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Abstract
The notion of imprecise probability can be viewed as
a generalization of the traditional notion of probabil-
ity. Several theories and models of imprecise proba-
bility have been suggested in the literature as more
appropriate representations of uncertainty in the con-
text of single-agent decision making. In this paper I
investigate the question of how such models can be in-
corporated into the traditional game-theoretic frame-
work. In the spirit of rationalizability, I present two
new solution concept called Γ-maximin rationalizabil-
ity and E-rationalizability. They are intended to cap-
ture the idea that each player models the other players
as decision makers who all employ Γ-maximin or E-
admissibility as their decision rules. Some properties
of these concept such as existence conditions and the
relationships with rationalizability are studied.

Keywords. Normal form games, imprecise probabil-
ities, rationalizability, Γ-maximin, E-admissibility.

1 Introduction

The theory of subjective expected utility (axiomatized
by Savage [1954]) has become a widely-accepted nor-
mative theory for dealing with single-agent decision
making under uncertainty. However, the assumption
about the representation of uncertainty in this frame-
work has often been criticized for being overly re-
strictive. In particular, Ellsberg [1961] has argued
that uncertainty, as opposed to risk, cannot be ade-
quately represented by a single personal probability
distribution. Inspired by this challenge, various alter-
native theories of decision making under uncertainty
have been developed in the literature, e.g., Gilboa and
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Schmeidler’s multiple priors model [1989] and Schmei-
dler’s Choquet expected utility model [1989]. In ad-
dition, there has been a vast amount of literature on
alternative approaches to representing uncertainty in
decision problems, such as upper and lower probabili-
ties, sets of probability measures, belief functions, and
so on. (See [Walley, 1991] for a detailed discussion of
the models of imprecise probabilities)

The Ellsberg paradox arises in single-agent decision
making situations where uncertainty regarding some
exogenous event is involved. Nevertheless, one would
expect that similar situations of uncertainty could
arise in multi-agent, interactive scenarios, where the
considerations underlying uncertainty for each player
are the other players’ strategy choices, rather than
the state of nature. This naturally suggests a new
line of research, which is to incorporate some model
of uncertainty using imprecise probabilities into tra-
ditional game-theoretic frameworks. New conceptual
issues arise in this approach to game under uncer-
tainty, e.g., how should solution concepts be defined
given the new decision theoretic foundations. In re-
cent years, there has been a growing literature on ap-
plying the aforementioned theories of imprecise prob-
abilities in the context of games, which can be divided
roughly into two categories depending on the way of
addressing these conceptual issues. On the one hand
there are those that investigate the consequences of al-
lowing players’ beliefs to be represented by imprecise
probabilities in the framework of Nash equilibrium or
its refinements. Dow and Werlang [1994] introduce an
equilibrium concept for two-player normal form games
in which players’ beliefs about the opponents’ strategy
choices are represented by non-additive probabilities
and players are Choquet expected utility maximiz-
ers. Eichberger and Kelsey [2000] extend Dow and
Werlang’s equilibrium concept to normal form games
with n-players and discuss some nice properties of this
concept. By using the multiple priors model to rep-
resent players’ uncertainty, Klibanoff [1994] and Lo
[1996] provide two equilibrium-type solution concepts



for normal form games with any finite number of play-
ers. Unlike these researchers, Liu [2011] presents a
different solution concept called robust equilibrium by
extending the framework of the so-called linear trac-
ing procedure (Harsanyi and Selten [1988]), to accom-
modate games with uncertainty where players’ initial
beliefs are modeled by a set of probability measures
rather than a common prior. This concept can be
viewed as a refinement of Nash equilibrium.

On the other hand, several studies have attempted to
generalize the concept of rationalizability (Bernheim
[1984] and Pearce [1984]) in normal form games to
accommodate notions of rationality other than sub-
jective expected utility maximization. In addition to
the idea of equilibrium with uncertainty aversion, an-
other significant innovation introduced by Klibanoff
[1994] is the characterization of common knowledge of
rationality under uncertainty for normal form games
where each player attempts to maximize the mini-
mum expected utility. Epstein [1997] also considers
normal form games and develops a general framework
for discussing the implications of common knowledge
of rationality in which the definition of rationality can
accommodate different kinds of preference structures
including the multiple priors model.

The approach to game theory with uncertainty I
present in this paper is very much in the same spirit
as Klibanoff’s and Epstein’s approaches, which em-
braces the essential idea of rationalizability, namely,
to assume that each player models the opponents as
the same kind of rational decision maker under un-
certainty. As noted in previous literature, rationaliz-
ability captures the idea that each player attempts
to deduce their opponents’ rational behavior from
the structure of the game by modeling her oppo-
nents as expected utility maximizers, where players’
uncertainty about their opponents’ strategy choices
are fully described by a single probability distribu-
tion. This paper explores the possibility of adapt-
ing this standard assumption by using a set of prob-
ability distributions to model uncertainty in normal
form games. However, even in single-agent decision
theory, there is no generally accepted criterion for
decision making under uncertainty when uncertainty
is depicted by a set of probability distributions. In
view of this, this paper develops a general theoret-
ical framework to analyze the implications of ratio-
nality and common knowledge of rationality in the
sense that each player employs the same decision rule
to choose the best strategy with respect to a set of
probability distributions. In particular, I consider
here two familiar decision rules named Γ-maximin
[Berger, 1985; Gilboa and Schmeidler, 1989] and E-
admissibility [Levi, 1974]. According to the former

rule, a decision maker should choose an option that
maximizes the minimum expected utility with respect
to a set of probability distributions, while the lat-
ter one constrains the decision maker’s admissible
choices to those options that maximizes expected util-
ity for some probability in the set of probabilities.
In analogy with rationalizability, I put forward two
game-theoretic solution concepts under uncertainty,
in which each player is required to model the other
players as the same kind of decision makers who use
either Γ-maximin or E-admissibility to make deci-
sions. This gives rise to the two solution concepts
that we shall call Γ-maximin rationalizability and E-
rationalizability respectively. Just as Γ-maximin and
E-admissibility are extensions of subjective expected
utility theory, both Γ-maximin rationalizability and
E-rationalizability turn out to be generalizations of
rationalizability. Example 1 in Section 4 illustrates
the distinction between these three solution concepts.

The main contribution of this paper is in providing
a general game-theoretic framework which enables us
to discuss how different decision rules can be incorpo-
rated into the framework of rationalizabiity in normal
form games when uncertainty is depicted by a non-
trivial set of probability distributions. This frame-
work can be easily adapted to accommodate some
other decision rules discussed in decision theory such
as Maximality [Walley, 1991]. Although it turns out
that the concept of Γ-maximin rationalizability co-
incides with Klibanoff’s and Epstein’s iterative defi-
nitions of rationalizability with uncertainty aversion
(they used different terms for this concept), the cur-
rent approach to rationalizability under uncertainty
can be regarded as complementary work to their the-
ories, since it provides an alternative way of charac-
terizing the same solution concept. By applying this
new definition, it is easier to check whether a strategy
of a player is Γ-maximin rationalizable (or uncertainty
aversion rationalizable). In a similar way, I define the
concept of E-rationalizability, which, to my knowl-
edge, has not been explored in any previous study.

The rest of this paper proceeds as follows: Section 2
presents a brief review of the solution concept ra-
tionalizability, and discusses some of its properties.
Section 3 motivates the idea of using imprecise prob-
abilities to represent uncertainty in games. I then
propose two solution concepts called Γ-maximin ra-
tionalizability and E-rationalizability, which extend
the framework of rationalizability to contexts where
a set of probabilities is used to represent uncertainty.
Section 4 studies some properties of these solution
concepts, and also includes an example to illustrate
their difference. Section 5 concludes the paper and
suggests possible future work.



2 Rationalizability

In contrast with the concept of Nash equilibrium
where each player’s belief is required to coincide with
her opponents’ strategies, the concept of rationaliz-
ability, proposed independently by Bernheim [1984]
and Pearce [1984], imposes a weaker requirement on
players’ beliefs. More precisely, it only demands play-
ers to obey the requirement of Bayesian rationality
and common beliefs in Bayesian rationality. It at-
tempts to account for rational behavior as the conse-
quence of common knowledge of the game structure
and the rationality of players, without imposing any
further constraints on players’ strategy choices.

Let us begin with some formal notations and defini-
tions. Throughout this paper, we consider a finite
normal or strategic form game G ” xI, tSiu, tuiuyiPI ,
where I “ t1, 2, . . . , nu is a finite set of players, Si de-
notes a finite set of pure strategies (or actions) avail-
able to player i, and ui : S Ñ R denotes player i’s
payoff function. We shall denote the set of player i’s
mixed strategies by ∆i, which can be regarded as the
set of all probability distribution over Si. For each
mixed strategy δi P ∆i, let δipsiq denote the proba-
bility assigned to si. Recall that a strategy profile is
a Nash equilibrium if no player can benefit by merely
changing her strategy while the other players keep
theirs unchanged. More precisely, a mixed strategy
profile δ˚ P ∆ is a (mixed strategy) Nash equilib-
rium if for each player i, uipδ

˚
i , δ

˚
´iq ě uipδi, δ

˚
´iq for

every mixed strategy δi of player i. An alternative
way to characterize the notion of Nash equilibrium is
to define it in term of best response. We say that a
strategy δi P ∆i is a best response to δ´i for player
i if uipδi, δ´iq ě uipδ

1
i, δ´iq for all δ1i P ∆i. Thus a

strategy profile is a Nash equilibrium if each player’s
strategy is a best response to the other players’ strate-
gies. For an arbitrary set X of strategies, we denote
by HpXq the convex hull of the set X, namely, the
smallest closed convex set containing X.

It is well known that the concept of rationalizabil-
ity attempts to characterize rational strategic behav-
ior that are consistent with the assumption that both
the structure of the game and the rationality of the
players are common knowledge to them. To be more
specific, rationalizability in normal form games is de-
fined based on the following assumptions:

• A1: Each player employs a subjective personal
probability to express her belief about the other
players’ strategy choice, which cannot conflict
with any information available to her.

• A2: Each player attempts to maximize expected
utility with respect to her subjective probability

regarding her opponents’ strategy choices.

• A3: The structure of the game, including the
strategy space and payoff functions, and the fact
that each player satisfies the above two assump-
tions are common knowledge.

Informally speaking, we can examine a player’s ratio-
nality by checking whether the actions chosen by that
player are “rational” or not. We say that an action
of a player is rational if there exists some belief regu-
lated by the assumptions given above such that it is
a best response to that belief. Thus, a strategy δi of
player i is rationalizable if she can justify her choice by
explaining that (i) δi is rational, (ii) there exists some
belief δ´i such that δi maximizes her own expected
utility with respect to δ´i, and δ´i assigns positive
probability only to rational actions of her opponents,
and (iii) there are beliefs of her opponents that make
those actions rational and assign positive probability
only to her rational actions, and so on. This suggests
an intuitive way of defining rationalizability without
invoking the iterative process originally suggested by
Pearce (1984). In order to present this formal defini-
tion, we have to make the notion of a belief and what
we mean by a strategy being rational explicitly.
Definition 1. In a strategic form game G, a belief of
player i P I, denoted by µ´i, about the other players’
strategy choices is a probability distribution over the
set of the other players’ strategies S´i ”

ś

j‰i Sj.

Here we should draw a clear distinction between
the concepts of belief and mixed strategy. A belief
about player i has the same mathematical form as a
mixed strategy of player i, which is normally found in
the literature. However, the interpretations of both
concepts are different (see [Osborne and Rubinstein,
1994] for a comprehensive discussion on the interpre-
tations of mixed strategies.). A mixed strategy of
player i is usually viewed as an explicit randomiza-
tion over her pure strategies in Si. If player i chooses
to play a mixed strategy, she commits herself to carry
out the deliberate randomization. The main criticism
of this interpretation of mixed strategy is that for each
player there are usually infinitely many mixed strate-
gies that yield her the same expected payoff as her
mixed strategy equilibrium does, given her opponents’
equilibrium behavior. But we are here concerned with
a different solution concept called rationalizability.
Thus, interpreting mixed strategies as objects of delib-
erate choice is appropriate within the current frame-
work. On the other hand, a belief about player i
is a probability distribution on the set of player i’s
mixed strategies, which represents another player’s
view about player i’s strategy choice. It should not be
confused with a randomization that is actually carried



out by player i. In that sense, we can say that players’
mixed strategies should be understood as the objects
of the beliefs about players’ strategy choices, and the
probability distribution given by a belief about player
i merely represents the likelihood that another player
assigns to player i’s mixed strategies.

Nevertheless, an essential feature of this formulation
of belief is that it allows a player to believe that the
other players choose their strategies according to cer-
tain correlated randomization devices, since a belief
µ´i of player i is a probability measure over S´i and
thus is an element of the set HpS´iq. Note that a
belief µ´i of player i is not necessarily a product of
independent probability distributions on each of the
set Sj of actions for j P Nztiu. That is, a belief µ´i

of player i need not be identified as an element of the
set of mixed strategies of her opponents S´i. In addi-
tion, it is not difficult to see that the set S´i is strictly
smaller than the set HpS´iq in games with more than
2 players. Hence we have to use a different notation
µ´i for a belief in the current framework in order to
distinguish it from a mixed strategy δ´i.

It is assumed that each player always chooses an ac-
tion to maximize her own expected payoff with re-
spect to some belief about the opponents’ strategies.
A strategy being rational can then be defined precisely
in terms of maximization of expected utility.
Definition 2. A strategy δi of player i in a strategic
form game G is a rational strategy if there exists a
belief µ´i of player i such that δi maximizes player
i’s expected utility, that is, uipδi, µ´iq ě uipδ

1
i, µ´iq

for all δ1i P ∆i. In this case, we say that δi is a best
response to the belief µ´i.

The key idea of the following characterization is to de-
fine an action (or pure strategy) to be rationalizable
by considering each player’s introspective process of
justifying her own strategy choice, based on the anal-
ysis of her opponents’ similar reasoning about their
rational behavior.
Definition 3. In a strategic form game G, an action
si P Si of player i is rationalizable if for each player
j P I, there exists a set Zj Ď Sj of actions such that:
(i) si P Zi, and (ii) every action sj in Zj is a best
response to some belief µ´j of player j whose support
is a subset of Z´j.

Whenever a new solution concept is put forward, a
primary theoretical question is whether the proposed
concept can give rise to at least one solution for games
in general. Regarding the concept of rationalizability,
the answer to this question is positive.
Proposition 2.1 (Pearce, 1984). For finite normal
form games, the set of rationalizable strategies is al-

ways nonempty and contains at least one pure strategy
for each player.

We have considered above how to define the concept of
rationalizability by using the notion of belief and the
rationality of the players. As a matter of fact, the set
of rationalizable actions can be further characterized
for finite strategic games in terms of the familiar idea
of dominance relations. As we shall see, this charac-
terization for rationalizability gives rise to an opera-
tionalizable method for finding the set of rationaliz-
able actions for finite games. Recall that the concept
of rationalizability basically captures the idea that as
a rational decision maker each player can only choose
those strategies that are best responses to some be-
liefs regarding the other players’ strategies. In other
words, a rational player should not adopt a strategy
that is not a best response to any belief about her
opponents’ strategy choices. In the game-theoretic
terminology, such a strategy is called a never-best re-
sponse strategy. Thus one can see that the concept
of rationalizability is closely related to the notion of
never-best response strategy as defined below.
Definition 4. In a normal form game G, an action si

of player i is a never-best response if it is not a best
response to any belief of player i, that is, for every
belief µ´i of player i there exists a strategy δi P ∆i

such that uipδi, µ´iq ą uipsi, µ´iq.

In other words, there is no belief µ´i of player i
about her opponents’ strategies with respect to which
a never-best response action si maximizes her own
expected payoff. This coincides exactly with the cen-
tral idea of rationalizability, namely that the players
are rational in the sense of maximizing expected util-
ity. As mentioned above, each player should rule out
the actions that are not best response to any belief,
namely, never-best response actions.

Let us now turn to the familiar notion of strict domi-
nance which will play a crucial role in the characteri-
zation of rationalizable actions, as we shall see below.
Definition 5. In a normal form game G, an action
si of player i is strictly dominated if there exists a
strategy δi P ∆i such that uipδi, s´iq ą uipsi, s´iq for
all s´i P S´i.

In words, whatever the other players do, player i can
benefit from playing some other strategy rather than a
strictly dominated strategy. Clearly, a rational player
would never use a strictly dominated strategy. Oth-
erwise the player’s choice violates the assumption of
rationality in the sense of maximizing expected utility.
At this point one may wonder whether the notion of
never-best response is equivalent to the conception of
strictly dominated action. It turns out that one can



establish the equivalence between these two notions
within the current framework.
Lemma 2.2 (Pearce, 1984). In a strategic form game
G, an action s˚i of player i is a never-best response if
and only if s˚i is strictly dominated.

Suggested by the above lemma, we can show that the
set of rationalizable actions can be obtained by it-
eratively deleting strictly dominated actions until we
arrive at the stage where no more strictly dominated
action can be further eliminated. Let us first formally
define the process of iterated elimination of strictly
dominated actions.
Definition 6. Consider a normal form game G. Set
S0

i ” Si for each i P I. Then, for each i P I and
for each k ě 1, the set Sk

i is recursively defined as
follows:

Sk
i –

 

si P S
k´1
i | E δi P HpSk´1

i q

such that uipδi, s´iq ą uipsi, s´iq,@ s´i P S
k´1
´i

(

.
And define S8i –

ś8

k“1 S
k
i . The set S8i is the set of

player i’s actions that survives iterative elimination
of strictly dominated actions.

Observe that after a finite numbers of steps the pro-
cess of iterated elimination of strictly dominated ac-
tions will certainly halt in the sense that there is no
action that can be further eliminated, since we restrict
our attention to finite games. Moreover, one can show
that the procedure of iterated elimination of strictly
dominated actions does not depend on the order that
we proceed the elimination, that is, it always yields
the same surviving set of actions for each player.

With the aid of this procedure, we can thus eas-
ily identify the set of rationalizable actions for each
player in finite games, which thus provides a nice al-
gorithm for finding rationalizable actions.
Proposition 2.3 (Pearce, 1984). For any finite nor-
mal game G, the set of profiles of rationalizable ac-
tions coincides with the set of profiles that survives
the process of iterated elimination of strictly domi-
nated actions.

3 Rationalizability with Imprecise
Probabilities

Following the tradition of decision making under un-
certainty, the concept of rationalizability assumes that
each player’s belief regarding the other players’ strate-
gies is represented by a single personal probability
measure. However, there are many convincing ar-
guments for supporting imprecision in beliefs - even
in the context of single-agent decision problems (see
[Ellsberg, 1961] and [Walley, 1999]). A number of
alternative models to subjective expected utility the-
ory have been proposed, which advocate the use of

imprecise probabilities for dealing with uncertainty
in decision problems (see, for instance, [Gilboa and
Schmeidler, 1989] and [Levi, 1974]). It is thus natural
to incorporate these ideas into the traditional game-
theoretic framework. Based on the rules of Γ-maximin
[Berger, 1985; Gilboa and Schmeidler 1989] and E-
admissibility, we present here a generalized game-
theoretic framework as an initial attempt to examine
how modeling uncertainty with imprecise probabili-
ties may provide insight into traditional game the-
ory. In analogy with the concept of rationalizability,
we propose two new game-theoretic solution concepts:
the solution concept that we shall call Γ-maximin ra-
tionalizability attempts to capture the idea that each
player models the other players as Γ-maximin decision
makers, and the other one named E-rationalizability
is meant to represent the idea that each player thinks
of the other players as rational decision makers who
respects the E-admissibility criterion.

An immediate question that is crucial to this inves-
tigation is: which model of imprecise probabilities
should be assumed as representation of players’ beliefs
in strategic situations? There are a variety of mathe-
matical models proposed in the literature to represent
uncertainty in single-agent decision problems. For in-
stance, lower previsions, upper and lower probabil-
ities, sets of probabilities, non-additive probabilities,
and belief functions (see [Walley, 1991]). Among these
widely-discussed models of imprecise probabilities, a
plausible method is to use a convex set of probability
distributions, also called a credal set [Levi, 1980], to
represent a decision maker’s beliefs when confronted
with uncertainty. A great advantage of this approach
is that it allows us to deal with any state of insufficien-
cies in our information, including complete ignorance,
in a unified way. Here we adopt this representation
of uncertainty as the intended model for the players’
beliefs regarding the other players’ strategy choices.
In order to distinguish it from the previous way of
modeling beliefs, we will hereafter refer to a belief as
a conjecture. Slightly modifying the formulation of
belief in the framework of rationalizability, we define
a conjecture of a player as follows:

Definition 7. In a strategic form game G, a con-
jecture of player i, denoted by C´i, about the other
players’ strategy choices is a (nonempty) convex set of
probability measures over the opponents’ actions S´i.

Note that this way of representing players’ beliefs is
a natural generalization of using a single probabil-
ity distribution, as discussed earlier in the context of
rationalizability. Moreover, this representation of be-
liefs admits the possibility of a correlated conjecture
in the sense that, a player’s conjecture may contain
a probability distribution that cannot be obtained by



independent mixtures over her opponents’ strategies,
for the elements of a conjecture are probability mea-
sures defined over S´i.

One can interpret each member in a player’s conjec-
ture as the frequency of the strategy choices by her
opponents, each of which is randomly drawn from a
large population. More precisely, each player thinks
that each of her opponents stands for a large set of
players and has the same set of feasible choice. In this
context, the probability distributions in player i’s con-
jecture are viewed as the frequencies with which the
members of the set S´i are used by those large pop-
ulations. In light of this, a probability distribution
in a conjecture of a player has a completely different
meaning from a mixed strategy, even though they may
look the same from a mathematical point of view.

Under the preceding interpretation, it is reasonable to
consider the cases where the set of strategies for some
player is not convex, but players’ conjectures are re-
quired to be convex. We understand that it is stan-
dard practice in game theory to consider the mixed
extensions of games, that is, to include all the mixed
strategies. Nevertheless, we may want to model cir-
cumstances where only the pure strategies are avail-
able to the players, which can be suitably described
in the current framework with our interpretation.

In the context of single-agent decision making, sev-
eral decision rules such as Γ-maximin [Berger, 1985;
Gilboa and Schmeidler, 1989], E-admissibility [Levi,
1974], and maximality [Walley, 1999] have been dis-
cussed in the literature of imprecise probabilities
(for a detailed comparison between these criteria see
[Schervish et al., 2003], [Seidenfeld, 2004], and [Trof-
faes, 2007]). There is, however, no general agree-
ment among decision theorists as to which is the
right rule for judging rational decisions when uncer-
tainty is expressed by a convex set of probability func-
tions. Among these suggested criteria, the rule of Γ-
maximin generalizes the principle of maximizing ex-
pected utility by simply taking the lower expected
utility, thereby inducing a complete order on the de-
cision set. More precisely, according to Γ-maximin,
a rational decision maker should choose an option to
maximize the minimum expected value with respect
to a convex set of probabilities. This rule for decision
making under uncertainty seems suitable for describ-
ing decision makers who are uncertainty averse, as it
always takes the worst possible expected value as the
base for maximization. Nevertheless, it has already
been noted in [Seidenfeld, 2004] that the rule of Γ-
maximin fails to distinguish between open and closed,
convex and non-convex sets of probabilities, since
choices based on this decision rule essentially reduces
to binary comparisons which share the same support-

ing hyperplanes. It thus implies that the properties
of closure and convexity concerning players’ conjec-
tures regarding their opponents’ strategy choices are
indistinguishable by Γ-maximin rationalizability.

The other decision criterion that we shall discuss be-
low is often called E-admissibility, which was implic-
itly mentioned in [Savage, 1954] and extensively ad-
vocated by Issac Levi [1974]. According to this de-
cision rule, an option is E-admissible if it maximizes
expected utility relative to some probability distribu-
tion in the convex set of probabilities. In contrast with
Γ-maximin, E-admissibility does not generate an or-
der of options, but it does avoid the above-mentioned
limitation, since it cannot be characterized by pair-
wise comparisons. As shown in the context of de-
cision making, these two rules are not equivalent in
the sense that they may recommend different sets of
admissible options. Thus it is not surprising that
the game-theoretic solution concepts defined based on
these rules are not equivalent either, as illustrated by
an example in the next section.

Under strategic situations, players are usually as-
sumed to be uncertain about the other players’ strat-
egy behavior, and can only attempt to deduce their
opponents’ rational actions from the structure of the
game and available information about their oppo-
nents’ preferences. In most games, it is impossible for
players to ascertain their opponents’ actual behavior.
Due to the insufficient information about preferences
and irreducible strategic considerations, any level of
uncertainty revealed by the imprecision in the set of
probabilities may occur in situations of strategic in-
teraction. Since Γ-maximin and E-admissibility have
been often discussed in the literature of decision the-
ory, it is therefore interesting to study the cases where
all the players would use the rule Γ-maximin or E-
admissibility to choose their strategies in games. By
analogy to the framework of rationalizability, we need
to be explicit about what we mean by a strategy being
rational under uncertainty.

Definition 8. In a strategic form game G, a strategy
δi of player i is Γ-rational under uncertainty if there
exists a conjecture C´i of player i such that δi maxi-
mizes player i’s minimum expected utility with respect
to C´i. In this case, we say that δi is a Γ-maximin
admissible strategy relative to the conjecture C´i.

Likewise, we can define a notion called E-admissible
strategy in a game where players are assumed to use
E-admissibility as the criterion for strategy choices.

Definition 9. In a strategic form game G, a strategy
δi of player i is E-rational under uncertainty if there
exists a conjecture C´i of player i such that δi max-
imizes player i’s expected utility for some probability



in C´i. In this case, we say that δi is an E-admissible
strategy relative to the conjecture C´i.

Recall that the key idea of the concept of rational-
izability is that each player regards the other other
players as expected utility maximizers. It requires
not only that players are rational in the sense of max-
imizing expected utility with respect some belief, but
also that players’ beliefs should be consistent with
their opponents being rational in a similar way. The
solution concept introduced below extends this idea
to contexts, where each player is assumed to model
the other players as decision makers who employ Γ-
maximin or E-admissibility as the decision rule with
respect to uncertainty. More specifically, we present a
new solution concept that is meant to capture the idea
that players are required to consider only those strate-
gies that are rational under uncertainty, and that are
supported by conjectures that do not contradict with
their opponents being rational under uncertainty.

Now we need to specify the condition for a player’s
conjecture being consistent with her opponents’ ra-
tionality in the senses of Definition 8 and Definition 9
rather than in a traditional decision-theoretic sense.
A natural suggestion is to require that each element
of the conjecture assigns positive probability only to
those actions of her opponents that are rational un-
der uncertainty. Putting these ideas together, we can
formally define the new solution concept called Γ-
maximin rationalizability.

Definition 10. In a strategic form game G, an action
si P Si of player i is Γ-maximin rationalizable if for
each player j P I, there exists a set Aj Ď Sj of actions
such that: (i) si P Ai, and (ii) every action sj in Aj

is Γ-maximin admissible relative to some conjecture
C´j of player j such that the support of each element
of C´j is a subset of A´j.

According to the above definition, one only needs to
find a set of acts and a conjecture for each player
in order to check whether a strategy is Γ-maximin
rationalizable or not. Unlike the above formulation,
Klibanoff [1996] has provided an alternative charac-
terization of rationalizability with uncertainty aver-
sion (see the definition before Theorem 4), which is
defined as an iterative reduction process on the strate-
gies. We shall see that his definition turns out to be
equivalent to the concept of Γ-maximin rationalizabil-
ity defined above. As noted in [Osborne, 2004], there
are two distinct ways of defining rationalizability: one
depends upon an iterated elimination procedure and
the other does not. In the light of this, it seems fair
to say that Klibanoff’s characterization and the above
formulation follow exactly the two different ways to
generalize rationalizability in normal form games to

accommodate uncertainty aversion, although they ac-
tually correspond to the same solution concept.

Analogously, the other solution concept that we call
E-rationalizability can be formally defined as follows.
Definition 11. In a strategic form game G, an action
si P Si of player i is E-rationalizable if for each player
j P I, there exists a set Aj Ď Sj of actions such
that: (i) si P Ai, and (ii) every action sj in Aj is E-
admissible relative to some conjecture C´j of player
j such that the support of each element of C´j is a
subset of A´j.

4 Discussion of Properties

The aim of this section is to establish some prop-
erties of the solution concepts Γ-maximin rationaliz-
ability and E-rationalizability. Among other things,
we will see that, Γ-maximin rationalizability can rea-
sonably embrace a broader class of strategy profiles
as outcomes under certain circumstances in compari-
son with rationalizability, whereas E-rationalizability
can be distinguished from Γ-maximin rationalizabil-
ity based on the ideas originated in decision theory.
In addition, we will characterize the condition under
which these three solution concepts coincide.

4.1 General Results

As we have noted, both of the decision rules, Γ-
maximin and E-admissibility, can be regarded as sim-
ple extensions of the principle of maximizing expected
utility to contexts where uncertainty is modeled by a
set of probability measures. It is obvious that the
former two rules lead to the same recommendations
as the latter one when the set of probability mea-
sures is a singleton set. This enables us to show that
the concepts of Γ-maximin rationalizability and E-
admissibility generalize the notion of rationalizability
to contexts where a set of probabilities is employed to
represent uncertainty in games.
Proposition 4.1. For any strategic form game G and
each player i, if an action s˚i of player i is rationaliz-
able, then it is Γ-maximin rationalizable. This holds
for E-rationalizability as well.

Proof. Suppose that s˚i P Si is rationalizable. Ac-
cording to Definition 3, we have that there exists a
set Zj of actions for each player j P I such that both
conditions specified in the definition are satisfied. Set
Aj ” Zj for every player j. It immediately follows
that s˚i P Ai. And it is clear that every action in Aj is
both Γ-maximin admissible and E-admissible relative
to some conjecture of player j by considering the set
containing only one probability distribution over A´j ,



as in this case both Γ-maximin and E-admissibility
are equivalent to the principle of expected utility max-
imization. We can thus conclude that s˚i is Γ-maximin
rationalizable, and E-rationalizable as well. �

According to Proposition 2.1, the set of rationaliz-
able actions of each player is nonempty for any finite
normal form games. By applying this result, we can
easily establish the existences of Γ-maximin rational-
izable and E-rationalizable action in strategic games.
Corollary 4.2. For any strategic form game, there
always exists at least one Γ-maximin rationalizable ac-
tion for each player i. This holds for E-rationalizable
action as well.

4.2 Comparisons

At this point, the reader may wonder whether the sets
of Γ-maximin rationalizable and E-rationalizable ac-
tions are in fact identical to the set of rationalizable
actions. It has already noted in [Epstein, 1997] that
the concepts of Γ-maximin rationalizability and ra-
tionalizability are not equivalent when the analysis is
restricted to only pure strategies. He also includes a
generic game (see the game of Figure 1 in [Epstein,
1997]) that is designed to illustrate that difference.
Yet he offers no explicit demonstration.

It has been pointed out in [Seidenfeld, 2004] that an
option that is Γ-maximin admissible may not be Bayes
admissible. Inspired by this result, I show by the fol-
lowing example that the concept of Γ-maximin may
induce a larger set of solutions compared to rational-
izability. It also serves the purpose of illustrating the
definition of Γ-maximin rationalizability.

Example 1. Consider the 3ˆ 2 game shown in Fig-
ure 1. Unlike the usual setting which includes mixed
strategies, we assume here that both players’ feasible
options are pure strategies only, that is, explicit ran-
domization is excluded; no non-trivial mixed strategy
is available to any player.

L R
U 10, 1 0, 2
M 4, 10 4, 1
D 0, 1 10, 2

Figure 1: A normal form game

It is easy to verify that only the pure strategies D
and R are rationalizable for player 1 and 2 respec-
tively. The previous argument basically relies on the
fact that player 1’s action M is strictly dominated
when mixed strategies are taken into account. As a
matter of fact, in this game the set of rationalizable

action is the same, regardless of whether we allow ex-
plicit randomization or not. To see this, note that
the action M is a never-best response, and thus does
not belong to the support of any belief of her oppo-
nent. Therefore, the restriction imposed on the fea-
sible options of the players does not alter the set of
rationalizable actions for both players.

Nevertheless, I claim that all the actions of both
player are Γ-maximin rationalizable in the sense of
Definition 10. The crucial part for establishing the
claim is to see that the action M of player 1 is actu-
ally Γ-maximin rationalizable, even though it is not
rationalizable. This can be shown by considering the
following construction: (i) let the sets of actions for
both players be specified as follows: A1 “ tU,Mu
and A2 “ tL,Ru, and (ii) assume that player 1’s
and player 2’s conjecture is depicted respectively by
the following convex sets: C´1 “

 

P1p¨q : tL,Ru Ñ
r0, 1s | P1p¨q is a probability and 0.2 ď P1pRq ď 0.6

(

and C´2 “
 

P2p¨q : tU,M,Du Ñ r0, 1s | P2p¨q is a
probability, P2pDq “ 0, and 0.45 ď P2pUq ď 0.95

(

.

Under the specifications above, it is obvious that the
first condition in Definition 10 is directly satisfied,
since the action M belongs to the set A1 specified for
player 1. And it can be seen from Figure 2 and Fig-
ure 3 that the second condition is also satisfied, since
player 1’s lower expected payoff given by the actions
U and M is the same with respect to the set C´1,
and the actions L and R also yield the same lower
expected payoff to player 2 with respect to the set
C´2. We can thus say that every action in A1 and A2
is Γ-maximin admissible relative to the conjectures
C´1 and C´2 respectively. In addition, note that ev-
ery probability distribution in C´1 and C´2 assigns
positive probability only to those action in A2 and
A1 respectively. We can therefore conclude that the
action M is Γ-maximin rationalizable. Once M can
be Γ-maximin rationalized, it is then straightforward
to verify that the other actions of both players are
Γ-maximin rationalizable as well.

Probability assigned to R

u1

0 1

M

DU
10

4

0.60.2

C−1

Figure 2: Expected utility to player 1

This example illustrates that the set of Γ-maximin ra-
tionalizable actions may differ from the set of rational-
izable actions in some cases. In particular, the former



P2(U)

u2

0 1

R

L
10

0.950.45

C−2

Figure 3: Expected utility to player 2

solution concept admits the action M as a candidate
for the outcome of the game, which is ruled out by the
concept of rationalizability. Intuitively, if player 1 is
completely ignorant about player 2’s strategy choices,
it seems quite reasonable for player 1 to select M , as
it has the highest security level. Thus one may say
that the concept of Γ-maximin rationalizability does
capture our intuition in some games.

The result suggested by the above example is not
surprising, since the concept of Γ-maximin ratio-
nalizability in fact employs a richer representation
of uncertainty than that assumed by rationalizabil-
ity. More precisely, Γ-maximin rationalizability allows
each player to model her opponents as Γ-maximin
decision makers under uncertainty, which in fact in-
cludes the expected utility model considered by ra-
tionalizability as a special case. Hence, the concept
of Γ-maximin rationalizability gives rise to a broader
class of solutions under certain circumstances.

Nevertheless, it has been shown in [Seidenfeld, 2004]
that the E-admissibility criterion differs from the rule
of Γ-maximin in the context of individual decision
making. It is therefore natural to expect that the
solution concepts E-rationalizability and Γ-maximin
rationalizability would not be equivalent in the game-
theoretic context. In order to see this, consider again
the game in Example 1. It is easy to see that player
1’s option M is not E-admissible for any probability
distribution over L,R. Based on this fact, we can then
conclude that M is not E-rationalizable, which is Γ-
maximin rationalizable as established above. There-
fore, E-rationalizability and Γ-maximin rationaliz-
ability are not equivalent to each other in the sense
that they may lead to different sets of admissible ac-
tions for players. It is worthwhile pointing out that
E-rationalizability prescribes the same set of admissi-
ble actions as the one recommended by rationalizabil-
ity in this example. It is not difficult to show that this
holds for all finite normal form games. In this sense,
the concept of E-rationalizability has a more intimate
relationship with the traditional notion of rationaliz-
ability compared to Γ-maximin rationalizability.

Furthermore, there is another subtle difference be-

tween E-rationalizability and Γ-maximin rationaliz-
ability, which is based on some idea in decision the-
ory. As mentioned before, in the context of individ-
ual decision making, Γ-maximin fails to distinguish
among different convex sets of probabilities, while E-
admissibility is capable of distinguishing between any
two closed convex sets of probabilities. Putting this
into a game-theoretic context, we can show that E-
rationalizability and Γ-maximin rationalizability may
lead to different sets of admissible options for a player
given the same conjecture about opponents’ strat-
egy choices. In other words, even though the player
holds the same belief model of the other players, E-
rationalizability may recommend a different set of
admissible options from the other suggested by Γ-
maximin rationalizability. To see this, consider Ex-
ample 1 again. Suppose that player 1’s belief about
player 2’s strategy choice is represented by the con-
jecture C´1 “

 

P1p¨q : tL,Ru Ñ r0, 1s | P1p¨q is a
probability and 0.4 ă P1pRq ď 0.6

(

. Under this be-
lief model, both M and D have the same infimum
of expectation, and thus they are Γ-maximin admissi-
ble. However, only D is E-admissible, since D strictly
dominates M with respect to C´1. In this case, E-
rationalizability and Γ-maximin rationalizability give
rather different recommendations to player 1.

So far, we have shown how the notion of impre-
cise probabilities sheds light on the traditional game-
theoretic framework, by illustrating the difference be-
tween Γ-maximin rationalizability and rationalizabil-
ity, and further by examining the distinction be-
tween E-rationalizability and Γ-maximin rationaliz-
ability. However, it is also interesting to investigate
when these solution concepts turn out to be equiva-
lent. In other words, we want to give the conditions
under which the decision rules Γ-maximin and E-
admissibility reduce to the principle of expected util-
ity maximization, including in cases where a convex
set of probabilities is used to represent uncertainty.

Some basic notation and definitions are necessary for
the following discussion. We are concerned here with
finite decision problems where uncertainty is modeled
by a closed convex set of probability functions. We
let Ω denote a finite state space and let O denote a
finite set of outcomes. An option (or act) f is a map-
ping from the state space Ω to the set of outcomes
O. Let A be a set of options available to the deci-
sion maker. As before, we will use the notation HpAq
to denote the convex hull of A. For sake of simplic-
ity, we assume that the decision maker’s values for
outcomes are determinate and are represented by a
cardinal utility function.

Definition 12. Let A be a set of options and let P
be a convex set of probability distributions on the un-



derlying state space Ω. An option f P A is Bayes
admissible with respect to P if there exists P P P such
that f maximizes the expected utility under P, that is,
EPpfq ě EPpgq for all g P A.

The above criterion recommends selecting those op-
tions in A that maximizes expected utility for at least
one P P P, which corresponds exactly to the idea of
E-admissibility. We can now present the classic result
(see Corollary 3.9.6 in [Walley, 1999] and Theorem 1
in [Schervish et al., 2003]) in decision theory, which
plays a crucial role in establishing the central result
of this section.
Proposition 4.3. If the option set A is convex, then
every option that is maximal admissible with respect
to a closed convex set P of probability distributions is
Bayes admissible with respect to P. That is, if f P A
is not Bayes admissible, then there exists some g P A
different from f such that EPpgq ą EPpfq for all P P P.

We can now characterize the condition under which
the concepts of Γ-maximin rationalizability and E-
rationalizability are equivalent to rationalizability.
Proposition 4.4. For any strategic form game G, if
each player’s choice set is convex and each player’s
conjecture regarding her opponents’ choices is repre-
sented by a closed convex set of probabilities, then
the set of Γ-maximin rationalizable actions is equal
to the set of rationalizable actions. This holds for E-
rationalizability as well.

Proof. pðq: It follows directly from Proposition 4.1.

pñq: Consider an arbitrary player i P I. Suppose that
si is not rationalizable. Then it follows from Propo-
sition 2.3 that si is strictly dominated, which, by
Lemma 2.2, implies that si is a never-best response.
It thus follows that si is not a Bayes admissible action,
since it is not a best response to any belief of player
i. Note that each player’s choice set is assumed to be
convex. Hence, by Proposition 4.3, we have that si is
not maximal admissible, that is, there exists some δi

in player i’s choice set such that player i’s expected
payoff to δi is strictly greater than her expected payoff
to si with respect to any correlated belief regarding
the other players’ strategic behaviors. Accordingly, si

is not Γ-maximin admissible relative to any conjec-
ture, as any conjecture of player i is a subset of the
set of correlated beliefs about her opponents’ strategy
choices. We can therefore conclude that the action si

is not Γ-maximin rationalizable, as required.

The result concerning E-rationalizability can be es-
tablished in a similar fashion. �

Klibanoff [1996] also establishes the equivalence be-
tween Γ-maximin (or uncertainty aversion) rationaliz-

ability and iterated strict dominance (see Theorem 4),
whose proof depends heavily on the equivalence of the
iterative definitions of uncertainty aversion rational-
izability and rationalizability. By contrast, the proof
I present here uses essentially Proposition 4.3, and
thus has a decision-theoretic flavor. To some extent,
the above proof makes explicit why such an equiva-
lence holds by providing an alternative justification
based on an important result in decision theory.

The above result implies that Γ-maximin rationaliz-
ability, E-admissibility and rationalizability suggest
the same set of strategies for each player as rational
decisions for games where players are allowed to con-
sider the convex extensions of their choice sets. And
it is quite standard in game theory to examine all
the mixtures of the pure strategies. In view of this,
we may say that the current framework provides a
more general theoretical foundation for the concept
of rationalizability. That is, the solutions suggested
by rationalizability can be supported by a more gen-
eral decision theory based on weaker assumptions. In
that sense, rationalizability is a quite robust solution
concept, which is implied merely by the assumption
of common knowledge of players being Γ-maximin ra-
tional or E-rational.

5 Concluding Remarks

A variety of mathematical models have been discussed
in the literature to deal with decision making under
uncertainty in single-agent decision problems. In con-
trast with canonical Bayesian decision theory, which
uses just one probability function to represent a de-
cision maker’s uncertainty, these models use impre-
cise probabilities, such as a nontrivial set of proba-
bility functions, to represent uncertainty. Based on
this idea, I have developed in this paper a general
theoretical framework for analyzing how different de-
cision rules can be incorporated into the framework
of normal-form rationalizability when uncertainty is
represented by imprecise probabilities.

More precisely, I extended the notion of rationaliz-
ability to the case where players’ conjectures about
opponents’ strategy choices are represented by a con-
vex set of probability measures, instead of a unique
probability function. In the spirit of rationalizabil-
ity, I introduced a solution concept called Γ-maximin
rationalizability, which captures the idea that each
player models the other players as Γ-maximin deci-
sion makers with respect to sets of probabilities rep-
resenting uncertainty; similarly, I also defined another
solution concept named E-rationalizability. It is easy
to see that both Γ-maximin rationalizability and E-
rationalizability include the concept of rationalizabil-



ity as a special case when the set of probability mea-
sures contains only a single probability function. In
addition, I have shown by an example that these con-
cepts are not equivalent. I have also identified the
conditions under which these solution concepts coin-
cide with each other.

Now I sketch some suggestions for future work along
the current line of research. One natural project is to
apply some other decision rules like maximality to in-
teractive situations, in a way similar to the framework
developed in this paper. And it also seems natural to
extend the current framework to the context of ex-
tensive form games in which sequential decisions are
involved. In this way, one can develop a general the-
ory of games under uncertainty.
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