that there is a prior
distribution about the values of the conditional prob-
abilities for each s = (s1, . . . , sm) ∈ Sm, where the
prior distribution for the conditional probabilities of
variable Xi is D(αi, . . . , αi) where αi = si

qiki
. There

are reasons for assuming the possibility of a different
si ∈ S for each variable instead of the same s ∈ S
for all the variables. The value si ∈ S determines

1In [10] it was assumed that S was an interval, but finally
for computational reasons it was approximated by a finite set.



the prior probabilities for the conditional probability
distribution of Xi: with small values of si the prior
Dirichlet distribution is concentrated in the extremes
(close to 0 and 1) and with high values of si the prior
distribution is concentrated around the uniform dis-
tribution (all the probabilities close to 1

ki
). If all the

values are the same for all the variables, we are as-
suming that if prior density of Xi is concentrated in
the extreme values (small s) so is the prior probability
about the conditional probabilities for Xj . Assuming
a different values of si for different variables, we are
expressing that the probabilities for one variable can
be extreme, while for other variable they can be close
to the uniform distribution. In [3], we elaborate on
these arguments when using precise Bayesian meth-
ods.

Given s ∈ Sm, we can compute the score of a graph
using (2) and to estimate the conditional probabilities
associated to a graph with expression (3), with αi =
si
qiki

. To emphasize the dependence upon s, the score

will be denoted by Score(G|D, s) and the estimated
conditional probability by ps(Xi|Πi, D).

Given an arbitrary set H, an ε-contaminated impre-
cise probability model of the uniform distribution in
H where ε > 0 is given by the set of all the prob-
ability distributions p defined on H and satisfying
p(h) ≥ 1−ε

k , where k is the number of elements in
H. Equivalently this model can be characterized

by the inequalities p(h)
p(h′) ≥ βε, where βε = 1−ε

1−ε+kε .

This is a convex set of probabilities and there is an
extreme probability, pεh, for each h ∈ H, given by
pεh(h) = 1−ε

k + ε and ph(h′) = 1−ε
k if h′ 6= h. This

probability can be expressed as a convex combina-
tion: pεh = εph+(1− ε)pu, where ph is the probability
degenerated on h (assigning probability 1 to h) and
pu is the uniform distribution. pεh will be called the
probability that concentrates mass ε on h and it is
the probability for which the probability of h is max-
imized.

In [10] it was considered that the information on Sm

was vacuous, but in this paper additional assumptions
will be made.

• There will be an imprecise prior probability for
the graph and the equivalent sample size vector,
i.e. in G × Sm. The following options will be
considered:

– An ε-contaminated model of the uniform dis-
tribution in G × Sm, where ε > 0. The as-
sociated set of probability distributions will
be denoted as P1.

– An ε-contaminated model of the uniform dis-
tribution in the space of directed acyclic

graphs G and for each graph G ∈ G we have
an uniform distribution in Sm conditioned
to G. It will be denoted as P2.

• The set of possible decisions, D, can be one of
the following options:

– The set of graphs D = G.

– The set of graphs and equivalent sample
sizes: D = G × Sm.

• The utility function when D = G is U : G ×D →
[0, 1], given by

U(G,G′) =

{
1 if G = G′

0 otherwise
,

where G is the true graph and G′ our decision.

If D = G × Sm, the utility function is U : G ×
Sm ×D → [0, 1] given by:

U(G, s, G′, s′) =

{
1 if G = G′, s = s′

0 otherwise

where G is the true graph and s the true equiva-
lent sample size and (G′, s′) our decision.

A decision d ∈ D is said to be dominated by an-
other decision d′ ∈ D if and only if for any possi-
ble probability distribution, p, associated to the prob-
lem we have that p(U(., d)|D) < p(U(., d′)|D), where
U(., d) is the function that assigns to each graph G
(or pair (G, s)) the value U(G, d) (or U(G, s, d)) and
p(U(., d)|D) stands for the prevision or mathematical
expectation of this function with respect to p condi-
tioned to the dataset D.

In these conditions, learning is defined as the com-
putation of all the undominated decisions. Assume
that a probability p has been fixed in G × Sm. If
D = G, then if d = G, we have that p(U(., d)|D) =
p(G|D) = p(d|D), as U(., d) is a function in G that is
equal to 1 in G and 0 otherwise. Analogously, in the
case of D = G × Sm and d = G × s, we also obtain
p(U(., d)|D) = p(G× s|D) = p(d|D).

Depending on the different options, we have the fol-
lowing situations.

4.1 D = G and P2 as prior probability

In this case, we have an ε-contaminated model in G
and for each graph an uniform distribution in Sm.

Given that p(U(., G)|D) = p(G|D), we have to com-
pute all the graphs G such that for any graph G′ there
is a probability p ∈ P2 such that p(G|D) ≥ p(G′|D).
Given that we have the ε-contaminated model in G,



then this probability exists, if and only if this inequal-
ity is satisfied for the probability pεG in G that max-
imizes the probability of G (concentrates the ε mass
on G).

So we have to compute all the graphs G such that
pεG(G|D) ≥ pεG(G′|D),∀G′ ∈ G, for the probability
pεG ∈ P2.

For any probability p ∈ P2, we have that
p(G|D) ∝ p(G)p(D|G). In this expression, p(D|G) =∑

s∈Sm p(D|G, s) = 1
|S|m

∑
s∈Sm Score(G|D, s), as

given a graph, we have the uniform distribution in
Sm. This probability is fixed and does not depend
on the probability p ∈ P2 and will be denoted as
AScore(G|D) = 1

|S|m
∑

s∈Sm Score(G|D, s).

As for any graph we have that
pεG(G′)
pεG(G) = βε, then a

graphG is undominated if and only if AScore(G|D) ≥
βεAScore(G

′|D) for any graph G′.

If G is the graph maximizing AScore(G|D), then this
graph is undominated (βε is always lower than 1),
and another graph G′ is undominated if and only if
AScore(G′|D) ≥ βεAScore(G|D).

AScore(G|D) is the locally averaged score of a
Bayesian network as defined by Cano et al. [3]. It
is immediately clear that it is not necessary to aver-
age an exponential number of scores as,

AScore(G|D) =
1

|S|m
∑
s∈Sm

Score(G|D, s) =

m∏
i=1

 1

|S|
∑
si∈S

qi∏
j=1

Γ(ki.α
i)

Γ(nij + ki.αi)

ki∏
l=1

Γ(αi + nijl)

Γ(αi)

 .

In short, in this case the problem is to compute the
set of graphs with an averaged score greater or equal
to βε.MAXAV G, where MAXAV G is the maximum
averaged score of a graph. If ε = 0, we have the prob-
lem of computing the graph G optimizing the locally
average score as considered in [3].

4.2 D = G × Sm and P2 as prior probability

In this case, we have to select a graph G and a vector
of equivalent sample sizes s = (s1, . . . , sm) such that
there is not another pair (G′, s′) such that for any
probability p we have that p(G, s|D) < p(G′, s′|D).
Given that for any p ∈ P2 the prior probability in
Sm given G is uniform, we have that p(G, s|D) ∝
p(G)Score(G|D, s). So, a pair (G, s) is undominated
if and only if for any pair (G′, s′) there is a prob-
ability in p ∈ P2 for which p(G)Score(G|D, s) ≥
p(G′)Score(G′|D, s′). As Score(G|D, s) does not de-
pend on p ∈ P2, if this inequality is true for a
probability p ∈ P2, it will also hold for the prob-

ability maximizing the probability of G, pεG. So
this is equivalent that for any (G′, s′) we have that
pεG(G)Score(G|D, s) ≥ pεG(G′)Score(G′|D, s′). Tak-

ing into account that
pεG(G′)
pεG(G) = βε (if G 6= G′),

this inequality is equivalent to Score(G|D, s) ≥
βεScore(G

′|D, s′) if G 6= G′ and to Score(G|D, s) ≥
Score(G′|D, s′) if G = G′.

If G is fixed, then (G, s′) dominates (G, s) if and only
if Score(G|D, s′) > Score(G|D, s). Then for a pair
(G, s) to be undominated, it is necessary that s =
args′ maxScore(G|D, s′).

Let us define MScore(G|D) =
maxs∈Sm Score(G|D, s) and assume that
MAXMAX is the maximum of this score in
the space of all the graphs and G∗ the graph for
which this score is obtained. We can prove the
following result.

Proposition 1 A pair (G, s) is undominated if
and only if s = args′ maxScore(G|D, s′) and
MScore(G|D) ≥ βεMAXMAX.

Proof: If the pair (G, s) is undominated we
know that s = args′ maxScore(G|D, s′). Also
this pair can not be dominated by (G∗, s∗)
where s∗ = args′ maxScore(G∗|D, s′) and
therefore MScore(G|D) ≥ βεScore(G

∗|D, s∗) =
βεMAXMAX.

On the other hand, assume s =
args′ maxScore(G|D, s′) and MScore(G|D) ≥
βεMAXMAX. If s = args′ maxScore(G|D, s′) then
the pair (G, s) is not dominated by any pair (G, s′)
(a pair with the same graph and different vector
of equivalent sample sizes). Also MAXMAX ≥
Score(G′|D, s′) and therefore for any pair (G′, s′)
Score(G|D, s) ≥ βεMAXMAX ≥ βεScore(G

′|D, s′),
and the pair (G, s) is not dominated by any pair
(G′, s′) with G′ 6= G either. So, the pair (G, s) is
undominated. �

It is important to remark that MScore(G|D) can be
locally computed as

MScore(G|D) = max
s∈Sm

Score(G|D, s) =

max
s∈Sm

m∏
i=1

 qi∏
j=1

Γ(ki.α
i)

Γ(nij + ki.αi)

ki∏
l=1

Γ(αi + nijl)

Γ(αi)

 =

m∏
i=1

max
si∈S

qi∏
j=1

Γ(ki.α
i)

Γ(nij + ki.αi)

ki∏
l=1

Γ(αi + nijl)

Γ(αi)

 .

In short, in this case the problem is to compute the
set of graphs with a maximum score greater or equal



than βε.MAXMAX, where MAXMAX is the opti-
mal value of the maximum score of a graph and for
each one of these graphs we have to determine the
vector s maximizing the score. If ε = 0, we have the
problem of computing the graph (G, s) optimizing the
score MScore(G|D, s′). This approach has been con-
sidered by Steck [16] to minimize the effect in the
learned structure of a Bayesian network of the equiv-
alent sample size parameter. However, in that paper a
continuous set of possible parameters S is considered
and a global approach is applied: the same parame-
ter s must be applied to the conditional probability
of each variable Xi.

4.3 D = G × Sm and P1 as prior probability

This case is similar to the one consid-
ered in Subsection 4.2. Now, we have that
p(G, s|D) ∝ p(G, s)Score(G|D, s) and we have
an ε-contaminated model in G × Sm. If a pair
(G, s) is dominated by another pair (G′, s′),
then this is equivalent to p(G, s)Score(G|D, s) <
p(G′, s′)Score(G′|D, s′) for any probability p ∈ P,
which given the structure of P1 is equivalent to
pεG,s(G, s)Score(G|D, s) < pεG,s(G

′, s′)Score(G′|D, s′)
where pεG,s is the probability in P1 maximizing
the probability of (G, s). And this is equivalent to
Score(G|D, s) < βεScore(G

′|D, s′).

It is immediately clear that for a graph G there
is a pair (G, s) that is undominated if and only if
MScore(G|D) ≥ βεMAXMAX. The difference with
the computations in Subsection 4.2, is that for a given
undominated graph G, now there can be several vec-
tors of parameters s ∈ Sm such that (G, s) is un-
dominated: all the pairs for which Score(G|D, s) ≥
βε.MAXMAX.

We can proceed as follows: we can compute the set of
graphs with a MScore(G|D) greater or equal than
βε.MAXMAX as in the previous case. Then for
each graph G we compute the set S′ of parameters
s such that Score(G|D, s) ≥ βεMAXMAX. This
computation can be difficult as the number of ele-
ments in s ∈ Sm is exponential and the problem can
not be decomposed by computing a set of compo-
nents, Si, for each variable Xi and then computing
S′ = S1× · · ·×Sm. Whether a component si belongs
to an undominated vector s depends on the other com-
ponents in the vector and can not be separately com-
puted for each variable.

4.4 D = G and P1 as prior probability

This case poses an additional difficulty compared to
above situations. A graph G is undominated if and
only if for each graph G′ there is a probability p such

that p(G|D) ≥ p(G′|D). The difference is that now
the probability p can depend on the graph G′. In
previous cases, the problem could be simplified as it
could be shown that if this happened we could select
the same probability for any graph: the probability
pεG maximizing the probability of G. But this simpli-
fication is not possible in this case. A possible solution
is to concentrate in the set e-admissible decisions [9]:
a graph G is e-admissible if it maximizes p(G|D) for a
possible probability p. All the e-admissible decisions
are undominated but not the reverse.

In the following we shall concentrate in computing e-
admissible solutions. If G′ maximizes the conditional
probability p(.|D) with p in a convex set P1, then
G′ will also be optimal for one extreme probability
p(G,s) ∈ P1. So we shall concentrate in finding the
graphs that optimize the posterior probability for ex-
treme probabilities.

Let us consider p(G,s)(G
′|D) the posterior probability

of graph G′ when the prior probability in G × Sm is
p(G,s). We have the following situations:

• If G 6= G′, then

p(G,s)(G
′|D) ∝

∑
s′∈Sm

p(G,s)(G
′, s′)p(G,s)(D|G′, s′) =

∑
s′∈Sm

1− ε
k

Score(G′|D, s′) =
1− ε
k′

AScore(G′|D),

where k′ = k
|S|m . In the above equalities, we have

that p(G,s)(D|G′, s′) is equal to Score(G′|D, s′)
as this conditional probability does not depend
of the prior probability in G × Sm.

• If G = G′, then

p(G,s)(G|D) ∝
∑

s′∈Sm
p(G,s)(G

′, s′)p(G,s)(D|G, s′) =

∑
s′∈Sm

1− ε
k

Score(G|D, s′) + εScore(G|D, s) =

=
1− ε
k′

AScore(G|D) + εScore(G|D, s)

where k′ = k
|S|m

Given above expressions, it can immediately be seen
that if G′ maximizes p(G,s)(G

′|D) for one extreme
probability, then G′ = G. In that case, we have that
p(G′,s)(G

′|D) = 1−ε
k′ AScore(G

′|D) + εScore(G′|D, s)

and p(G′,s)(G|D) = 1−ε
k′ AScore(G|D), for G 6=

G′. Then, if G′ maximizes p(G,s)(G
′|D), it will

also do it when s = args′ maxScore(G′|D, s′), and
in this case, p(G′,s)(G

′|D) = 1−ε
k′ AScore(G

′|D) +



εMScore(G′|D). So, we can express the con-
dition for G′ e-admissible: 1−ε

k′ AScore(G
′|D) +

εMScore(G′|D) ≥ 1−ε
k′ AScore(G|D), ∀G ∈ G.

To compute the set of e-admissible graphs, we
can start by computing the graph G∗ maxi-
mizing AScore(G|D). It is clear that this
graph is e-amissible and that a graph G′ is
non dominated if and only if 1−ε

k′ AScore(G
′|D) +

εMScore(G′|D) ≥ 1−ε
k′ AScore(G

∗|D), which is

equivalent to AScore(G′|D) + εk′

1−εMScore(G′|D) ≥
AScore(G∗|D). If we call MAMScoreε(G

′|D) to

AScore(G′|D) + εk′

1−εMScore(G′|D). The computa-
tional problem is similar to the previous ones: to com-
pute a family of graphs with a score above a threshold.

5 Algorithms

In this section we discuss some procedures to com-
pute the set of undominated graphs or undominated
graphs and equivalent sample sizes. In all the situa-
tions the procedure involves the computation of one
graph maximizing a specific score, Score1 (in some
cases the averaged and in others the maximum score).
Then we have to compute all the graphs with a score
(Score2) above B, where B is a value depending of
the previous computed optimum. If A is the opti-
mum of Score1, then this value will be denoted as
B = f(A). The scores of the first and second stages
are not necessarily the same as in the case of D = G
and P1 as prior probability.

To carry out this task, we shall propose approximate
and exact algorithms. Approximate algorithms can
be based on algorithms that try to visit a significant
set of networks with a high score as in Bayesian model
averaging procedures [7]. In this paper we have con-
sidered a modification of the algorithms presented in
Masegosa, Moral [11]. The procedure has two stages:

• First, it computes a graph G∗ with a high value
Score1 using the Max-Min hill climbing algo-
rithms by Tsamardinos et al. [17], a state of the
art algorithm to learn Bayesian networks. Com-
pute A = Score1(G∗|D) and B = f(A).

• In a second step, a Markov Chain Monte-Carlo
procedure is employed to compute the family of
undominated graphs. It starts with a family H of
graphs containing only G∗, the current graph G is
initially equal to G∗. Then it randomly generates
a graph G′ from the neighboring graphs of the
current graph G (the graphs obtained by adding,
deleting, or reversing a link of G) and computes
Score2(G′|D). If Score2(G′|D) ≥ B, then the
current graph is set to G′ and is added to H.

It also computes Score1(G′|D) (there is no ad-
ditional computation if Score1 = Score2) and
if Score1(G′|D) > A, then we make B =
f(Score1(G′|D)) and remove from H all the
graphs G with Score2(G|D) < B. This step is
done because the first stage is an approximate
algorithm, and in this step we are visiting graphs
with a high Score2. As the different scores are
strongly correlated, there is a possibility that the
computed optimum is improved by one of the
graphs visited at this stage. This is specially con-
venient when Score1 = Score2 and there is not
necessity in doing additional computations.

Recently, exact algorithms for computing the
Bayesian networks maximizing a decomposable score
have been presented [14, 6]. In this paper, we will
concentrate on the A∗ algorithm proposed by Yuan
et al. [20] and we will indicate how it can be gen-
eralized to compute the full family of undominated
graphs in the case of a decomposable score such that
Score1 = Score2. Score is decomposable if and only
if we can express Score(G|D) =

∏m
i=1 Scorei(Πi|D),

i.e. it can be expressed as a product of scores as-
sociated to each variable and its sets of parents in
the graph. This covers all the situations except
the last one (D = G and P1 as prior probability),
as the score MAMScoreε(G|D) = AScore(G|D) +
εk′

1−εMScore(G|D) can not be expressed as a product

of scores for each variable2.

In the following Score(G|D) is any decomposable
score function and LScore(G|D) is the logarithm
of this score. We have that LScore(G|D) =∑m
i=1 LScorei(Πi|D), where LScorei(Πi|D) is the

logarithm of Scorei(Πi|D). First, we describe the A∗

algorithm for precise Bayesian networks (to compute
the graph maximizing the score). It is assumed that
we have a function BestScore(Xi, Ri) that computes
the optimal value of LScore(Πi|D) for Πi ⊆ Ri (see
[20] for efficient procedures for this task) where Ri is
a subset of X. The learning problem is formulated
as a search of the best path between two states. The
set of states is the family of all the possible subsets
Y ⊆ X. The initial state is the empty set and the
final state is the full set X. The set of children of a
state Y is the set of states Y ∪ {Xi}, where Xi 6∈ Y.
The utility of going from one state Y to one of its chil-
dren Y ∪ {Xi} is BestScore(Xi,Y). The utility of a
path is the sum of the utilities of each one of its arcs,
and the problem is to compute the path maximizing
the utility of going from the initial state to the final

2As it is a linear combination of decomposable scores this
does not pose any problem for the local computation under local
changes (we locally compute AScore(G|D) and MScore(G|D)
which are decomposable).



one. For that the A∗ algorithm is used with heuris-
tic function h(Y) =

∑
Xi 6∈Y BestScore(Xi,X\{Xi}).

It can be proved that this heuristic is admissible [20]
as it is an optimistic evaluation of the utility of the
rest of the path. In these conditions a search proce-
dure that expands the node with maximum value of
g(Y) = u(Y) + h(Y), where u(Y) is the utility of
the best path arriving to Y, is guaranteed to find the
optimal path the first time it chooses the final state
X to be expanded.

A path from the initial state to the goal represents
an ordering of the variables (if we go from Y to
Y∪{Xi}, then all the variables from Y are predeces-
sors of {Xi}). The utility of this path is the logarithm
of the score of the best network that can be obtained
restricted to this order (a variable can not be a parent
of one of its predecessors). Knowing this path, we ob-
tain the order with best score. The optimal graph can
be found by considering for each variable Xi the first
time this variable appears in the path from node Y to
node Y∪{Xi}. The set of parents of Xi is the subset
of Y for which the optimal value BestScore(Xi,Y)
is obtained.

In order to adapt this algorithm to our problem we
have to compute all the graphs with an score greater
than or equal to log(f(A)), where A is the graph with
best score. A first approximation can be to continue
after the final node X has been expanded, and ex-
pands the nodes while g(Y) ≥ log(f(A)) (the value
of A is known after the first time the full node is ex-
panded). In this way we obtain a set of paths, and
for each path an undominated graph with the same
procedure used in the optimal path. With this mod-
ification, it is necessary that if the same state is ob-
tained with two different paths we keep the two copies
of the state one for each path as they can lead to dif-
ferent solutions3. However, in this procedure we do
not obtain all the undominated graphs, but the set of
orders of the variables such that there is an undom-
inated graph compatible with this order. However,
only one undominated graph is obtained for each one
these orders. Computing all the undominated graphs
given an order can be difficult and perhaps a solution
could be to decompose the problem and once an order
is considered, to compute a set of different parents for
each variable, for example for variable Xi we compute
all the set of parents Πi selected from the predeces-
sors variables Y (the parent state), such that chang-
ing BestScore(Xi,Y) as utility of the arc arriving to
Xi by the value LScorei(Πi|D) the cost of the path

3alternatively, we could maintain a unique state with a set
of utilities, one of each path arriving to it. A utility value is
active while the value plus the heuristic value is greater than
or equal to the threshold. But for simplicity in the exposition,
we shall assume that we repeat the states.

is greater than or equal to the threshold (log(f(A))).
This procedure has the advantage of decomposing the
problem in local problems for each variable, and that
we obtain a locally defined credal network. But not all
the compatible networks are undominated: it is pos-
sible that changing the best parent for Xi or changing
the best parent for Xj we obtain undominated graphs,
but changing both of them the obtained graph is dom-
inated.

A modification of the A∗ algorithm can be done in or-
der to compute all the undominated graphs. For that,
we change the set of states to the set of pairs (Y,T),
where T ⊆ Y. Y will have the same interpretation
as above, and T will be the set of parents of the last
variable introduced in Y. The problem starts with
(∅, ∅) and the final states are (X,T) where X is the
full set of variables. The children of an state (Y,T)
are all the states (Y ∪ {Xi},T′), where Xi 6∈ Y and
T′ ⊆ Y. The utility of the arc going from (Y,T) to
(Y∪{Xi},T′) is the logarithm of LScorei(T

′|D). The
heuristic function on one state is computed as above
h(Y,T) = h(Y) =

∑
Xi 6∈Y BestScore(Xi,Y \ {Xi})

The algorithm first computes the optimum value A
of the score. For that, it works as the A∗, but not
expanding all the nodes. (Y,T) is only expanded to
nodes (Y∪{Xi},T), where Xi 6∈ Y and T is the sub-
set of Y\{Xi} maximizing LScorei(T|D), i.e. the set
of parents for which BestScore(Xi,Y) is obtained. In
this way, the behavior is very similar to the simple A∗

algorithm, with the only difference that here we make
explicit the best set of parents for each variable. Af-
terwards, we compute all the undominated graphs, i.e.
those with a score greater than or equal to the thresh-
old, log(f(A)). For that, for a node (Y,T) we expand
all the children (Y ∪ {Xi},T′), such that u(Y,T) +
LScorei(T

′|D) + h(Y ∪ {Xi}) ≥ log(f(A)) (the cost
of the path to arrive to the state plus the cost of the
heuristic is above the threshold). This implies to com-
pute all the set of parents T′ ⊆ Y with a score greater
that or equal to log(f(A)) − u(Y,T) − h(Y ∪ {Xi})
for a given variable Xi. Existing algorithms to com-
pute BestScore(Xi,Y) can be adapted to this task,
as they make almost an exhaustive search in the set
of all possible parents of Xi in Y.

The algorithm expands a state with a new variable
and a set of parents if the associated partial network
could obtain a score above the threshold, by assuming
an optimistic evaluation for the score of the rest of the
variables (X \ (Y ∪ {Xi})). At the end, all the paths
arriving to final states (X,T) represent undominated
Bayesian networks (their utility is the log of the score,
being the heuristic function equal to 0, so we have an
exact value of the utility). In each path the graph is
obtained by assigning to variable Xi the set of parents



Ti in the node (Y, Ti) for which Xi ∈ Y for the first
time (starting in the root node).

In the case of D = G × Sm and P2, with this algo-
rithm we can compute all the graphs for which there is
a vector s of equivalent sample sizes for which (G, s)
is undominated. If we want to compute all the un-
dominated pairs (G, s), we can proceed with a further
modification of the A∗ algorithm. In this case, the set
of states is the set of all triples (Y,T, s) where now s
represents the equivalent sample size with which the
score of the set of parents T has been computed. The
procedure is completely analogous to the above one
(first only expanding the states with s maximizing
the score) and then all the states with a cost plus
heuristic above the threshold. In that case, in a path
to a final state, we record the equivalent sample size
of each variable and we have the pair (G, s).

6 Experiments

We have done some experiments to illustrate the be-
havior of our approach. The experiments are done
with the approximate algorithm for the case of P2 as
prior probability. In both cases, we have to compute
the set of graphs in which the score is greater or equal
than a given threshold: Score(G|D) ≥ βε, where
Score(G|D) is the average score if D = G and the
maximum score if D = G × Sm. In the last case, the
decision involves the vector s for which the maximum
score is obtained, but these data are not reported.
We have considered a very well known network, the
Alarm network [1]. This network has 37 nodes and 46
arcs. We have considered different data samples (50,
100, 500, 1000, 5000) and two different values of βε
(0.8 and 0.9). For each one of them, we have com-
puted the following values: NM number of different
learned models (graphs); PI percentage of imprecise
links (links appearing in some models and not in oth-
ers without taking into account the direction) in rela-
tion with the total number of possible links (37*36/2);
PE percentage of sure extra links (links appearing in
all the learned models but not present in the original
graph) with respect to the missing links in the orig-
inal graph ( 37*36/2 - 46 ); PM percentage of sure
missing links (links appearing in the original graph
but missing in all learned networks) with respect to
the number of links of the graph (46). Results are
reported in Table 1.

We can observe that the imprecision decreases with
the sample size (with N = 5000 we have almost no
imprecision); it is greater if βε decreases (ε increases
and introduce more imprecision in the ε-contaminated
prior); and it is higher when using the MScore (we
decide about the graph and about the equivalent sam-

Table 1: Results of the experimental evaluation.
Samples 50 100 500 1000 5000
AScore-0.8
NM 67.00 22.50 10.40 4.40 3.40
PI 3.95 1.44 0.45 0.21 0.05
PE 8.50 5.82 2.18 1.58 0.76
PM 43.04 31.96 12.61 8.26 6.09
AScore-0.9
NM 34.20 9.20 2.00 2.20 1.80
PI 1.98 0.66 0.06 0.09 0.00
PE 9.35 6.29 2.34 1.53 0.79
PM 51.22 45.78 31.65 27.26 19.30
MScore-0.8
NM 126.20 36.70 7.10 3.30 2.10
PI 4.95 1.59 0.39 0.26 0.12
PE 6.97 5.98 2.92 2.24 0.98
PM 38.91 30.87 10.65 8.48 5.22
MScore-0.9
NM 58.60 22.40 2.30 2.30 1.30
PI 2.37 0.87 0.11 0.15 0.05
PE 7.98 6.18 3.10 2.29 0.95
PM 42.61 32.17 11.09 7.83 5.22

ple sizes) than when using the AScore (we only decide
about the graph).

On the other hand, it can be seen that the structural
errors, PE and PM , strongly improve with the sam-
ple size. When βε decreases there are less missing
links but more extra links (we have more models and,
in consequence, more links are considered); and, at
least for this BN, MScore seems to obtain less struc-
tural errors than AScore specially for βε = 0.9 where
PM is much higher (although more extensive experi-
ments are needed to evaluate if this trend persists).

7 Conclusions

We have presented a general methodology for learning
multigraphs credal networks. Our approach justifies
the use of different scores that can be found in the
literature and the fact that several networks are the
result of the learning task. Even if our set of deci-
sions consists in determining a single graph, it makes
sense that the output of the learning task is a set of
undominated decisions (graphs) if we have imprecise
prior information. Though the problem is computa-
tionally more difficult than learning a single network,
algorithms have been proposed, both for exact and
approximate computation. In the future, we plan to
make a more extensive experimentation including the
exact algorithms and to compare with the results of
learning a single network.
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