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Abstract

The aim of this paper is to derive new near-ignorancemod-

els on the probability simplex, which do not directly in-

volve the Dirichlet distribution and, thus, that are alterna-

tive to the Imprecise Dirichlet Model. We focus our inves-

tigation to a particular class of distributions on the simplex

which is known as the class of Normalized Infinitely Divis-

ible distributions; it includes the Dirichlet distribution as a

particular case. Starting from three members of this class,

which admit a closed-form expression for the probability

density function, we derive three new near-ignorance prior

models on the simplex, we analyse their properties and

compare them with the Imprecise Dirichlet Model.

Keywords. Prior near-ignorance, Normalized Infinitely

Divisible distribution, Imprecise Dirichlet Model.

1 Introduction

The Imprecise Dirichlet Model (IDM) has been introduced

by Walley [1] to draw inferences about the probability dis-

tribution of a categorical variable. Consider a variable Z

taking values on a finite setZ of cardinalitym and assume

that we have a sample of size N of independent and identi-

cally distributed outcomes of Z. Our aim is to estimate the

probabilities Pi for i= 1, . . . ,m, that is the probability that
Z takes the i-th value. In other words, we want to estimate

a vector on the m-dimensional simplex:

∆m(p) =

{

(p1, . . . , pm) : pi ≥ 0,
m

∑
j=1

p j = 1

}

. (1)

A Bayesian approach consists in assuming a prior Dirich-

let distribution for the vector of variables (P1, . . . ,Pm), and
then taking the posterior expectation of Pi given the sam-

ple. The Dirichlet distribution depends on the parameters

s, a positive real value, and (t1, . . . , tm), a vector of positive
real numbers which satisfy ∑m

i=1 ti = 1. In case of lack of

prior information, an issue in Bayesian analysis is how to

choose these parameters to reflect this condition of prior ig-

norance. To address this issue, Walley has proposed IDM,

which considers the set of all possible Dirichlet distribu-

tions, with fixed value for s, in the simplex ∆m(p):

M =

{

Γ(s)

∏m
i=1 Γ(sti)

m

∏
i=1

p
sti−1
i : ti > 0,

m

∑
i=1

ti = 1

}

, (2)

where Γ(·) is the Gamma function and s > 0 is the prior

strength. For a fixed value s, this is the set of all Dirichlet

distributions obtained by letting (t1, . . . , tm) to freely vary

in ∆m(t). Walley has proven that IDM is a model of prior

“near-ignorance” in the sense that it provides vacuous prior

inferences for the probabilities P(Z = zi) for i = 1, . . . ,m.
In fact, since P(Z = zi) = E[Pi] = ti, and ti is free to vary in

∆m(t), this means that P(Z= zi) is vacuous, which implies:

E[Pi] = 0, E[Pi] = 1, (3)

where E,E denote the lower and respectively, upper expec-

tations. This means that the prior mean of Pi is unknown,

but this does not hold for all functions of P1, . . . ,Pm, for
example

E[PiPj] = 0, E[PiPj] =
1

4

s

s+ 1
, (4)

while a prior ignorance model for PiPj would have upper

expectation equal to 1/4. Walley has shown that prior

ignorance can only be imposed on a subset of the possible

functions of P1, . . . ,Pm otherwise it produces vacuous

posterior inferences [2, Ch. 5], which means that we do

not learn from data (for this reason the model is called

near-ignorance). However, near-ignorance guarantees

prior ignorance for many of the inferences of interest in

statistical analysis and, at the same time, allows to learn

from data and converges to the “truth” (be consistent in

the terminology of Bayesian asymptotic analysis) at the

increase of the number of observations.1 Walley [3] has

also proven that, besides near-ignorance, IDM satisfies

several other desiderata for a model of prior ignorance.

Symmetry principle (SP): if we are ignorant a priori about

Pi, then we have no reason to favour one possible outcome

1A full model of prior ignorance cannot learn from data [3].



of Z to another, and therefore our probability model on Z

should be symmetric.

Embedding principle (EP): for each event A ⊆ Z , the

probability assigned to A should not depend on the

possibility space Z in which A is embedded. In particular,

the probability assigned a priori to the event A should be

invariant w.r.t. refinements and coarsenings of Z .

Representation Invariance Principle (RIP): for each event

A ⊆ Z , the posterior inferences of A should be invariant

w.r.t. refinements and coarsenings of Z .

Learning/Convergence Principle (LCP): for each event

A ⊆ Z , there exists N such that for N ≥ N the posterior

inferences about A should not be vacuous. Moreover,

for N → ∞, the posterior inferences should converge to

limN→∞ nA/N, where nA is the number of occurrences of

the event A in the N observations [4].2

Near-ignorance, SP and EP hold for any model on

the simplex which satisfies E[Pi] = ti for i = 1, . . . ,m
with (t1, . . . , tm) are free to vary in ∆m(t) [3],

3 while RIP

holds if the lower and upper posterior expectations of the

event A do not depend on the number of categories m [3].

Observe that IDM satisfies all the above principles and

also the coherence (CP) and likelihood (LP) principles

[1], [7]. Another important characteristic of the IDM is its

computational tractability, which follows by the conjugacy

between the categorical and Dirichlet distributions for

i.i.d. observations. For instance the prior and posterior

mean of Pi relative to a categorical-Dirichlet conjugate

model are:

E[Pi] = ti, E[Pi|n1, . . . ,nm] =
ni+ sti

N+ s
, (5)

where ni is the number of observations for the i-th cate-

gory and, thus, N = ∑m
i=1ni. Hence, the lower and upper

posterior mean derived from IDM can simply be obtained

by

ni+sti
N+s

ti→0
= ni

N+s
= E[Pi|n1, . . . ,nm],

ni+sti
N+s

ti→1
= ni+s

N+s
= E[Pi|n1, . . . ,nm].

(6)

There are other models that involve the Dirichlet distribu-

tion which satisfy (some of) the above desiderata. For in-

stance, a model which satisfies SP and RIP is defined by

Walley in [1, Sec. 2.9] by further constraining the parame-

ters t1, . . . , tm of IDM.

The question we aim to address in this paper is to study

if there are other models that satisfy the above desiderata,

in particular near-ignorance, that are not directly derived

2We are assuming that the likelihood is categorical. For this reason,

this is a weaker principle than the Strong Learning Principle proposed by

Moral [5] which holds irrespectively from the type of the likelihood dis-

tribution. Unfortunately, the strong learning principle is not compatible

with near-ignorance [5], [6].
3Since P(Z = Zi) = E[Pi] = ti , this implies that the lower and upper

probabilities of the event A do not depend on Z .

from a Dirichlet distribution. We focus our investigation

to a particular class of distributions on the simplex which

is known as the class of Normalized Infinitely Divisible

(NID) distributions [8]; it includes the Dirichlet distribu-

tion as a particular case. For this class, it is possible to de-

rive general distributional properties and general moment

formulae, briefly introduced in Section 2.1, which in some

special cases, lead to explicit closed-form expressions [8].

In Sections 3 to 5, starting from three members of this

class, which admit a closed-form expression for the prior

density, we derive three new near-ignorance prior models

on the simplex. We will show that all these new near-

ignorance prior models satisfy EP, SP, LCP, CP and LP,

and that, although they are not conjugate with the categori-

cal distribution, the posterior inferences drawn from these

models are still computationally tractable. In particular,

we will show that for two of these models the lower and

upper expectations of the Pi can be computed by means of

simple algebraic expressions, while for one of these mod-

els, the lower and upper expectations can be computed effi-

ciently by solving numerically one-dimensional integrals.

Furthermore, we will show that one of this models also sat-

isfies RIP and, given s, always provides inferences that are

more conservative than those of IDM. On the other hand,

the other two models, which do not satisfy RIP, have a

posterior imprecision which increases linearly or almost

linearly with the number of observed categories.

2 NID class

The aim of this section is to discuss some general proper-

ties that allow to characterize all infinitely divisible distri-

butions. The most important of these properties follows

from the Lévy-Khintchine representation theorem. Since

the NID distributions studied in this paper admit a PDF,

the use we will make of this general properties is limited

to the derivation in eq. (8) of the moments of Pi; indeed,

the reader that is not interested in a general description of

the class of NID distributions can move on to Section 2.1.

Consider a collection of variables X1, . . . ,Xm which are as-

sumed to be independent and distributed according to a

Gamma distribution with parameters (α1,1), . . . ,(αm,1),
where (αi,1) are respectively the shape and scale param-

eter of the Gamma distribution for the variable Xi. Define

W = X1+ · · ·+Xm and Pi = Xi/W for i= 1, . . . ,m, then it

can be shown that

(P1, . . . ,Pm)∼ Dir(α1, . . . ,αm),

where Dir(α1, . . . ,αm) denotes the Dirichlet distribution

with parameters α1, . . . ,αm. In other terms, the Dirichlet

distribution can be defined via normalization from a set of

Gamma distributed independent variable divided by their

sum. The Gamma distribution is infinitely divisible (ID),

i.e for any n ∈N and given variable X Gamma-distributed,



there exists a collection of i.i.d. variables Y1, . . . ,Yn such

that X
d
= Y1+ · · ·+Yn or, alternatively, the variable X can

be separated into the sum of an arbitrary number of i.i.d.

variables.

Consider then a collection of positive variables X1, . . . ,Xm

which are assumed to be independent and distributed ac-

cording to, not necessarily coinciding, ID distributions [8].

According to the Lévy-Khintchine representation theorem

[9, Ch. 16] for ID distributions, the moment generating

function of Xi can be expressed by:

ψi(u) := E[e−uXi ] = exp



−
∞
∫

0

(1− e−ux)νi(dx)



 u≥ 0,

(7)

whereE denotes the expectationw.r.t. the Lévymeasure νi,
which is any nonnegative Borel measure on R+ satisfying

the condition
∫ ∞
0 min(1,x)νi(dx) < ∞, which completely

characterizes the distribution of the random variableXi, for

each i= 1, ...,m.

Example 1. Consider the case where X is Gamma-

distributed with parameters (α,1), in this case ν(dx) =
αx−1e−xdx, E[e−uXi ] = (u+ 1)−α and, thus,

E[Xn] = (−1)n
dn

dun
(u+ 1)−α

∣

∣

∣

u=0
,

which, for n= 1,2, . . . gives the non-central moments of a
Gamma distribution with parameters (α,1). Thus, ν(dx)
characterizes completely the distribution of X. �

Then, via the normalization approach Pi = Xi/W for i =
1, . . . ,m with W = X1 + · · ·+ Xm, we can define a wide

class of distributions for the vector (P1, . . . ,Pm). In partic-

ular, as it holds for the distribution of Xi, each of these dis-

tributions for (P1, . . . ,Pm) is completely characterized by

the corresponding collection of Lévy measures ν1, . . . ,νm.
This class of distributions is termed the normalized ID

(NID) distributions. For this class, it is possible to derive

general distributional properties and general moment for-

mulae, which in some special cases, lead to explicit closed-

form expressions. For instance, the mean of Pi can be de-

termined:

E[Pi] =

∫ ∞

0

(

d

du
ψ j(u)

)

e−∑m
i=1 ψ j(u)du; (8)

the proof can be found in [8, Prop. 2]. The class of NID

distributions represents a natural extension of the Dirich-

let distribution, which can be recovered as special case of

NID distributions by assuming the collection of Lévy mea-

sures to be νi(dx) = αx−1e−xdx for i= 1, . . . ,m. The com-

putations simplify in case Xi admits a probability density

function (PDF) with respect to the Lebesgue measure on

R
+.

2.1 NID with a PDF

Assume that the PDF of Xi, denoted by fi, admits a closed-

form expression for every i= 1, . . . ,m and defineW = X1+
· · ·+Xm, Pi = Xi/W for i= 1, . . . ,m. Then, the PDF of the

(NID) vector (P1, . . . ,Pm) is:

g(p1, . . . , pm−1) =

∞
∫

0

m−1

∏
i=1

fi(piw) fm

(

w−
m−1

∑
i=1

piw

)

wm−1dw.
(9)

where we have exploited the relationship pm = 1 −
∑m−1
i=1 pi. This can be proven by applying the change of

variable theorem for PDFs.

Example 2. Consider again the case in which Xi is

Gamma-distributed with parameters (αi,1), then f (xi) ∝

x
αi−1
i exp(−xi), and, thus, from (9), neglecting the normal-

ization constant, one derives:

∞
∫

0

m−1

∏
i=1

(piw)
αi−1 exp(−piw)

·(w−w∑ pi)
αm−1 exp(−(w−w∑m−1

i=1 pi))w
m−1dw

∝ p
α1−1
1 p

α2−1
2 · · · (1−∑m−1

i=1 pi)
αm−1.

(10)

�

Besides the Dirichlet distribution, further examples of NID

distributions, which admits a PDF are the normalized

inverse-Gaussian distribution [10], the normalized 1/2-
stable [11, 8] and a NID distribution based on two degrees

of freedom (2dof) Gamma variables [8, Sec. 3.5]. In the

next section, we derive new prior near-ignorance models

based on these three NID distributions and analyse their

properties.

3 NID distribution based on 2dof Gammas

Consider the case in which X1, . . . ,Xm have distribution

Xi ∼ Ga(αi;βi) (Gamma distributed) for i = 1, . . . ,m [8,

Sec. 3.5]. The PDF of the NID vector (P1, . . . ,Pm) is eas-
ily obtained by applying (9) leading to

g(p1, . . . , pm−1) =

Γ(s)
m

∏
i=1

βi
Γ(ai)

m−1

∏
i=1

p
αi−1
i

(

1−
m−1

∑
j=1

p j

)αm−1

·
(

m−1

∑
i=1

βipi+βm

(

1−
m−1

∑
j=1

p j

))−s

(11)

where s=∑m
i=1αi. Note that for β = βi for i= 1, . . . ,m we

are back to the Dirichlet distribution. The r-th non-central



moment of (11) is given by [8, Sec. 3.5]:

E[Pr
j ] =

Γ(α j+r)∏m
i=1 β

αi
i

Γ(α j)Γ(r)

∞
∫

0

ur−1

(β j+ u)r
m

∏
i=1

(βi+ u)αi

du.

(12)

To model prior near-ignorance, we consider the set of

PDFs in (11) obtained by taking

αi = sti, βi = t ′i for i= 1, . . . ,m with

(t1, . . . , tm) ∈ ∆m, (t ′1, . . . , t
′
m) ∈ ∆m;

(13)

we call this model Normalized 2dof Gamma (N2dG).4

Proposition 1. N2dG model satisfies:

E[Pr
i ] = 0, E[Pr

i ] = 1

E[PiPj] = 0, E[PiPj] ≥ 1
4

s
s+1

.
(14)

for any i, j and r = 1,2, . . . . �

The lower and upper expectations in (14) can be derived by

noticing that for t ′i = 1/m for i= 1, . . . ,m the set of priors

defined by (11) and (13) reduces to IDM. Thus, (14) fol-

lows by (3)–(4). We have not be able to compute the exact

value of E[PiPj], our conjecture is that
1
4
> E[PiPj]>

1
4

s
s+1

.

Consider now the set of posteriors obtained by combining

via Bayes’ rule the likelihood relative to the sequence of

counts (n1, . . . ,nm), i.e.,

L(n1, . . . ,nm|p1, . . . , pm−1) = p
n1
1 p

n2
2 · · ·

(

1−∑m−1
i=1 pi

)nm
,

(15)

and the set of priors defined by (11) and (13). From this set

of posteriors, we can compute lower and upper posterior

expectations of Pi for i= 1, . . . ,m.

Theorem 1. The lower and upper posterior expectations

of Pi are:

E[Pi|n1, . . . ,nm] = max
(

0, ni−s
N

)

,

E[Pi|n1, . . . ,nm] = min
(

1, ni+s
N

)

,
(16)

for any i= 1, . . . ,m. �

The proof can be found in Appendix. Observe that N2dG

model satisfies near-ignorance, SP and EP; this follows by

the first row in (14) by using the same arguments as for

IDM. It also satisfies LP and CP; coherence follows by

[2, Th. 7.8.1]. Notice that the prior lower and upper ex-

pectations do not depend on the number of categories m

and, thus, N2dG model satisfies also RIP. Moreover, since

E[Pi|n1, . . . ,nm],E[Pi|n1, . . . ,nm] → ni
N

for N → ∞, it also

satisfies LCP.

Corollary 1. The lower and upper posterior expectations

of ∑i∈J Pi, where J denotes a subset of {1, . . . ,m}, are:

E[∑i∈J Pi|n1, . . . ,nm] = max
(

0, ∑i∈J ni−s

N

)

,

E[∑i∈J Pi|n1, . . . ,nm] = min
(

1, ∑i∈J ni+s

N

)

.
(17)

4From (11) it can be noticed that the constant ∑m
i=1 βi simplifies a-

posteriori, and thus w.l.o.g. we can take ∑m
i=1 βi = 1.

for any i= 1, . . . ,m. �

The proof can be found in Appendix. By looking at (16)–

(17), we can highlight the following difference w.r.t. IDM.

The IDM lower probability for the second observation to

be equal to the first, is 1/(1+ s), i.e., 1/2 for s = 1. For

N2dG with s = 1, this lower probability is zero. Walley

has shown that, in case m = 2, IDM with s = 2 encom-

passes all the Bayesian inferences derived from the Jef-

freys (s= 1, t = 0.5), uniform (s= 2, t = 0.5) and Haldane
(s= 0) priors [3]. For N2dG, this is already true for s= 1.

Another difference with IDM, is that the lower and upper

expectations derived in (16) are symmetric w.r.t. the sam-

ple mean ni/N whenever ni−s≥ 0 and ni+s≤N. Further-

more, the denominator in (16) depends only on N and not

on s. Thus, for ni− s≥ 0 and ni+ s ≤ N, the imprecision

2s/N should not be interpreted as additional counts that

are added to the observations but as a swing scenario in

which s counts among the N are moved from a category to

another. It should be pointed out that the lower and upper

expectations in (16)–(17) coincide with those derived in

[12, Sec. 5.2] for a near-ignorance model based on finitely

additive priors obtained as limits of truncated exponential

priors. Moreover, the inferences drawn from N2dG with

s= 1 coincide with those of the Nonparametric Predictive

Inference model [13] in case all the categories have been

observed at least once.

4 The normalized 1/2-stable distribution

Consider now the case where the ID variables X1, . . . ,Xm

have positive stable distribution Xi∼St(γ,β ,αi,µ) with

characteristic exponent γ > 0, skewness parameter β = 1,

scale parameter αi > 0, and a location parameter µ = 0

[14]. Although, in general, the PDF of a stable distribution

does not admit a closed-form expression, for this choice of

parameters and γ = 1/2, the PDF, hereafter referred to as

1/2-stable distribution, is given by:

f (xi|αi) =
αi

(2π)1/2
x
−3/2
i exp

(

α2
i

2xi

)

, xi ∈ R
+. (18)

From (9) it follows that the NID vector (P1, . . . ,Pm) aris-
ing from the normalization of the m 1/2-stable distributed

variablesX1, . . . ,Xm has theNormalized 1/2−Stable distri-

bution (N1/2S) with PDF [15]:

g(p1, . . . , pm−1) =
Γ(m2 )

m

∏
i=1

αi

π
m
2

m−1

∏
i=1

p
− 3

2
i (1−

m−1

∑
i=1

pi)
− 3

2

[A (p1, . . . , pm−1)]
m
2

,

(19)

where A (p1, . . . , pm−1) = ∑m−1
i=1

α2
j

pi
+ α2

m

1−∑
m−1
i=1 pi

.

Although there is not a closed form expression for the nor-

malized γ-Stable distribution (with γ 6= 1/2) we can com-

pute its first moment for any γ by using (8) (a similar ex-

pression can be used to derive the mixed second moment



[15]),

E[Pi] =
αi
s
, E[PiPj] =

αiα j

s2
(1− γ), (20)

where s= ∑m
j=1 α j .

Starting from a normalized γ-Stable distribution, we can

thus obtain a prior near-ignorance model by considering

the set of distributions obtained by taking:

αi = sti, for i= 1,2, . . . ,m with

s> 0 and (t1, . . . , tm) ∈△m.
(21)

Proposition 2. For the set of priors defined from a γ-Stable
distribution with parameters varying as in (21), it holds:

E[Pr
i ] = 0, E[Pr

i ] = 1

E[PiPj] = 0, E[PiPj] = 1
4
(1− γ).

(22)

for any i, j and r = 1,2, . . . . �

This can simply be obtained by first observing that αi/s=
ti and, thus, by minimizing and maximizing w.r.t. t1, . . . , tm
the expectations in (20). In the following, we only focus

on the case γ = 1/2 where a closed form for the PDF of

the γ-Stable distribution exists.5 For this case, it can be no-

ticed that the value of the parameter s is irrelevant. In fact,

from the expression of the N1/2S PDF in (19), it is evident

that the parameter s simplifies a-posteriori, and thus it does

not affect the inferences produced by the N1/2S priors.

By considering the likelihood model (15) and the set of

N1/2S priors defined by (19)–(21), a-posteriori we can de-

rive the following.

Theorem 2. Given the sequence of counts (n1, . . . ,nm), the
lower and upper posterior expectation obtained from the

N1/2S set of priors are:

E[Pi|n1, . . . ,nm] = max
(

0, ni−1/2
N

)

,

E[Pi|n1, . . . ,nm] = min
(

1, ni+m̂/2
N

)

,
(23)

for any i = 1, . . . ,m, where m̂ is the number of categories

j 6= i such that n j > 0. �

The proof can be found in Appendix. Note that, as for

the N2dG, the denominators in (23) do not depend on

s. N1/2G model satisfies near-ignorance, SP and EP;

this follows by the first row in (22) by using the same

arguments as for IDM. It also satisfies LP and CP; co-

herence follows by [2, Th. 7.8.1]. Moreover, since

E[Pi|n1, . . . ,nm],E[Pi|n1, . . . ,nm] → ni
N

for N → ∞, it also

satisfies LCP. Since the upper expectation in (23) depends

on m̂, the RIP principle is not satisfied by N1/2S . As a

consequence, the uncertainty about the expected value of

Pj increases with the number of observed categories.

5For γ = 1/2, one has E[PiPj] = 1/8 which coincided with the result

obtained by IDM for s= 1.

5 The normalized inverse-Gaussian

distribution

Consider now m ID variables X1, . . . ,Xm having inverse-

Gaussian distribution Xi∼IG(αi,γ) with shape parameter

αi > 0 and scale parameter γ = 1. Their PDF is given by:

f (xi|αi) =
αi

(2π)1/2
exp
[

− 1
2

(

α2
i
xi
+ xi

)

+αi

]

, xi ∈R
+.

(24)

From (9), it follows that the NID vector (P1, . . . ,Pm) aris-
ing from the normalization of the variables X1, . . . ,Xm has

the normalized inverse Gaussian distribution (NIG) with

PDF [10]:

g(p1, . . . , pm−1) =

exp

(

m

∑
i=1

αi

)

m

∏
i=1

αi

2m/2−1πm/2
×

×
K−m/2[A (p1, . . . , pm−1)

1/2]

m−1

∏
i=1

p
3/2
i (1−

m−1

∑
i=1

pi)3/2[A (p1, . . . , pm−1)]m/4
.

(25)

where K−m/2 is the modified Bessel function of the second

kind of order −m/2. The first and mixed second moments

of the NIG distribution are:

E[Pi] =
αi
s
, E[PiPj] =

αiα j

s2
(1− s2esΓ(−2,s)), (26)

where s=∑m
i=1 αi and Γ(a,x) =

∫ ∞
x ta−1 exp(−t)dt denotes

the incomplete gamma function.6 To model prior near-

ignorance, let us consider the set of NIG distributions ob-

tained by taking:

αi = sti, for i= 1,2, . . . ,m with

s> 0 and (t1, . . . , tm) ∈△m.
(27)

Proposition 3. For the set of priors defined by (25) and

(27), it holds:

E[Pi] = 0, E[Pi] = 1,
E[PiPj] = 0, E[PiPj] =

1
4
(1− s2esΓ(−2,s)).

(28)

for any i, j. �

These properties follow from the same arguments used for

Proposition 2. A-posteriori, given the observed likelihood

(15), it is not possible to provide a closed form expression

of the lower and upper posterior expectation of Pi, but it is

possible to indicate for which values of t1, . . . , tm the upper

and lower can be found and provide a simplified integral

expression for them, in the case where all counts are posi-

tive.

Conjecture 1. Consider the set of priors defined by (25)

and (27). Given the set of counts (n1, . . . ,nm), the lower

6For s = 1, E[PiPj] = 0.175 which is bigger than the result obtained

by IDM for s= 1.



posterior expectation of Pi is found for tk = 1, with k =
argmin

j 6=i
(n j), and the upper posterior expectation is found

for t j = 1. �

Conjecture 1 is based on the experimental verification in

several cases in which n j > 0 holds for all j 6= i. However,

we have not still been able neither to prove this conjecture

nor to extend it to the cases in which n j = 0 for some cat-

egory j 6= i. As a verification of Conjecture 1 consider for

instance Figure 1. Here we are computing the lower and

upper posterior expectation of P1. Figure 1.(a) shows that

by taking only two parameters t2 and t3 different from 0,

the minimum of E[Pi|n1, . . . ,nm] is found for t2 = 1 ( j = 2

is in fact the category j 6= 1 with smaller number of ob-

servations). Figure 1.(b) shows that by taking t2 = 1 the

lower posterior expectation of Pi increases with n2 (this

means that the parameter tk to be taken equal to 1 is the

one corresponding to the category k with minimum num-

ber of counts nk).
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Figure 1: Posterior expectation of P1 when m= 5, n1 = 1,

N = 50, s= 1 and (a) n2 = 3 and n3 = 5, t3 = 1− t2 and t2
spans the interval [0,1] or (b) t2 = 1, and n2 ranges from 1

to 30.

Theorem 3. Given the NIG set of priors defined by (25)

and (27) and the set of counts (n1, . . . ,nm), with n j > 0 for

j = 1, . . . ,m, the lower and upper posterior expectations

of Pi for tk = 1, with k = argmin
j 6=i

(n j), and for ti = 1 are,

respectively,

E[Pi|n1, . . . ,nm] = ni− 1
2

N−nk− 1
2 (m−1)

×

×
∫ 1
0 p

nk+
m−6
4

k K−m/2

(

s√
pk

)

(1− pk)
N−nk−m−1

2

∫ 1
0 p

nk+
m−6
4

k K−m/2

(

s√
pk

)

(1− pk)
N−nk−m+1

2

,

E[Pi|n1, . . . ,nm] =

=

∫ 1
0 p

ni+
m−2
4

i K−m/2

(

s√
pi

)

(1− pi)
N−ni−m+1

2

∫ 1
0 p

ni+
m−6
4

i K−m/2

(

s√
pi

)

(1− pi)
N−ni−m+1

2

.

(29)

�

The proof can be found in Appendix. Note that the lower

posterior expectation in (29) depends on the minimum

number of counts nk observed for a value zk 6= zi of Z.

However, from Figure 1.(b), it appears that this depen-

dence is weak and that it diminishes at the increasing of

nk. The NIG model satisfies near-ignorance, SP and EP;

this follows by the first row in (28) by using the same ar-

guments as for IDM. It also satisfies LP and CP, coherence

follows by [2, Th. 7.8.1]. From Conjecture 1 and Theorem

3 it follows that, if there is at least one count for each value

of Z considered, the lower and upper posterior expecta-

tions of Pi are not vacuous. Furthermore, the lower and up-

per posterior expectations of Pi converge to limN→∞
ni
N
; this

follows from (29) by noticing that for large N and n j > 0

for j = 1, . . . ,m the lower and the upper concentrate on
ni
N
.

Thus LCP is also satisfied. Yet, since both the lower and

upper posterior expectations in (29) increase with m, the

RIP principle is not respected by this set of priors. Figure

2 shows the upper and lower expectation for set of IDM,

N2dG, N1/2S and NIG prior distributions for different val-

ues of m̂ and a given case study. For the NIG set of priors,

it can be noticed that the variation of the lower posterior

expectation with m̂ is negligible. Furthermore, it can also

be noticed that the upper of the N1/2S and NIG set of pri-

ors are quite similar and both increase as m̂
2N

.
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Figure 2: Posterior expectation of P1 for n1 = 2, nk = 3

with k = arg j 6=1min(n j), N = 50, s = 1, and m̂ ranging

from 1 to 15.



P(Z = red|n1, . . . ,nm) P(Z = red|n1, . . . ,nm)
Z1 Z2 Z3 Z1 Z2 Z3

IDM 0.222 0.222 0.222 0.333 0.333 0.333

N2dG 0.125 0.125 0.125 0.375 0.375 0.375

N1/2S 0.188 0.188 0.125 0.438 0.313 0.313

NIG 0.176 0.178 0.120 0.489 0.371 0.368

Table 1: Upper and lower probabilities of drawing a red

marble for different choices of Z and sets of priors (s= 1).

Z1 Z2 Z3

IDM [0.032; 0.681] [0.032; 0.681] [0.032; 0.681]

N2dG [0.004; 0.710] [0.004; 0.710] [0.004; 0.710]

N1/2S [0.016; 0.766] [0.016; 0.648] [0.004; 0.648]

NIG [0.015; 0.778] [0.015; 0.685] [0.004; 0.683]

Table 2: 95% credible intervals for P1.

6 Examples of inferences about a bag of

marbles

To illustrate the difference between the three sets of pri-

ors proposed in this work and to compare them with

the IDM, let us consider a bag of marbles containing

coloured marbles of an unknown number of different

colours [1]. Each colour represents a category zi. Sup-

pose we draw a sequence of N = 8 marbles 3 of which

are blue, 1 green, 2 yellow, 1 light red, and 1 dark

red. We consider three different possibility spaces Z1 =
{red, blue, green, yellow}, Z2 = {red, all other colors},
Z3 = {light red, dark red, all other colors}. Tables 1

and 2 show, respectively, the upper and lower probabili-

ties, P(Z = red|n1, . . . ,nm) and P(Z = red|n1, . . . ,nm), of
drawing a red marble at the next trial and its 95% credible

interval for the different possibility spaces Z , and sets of

priors.

Notice that the uncertainty of the estimates provided by the

three sets of priors proposed in this paper is always larger

than that of the IDMwith s= 1. As expected, since the RIP

principle is not respected by the N1/2S and the NIG sets of

priors, the estimates provided by them depends on the pos-

sibility space Z adopted: their uncertainty increases with

the number of categories in Z . This dependence could

appear unjustified in this example, since the definition of

the categories is rather arbitrary, so that it is desirable that

inference do not depend on them. However, in a situa-

tion where the categories could be objectively defined, the

fact that uncertainty increases with the number of category,

can reflect the idea that the knowledge of a system after

a number of trials N is as more precise as simpler is the

system, i.e., in this case, as smaller is the number of cat-

egories. To show an example where this property may be

valuable, consider the following situation: assume to draw

IDM N2dG N1/2S NIG

m̂= 1, N = 100 0.0099 0.0100 0.0050 0.0321

m̂= N, N = 100 0.0099 0.0100 0.5000 0.6008

m̂= 1, N = 1000 0.0010 0.0010 0.0005 0.0066

m̂= N, N = 1000 0.0010 0.0010 0.5000 0.6000

Table 3: Upper probability of observing a marble in the

new category zm̂+1.

N marbles from a closed marble bag and to ask yourself

what is the probability of drawing from the bag a marble

of a new colour, not yet observed in any of the N trials.

Said m̂ the number of different colours observed after N

trials, this corresponds to finding the probability that the

event of observing a marble in the category zm̂+1 occurs

at the (N+ 1)-th trial. The lower posterior expectation of

Pm̂+1 is zero, since, by hypothesis nm̂+1 = 0. The upper

posterior expectation is shown in Table 3, in the limiting

cases where the number of values observed inN = 100 and

N = 1000 trials is m̂ = 1 (only one category has been ob-

served) or m̂ = N (a different category has been observed

in each drawn). In the first case, one obtains upper proba-

bilities of observing amarble in a new categorywhich goes

to zero for largeN; this same result is obtained if m̂=N for

the IDM and N2dG sets of priors, whereas for the N1/2S

priors the upper probability remains constant regardless of

the number of trials N and for the NIG priors it converges

for large N to a value close to 0.6. The result provided by
the N1/2S and NIG sets of priors in this second case seems

more appropriate than that provided by IDM, according to

which the probability of observing a new category at the

N+ 1-th trials goes to zero, although a new category has

been, indeed, observed at each drawn of the N trials. This

means that for predictive models the dependency of the

lower and upper posterior expectations to the number of

observed categories can lead to more intuitive inferences

than the one derived by IDM or its predictive form [16].

7 Differences with IDM

In this Section, we briefly summarize the differences be-

tween the new prior “near-ignorance” models proposed in

this paper and IDM. A characteristic of IDM, which has

been criticized, is that the lower probability for the second

observation to be equal to the first is equal to 1/(1+ s).
The values s= 1 or s= 2 lead to high values for this lower

probability. However, it seems reasonable to assume that

the lower probability of observing twice the same category

is significantly large than 0 only if we have a strong prior

belief that the number of categories is low. Instead, un-

der complete prior ignorance, we may not want to bet on

a category after we have seen it only once, but we would

preferably wait until we see it for the second time before

starting betting on it. If, for example, the process were a



random generator, the probability of observing twice the

same outcome would be 0 (see also [1, pages 43-44] and

[13] for further discussion on this point). For the N2dG

model, we have already seen that if s ≥ 1 this lower prob-

ability is equal to 0. More generally, the lower probability

of observing a specific category after N trials is equal to

0 until we observe at least s+ 1 realizations in that cate-

gory. In this view, the parameter s can be interpreted as

a threshold on the number of observations in a given cate-

gory below which we would never bet on it, regardless of

the reward. Thus, the N2dGmodel satisfies RIP but is also

able to account for our prior ignorance about the number

of categories. For the N1/2S model, the lower probability

for the second observation to be equal to the first is 1/2, so
equal to that of IDM for s= 1.7

Another weak point of IDM is that, after N observations,

the upper probability of observing a new category goes

to zero as s/(s+N). This upper probability does not de-

pend on how much variety there has been in the previous

observations, i.e., the upper probability in case we have

observed the same category in all the N previous observa-

tions or N different categories is the same. However, if

N different categories have been observed in N trials we

may not want to bet against seeing a new category at the

next trial, regardless of the reward. In this case, we would

like the upper probability of observing a new category to

be equal to 1. This weak point is also discussed by Wal-

ley in [1, page 50]. The N2dG model gives in practice

the same upper probability of IDM. For the N1/2S and the

NIG sets of priors, we have seen that the upper probability

of observing a new category depends on howmuch variety

there has been in the previous observations. Consider for

instance N1/2S, as it has been shown in Section 6, if we

observe N different categories in all the previous observa-

tions this upper probability is equal to 1/2, while if we ob-
serve the same category in all the N previous observations,

this upper probability is 1/2N. This difference between

IDM, N2dG and N1/2S, NIG seems in this case be due to

the RIP property. IDM and N2dG satisfy RIP, while N1/2S

and NIG do not. It has already been argued in [13, Sec. 5]

that the RIP principle is not always a desirable property. In

this paper, the authors stress that from the perspective of in-

terval probability theory, the difference between lower and

upper probabilities should depend on the amount of infor-

mation available and the data representation. We think that

this is especially true for predictive models in which we

have no prior evidence about the number of categories and

the inferences should depend on the number of observed

category. Notice that none of the three models proposed in

this paper meet at the same time both the desiderata here

addressed: a lower probability for the second observation

to be equal to the first equal to 0 and an upper probability

7For the NIG prior we are not able to compute the lower probability

in this case, since Theorem 3 is valid only if at least 1 observation has

been collected for each category.

of observing a new category having observed N different

categories in N previous trials equal to 1. In this view, it

could be interesting to extend the N1/2S model by consid-

ering a stable prior distribution with values of the γ param-

eter different from 1/2. This way, the upper and lower

probabilities predicted by the model would depend on γ ,
so that it might be possible to find a value of it (probably

γ = 1) for which both desiderata can be met at the same

time. Clearly, this would require workingwith the moment

generating function since the PDF of the stable distribu-

tion does no admit a closed-form expression. On the other

hand, the RIP property seems to be desirable for a prior

ignorance model. In objective Bayesian analysis, a com-

mon practice is to impose invariance principles to derive

non-informative priors. In this respect, the fact that IDM

and N2dG satisfy EP, SP and RIP, while the commonly

used precise non-informative priors do not, is valuable. In

[17], the authors show that IDM can be derived starting

from general invariance principle, in particular exchange-

ability and representation insensitivity (which is similar to

RIP). This result reinforces the importance of IDM as a

model of prior ignorance. In [17], the authors conclude the

papers listing several open questions about representation

insensitivity for predictive systems. One of this question

was if there exist other models which satisfy RIP besides

IDM.With the N2dG model derived in this paper, we have

shown that this is the case.8

8 Conclusions

In this paper, we have derived new near-ignorance models

for three members of the class of Normalized Infinitely

Divisible distributions. We have shown that all these

new near-ignorance prior models satisfy the embedding,

symmetry, likelihood, learning and coherence principles,

which are desirable properties for a model of prior igno-

rance. Furthermore, we have shown that one of these mod-

els satisfies the representation invariance principle while,

for the other two models, the posterior imprecision de-

pends linearly or almost linearly on the number of ob-

served categories. As future work, we aim to complete

the analysis of these three new near-ignorance models by

proving the conjecture that we have discussed in the pa-

per. Furthermore, we aim to extend our analysis to other

members of the Normalized Infinitely Divisible distribu-

tions by working directly on the domain of the Infinitely

Divisible distributions, that is before normalization. For a

practical side, we plan to apply our models to solve classi-

fication and prediction problems and compare the results

with the ones obtained by precise models and by the Im-

precise Dirichlet Model.

8The paper [17] discusses IDM as a predictive model. We plan to

extend the N2dG model to predictive inferences and, thus, to verify if it

satisfies the other properties listed in [17].



A Appendix: Proofs

A.1 Proof of Theorem 1

Without loss of generality, we assume that i = 1. For n1 − s ≥
0 the lower can be derived by taking β1 = 1 and applying the

formula of IDM with α1 replaced by α1− s. For n1+ s≤ N, let

us consider the integral:

∫ 1

0
dp1p

n1+α1−1
1

∫ 1−p1

0
· · ·
∫ 1−p1−···−pm−1

0

p
n2+α2−1

2 p
n3+α3−1

3 (1−p1−···−pm−1)
nm+αm−1

(

m−1

∑
i=1

βipi+βm(1−p1−···−pm−1)

)s dp2 · · ·dpm−1

(30)

Set β1 = 0 and introduce the change of variables p′i = pi/(1− p1)
for i = 2, . . . ,m− 1 then, neglecting the normalization constant,

the previous integral reduces to:

∫ 1
0 p

n1+α1−1
1 (1− p1)

N−n1−α1−1dp1. (31)

Therefore, the posterior expectation of P1 for β1 = 0 is

E[P1|n1, . . . ,nm] =
∫ 1
0 p1p

n1+α1−1

1 (1−p1)
N−n1−α1−1dp1

∫ 1
0 p

n1+α1−1

1 (1−p1)N−n1−α1−1dp1
= n1+α1

N ,

where the last equality follows from the property of the Beta

distribution. Hence, the upper posterior expectation of P1 is

E[P1|n1, . . . ,nm] = (n1+s)/N. Consider now the case n1+s>N.

For (30), we introduce the short notation:
∫ 1
0 dp1p

n1+α1−1
1 (. . .),

where (. . .) denotes the multidimensional inner integration in

(30), then for a chosen ε ∈ (0,1) one has:

E[P1|n1, . . . ,nm]

=
∫ 1−ε
0 dp1p

n1+α1+1−1

1 (...)+
∫ 1
1−ε dp1 p

n1+α1+1−1

1 (... )
∫ 1−ε
0 dp1p

n1+α1−1

1 (...)+
∫ 1
1−ε dp1 p

n1+α1−1

1 (... )

≥
∫ 1−ε
0 dp1p

n1+α1+1−1

1 (...)
∫ 1−ε
0 dp1p

n1+α1−1

1 (...)+
∫ 1
1−ε dp1 p

n1+α1−1

1 (... )

+
(1−ε)

∫ 1
1−ε dp1 p

n1+α1−1

1 (... )
∫ 1−ε
0 dp1p

n1+α1−1

1 (...)+
∫ 1
1−ε dp1p

n1+α1−1

1 (...)

(32)

Now, since for β1 → 0 it results that
∫ 1
1−ε dp1p

n1+α1−1
1 (. . .) →

∞ (this can be derived from (30) by noticing that for n1 +
s > N the argument of the integral goes to infinity at p1 =
1 faster than 1/(1 − p1)), while

∫ 1−ε
0 dp1p

n1+α1−1
1 (. . .) and

∫ 1−ε
0 dp1p

n1+α1+1−1
1 (. . .) are finite, then this implies that the

right hand side of (32), is lower bounded by 1− ε which goes

to 1 for ε → 0. This shows that for n1+ s > N, the upper poste-

rior expectation is E[P1|n1, . . . ,nm] = 1. A similar approach can

be used to prove that E[P1|n1, . . . ,nm] = 0 for n1− s< 0.

A.2 Proof of Corollary 1

The proof is similar to that of Theorem 1.

A.3 Proof of Theorem 2

Without loss of generality, we assume that i= 1. For n1−1/2 >
0, i.e., n1 > 0, the lower posterior expectation can be derived by

taking t1 = 0. Then, neglecting the normalization constant, the

integral expression for the posterior expectation E[P1|n1, . . . ,nm]
becomes:

∫ 1

0
dp1p

n1−3/2+1
1

∫ 1−p1

0
· · ·
∫ 1−p1−...−pm−1

0

m−1

∏
i=2

p
ni−3/2+m/2
i (1−

m−1

∑
i=1

pi)
nm−3/2+m/2

[

(1−
m−1

∑
i=1

pi)
m−1

∑
i=2

(

t2i

m−1

∏
i 6= j=2

p j

)

+t2m

m−1

∏
i=2

pi

]m/2 dp2 · · ·dpm−1

(33)

By introducing the change of variable p′i = pi/(1− p1), i =
2, . . . ,m− 1 the previous integral and its normalization constant

reduces to:

E[P1|n1, . . . ,nm] =

1
∫

0

p
n1− 3

2
+1

1 (1− p1)
N−n1− 1

2

1
∫

0

p
n1− 3

2

1 (1− p1)
N−n1− 1

2

=
n1− 1

2

N

(34)

where the last equality follows from the property of the Beta dis-

tribution with α1 = −1/2+ n1 > 0, α2 = N− n1 + 1/2 > 0. A

similar approach than that used in the proof of theorem 1 can be

used to prove that E[P1|n1, . . . ,nm] = 0 if n1 = 0.

For n1 + m̂/2 < N, i.e., n1 < N, the upper expectation can be

computed from E[P1|n1, . . . ,nm] = 1−∑m
i=2E[Pi|n1, . . . ,nm]. In

the first part of this proof, we have shown that the lower expecta-

tion of Pi is (ni−1/2)/N only for the m̂ possible values zi 6= z1
of Z for which ni > 0, whereas for the remaining m− m̂−1 val-

ues of Z for which ni = 0 the lower expectation is zero. Then,

∑m
i=2E[Pi|n1, . . . ,nm] =

N−n1−m̂/2
N

, and one obtains the expres-

sion in (23). An approach similar to that used in the proof of The-

orem 1 can be used to prove that E[Pj|n1, . . . ,nm] = 1 if ni = N.

A.4 Proof of Theorem 3

Without loss of generality, we assume that k = 1 and i= 2. Tak-

ing t1 = 1 and t j = 0, j = 2, . . . ,m, if ni > 0, i = 1, ..,m, the
integral expression for the posterior expectation E[P1|n1, . . . ,nm],
neglecting the normalization constant, can be written as:

∫ 1

0
dp2p

n2− 3
2
+ m

4

2 K−m/2

(

s√
p2

)

∫ 1−p1

0
p
n2− 3

2
+1

2 dp1

∫ 1−p1−p2

0
· · ·
∫ 1−p1−···−pm−1

0

m−1

∏
i=3

p
ni− 3

2

i (1−
m−1

∑
i=1

pi)
nm− 3

2 dp3 · · ·dpm−1

(35)

By introducing the change of variable p′i = pi/(1− p1), for

i = 2, . . . ,m− 1, and p′′i = p′i/(1− p2), for i = 3, . . . ,m− 1, the

previous integral and its normalization constant reduces to:

∫ 1
0 p

n1+
m−6
4

1 K−m/2

(

s√
p1

)

(1− p1)
N−n1− m−1

2

∫ 1
0 p

n1+
m−6
4

1 K−m/2

(

s√
p1

)

(1− p1)
N−n1− m+1

2

×

∫ 1
0 p′

n2− 3
2
+1

2 (1− p′2)
N−n1−n2− m

2 dp′2
∫ 1
0 p′

n2− 3
2

2 (1− p′2)
N−n1−n2− m

2 dp′2

,

(36)

where the second term of the product is equal to
ni−1/2

N−nk−(m−1)/2

from the property of the Beta distribution with α1 =−1/2+n1 >
0, α2 = N− n1− n2−m/2+ 1 > 0. A similar approach can be

used to prove the result for t2 = 1.
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