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Abstract

In probability theory, Iterative Proportional Fitting
Procedure can be used for construction of a joint prob-
ability measure from a system of its marginals. The
present paper studies a possibility of application of an
analogous procedure for belief functions, which was
made possible by the fact that there exist operators
of composition for belief functions.

In fact, two different procedures based on two different
composition operators are introduced. The procedure
based on the composition derived from the Demp-
ster’s rule of combination is of very high computa-
tional complexity and, from the theoretical point of
view, practically nothing is known about its behav-
ior. The other one, which uses the composition de-
rived from the notion of factorization, is much more
computationally efficient, and its convergence is guar-
anteed by a theorem proved in this paper.

Keywords. Marginal problem, belief functions, al-
gorithm, multidimensional model, convergence.

1 Introduction

In probability theory, by a marginal problem we un-
derstand a task to find out whether there exists a
joint probability measure having a given system of
low-dimensional measures for its marginals, and/or
the problem how to find such a joint probability mea-
sure. In statistics this problem appears, for example,
as a subtask of multidimensional contingency tables
analysis. In 1980s, the problem was often solved in
connection with a design of probabilistic knowledge-
based systems [1, 10, 13]. In these expert systems,
marginal measures represent pieces of local knowledge
and the looked for multidimensional measure repre-
sents a knowledge base.

For a solution of a discrete marginal problem famous
Iterative Proportional Fitting Procedure (IPFP) was
suggested by Deming and Stephan in 1940 [3].

Though this iterative procedure was applied to prac-
tical problems since that time, it was only in 1975
when Csiszár proved its convergence [2].

The goal of this paper is to show that an analogous
iterative procedure can be, in principle, applied also
for construction of a multidimensional belief function.
However, as the title of the paper suggests, this ap-
plication is connected with several open questions.

1.1 Notation

In this paper we use the notation from the ISIPTA
2011 paper [4]: XN = X1 × X2 × . . . × Xn, denotes a
finite multidimensional space, and its subspaces (for
all K ⊆ N) are denoted by

XK =×i∈KXi.

For a point x = (x1, x2, . . . , xn) ∈ XN its projection
into subspace XK is denoted x↓K = (xi)i∈K , and for
A ⊆ XN

A↓K = {y ∈ XK : ∃x ∈ A, x↓K = y}.

By a join of two sets A ⊆ XK and B ⊆ XL we under-
stand a set

A ◃▹ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that if K and L are disjoint, then A ◃▹
B = A × B, if K = L then A ◃▹ B = A ∩ B, and,
generally, for C ⊆ XK∪L, C is a subset of C↓K ◃▹ C↓L,
which may be proper.

A basic assignment m on XK (K ⊆ N) is a real valued
function on P(XK), for which∑

∅≠A⊆XK

m(A) = 1.

Notice that in agreement with Shenoy’s papers (see
e.g., [12]) we admit also negative values of a basic
assignment. This is why we will call a basic assign-
ment to be proper if all its values are nonnegative. If



m(A) ̸= 0, then A is said to be a focal element of m.
Considering two proper basic assignments m1,m2 on
the same space XK , we say that m1 is dominated by
m2, if for all A ⊆ XK : m1(A) > 0 =⇒ m2(A) > 0.

Having a basic assignment m on XK one can consider
its marginal assignments. On XL (for L ⊆ K) it is
defined (for each ∅ ≠ B ⊆ XL):

m↓L(B) =
∑

A⊆XK :A↓L=B

m(A).

Each basic assignment m on XK can uniquely be rep-
resented by its commonality function, which is a set
function Q : P(XK) −→ [0,+∞) defined for each
A ⊆ XK

Q(A) =
∑

A⊆B⊆XK

m(B).

Recall the formula from [11] yielding for each com-
monality function the respective basic assignment:

m(A) =
∑

A⊆B⊆XK

(−1)|B\A|Q(B)

for each A ⊆ XK .

1.2 Operators of composition

In this paper we will take advantage of the fact that
the probabilistic IPFP can easily (and elegantly) be
expressed with the help of the so called operator of
composition [5] that was defined in ISIPTA paper
[8] also for belief functions. In [6] (see also an ex-
tended version of this conference contribution, which
is to appear in IJAR [7]) it was shown that the op-
erator of composition can also be defined within the
Shenoy’s valuation based systems (VBS) [12] that, as
a generic uncertainty calculus, covers not only prob-
ability theory but also some other uncertainty calculi
like Spohns epistemic belief theory, Dempster-Shafer
belief function theory, and others.

In VBS’s the operator of composition is derived from
the operation of combination ⊕ and its inverse opera-
tion called removal ⊖. For two basic assignments m1,
m2 on XK , XL, respectively, the operator of compo-
sition is defined as

m1 ◃ m2 = m1 ⊕m2 ⊖m↓K∩L
2 , (1)

from which one immediately sees its semantics: we
combine knowledge contained in m1 and m2, and to
prevent double counting of knowledge when double
counting matters, we remove the knowledge contained
in m↓K∩L

2 .

In Dempster-Shafer theory, the role of this general
operator of composition ⊕ is played quite naturally

by the Dempster’s rule of combination ⊕D. Thus, for
m1, m2 on XK , XL, respectively, for each nonempty
A ⊆ XK∪L

(m1 ⊕D m2)(A)

= Γ−1
∑

B⊆XK ,C⊆XL:B◃▹C=A

m1(B) ·m2(C),

where Γ is the normalization factor

Γ =
∑

B⊆XK ,C⊆XL:B◃▹C ̸=∅

m1(B) ·m2(C).

It is not an easy task to specify in terms of basic
assignments the removal operator that should be an
inverse to the Dempster’s rule of combination. There-
fore we take advantage of the fact famous from [11]
saying that the commonality function (Q1⊕DQ2) cor-
responding to the basic assignment (m1 ⊕D m2) can
easily be got as the pointwise product of commonality
functions Q1 and Q2 corresponding to basic assign-
ments m1 and m2, respectively. More precisely

(Q1 ⊕D Q2)(A) = Γ−1Q1(A
↓K) ·Q2(A

↓L),

where Γ is again a normalization constant, which is
now computed

Γ =
∑

A⊆XK∪L

(−1)|A|+1Q1(A
↓K) ·Q2(A

↓L).

From the definition of the combination operator for
commonality functions, one can immediately see that
the inverse removal operator must be defined for all
A ⊆ XK∪L

(Q1 ⊖D Q2)(A) =

{
Γ−1Q1(A

↓K)
Q2(A↓L)

if Q2(A
↓L) > 0,

0 otherwise,

with

Γ =
∑

A⊆XK∪L:Q2(A↓L)>0

(−1)|A|+1Q1(A
↓K)

Q2(A↓L)
.

So, following the results from [7], within D-S theory
the proper operator of composition is defined

m1 ◃D m2 = m1 ⊕D m2 ⊖D m↓K∩L
2 .

Its main disadvantage is its great computational com-
plexity following, among others, from the fact that we
do not know other way how to compute the compo-
sition ◃D of basic assignments than first transform-
ing basic assignments m1,m2,m

↓K∩L
2 into the corre-

sponding commonality functions, computing Q1 ◃D



Q2 = Q1 ⊕D Q2 ⊖D Q↓K∩L
2 , and afterwards trans-

forming the resulting composed commonality function
back into the corresponding basic assignment.

One of the results from [7] says that the operator of
composition ◃D is different from the one defined in
[8], which we are going to introduce now. In what
follows, the operator from [8] will be denoted ◃F .

Consider two arbitrary basic assignments m1 on XK

and m2 on XL (K ̸= ∅ ̸= L) a composition m1 ◃F m2

is defined for each C ⊆ XK∪L by one of the following
expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ◃▹ C↓L then

(m1 ◃F m2)(C) =
m1(C

↓K) ·m2(C
↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K × XL\K

then
(m1 ◃F m2)(C) = m1(C

↓K);

[c] in all other cases (m1 ◃F m2)(C) = 0.

Let us note that similarly to ◃D, also the operator ◃F
can be expressed in the form of formula (1) but, nat-
urally, with a different operator of combination. We
will not need it in this paper, nevertheless let us men-
tion for the interested reader that the corresponding
operator ⊕F for m1,m2 on XK ,XL, respectively, is
defined by the following formula (for each A ∈ XK∪L)

(m1 ⊕F m2)(A)

=

{
Γ−1m1(A

↓K)m2(A
↓L) if A = A↓K ◃▹ A↓L,

0 otherwise,

where

Γ =
∑

A⊆XK∪L:A=A↓K◃▹A↓L

m1(A
↓K) ·m2(A

↓L).

Returning back to the main topic of this paper, let
us summarize that in this section we have introduced
two operators of composition ◃D and ◃F . Though
they differ from each other, as expressed in the follow-
ing Proposition (for proofs see [8, 7]), both of them
meet the basic properties required from an operator
of composition.

Proposition 1 Let m1 and m2 be basic assignments
defined on XK ,XL, respectively. Then both operators
of composition ◃D and ◃F meet the following proper-
ties:

1. m1 ◃ m2 is a basic assignment on XK∪L;

2. (m1 ◃ m2)
↓K = m1;

3. m1 ◃ m2 = m2 ◃ m1 ⇐⇒ m↓K∩L
1 = m↓K∩L

2 ;

4. For M ⊆ K, m1 = m↓M
1 ◃ m1.

The reader probably noticed that Property 2 guaran-
tees that if L ⊆ K then m1 ◃D m2 = m1 ◃F m2. It
is really an easy task to show that the same equality
holds true also when K∩L = ∅. Nevertheless, not too
much is known about other situations. It is clear that
the above conditions are not necessary. Namely, the
same equality holds true when one composes Bayesian
basic assignments (i.e. basic assignments whose all
focal elements are singletons). This is why we can
formulate the first open problem.

Open Problem 1 Is it possible to specify necessary
and sufficient conditions under which m1 ◃D m2 =
m1 ◃F m2?

2 IPFP

In this section we will describe the Iterative Propor-
tional Fitting Procedure with the help of the operator
of composition. It can be applied to a system of basic
assignments using any of the two operators of compo-
sition introduced in the previous section. This is why
we use just the symbol ◃. It is important to realize,
that for this computational process we need an oper-
ator possessing all the properties from Proposition 1,
and we do not know any other operator meeting these
properties.

Assume there is a system of n low-dimensional
basic assignments m1,m2, . . . ,mn defined on
XK1 ,XK2 , . . . ,XKn , respectively. During the com-
putational process, an infinite sequence of basic
assignments µ0, µ1, µ2, µ3, . . . is computed, each of
them defined on XK1∪...∪Kn . In case this sequence is
convergent, its limit is the result of this process.

Algorithm IPFP Define the starting basic assign-
ment µ0 on XK1∪K2∪...∪Kn .
Then compute

µ1 = m1 ◃ µ0

µ2 = m2 ◃ µ1

µ3 = m3 ◃ µ2

...

µn = mn ◃ µn−1

µn+1 = m1 ◃ µn

...



focal elements m
{a1ā2a3, ā1a2a3} 0.2
{a1a2ā3, a1ā2a3} 0.3

{a1a2ā3, a1ā2ā3, ā1a2ā3, ā1ā2a3} 0.5

Table 1: Three-dimensional assignment m

µ2n = mn ◃ µ2n−1

µ2n+1 = m1 ◃ µ2n

...

As said in Introduction, when this algorithm is ap-
plied to probability measures, it has some nice and
useful properties, most of which were proved by
Csiszár in his famous paper [2]. So it is not sur-
prising that the general properties formulated and
proved here for belief functions (including the pre-
sented proofs) are based on the Csiszár’s results.

Theorem 1 If the sequence µ0, µ1, µ2, µ3, . . . com-
puted by the Algorithm IPFP converges then the basic
assignment

µ∗ = lim
i→+∞

µi

is a common extension of all m1,m2, . . . ,mn, i.e.,

(µ∗)↓Kj = mj

for all j = 1, . . . , n.

Proof. Consider any j ∈ {1, 2, . . . , n}. From Prop-
erty 2. of Proposition we get that mj is marginal
of all the assignments µj , µn+j , µ2n+j , µ3n+j , . . ., and
therefore mj is marginal also to the limit of this sub-
sequence

( lim
k→+∞

µkn+j)
↓Kj = mj .

From the basic course on mathematical analysis we
know that if a sequence converges, then all their sub-
sequences converge, too, and the limits are the same.
Therefore, (µ∗)↓Kj = mj . �

2.1 IPFP with ◃F

Example 1 Let us first illustrate and comment the
process on a simple example. Consider a three-
dimensional space X{1,2,3}, with Xi = {ai, āi}. To be
sure that the considered system of two-dimensional
basic assignments is consistent, i.e., that there ex-
ists their common extension, consider the three-
dimensional assignment on X{1,2,3} with three focal
elements from Table 1. Its two-dimensional marginal

focal elements values
m1 {a1ā2, ā1a2} 0.2

{a1a2, a1ā2} 0.3
{a1a2, a1ā2, ā1a2, ā1ā2} 0.5

m2 {a2a3} 0.2
{a2ā3, ā2a3} 0.3

{a2a3, a2ā3, ā2a3, ā2ā3} 0.5
m3 {a1a3, ā1a3} 0.2

{a1a3, a1ā3} 0.3
{a1ā3, ā1, a3, ā2ā3} 0.5

Table 2: Consistent assignments m1,m2,m3

assignments m1 = m↓{1,2},m2 = m↓{2,3} and m3 =
m↓{1,3} are in Table 2.

The computational process starting with µ0(A) =
1/255 for all nonempty A ⊆ X{1,2,3} is depicted in
Table 3. We do not present here assignments µ1 and
µ2, because they have 99, and 15 focal elements, re-
spectively. Starting with µ3 all the remaining compu-
tations concern only six focal elements represented by
six rows of Table 3. Looking at this table the reader
perhaps believes that the process converges, and that
the limit assignment has eventually only four focal
elements.

The convergence of the procedure in the previous ex-
ample is not surprising because for ◃F we can use the
ideas from the Csiszár’s proof [2] to get the following
theorem.

Theorem 2 Consider a system of proper ba-
sic assignments m1,m2, . . . ,mn defined on
XK1 ,XK2 , . . . ,XKn and a proper basic assign-
ment µ0 on XK1∪...∪Kn . If there exists a proper
basic assignment ν on XK1∪...∪Kn such that ν is
dominated by µ0, and ν is a common extension of all
m1,m2, . . . ,mn, then the sequence µ0, µ1, µ2, µ3, . . .
computed by the Algorithm IPFP with ◃F converges.

The proof is based on the following auxiliary asser-
tion.

Lemma 1 Consider two basic proper assignments µ, ν
on XL, and let K ⊆ L. Denote

D(ν∥µ) =
∑

A⊆XL:µ(A)>0

µ(A) log
µ(A)

ν(A)
.

If ν dominates µ (i.e., ν(A) = 0 ⇒ µ(A) = 0) then

D(ν∥µ) = D(ν∥µ↓K ◃F ν) +D(µ↓K ◃F ν∥µ).



focal elements µ3 µ4 µ5 µ6 µ7 µ8 µ100 µ1000

{a1ā2a3, ā1a2a3} 0.156 0.200 0.166 0.166 0.200 0.172 0.195 0.199
{a1a2a3, a1ā2a3, ā1a2a3, ā1ā2a3} 0.043 0.040 0.033 0.033 0.031 0.027 0.004 4 · 10−4

{a1a2ā3, a1ā2a3} 0.146 0.146 0.300 0.211 0.211 0.300 0.293 0.299
{a1a2ā3, a1ā2a3, a1ā2ā3} 0.153 0.153 0.124 0.088 0.085 0.079 0.006 7 · 10−4

{a1a2ā3, a1ā2ā3, ā1a2ā3, ā1ā2a3} 0.250 0.230 0.187 0.250 0.234 0.210 0.250 0.250
{a1a2ā3, a1ā2ā3, ā1a2ā3, ā1ā2a3, ā1ā2ā3} 0.250 0.230 0.187 0.250 0.234 0.210 0.250 0.250

Table 3: m1 ◃F µ0

Proof.

D(ν∥µ)

=
∑

A⊆XL:µ(A)>0

µ(A) log

(
µ(A)

ν(A)
· (µ

↓K ◃F ν)(A)

(µ↓K ◃F ν)(A)

)

=
∑

A⊆XL:µ(A)>0

µ(A) log
µ(A)

(µ↓K ◃F ν)(A)

+
∑

A⊆XL:µ(A)>0

µ(A) log
(µ↓K ◃F ν)(A)

ν(A)

= D(µ↓K ◃F ν∥µ)

+
∑

A⊆XL:µ(A)>0

µ(A) log
(µ↓K ◃F ν)(A)

(ν↓K ◃F ν)(A)
.

The last modification is based on Property 4 of Propo-
sition.

Realize, now, that the last summation is performed
over those A ⊆ XL for which µ(A) > 0, and there-
fore, due to the assumed dominance, ν(A) > 0, too.
Therefore, both (µ↓K ◃F ν)(A) and (ν↓K ◃F ν)(A) are
computed according to case [a] of the respective defi-
nition getting

(µ↓K ◃F ν)(A)

(ν↓K ◃F ν)(A)
=

µ↓K(A↓K)·ν(A)
ν↓K(A↓K)

ν↓K(A↓K)·ν(A)
ν↓K(A↓K)

=
µ↓K(A↓K)

ν↓K(A↓K)
.

So, we can proceed further in computation of D(ν∥µ):

D(ν∥µ)
= D(µ↓K ◃F ν∥µ)

+
∑

A⊆XL:ν(A)>0

µ(A) log
µ↓K(A↓K)

ν↓K(A↓K)

= D(µ↓K ◃F ν∥µ)

+
∑

B ⊆ XK

ν(B) > 0

∑
A ⊆ XL : ν(A) > 0

A↓K = B

µ(A) log
µ↓K(A↓K)

ν↓K(A↓K)

= D(µ↓K ◃F ν∥µ)

+
∑

B ⊆ XK

ν(B) > 0

log
µ↓K(B)

ν↓K(B)

∑
A ⊆ XL : ν(A) > 0

A↓K = B

µ(A)

= D(µ↓K ◃F ν∥µ)

+
∑

B⊆XK :ν(B)>0

µ(B) log
µ↓K(B)

ν↓K(B)
,

where the last modification is based on the formula
for marginalization.

Regarding the fact that using analogous computations

D(ν∥µ↓K ◃F ν)

=
∑

A⊆XL
(µ↓K◃F ν)(A)>0

(µ↓K ◃F ν)(A) log
(µ↓K ◃F ν)(A)

(ν↓K ◃F ν)(A)

=
∑

A⊆XL
(µ↓K◃F ν)(A)>0

(µ↓K ◃F ν)(A) log
µ↓K(A↓K)

ν↓K(A↓K)

=
∑

B⊆XK :ν(B)>0

µ(B) log
µ↓K(B)

ν↓K(B)
,

we have finished the proof. �

Proof of Theorem 2. First notice that the function
D(ν∥µ) introduced in the previous Lemma is in fact
the famous Kullback-Leibler divergence between two
probability measures (let us stress that we assume
that all the involved basic assignments are proper,
because ◃F composition of two proper assignments is
obviously also proper) defined on 2XL , which is known
to be nonnegative, equals 0 if and only if ν = µ, and is
finite if ν dominates µ. Moreover, since ν is assumed
to be a common extension of all m1,m2, . . . ,mn, it
means that ν↓Kj = mj for all j = 1, 2, . . . , n.

So, following the idea of Csiszár, we can apply



Lemma 1 getting

D(µ0∥ν) = D(µ0∥m1 ◃F µ0) +D(m1 ◃F µ0∥ν),

where m1 ◃F µ0 = µ1 computed by Algorithm IPFP.
Analogously,

D(µ1∥ν) = D(µ1∥µ2) +D(µ2∥ν),
D(µ2∥ν) = D(µ2∥µ3) +D(µ3∥ν),

...

and therefore

D(µ0∥ν) ≥
∞∑
j=1

D(µj−1∥µj).

Since we assume that µ0 dominates ν, D(µ0∥ν) is fi-
nite, and therefore

lim
j→∞

D(µj−1∥µj) = 0.

The required convergence of µ0, µ1, µ2, µ3, . . . follows
directly from the fact that the last equality guarantees
also that (for more details see [2])

lim
j→∞

∑
A⊆XK1∪...∪Kn

|µj−1(A)− µj(A)| = 0.
�

Example 2 Let us conclude this section with an ex-
ample illustrating behavior of the Algorithm IPFP in
case of an inconsistent system of basic assignments. It
is clear that IPFP does not converge in this case, be-
cause, due to Theorem 1, otherwise it would have con-
verged to a joint extension of the given assignments,
which does not exist. However, based on our experi-
ments, there exist converging subsequences. This phe-
nomenon is known also from the probabilistic IPFP
[14].

Let us consider three basic assignments m1,m2, and
m3 defined on X{1,2}, X{2,3}, X{1,3}, respectively,
where, again, Xi = {ai, āi}. The focal elements of
these assignments as well as the respective values are
in Table 4.

Now, let us perform the IPFP process with µ0 that
is the same as in Example 1: µ0(A) = 1/255 for all
nonempty A ⊆ X{1,2,3}. A part of the computational
process is depicted in Table 5.

In this situation, the beginning of the process is not
interesting. But after a several cycles, we can see that
the iteration process goes through cyclical changes.
From this example we can see that there are three
convergent subsequences, namely

µ1, µ4, µ7, . . . , µ3k+1, . . .
µ2, µ5, µ8, . . . , µ3k+2, . . .
µ3, µ6, µ9, . . . , µ3k, . . .

focal elements values
m1 {ā1a2} 0.55

{a1ā2, ā1a2} 0.40
{a1a2, ā1a2, ā1ā2} 0.05

m2 {a2a3} 0.63
{a2a3, a2ā3, ā2a3} 0.22
{a2a3, a2ā3, ā2ā3} 0.15

m3 {ā1a3} 0.65
{a1a3, ā1a3, ā1ā3} 0.35

Table 4: Inconsistent assignments m1,m2,m3

In all our computational experiments it appeared that
the length of the cycle which the process goes through
corresponds to the number of basic assignments enter-
ing the computational process, and that the respective
subsequences converged.

2.2 IPFP with ◃D

Let us say at the very beginning of this section that
considering the operator ◃D leads to many open prob-
lems. One of the reasons is connected with the compu-
tational complexity of this operator. Namely, compu-
tational complexity of composition operators is, nat-
urally, closely connected with the number of focal el-
ements to be enumerated. As a rule, D-operator pro-
duces a higher number of focal elements in comparison
with F-operator. Moreover, in case of F-operator the
enumeration of a value of a basic assignment for each
focal element is got as a product of the respective pro-
jections of the focal element (i.e. a product of only
two numbers), for D-operator one needs to process
all the supersets of the respective projections. Thus,
we can apply the IPFP Algorithm with D-operator
only to very simple examples and even for them we
cannot compute too long sequences µ0, µ1, µ2, µ3, . . ..
Other difficulties connected with application of this
operator of composition will be formulated as open
problems. The first one is connected with the fact,
that in contrast to ◃F , composition ◃D of two proper
basic assignments need not be proper - it can achieve
negative values.

Open Problem 2 What are the necessary and suffi-
cient conditions guaranteeing that ◃D composition of
two proper assignments is also proper?

Example 3 Consider first the same system of three
consistent basic assignments as in Example 1, and
start the computational process again with µ0(A) =
1/255 for all nonempty A ⊆ X{1,2,3}. Assignments
µ1 and µ2 have now 99, and 70 focal elements, re-
spectively. Starting with µ3 all the remaining com-
putations concern 44 focal elements, and nearly half



focal elements µ13 µ14 µ15 µ16 µ17 µ18 µ43 µ44 µ45{
a1a2a3, ā1a2a3,
ā1a2ā3, ā1ā2ā3

}
0.049 0.150 0.142 0.049 0.150 0.142 0.050 0.150 0.142{

a1a2a3, ā1a2ā3,
ā1ā2a3

}
0.001 2 · 10−4 2 · 10−4 7 · 10−5 5 · 10−5 5 · 10−5 10−10 10−10 10−10{

a1a2a3, ā1a2a3,
ā1a2ā3, ā1ā2a3

}
0.001 2 · 10−4 2 · 10−4 7 · 10−5 5 · 10−5 5 · 10−5 10−10 10−10 10−10{

a1ā2a3, ā1a2a3,
ā1a2ā3

}
0.400 0.219 0.208 0.400 0.219 0.208 0.400 0.220 0.208

{ā1a2a3} 0.550 0.630 0.650 0.550 0.630 0.650 0.550 0.630 0.650

Table 5: IPFP ◃F : inconsistent marginals

focal elements µ3 µ4 µ5 µ6 µ7 µ100 µ1000

{a1ā2a3, ā1a2a3} 0.020 0.030 0.033 0.031 0.039 0.085 0.095
{a1a2a3, a1ā2a3, ā1a2a3, ā1ā2a3} 0.017 0.042 0.046 0.042 0.047 0.031 0.010

{a1a2ā3, a1ā2a3} 0.141 0.208 0.233 0.168 0.203 0.294 0.299
{a1a2ā3, a1ā2a3, a1ā2ā3} 0.103 0.152 0.140 0.101 0.122 0.014 10−4

{a1a2ā3, a1ā2ā3, ā1a2ā3, ā1ā2a3} 0.097 0.226 0.208 0.232 0.260 0.413 0.476
{a1a2ā3, a1ā2ā3, ā1a2ā3, ā1ā2a3, ā1ā2ā3} 0.097 0.226 0.208 0.232 0.260 0.413 0.476

{a1a2ā3, a1ā2ā3, ā1a2ā3} −0.047 −0.034 −0.045 −0.090 −0.051 −0.190 −0.228
{ā1a2ā3, ā1ā2ā3} −0.021 −0.020 −0.015 −0.001 0.004 0.012 0.001

Table 6: IPFP ◃D: converging sequence for consistent marginals

of them have negative values. After a thousand
of iterative steps the changes are so small that we
can take µ1000 as a limit of the computational pro-
cess. In agreement with Theorem 1 we can see that

m1
.
= m

↓{1,2}
1000 ,m2

.
= m

↓{2,3}
1000 and m3

.
= m

↓{1,3}
1000 .

A part of the computational process is depicted in
Table 6. We selected 8 focal elements, the first 6 of
them correspond to those from Table 3, the other 2
are chosen to present examples of focal elements with
negative values. Observe that the last focal element
switched its value from a negative one to a positive
one during the IPFP.

Example 4 It shows up that in contrast to the ap-
plication of ◃F , the Algorithm IPFP with ◃D need not
converge for a consistent system of marginal basic as-
signments. As an example consider the 3-dimensional
assignment m from Table 7 and its marginals m1 =
m↓{1,2},m2 = m↓{2,3}, m3 = m↓{1,3}. With µ0 as in
the previous examples, the sequence µ0, µ1, µ2, µ3, . . .
computed by the Algorithm IPFP does not converge
- it stabilizes in a loop of length 6 after approximately
560 iterations (i.e. µ601 = µ607, µ602 = µ608, . . .). The
strange behavior of this process is visible from Table 8,
where a selected part of focal elements are presented.
There are two phenomena that are in a way surpris-
ing. First, it is the length of the cycle (6), and the
fact that even focal elements may variate during the

focal elements m
{ā1ā2ā3} 0.225

{a1ā2ā3, ā1a2a3} 0.126
{ā1a2ā3, ā1ā2ā3} 0.594
{ā1ā2a3, ā1ā2ā3} 0.024

{a1ā2a3, a1ā2ā3, ā1ā2a3, ā1ā2ā3} 0.031

Table 7: Three-dimensional assignment m

cycle.

Open Problem 3 Under what conditions does the
sequence µ0, µ1, µ2, µ3, . . . computed by the Algorithm
IPFP with ◃D converge? When is the limit assign-
ment proper?

3 Summary and Conclusions

Using two different operators of composition for be-
lief functions that were studied in [6, 7], we designed
two versions of the iterative procedure presented as
Algorithm IPFP. If they converge, both of these al-
gorithms yield basic assignments that have the input
low-dimensional assignments for their marginals. But
this is perhaps the only property common to both of
them. Even in case that both the algorithms con-
verge, the results may be different. In fact, we con-
jecture that these algorithms yield the same results



focal elements µ601 µ602 µ603 µ604 µ605 µ606 µ607 µ608 µ609

{ā1a2a3} −0.008 0 −0.047 0.036 0 −0.052 −0.008 0 −0.047
{a1ā2a3} −0.023 0.008 0.047 0.008 −0.007 0.052 −0.023 0.008 0.047
{a1ā2ā3} 0.008 −0.003 −0.123 −0.036 0.006 0.033 0.008 −0.003 −0.123
{ā1ā2a3} −0.076 0.012 0.348 −0.038 −0.051 0.279 −0.076 0.012 0.348
{ā1ā2ā3} 0.227 0.205 0 0.232 0.242 0 0.227 0.205 0

{a1ā2ā3, ā1a2a3} 0.110 0.082 0.157 0.066 0.071 0.157 0.110 0.082 0.157
{ā1a2a3, ā1ā2ā3} 0 0.043 0 0 0.054 0 0 0.043 0
{a1ā2a3, ā1ā2a3} 0.058 −0.004 0.055 0.050 0.001 0.055 0.058 −0.004 0.055
{a1ā2a3, a1ā2ā3} 0.076 0.034 0 0.038 0.046 0 0.076 0.034 0
{a1ā2ā3, ā1ā2a3} 0.044 0.020 −0.031 0.007 0.008 −0.031 0.044 0.020 −0.031
{ā1ā2a3, ā1ā2ā3} 0.044 0.020 −0.031 0.007 0.008 −0.031 0.044 0.020 −0.031
{a1ā2ā3, ā1a2ā3} 0.015 0.016 0.140 0.059 0.058 0.022 0.015 0.016 0.140
{ā1a2ā3, ā1ā2ā3} 0.535 0.576 0.593 0.542 0.535 0.505 0.535 0.576 0.593
{a1ā2ā3, ā1ā2ā3} 0.031 0.007 −0.140 0.031 0.033 −0.022 0.031 0.007 −0.140{
a1ā2a3, a1ā2ā3,
ā1ā2a3, ā1ā2ā3

}
−0.044 −0.020 0.031 −0.007 −0.008 0.031 −0.044 −0.020 0.031

Table 8: IPFP ◃D: non-converging sequence for consistent marginals

only in degenerate situations. As a rule, application
of ◃D yields basic assignments with greater number of
focal elements (compare Examples 1 and 3).

The algorithm employing ◃F manifests some of the
nice properties of the probabilistic IPFP: its conver-
gence is guaranteed for consistent systems of low-
dimensional assignments. Moreover, its significantly
lower computational complexity predestinates this
version of the algorithm to practical applications. An-
other its advantage follows from the fact that if the
input assignments are proper then the resulting ba-
sic assignment is also proper, which is not true for
the Algorithm based on ◃D. For example, when we
randomly generated three-dimensional basic assign-
ments, and applied the Algorithm IPFP with ◃D to
their two-dimensional marginals, only about every fif-
teens solution was proper.

As it was highlighted in one of the referee reports, the
application of the IPFP procedure may be extended
beyond probability theory to other topics as, for ex-
ample, that described in [9]. In fact, as the title of
the paper suggests, the authors see several ways how
to prolong the research in the field.
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