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Abstract

In this paper, we work on the interval dominance
based extension of the Savage Expected Utility Max-
imization (SEUM) approach. While usual probabili-
ties only handle variability due uncertainty, imprecise
probabilities additionally handle, in a unique frame-
work, epistemic uncertainty. This side of uncertainty,
often called imprecision, can generate incomparabil-
ity between the acts of a decision problem. Incom-
parability is linked to information held by the impre-
cise probability model quantifying the outcomes un-
certainty. Our proposal, in this paper, is that for a
given decision problem, its significance is the quantity
of information which makes the interval dominance
based imprecise SEUM decision problem change from
incomparable to decidable (and possibly still not com-
parable) or comparable (and possibly still not decid-
able). We discuss incomparability sources, a theoret-
ical and a pragmatical definition of significance of a
decision problem under uncertainty.

Keywords. Savage EUM, decision theory, imprecise
probability, interval dominance, significance

1 Introduction

Decision making boils down to comparing the out-
comes of many possible acts. Modeling a decision
problem (DP) is as simple as ranking the set of pos-
sible acts according to a preference relation generally
constructed from a quantification of the consequences
of each act (by means of a utility function). The dis-
tinction between the notions of comparability and de-
cidability is very important in our work. A DP is said
to be comparable when its set of acts can be ranked
according to a complete preference relation. A DP is
said to be decidable when there is a unique act which
is optimal according to its preference relation.

When no uncertainty pertains the problem, the pref-
erence relation is naturally complete: any act can be

ranked according to this preference relation. Even if
the DP is not decidable, optimal choice(s) can always
be found.

Decision making under uncertainty stands for situa-
tions when an act does not lead to a unique outcome
with certainty. Since the preference relation between
the acts is constructed from their outcomes, it seems
natural to admit incomparability when facing uncer-
tainty. Nevertheless, what is important for most de-
cision maker is to work with a comparable DP and if
possible with a decidable one. Most of the last century
advances in decision making under uncertainty aimed
at making complete, the ranking between the acts, by
means of axioms which are supposed to be consistent
with a rational (subjective) behavior. Among them,
the Savage axiomatic, from which is derived the Ex-
pected Utility Maximization criterion (SEUM), is the
most popular one [14].

Our view is that it is an artificial and arbitrary task
to force the comparability of a DP under uncertainty.
Indeed, due to partial information, a DP is inherently
incomparable. We propose to ground our definition
of significance on this “informativist” view of deci-
sion under uncertainty. Thus, we propose to work
with imprecise probability based decisions theories
[11, 12, 17, 18] instead of usual probability based
decision theories [14]. The main asset of imprecise
probability theories [1, 16, 18] over the usual proba-
bility theory is that they handle partial information.
Within these schemes, uncertainty is characterized by
interval weights (probability or more generally utility)
instead of point-valued weights due to partial infor-
mation. An imprecise probability model is a convex
family of precise probabilities.

As is done in SEUM, some of the imprecise probabil-
ity based decision theories propose a complete ranking
between acts (maximin, maximax or Hurwicz criteria
[11]), but what is the main richness of the imprecise
probability based decision models is that they can ad-
mit incomparability due to lack of knowledge in a rig-



orous way. For instance, the E-admissibility criterion
of Isaac Levi [12], the maximality as proposed by Pe-
ter Walley [18] or the very simple interval dominance
decision rule all admit incomplete preference relations
between the acts.

We aim at proposing a notion of significance of a DP
based on this informativity interpretation of uncer-
tainty in decision theory. Let us take any DP under
uncertainty (thus incomparable or undecidable in the
general case), its significance is the smallest quantity
of information required to make it comparable or de-
cidable. This is a quite intuitive idea: one faces a
decision problem which is incomparable, the amount
of required information to disambiguate the problem
naturally characterizes the significance of the original
problem. In some sense, significance aims at measur-
ing the missing information for making the DP com-
plete or decidable.

This definition of significance of a DP under uncer-
tainty is abstract and is not grounded on any deci-
sion or uncertainty theory. In order to derive more
concrete definitions, we propose to define the signif-
icance of a DP under uncertainty from the interval
dominance decision rule and imprecise probability as-
sessments over the outcome space.

Section 2 is a reminder (or a presentation) about the
lower prevision model which summarizes the mate-
rials required for a proper understanding of this pa-
per. The notion of imprecise expectation is particu-
larly stressed. Section 3 presents the usual generaliza-
tions to imprecise probabilities of the SEUM. Finally
Section 4 discuss the notion of significance of a DP
under uncertainty as we aim at presenting it. A gen-
eral (unrealistic) definition of significance is proposed,
followed by a pragmatic definition of a significance in-
dex of a DP. A toy example inspired from [8] is also
proposed to illustrate the notion of significance.

2 Imprecise Probability Theory

It is generally obvious (and probably non discussable)
for most readers that the uncertainty about the out-
come of any experiment is modeled by a set of precise
weights between 0 and 1 on all the possible outcomes
of this experiment: the probability weights. The gen-
eral idea behind most of the imprecise probability the-
ories is that uncertainty should preferably be modeled
by a set of probability weights in order to handle im-
precision, partial information or lack of knowledge in-
herent to most systems. Such new uncertainty theo-
ries are more general and powerful models than prob-
ability because they jointly and consistently handle
the distinct notions of uncertainty due to variability
and uncertainty due to imprecision that is generally

called epistemic uncertainty.

2.1 Imprecise Probability Models

This theory presentation (which can be bypassed by
expert readers) will emphasize on lower previsions de-
fined on discrete domains, i.e. on domains with finite
cardinality.

Let X be an uncertain variable whose possible out-
comes are on a (finite) space X containing N exclusive
single elements. Let L(X ) denote the set of bounded
real-valued functions on X . L(X ) is called the set of
gambles. Each element (gamble) f ∈ L(X ) is inter-
preted as the function on X representing the rewards
f(x) associated to the occurence of any possible out-
come x ∈ X of X. Since the outcome value x ∈ X is
uncertain, f(x) is also an uncertain reward and thus
f is an uncertain gamble.

A lower prevision E on L(X ) is defined as a mapping
E : K ⊆ L(X ) → R. Its behavioral interpretation
advocated by Walley is as follows: E(f) is interpreted
as the supremum buying price an agent would accept
for the uncertain reward f(x). In order to ease the
understanding of this fundamental concept, a lower
prevision E(f) can be seen as the lower bound of the
expectations of the uncertain gamble f . To a lower
prevision E is associated its dual upper prevision E
(or upper expectation), defined as E(f) = −E(−f).

A lower prevision is said to be coherent on its gamble
domain K ⊆ L(X ) if it satisfies the following condi-
tions:

(C1) E(f) ≥ infx∈X f(x) for all f ∈ K (accepting
sure gain);

(C2) E(λf) = λE(f) for each f ∈ K and λ ≥ 0
(positive homogeneity);

(C3) E(f +g) ≥ E(f)+E(g) for all f, g ∈ K (super-
additivity).

A less restrictive class of lower previsions is the class
of lower previsions avoiding sure loss. Let G(f) be
the highest expected gain with a gamble f ∈ K. It is
naturally defined by G(f) = f−E(f). We thus have a
loss on f for the assessed prevision E when G(f) < 0.
Thus a lower prevision model is said avoiding sure
loss when there is a set of gambles (fj)j=1,...,n of K
fulfilling

∑n
i=1G(fj) ≥ 0, i.e. when there is at least a

set of gambles whose combination avoids a sure loss.

A coherent lower prevision which is equal to its asso-
ciated upper prevision is said to be linear. Therefore,
a coherent linear prevision denoted by E, i.e. such
that for all f ∈ K, E(f) = E(f) fulfills both super-



additivity (C3) and sub-additivity1 and thus the fi-
nite additivity axiom: E(f + g) = E(f) + E(g). A
linear prevision can be seen as a usual expectation
operator.

A lower prevision can be associated to a convex set
of linear previsions. The set of linear previsions dom-
inating the coherent lower prevision E, defined on K,
called the credal set, is defined by:

M(E) = {E ∈ E(X ) | (∀f ∈ K) (E(f) ≤ E(f))} ,
(1)

where E(X ) is the set of linear previsions on X .

This object is particularly interesting since it links
a lower expectation to its associated coherent set of
dominating expectations.

An important particular case of coherent lower previ-
sion is the lower probability. To any subset (or event)
A of X can be associated its indicator function, which
is a gamble, 1lA ∈ L(X ). The lower probability of an
event A ⊂ X , denoted by P (A), is the lower prevision
associated to this gamble 1lA. We denote by B(X ), the
set of indicator functions on X , in order to remind the
Borel algebra: B(X ) ⊂ L(X ) can be seen as the set of
events on X . To a lower probability is associated the
dual notion of upper probability P (A) = 1 − P (Ac),
where Ac denotes the complement of A on X .

Many other particular cases of the lower prevision
model exist [3, 4, 19] that match the following in-
clusion: a necessity measure (dual of a possibility
measure) is a particular case of belief function (whose
pieces of evidence are consonant or nested [6]) ; a be-
lief function is a particular case of convex Choquet
Capacity ; a convex Choquet capacity is a particu-
lar case of lower probability ; a lower probability is a
particular case of lower prevision.

2.2 Imprecise Expectation and natural
extension

Facing a given quantity of information, a complete
modeling of an uncertain variable X is done when
a coherent lower prevision can be associated to any
possible gamble f of L(X ). However, in most real
applications, information is limited to a lower previ-
sion, denoted by EK, defined on a subset of gambles
K ⊂ L(X ). The natural extension procedure allows
distributing (conveying) information held by EK to
L(X ) in the most conservative way. In other words,
the natural extension is the most specific model, de-
noted by E, that can be constructed on L(X ) without
any additional information incorporation, i.e. without
reducing the model EK.

1Sub-additivity: axiom (C3) with the reverse inequality.

Definition 2.1 (Natural Extension)
Suppose EK is a lower prevision on K ⊂ L(X ), then
its natural extension E is defined, for any f ∈ L(X ),
by

E(f) = sup
R

{
α : f − α ≥

∑n
j=1 λj(fj − EK(fj)),

for some n ≥ 0, fj ∈ K, λj ≥ 0

}
.

(2)

E(f) is the supremum buying price for the gamble f
given that the linear combination of the highest gain
G(fj) = fj −EK(fj) associated to any set of gambles
fj of K is still higher than the gain G(f) obtained on
the gamble f for this price E(f).

When EK avoids sure loss E is the minimal coher-
ent lower prevision which dominates EK on K. This
gives all its meaning to the expression “in the most
conservative way”, which characterizes the way an un-
certainty model EK on K is extended to E on L(Ω).
Note also that when EK is coherent, EK and E coin-
cide on K.

This tool is of prime importance since it tells us how
to accomplish inference from the assessment of an im-
precise prevision model on K ⊂ L(X ) to any gamble
of L(X ).

An interesting particular case is when K = B(X ).
In that case, the natural extension procedure coin-
cides with the computation of the lower expectation
of any bounded function f : E(f) associated to the
constraints provided by the lower probability model
P defined on B(X ). This is exactly what defines the
imprecise expectation: this is the natural extension
to L(X ) of a lower prevision defined on B(X ) (thus of
a lower probability).

The imprecise expectation can only, in the general
case of lower probability, be computed by using linear
programming techniques. But, for a convex capac-
ity (and any of its submodels: necessity, belief func-
tion,...), imprecise expectation can be computed by
means of the Choquet integral [2].

3 Decision under uncertainty with
Imprecise Probability

Uncertainty modeling has many available distinct the-
ories generally associated to different interpretations.
Decision modeling under uncertainty shares the same
kind of diversity in its theories. In this section, we
present the most encountered decision theories under
uncertainty.



3.1 SEUM decision theory

In the SEUM decision theory, there is the set of pos-
sible acts, denoted by A. Decision making under
uncertainty stands for situations when an act does
not lead, in general, to a unique outcome with cer-
tainty. Each act X of A is an uncertain variable
with value in the finite outcome space, denoted by X .
This outcome space is a rather abstract space which
can be numerical or not. For instance patient heal-
ing or flood are non numerical outcomes encountered
in usual DP under uncertainty in the fields of medi-
cal decision or environmental risk assessment. In the
SEUM approach, a utility function on the outcome
space is used: u : X → R to quantify (and possibly
rank) the acts (or their outcomes) on a utility scale.

Under the Savage axioms, the following complete pref-
erence relation � is constructed on A and defined, for
X and Y in A by:

X � Y iff EX(u) ≥ EY (u). (3)

In other words, an act X is preferred to another act Y
when its associated expected utility is higher than the
expected utility associated to Y . The optimal act(s)
X∗ is (are) such that

X∗ � Y, ∀Y ∈ A.

At this point it is interesting to link some notations
of the SEUM approach to notations of our imprecise
probability presentation (IP) of Section 2. For in-
stance, a gamble f in IP theory is similar to the utility
function u of SEUM. Besides, the uncertain variable
of IP and the uncertain outcome of SEUM, both de-
noted by X, are similar objects. We chose to incorpo-
rate the uncertain variable X to our IP presentation,
which is generally not present in Walley theory and
especially not in Walley’s book [18], since it can easily
be linked to the uncertain outcome of usual decision
theories under uncertainty.

SEUM is a very elegant axiomatic construction [14]
which entails a rational interpretation to preference
structure (3). Many authors discussed and criticized
the foundations of this approach by stressing too
strong axioms [10]. Perhaps the most severe and con-
structive criticism is due to Ellsberg [7]. The SEUM
is based on the idea that a decision maker behaves as
if he possesses a complete and exhaustive knowledge
of the possible states of the world, and moreover that,
his assessment of the uncertainty about the outcomes
may be represented as a unique finitely additive prob-
ability model. This idea has been termed as proba-
bilistic sophistication [13]. Experimental evidence, as
the Ellsberg paradox [7], has failed to support proba-
bilistic sophistication as a good descriptive theory of
behavior under uncertainty.

3.2 Imprecise SEUM generalizations and
associated decision rules

Questioning the probabilistic sophistication principle
of the SEUM approach has been done for many sub-
models of the lower prevision model: for possibility
theory [5], for belief functions [10] or for capacities
[15]. In such particular cases, the usual expectation
operator based on the Lebesgue integral is replaced by
a two-fold Choquet integral to compute the bounds of
an imprecise utility expectation operator. The most
general framework, i.e. obtained when uncertainty
about the outcomes is modeled by a lower prevision
P , is computationally less tractable since it does not
involve an explicit formulation of the imprecise ex-
pectation bounds but only linear optimization tech-
niques.

Actually, most proposed generalizations of the SEUM
to lower previsions were reduced to find meaningful
ways to compare imprecise quantities: the imprecise
expected utilities [EX(u), EX(u)] instead of compar-
ing precise quantities: the expected utilities EX(u).
In other words, most approaches aim at finding a
meaningful way to fulfill the first Savage axiom (which
claims that a preference relation is a complete order-
ing on the set of possible acts A) when the compared
quantities are imprecise.

In order to expose some of the most encountered ap-
proaches, it is interesting to provide interpretations to
[EX(u), EX(u)]. If u is a utility function on X , u(x)
is uncertain due to the uncertainty on the outcomes
of the act X, thus EX(u) can be considered as the
pessimistic expected utility associated to act X and
EX(u) can be considered as the optimistic expected
utility associated to act X. In such framework, u(x)
represents a reward. It is therefore intuitive to term
as optimistic the highest reward we can expect for un-
certain outcomes of act X, i.e. EX(u). Conversely,
being pessimistic is to consider only the lowest reward
we can expect with such model, i.e. EX(u). Another
remark is that when we are optimistic on a reward,
we are pessimistic on a loss (and conversely) which is
translated by relation EX(u) = −EX(−u), since −u
is a loss when u is a reward.

This relevant interpretations of EX(u) and EX(u) as
respectively the pessimistic and optimistic expected
utility lead to propose a parametric optimal decision
rule: the Hurwicz criterion, whose parameter r is a
marker of the risk aversion of the decision maker. Ac-
tually, a decision maker has a high level of risk aver-
sion when he considers for comparative quantities in
its DP, the pessimistic expected utility. To favor the
less risky problem posing and to be pessimistic are
equivalent. Thus under a risk aversion (or pessimistic)



attitude, the optimal decision rule is given by

X �P Y iff EX(u) ≥ EY (u). (4)

Optimism and risk are generally in accordance, thus
the optimistic optimal decision rule is

X �O Y iff EX(u) ≥ EY (u). (5)

As a tradeoff between these rules stands the Hurwicz
criterion. It is based on defining the expected utility
for a risk aversion degree of r by :

ErX(u) = rEX(u) + (1− r)EX(u). (6)

r is a sensible risk aversion index since E1
X(u) =

EX(u) and E0
X(u) = EX(u). Thus the Hurwicz deci-

sion rule for a risk aversion degree r is

X �rH Y iff ErX(u) ≥ ErY (u). (7)

Note that �P is exactly �1
H and �O is exactly �0

H .

While the imprecise probability framework is sup-
posed to model imprecision or epistemic uncertainty,
to our view, the only consistent approaches, regarding
this “informativist” view, are the approaches which
allow incomparability between acts. At first sight ad-
mitting incomparability is problematic for providing
optimal choices. However, this is a quite intuitive
idea when facing epistemic uncertainty. In most cases
where information is partial, admitting incomparabil-
ity (and/or indecision) is safer than proposing a choice
even if this choice is supposed to be obtained with a
pessimistic rule. Let us consider an example of cancer
diagnosis which illustrates a rational behavior under
epistemic uncertainty: for most kind of cancers, ab-
normal blood tests results are not significant enough
to diagnose cancer and an additional biopsy is gener-
ally required. Thus when information is partial (only
the blood tests result), the physician admits incompa-
rability and thus indecision. He will never claim that
the patient has cancer and decide to start a heavy
chemotherapy treatment only from these partial evi-
dences.

Three decision rules admitting incomparability
between acts are generally considered, the E-
admissibility of Isaac Levi [12], the maximality as pro-
posed by Peter Walley [18] or the very simple interval
dominance decision rule. Interval dominance criterion
is defined through the following incomplete preference
relation:

X �ID Y iff EX(u) ≥ EY (u). (8)

This is certainly the most intuitive and simple de-
cision rule admitting incomparability with imprecise
probability. It says that an actX is preferred to an act

Y if the imprecise expected utility of X completely (in
terms of interval) dominates the imprecise expected
utility of Y .

Actually this is the most cautious rule. Indeed a DP
which is not comparable for the interval dominance
criterion can be comparable for the E-admissibility
and/or the maximality criteria. It implicitly means
that available information is considered as insufficient
for the interval dominance criterion while sufficient for
the other criteria.

3.3 Sources of incomparability: a discussion

As already mentioned, a DP is said to be compara-
ble when its set of acts can be ranked according to
a complete preference relation and a DP is said to
be decidable when there is a unique act which is op-
timal according to its preference relation. There is
no inclusion relation between the decidability and the
comparability of a DP. A decidable problem is not
necessarily comparable. This is the case if there ex-
ists an optimal act for a partial preference ordering.
Conversely, a comparable problem is not necessarily
decidable. This is the case for any problem which re-
sults in more than one indifferent optimal acts for a
complete preference ordering.

In this paper, we propose to use the non comparability
of a DP under uncertainty to define its significance.
Thus, it is interesting to discuss the incomparability
sources of an imprecise SEUM problem. To our view,
the sources of incomparability are twofold: 1/ epis-
temic (or reducible) uncertainty but also 2/ the prob-
lem construction itself. While they may not be the
only sources of incomparability of an imprecise SEUM
problem, they are certainly among these sources.

Indeed, 1/ the influence of the epistemic uncertainty
on the comparability of a DP can easily be shown: let
us take any incomparable imprecise SEUM problem, if
uncertainty is reduced to a precise probability model
then we recover a usual (i.e. precise) SEUM and thus
a comparable DP.

And, 2/ the influence of the problem construction it-
self can be put forward: let us consider two different
problems (i.e. two different utility functions) but with
the same set of acts and associated uncertain out-
comes and the same imprecise probability assessments
for these parameters. We denote (P1) and (P2) these
imprecise SEUM problems. We can find cases where
(P1) provides a comparable decision framework, while
(P2) is still incomparable.

Among the other possible sources of incomparability,
we were wondering if the imprecise expectation oper-
ator which is used to pass from the uncertainty as-



sessment step to the comparison step of an imprecise
SEUM problem, has some impact on the comparabil-
ity of the problem. Our answer is not clear yet but
we showed some continuity results of the imprecise ex-
pectation operator in a working paper. These results
tend to prove that the imprecise expectation operator
does not impact the comparability of the problem.
Indeed, continuity means that variations (measured
with Hausdorff distances) between imprecise expec-
tations are bounded by the variations between their
generative imprecise probability models. Such stabil-
ity is important in imprecise SEUM. It means that
information rooting the uncertainty assessment of an
imprecise SEUM problem is properly conveyed to the
utility comparison step. More than this topological
stability, it was already said that the natural exten-
sion is the most conservative extension of an imprecise
probability model to the expectation of a utility func-
tion (or gamble).

4 Significance of a decision making
problem under uncertainty

Now, let us reexamine an already considered situa-
tion: we are facing two different problems (i.e. with
two different utility functions) with the same uncer-
tain outcomes. Let us consider that both problems
are non comparable and non decidable. If we pro-
gressively reduce the epistemic uncertainty associated
to the uncertain outcomes of the problems, one prob-
lem, for instance (P1), should become comparable or
decidable before the other problem (P2). It is thus
natural to claim that problem (P1) is more signifi-
cant than problem (P2) regarding the original pieces
of information. Indeed, (P1) requires less artificial in-
formation addition than (P2) to become decidable or
comparable.

The previous paragraph is the heart of this paper,
since it explains the notion of significance as we hear
it. We will say that a DP under uncertainty is fully
significant if its associated ranking of the set of acts A
is complete for the interval dominance or is decidable
(even if non comparable). A DP under uncertainty is
fully insignificant when the system must be reduced
to a precise SEUM to become a comparable DP (de-
cidable or not). Between these extreme cases, we will
define the significance index of an incomparable and
undecidable DP: it is the smallest quantity of infor-
mation required to make it comparable or decidable.

In a sense, significance, as we aim at defining it, is a
measure of “missing information” to make the prob-
lem comparable or decidable. Thus significance is a
measure of meta-information: information about in-
formation. As for imprecise SEUM problems, infor-

mation is modeled by lower previsions. It models in-
formation about a true underlying probability mea-
sure. Thus, meta-information can only be consistently
quantified if we know the true underlying probability.
In other words, it is impossible to judge information
(i.e. to quantify meta-information) without knowing
the truth. That is the reason why we ground our
first definition of significance on the (unrealistic and
unapplicable) assumption that we know the true un-
derlying probability of an imprecise SEUM problem.

Note that all the involved lower probabilities in this
definition of significance are consistant with the true
underlying probability. It means that we only work
with information which are not conflicting. Thus,
we do not compete with formal decision frameworks
which deal with ambiguity and conflict as separate
types of uncertainty [9].

4.1 An unrealistic general definition of a
significance index

The most general (but unrealistic) definition of a sig-
nificance index that we will propose requires some pre-
liminary definitions and notations.

Let PX be a lower probability on the act X, which
is an uncertain variable with values in the outcome
space X . Let P0 be the true underlying probability
modeling the uncertainty about X. We assume that
PX is consistant with P0, i.e. P0 ≥ PX .

Let P(PX) = {P : P0 ≥ P ≥ PX} be the set of lower
probabilities consistent with P0 and dominating PX .
It is the set of lower probability models more specific
than PX , i.e. more informed, and still consistant with
PX .

Let d be a distance between imprecise probabilities
of P(PX) which respects the domination. We mean
that, for three encapsulated (according to heir speci-
ficity) lower probabilities P1, P2 and P3, such that
P1 ≤ P2 ≤ P3 then d(P1, P2) ≤ d(P1, P3). This prop-
erty is quite natural since it enables to use such dis-
tance for ranking the lower probabilities specificity-
wise relative to a given lower probability. For in-
stance, d(P1, P2) ≤ d(P1, P3) means that, relatively
to P1, we have that P2 ≤ P3, i.e. that P2 is more
specific than P3. Note that the Hausdorff distance
between sets of probabilities and thus between lower
probabilities fulfills such natural property. It should
be interesting to study other distances between lower
probabilities respecting this property.

Let d0 be this distance between any lower probability
P of P(PX) and P0: d0(P ) = d(P0, P ). We also define

d0X = d0(PX) = d(P0, PX)



as the distance between PX and P0.

Let α be the distance between any lower probability
P ∈ P(PX) and P0 relative to the distance between
PX and P0. α is defined by

α(P ) =
d0(P )

d0X
.

This relative distance is such that α(P ) ∈ [0, 1] for
any lower probability P ∈ P(PX) and α(P0) = 0 and
α(PX) = 1.

In other words, should we assume that P0 exists and is
known (which is not consistent with the Walley’s be-
havioral imprecise probability framework), α(P ) can
be considered as a normalized index of non specificity
(of imprecision) of P .

Now, let us define, for a given imprecise SEUM prob-
lem (P), C: the set of lower probabilities of P(PX)
which make the problem comparable or decidable.
Now we can propose a general unrealistic definition
of the significance of an imprecise SEUM.

Definition 4.1 (Significance)
Let (P) be an imprecise SEUM problem: PX is a

lower probability on X defined on X and u is a utility
function on X .

Let P ∗, be the least specific lower probability of
P(PX), which makes (P) comparable or decidable.
Then the significance of (P) is given by

S(P ) = α(P ∗). (9)

An alternative definition can be proposed:

S(P ) = max
P∈C

α(P ). (10)

The interpretation we can propose to this index is as
follows. Significance is the maximal degree of impre-
cision (of epistemic uncertainty) which allows compa-
rability. For a lower prevision model with an impre-
cision higher than S(P ), the problem is still incompa-
rable, but for a lower prevision model with an impre-
cision lower than S(P ), the problem i scomparable or
decidable.

Let us retake the example presented in the first para-
graph of Section 4.1. We can rephrase it that way: the
highest imprecision which makes the problem compa-
rable or decidable is bigger for (P1) than for (P2) thus
S(P1) ≥ S(P2).

Finally, if we are facing a problem (P) which is com-
parable regarding the provided information PX , then
the significance of this problem should be the high-
est, i.e. should be equal to 1. With our definition,

S(P ) = 1, since C = P(PX) and α(PX) = 1. On
the contrary, if we are facing a problem (P’) which is
comparable or decidable only when uncertainty is re-
duced to a linear probability, then the significance of
this problem should be the lowest, i.e. should be equal
to 0. With our definition, S(P ′) = 0, since C = {P0}
and α(P0) = 0.

4.2 Significance index : an applicable
definition

Definition 4.1 of the significance is not applicable be-
cause P0 is unknown (even if it exists). We propose in
this section a pragmatic significance index for the im-
precise SEUM approach with the interval dominance
rule.

In Definition 4.1, the imprecision reduction is per-
formed directly on the lower probability PX model-
ing the uncertainty about X. In the applicable def-
inition, we propose to perform this imprecision re-
duction directly on the interval utility expectations
[EX(u), EX(u)] associated to every act X.

This applicable definition is inspired from the Hurwicz
risk aversion degree (6). In our case we define the
relative imprecision index ρ of the imprecise expected
utility as:{

EρX(u) = (1− ρ)E0(u) + ρEX(u),

E
ρ

X(u) = (1− ρ)E0(u) + ρEX(u),
(11)

where E0(u) =
EX(u)+EX(u)

2 is the middle of

[EX(u), EX(u)].

ρ is an index of imprecision relative to the impre-
cision of EX . We interpret [EρX(u), E

ρ

X(u)] as the

representation of [EX(u), EX(u)] of relative impre-
cision ρ. Indeed, for a relative imprecision ρ = 0,

[E0
X(u), E

0

X(u)] = {E0(u)} and for a relative impre-

cision ρ = 1, [E1
X(u), E

1

X(u)] = [EX(u), EX(u)]. In
other words, [EρX(u), E

ρ

X(u)] goes from {E0(u)} to
[EX(u), EX(u)] when ρ goes from 0 to 1.

We can thus define a new decision rule which is called
the ρ-imprecise decision rule and which is the interval
dominance decision applied to the ρ-imprecise interval
[EρX(u), E

ρ

X(u)] :

X �ρ Y iff EρX(u) ≥ EρY (u). (12)

The proposed definition of the applicable significance
is thus a direct application of Definition 4.1.

Definition 4.2 (Applicable Significance)
Let (P) be an imprecise SEUM problem: PX is a

lower probability on X defined on X and u is a utility



function on X . Let ρ∗, be the highest relative impreci-
sion index, such that �ρ∗ becomes complete or makes
(P) decidable. Then

S(P ) = ρ∗. (13)

Compared to Definition 4.1, this solution, Definition
4.2 is feasible. Anyway, artificially increasing the in-
formativity of an imprecise probability model is the
only possible way to propose an applicable signifi-
cance index. Indeed the informativity of any model
can only be measured if we know the underlying true
model, which is impossible or artificially possible.

Now let us illustrate this notion of significance on a
toy example taken from [8].

Example

Assume that an individual with initial wealth ω is
facing a risk of loss `. There is uncertainty about the
fact that this loss occurs or not. Each act X has two
possible rewards: one if loss occurs, denoted by x`,
and one if loss does not occur, denoted by x¯̀.

One possible act for the individual would be not to
buy any insurance. This can be represented by the
act X = (x`, x¯̀) = (ω − `, ω). Another act would be
to buy full coverage at a premium π, yielding Y =
(y`, y¯̀) = (ω − π, ω − π). A third possible act would
be to buy partial coverage at a premium π′, yielding
Z = (z`, z¯̀) = (ω − `+ I − π′, ω − π′) where I is the
indemnity paid in case of damage.

We assume that the individual wealth is ω = 3
2 , that

its potential loss ` = 1
2 , that the respective full and

partial coverage are given by π = 1
5 and π′ = 1

10 and
that the indemnity is I = 1

3 . We also assume that
the imprecise probability of loss is given by {(p, 1 −
p) : for p ∈ [ 1

3 ,
1
2 ]}. The utility function is u(x) = x

for x ∈ X . Under such assumptions, the compared
imprecise expectations are given by:

• [EX(u), EX(u)] = [1.25, 1.33],

• [EY (u), EY (u)] = {1.3},

• [EZ(u), EZ(u)] = [1.288, 1.3166].

We can compute easily that the significance of this
DP is 0.2 and that the associated optimal decision is
Z. Indeed, for decreasing relative imprecision indices,
Table 1 shows the evolution of the imprecise utility
expectation when we artificially decrease imprecision.

We can see from Table 1 that the DP becomes decid-
able and completely ranked for ρ = 0.2 and that the
associated optimal choice is Z. In other words, with
a significance of 0.2 the individual should choose to
buy the proposed partial coverage π′.

ρ [EX(u)] [EY (u)] [EZ(u)]
0.3 [1.278, 1.302] 1.3 [ 1.2986 , 1.3069 ]
0.2 [1,282 , 1,298 ] 1.3 [1.3, 1.3056]
0.1 [ 1.286, 1.294] 1.3 [1.3014, 1.3042 ]

Table 1: Imprecise utility expectations for various rel-
ative imprecision

End of Example

It should be noted that the aim of our proposal is not
to provide an optimal decision. Actually, with Def-
inition 4.2, the optimal choice(s) is (are) always the
optimal choice(s) for the center of the utility expec-
tation intervals associated to the acts. The Hurwicz
criterion with a risk aversion of r = 1

2 gives the same
result, i.e. the same optimal choice(s). However, our
approach aims at providing a significance index which
is not done with the Hurwicz criterion or any other
decision rule. The proposed simplified and pragmatic
definition is a simple way to explain and introduce
the notions of interest in this paper. But more sensi-
ble and complex definitions of significance should be
proposed in later works.

5 Conclusion

This article is a discussion paper. Its aim is mainly to
define a new notion of significance of decision prob-
lem under uncertainty and to discuss its foundations.
The idea is that if a decision problem is not compara-
ble then the quantity of information which is required
to make it comparable or decidable is directly linked
to its significance. A theoretical definition of a signifi-
cance index is proposed. This definition is constructed
with the true underlying model of an imprecise prob-
ability and is thus unrealistic. A second artificial but
pragmatical index is proposed. This index is very sim-
ple and inspired from the way the Hurwizc decision
criterion is constructed.

The next step is to derive explicit formulations of
other significance indices based on pragmatic con-
structions similar or different than the one found in
Section 4.2 and obtained for different imprecise prob-
ability models. For instance with any submodel of
the convex Choquet capacities, the imprecise expec-
tation is explicitly computed with the Choquet inte-
gral. Thus explicit formulations of significance indices
are possible. Experimental studies are now to be pro-
posed.
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