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Abstract

One method for building classification trees is to
choose split variables by maximising expected en-
tropy. This can be extended through the application
of imprecise probability by replacing instances of ex-
pected entropy with the maximum possible expected
entropy over credal sets of probability distributions.
Such methods may not take full advantage of the op-
portunities offered by imprecise probability theory. In
this paper, we change focus from maximum possible
expected entropy to the full range of expected entropy.
We present an entropy minimisation algorithm using
the non–parametric inference approach to multino-
mial data. We also present an interval comparison
method based on two user–chosen parameters, which
includes previously presented splitting criteria (maxi-
mum entropy and entropy interval dominance) as spe-
cial cases. This method is then applied to 13 datasets,
and the various possible values of the two user–chosen
criteria are compared with regard to each other, and
to the entropy maximisation criteria which our ap-
proach generalises.

Keywords. Imprecise probability, classification
trees, nonparametric predictive inference

1 Introduction

The process of classification involves the splitting of a
heterogeneous data space into homogeneous disjoint
subspaces with respect to the nominal class(ification)
variable C, with the aim of predicting future values of
C. This is achieved by determining the splits through
the values of feature/attribute variables (X1, . . . , Xn).
Let C take values/categories in C = {c1, . . . , cK} and
each Xi take values in the corresponding set Xi, where
for reasons of simplicity the feature variables are as-
sumed to be on a nominal scale. The key consider-
ation is how the homogeneous subspaces are to be
constructed.

One method is a classification tree, which partitions
the data space into orthotope shaped subspaces. The
tree is grown from the root node, which corresponds
to the complete data set, and ends in disjoint subsets
known as leaves; this is done by recursively applying
a splitting procedure. In this paper we consider only
k–array splitting as in [4] which is based on Quinlan’s
ID3 [12] algorithm. In each step an optimal split vari-
able with respect to an impurity criterion is evaluated,
which is then assigned to the node; the data contained
in the node are then split according to the values of
this split variable. If no such optimal split variable
may be found the node is declared as a leaf. A value
of C is assigned to each leaf, this value is the most
frequent category in its corresponding data subset (in
the case of a tie, the most frequent category in the
data subset of its parent node is used, and so on).

The optimality of a split candidate within a node
is measured by the gain in a pre–specified informa-
tion measure IM . Let N be the data relevant to the
node. The information criterion for the node, IM(N),
and for each of the unassigned attribute variables Xi,
IM(N |Xi) (the information criterion evaluated fol-
lowing a split in Xi of N according to the values
of Xi), are then calculated. A split is performed if
IM(N) < IM(N |Xi) for some Xi.

A reasonable measure is the Information Gain, based
on Shannon’s entropy [13]. Define nN = |N | and nNj
the number of instances within N of class cj , and
furthermore denote the relative frequencies

pNj =
nNj
nN

, px̂i
j =

nx̂i
j

nx̂i
, (1.1)

with x̂i = {d ∈ N |Xi = xi}, then the information of
N following a split in Xi is defined as

I(N,Xi) =
∑

xi∈Xi

p(Xi = xi)H(px̂i), (1.2)

where p(Xi = xi) is also estimated by relative fre-



quencies and H(·) is the Shannon–Entropy defined as

H(p) = −
K∑
j=1

pj ln(pj), (1.3)

for probability distribution p. H(p) attains its mini-
mum (0) for some pj = 1 and its maximum (ln(K)) for
the uniform distribution. While the probability dis-
tribution attaining the maximum is unique for fixed
K, this does obviously not hold for the one attaining
the minimum.

Finally, the Information Gain is defined as

IM(N,Xi) = H(pN )− I(N,Xi). (1.4)

In determining the split variable only I(N,Xi) in
(1.4) is relevant. Maximising (1.4) implies minimising
I(N,Xi) which requires minimising entropy.

Up to this point the probabilities p·j = P (C = cj |·)
were estimated by classical relative frequencies and
thus too is the associated probability distribution. In
[4] this single distribution is replaced by a credal set of
probability distributions estimated by the Imprecise
Dirichlet Model (IDM), giving intervals for p·j of

px̂i
j ∈

[
nx̂i
j

nx̂i + s
,
nx̂i
j + s

nx̂i + s

]
. (1.5)

Note that s influences the degree of imprecision; this
parameter is commonly set to s = 1 or s = 2.

There are alternatives to the IDM; the Non-
Parametric Predictive Inference (NPI) approach [6] is
one. This is applied in [5] and [8] to replace the IDM
with the multinomial NPI and ordinal NPI, respec-
tively. A short introduction to this method follows.

The NPI approach is is designed to assume as little
as is possible about a distribution from which obser-
vations are taken. Assume n observations x1, . . . , xn
have been made. In the ordinal case, these are re-
labelled so that x1 < x2 < . . . xn. It is then assumed
that observation xn+1 has probability 1

n+1 of being
smaller than x1, the same probability of being larger
than xn, and the same probability of lying in any
given data interval Ij+1 = [xj , xj+1] for 1 ≤ j ≤ n−1
(we set I1 = (−∞, x1] and In+1 = [xn,∞)). This is
known as Hill’s assumption, A(n) [11].

By using a latent variable approach, a category cj in
C can be considered as equivalent to some interval
ICj overlapping the data intervals. The interval ICj

itself is unknown (though IC1 and ICK have known
bounds at negative and positive infinity, respectively),
but its bounds must lie within data intervals which
have an observation cj as exactly one bound. There-
fore each interval Ik can be said to be either entirely

within ICj , partially within it, or wholly outside it.
The lower probability that xn+1 ∈ cj is then simply
calculated by summing the probability mass of all in-
tervals Ik which lie entirely within ICj . The upper
probability that xn+1 ∈ cj is calculated by summing
the probability mass of all intervals Ik with a non-zero
intersection with ICj .

In the case of multinomial data, these intervals are
represented as slices on a probability “wheel”, with
the observations that forming the interval boundaries
representing the lines separating those slices. Obser-
vation xn+1 has equal chance 1

n of falling within any
given slice on the wheel. This is referred to as the
circular Hill assumption, or circular-A(n).

All observations of the same category are adjacent on
the wheel, and any slices between those observations
must be assigned to that category. Slices between
two different observations can be assigned to either or
both those observations, and/or to a previously unob-
served condition (since slices for a given category are
adjacent, a given unobserved category can be assigned
to at most one such slice).

Therefore the lower probability of category j is equal
to the probability mass of those slices with category j
observations on either side. An exception is the case
in which all observations come from a single category,
one slice is left unassigned, resulting in a lower prob-
ability of n−1

n .

The upper probability is equal to the probability mass
of of all those slices with category j observations on
at least one side. An exception is the case in which
cj in unobserved; in this case the upper probability
is equal to 1

n , as only one slice can be assigned that
category.

In the multinomial NPI case, then, the interval in
(1.5) is replaced with

[
max

(
0,
nx̂i
j − 1

nx̂i

)
,min

(
nx̂i
j + 1

nx̂i
, 1

)]
. (1.6)

In this paper trees are generated by the IDM and the
multinomial NPI. The splitting criterion is based on
an entropy interval comparison as in [8]. For the IDM,
algorithms to obtain the minimum and maximum en-
tropy already exist, as in [1] and [4]. For the multino-
mial NPI, a maximum entropy algorithm is given in
[2], and we present a minimum algorithm in section 2.
This algorithm will be employed in section 3 to define
our splitting criterion. In section 4 the performance
of our proposed splitting criterion is evaluated in a
simulation study.



2 Minimum and maximum entropy
distribution algorithm for
multinomial NPI

The maximum entropy algorithm for the multinomial
NPI model was already developed and discussed in
[2]. Actually two versions to compute the maximum
entropy are presented there. One algorithm computes
the approximate maximum entropy, which is in struc-
ture and proof similar to its IDM counterpart as it
assumes the obtained probabilities form a closed and
convex set, whereas the other is an exact one, enforc-
ing the restrictions of the probability wheel when as-
signing probability mass to unobserved categories. In
the following only the exact algorithm will be applied.

We now describe an algorithm to calculate the min-
imum entropy distribution for the f–probability in-
tervals, in the sense of Weichselberger [15]. The in-
tervals for the multinomial NPI were proved to be
f–probability intervals in [7].

We begin with a series of lemmas which demonstrate
the algorithm’s validity, and follow with a schematic
outline of the algorithm itself. This algorithm has
been adapted from the minimum entropy algorithm
for ordinal NPI given in [8].

In what follows L is the vector of lower probabilities
and U the vector of the upper probabilities for each
category, and we choose elements of L to add mass
to until we reach a probability distribution, p′. The
following four lemmas are required to prove our algo-
rithm minimises entropy. In everything that follows
in this section it is assumed that more than one cat-
egory has been observed; minimising entropy in the
case of only one observed category is trivial.

Lemma 1. Let nj denote the number of observations
of category cj. For two categories i and j such that ni
and nj are strictly positive, Uj − Lj = Ui − Li = 2

n .

Proof. Follows directly from the definition of the
multinomial NPI model.

Lemma 2. Consider elements Li and Lj, and mass
0 ≤ m ≤ 2

n . When assigning mass m to either or both
of these elements, entropy is minimised by assigning
m to ci if and only if Li ≥ Lj, where i and j are
interchangeable if Li = Lj.

Proof. The contributions of p′i and p′j to the entropy
are −p′i ln(p′i) and −p′j ln(p′j). Note that H1(x, y) :=
−(x ln(x) + y ln(y)) is a concave function in the do-
main (x, y) ∈ [0, 1]2 . Therefore, for any 0 ≤ c ≤ m

H1(p1 +m− c, p2 + c) ≥ H1(p1, p2 +m),

H1(p1 +m− c, p2 + c) ≥ H1(p1 +m, p2),

and hence to minimise H1, all mass m should be fully
assigned to either Li or Lj . The fact that it should
go to the larger of these values also follows from the
concave nature of the function. When Li = Lj , the
mass must be fully assigned to either, but it makes no
difference which is chosen.

Lemma 3. The probability distribution p′ that min-
imises entropy is such that Li < p′i < Ui holds for at
most one i.

Proof. Assume the contrary, that Li+εi = p′i = Ui−δi
and Lj + εj = p′j = Uj − δj both hold, where all
constants in S := {εi, εj , δi, δj} are strictly positive.
Further assume p′i ≤ p′j . By the nature of the concave
function H1

H1(p′i, p
′
j) > H1(p′i −min{S}, p′j + min{S})

hence minimum entropy has not been achieved. This
holds true of any i 6= j, meaning at most only one p′i
can have this property.

Lemma 4. No mass is assigned to unobserved cate-
gories when minimising entropy.

Proof. By the definition of the multinomial NPI
model, ni = 0⇔ Ui − Li = 1

n . We first prove that it
is possible to avoid assigning mass to any unobserved
category; this follows immediately in the non–trivial
case (i.e. n > 0) from the definition of the multino-
mial NPI probability wheel.

It therefore follows that to assign mass to an unob-
served category ck, mass is being “denied” to two ob-
served categories ci and cj (again, this follows from
the probability wheel). Let p′k = m1 +m2, p′i = Ui −
m1, and p′j = Uj−m2, where 0 < m1+m2 ≤ 1

n = Uk.
It immediately follows from Lemma 2 that entropy is
minimised when m1 = 0 and when m2 = 0.

Theorem 1. Entropy is minimised in a structure de-
fined by the multinomial NPI model by assigning the
maximum possible mass to the largest element in L,
then the next largest, and so on until all mass is as-
signed. When two elements are equally large, choose
one of those elements at random.

Proof. From Lemmas 1 and 4 we will only assign mass
to intervals of length 2

n . Therefore we have that p′i 6=
Li ⇒ p′i ∈ {Ui− 1

n , Ui}, where by Lemma 3 p′i = Ui− 1
n

holds for at most one i.

If no such i exists, then using Lemma 2 the minimi-
sation algorithm works as follows: assign all 2m

n mass
(with m an integer) to the m largest elements of Li,
choosing at random between equally large elements.



If one such i, denoted i∗, does exist, we assign 2m−1
n

mass as above. It is immediately clear that i∗ is
such that Li∗ = maxj∈M{Lj} where M is the set of
categories with no mass currently assigned to them.
All that remains is to demonstrate that the entropy
cannot be lowered further by swapping the mass as-
signment for category ci∗ with that of any category
ck ∈ M c. However, this follows automatically by
Lemma 2 for all ck for which Lk > Lj . For any
Lk = Li∗ , swapping as above does not change the
entropy.

Note that this algorithm does not produce the mini-
mum entropy for a general structure. The algorithm
can fail when Li > Lj > 0 and Uj > Ui both hold, as
it is no longer the case that the stepwise assignment of
mass to the largest lower bounds automatically pro-
duces the lowest entropy. It might instead be better to
assign mass to smaller lower bounds in order to reach
larger upper bounds than would otherwise be possi-
ble. The NPI multinomial model avoids this problem,
as in that model Lj ≥ Li ⇒ Uj ≥ Ui. It is worth not-
ing that the distribution given by this algorithm is not
necessarily a unique minimiser. However, the distri-
bution will be unique up to rearranging the elements
in ascending order.

Example 1. Consider the case of K = 5 classes with
six observations (1, 0, 2, 3, 0). From [5] we obtain that
the minimum and maximum entropy distribution is
contained within the set

1

6
([0, 2], [0, 1], [1, 3], [2, 4], [0, 1]) .

Applying the exact maximum entropy algorithm as in
[2] we obtain the distribution with maximum entropy
already in the first step as 1

6 (1, 1, 1, 2, 1).
The minimum entropy algorithm as described above
obtains the following working distributions in each it-
eration step:

1. 1
6 (0, 0, 1, 2, 0), 2. 1

6 (0, 0, 1, 4, 0),

3. 1
6 (0, 0, 2, 4, 0).

The entropy interval is then [0.6365, 1.5607]. Note
that for a distribution over five classes the entropy
must lie in the interval [0, 1.6094].

3 Imprecise decision approach to
classification trees

We begin by highlighting the differences between the
approach in [8] and our approach here. In the for-
mer, an imprecise classification tree was defined as a
set of classification trees. A decision in each node of
the tree was made by comparing the obtained entropy
intervals using interval dominance. A tree was then

generated for each undominated split variable, hence
creating an ensemble of classification trees. There-
fore, the work in [8] can be seen as a generalisation
of that in [3], which compares only the upper bounds
of the entropy intervals, and also allows the genera-
tion of multiple trees, though only when considering
potential root nodes.

Interval dominance is a strong condition, which means
the method in [8] leads in general to a large ensemble
of very small trees, as oppose to the smaller ensem-
ble of larger trees created in general by the method
in [3]. In particular, this means generating a sin-
gle tree (and therefore generalising to Abellán and
Moral’s one–step classification tree algorithm [4]) will
in general lead to an overly conservative classification
model. In contrast, the Abellán and Moral method
can allow splits based on very slight evidence, or even
on contradictory evidence which the method ignores.
It is not obvious, for example, that a variable with en-
tropy range [0.39, 0.4] should be considered a better
choice to split upon than a variable with entropy range
[0, 0.41], but the splitting decision in the Abellán and
Moral will do so, based just on the difference of 0.01
in the maximum entropy and ignoring the intervals’
widths entirely.

Therefore, in this paper we explore whether, when
constructing a single tree, there can be found an in-
terval comparison method which is neither so strong
as interval dominance, nor so weak as determining the
lowest upper bound, and which generates an optimal
tree. Our choice to limit consideration to single trees
is for the sake of simplicity of comparison; the meth-
ods used here can easily be generalised to allow the
construction of multiple trees. We refer to the trees
generated for this paper as imprecise, as the splitting
criterion compares entropy ranges derived from credal
sets; note this is a different definition of imprecision
to that given in [8]. The split criterion used in this
paper is now described.

We note first that any simple comparison of intervals
without additional properties is likely to involve one
or more of three direct comparisons: comparing the
upper bounds, comparing the lower bounds, and com-
paring the interval lengths. To some extent this third
consideration is bound up in the first and second,
since of course an interval’s length is completely de-
termined by its upper and lower bounds. It is possible
that length cannot be completely dealt with by com-
parison of corresponding bounds, however, otherwise
it would be equally easy to choose between intervals
[0.01, 0.95] and [0, 1] as to choose between intervals
[0.11, 0.15] and [0.1, 0.2], and this is not clearly true.
On the other hand, comparing the lengths explicitly
would lead to three separate comparisons, which is



arguably overkill, and would require the use of three
comparison functions where, for the sake of simplic-
ity, we wish to only use two. We therefore implicitly
compare interval length in the comparison of lower
bounds shown below. This is done in the comparison
of lower bounds rather than that of upper bounds in
order to ensure our method is a generalisation of the
one found in [2].

Our method of comparing entropy intervals requires
two parameters set by the user, that of γ and T0. We
define

T = (1− γ)AL + γAU , (3.1)

where AL and AU reflect comparisons of the lower and
upper bounds respectively (as in Definition 1 below),
and 0 ≤ γ ≤ 1. For each comparison, we choose to
split only if T < T0. Therefore the larger the value
of T0 chosen by the user, the less conservative the
splitting criterion. Moreover, the greater the value
of γ, the more weighting we place upon the compar-
ison of the upper bounds. Therefore γ = 1 in the
Abellán and Moral method, which considers only up-
per bounds. While in the methods in [8] and [3] the
stopping rule is implicitly built-in, in our method we
need one explicitly as T is a continuous function of
the compared intervals. We now define AL and AU .

Definition 1. For the entropy interval I = [a, b] over
a data set, and an expected entropy interval Ii =
[ai, bi] following splitting on attribute variable Xi, we
define

AL =
ai − a

bi + |a− ai|
, (3.2)

and further

AU =
ln(K)− b
ln(K)− bi

. (3.3)

Note that AL is 0 when the lower bounds are equal,
and grows larger (smaller) as the lower bound for Ii
gets larger (smaller) in comparison to the lower bound
for I. Hence a larger value of AL represents a less
desirable split, with respect to the lower bounds. Note
also that AU is equal to 1 when the upper bounds
are equal, and gets smaller as the upper bound for Ii
gets smaller in comparison to the upper bound for I.
Hence a larger value of AU represents a less desirable
split, with respect to the upper bounds. Without any
further restriction on when considering upper bound
comparison AU may take values larger than 1 for bi >
b, which is covered in what follows.

As noted, in Abellán and Moral’s method the split-
ting is entirely based on the upper bounds compari-
son. This has the advantage that if there is a split, the
maximum entropy is reduced. This property guaran-
tees at least some subgroups which will be more homo-
geneous. Therefore we also only consider an attribute
variable Xi as a split candidate if bi < b.

As T , defined by (3.1), does not satisfy this prop-
erty of a decreasing expected maximum entropy in
the split, we need to enforce more restrictions on our
splitting criterion. Therefore we define T ∗ as follows,
dealing with the above mentioned case and interval
dominance.

Definition 2. For the entropy interval I = [a, b] over
a data set, and an expected entropy interval Ii =
[ai, bi] following splitting on attribute variable Xi, we
define the combined splitting criterion

T ∗i =

 1 if bi ≥ b
T if b > bi ≥ a
T − 3 if a > bi

. (3.4)

This ensures that T and therefore AU is only calcu-
lated in situation when AU < 1. Thus in situations
when T is actually evaluated it holds that T ∈ [−1, 2).
In the case a > bi we have Ii interval dominating
I. Without the above definition, we would lack the
ability to compare among interval dominating split
candidates. As T ∈ [−1, 2) for b > bi by subtract-
ing three we obtain an always smaller value of T ∗ for
interval dominating split candidates than for those
situations where interval dominance does not occur,
which allows us to consider both dominated intervals
and undominated intervals via the same measure.

The fact that AL and AU , along with T , increase
as the corresponding bound comparisons become less
supportive of a split justifies the choice to split only
when T ∗ < T0. The variable Xi∗ is chosen to split
upon if it is the variable amongst the split candidates
with the smallest value of T ∗. With T0 we are able to
enforce a specific degree of support for a split. Note
that for the Abellán and Moral method, AL is ig-
nored and AU is required to be less than one, so the
Abellán and Moral method is a special case of our
method, with (γ, T0) = (1, 1). A splitting method re-
quiring interval domination may be obtained by set-
ting T0 = −1. With our approach we are able to flex-
ibly adapt the splitting criterion to situations where
splits only in case of interval dominance or according
to the Abellán and Moral method are favourable.

Although T0 and γ were said to be chosen by the user
in advance, when it is uncertain which actual split-
ting method to favour, they may be set data-driven,
essentially functioning as so called tuning parameters.

4 Simulation

In order to evaluate the performances of the splitting
criterion proposed in this paper, simulations were car-
ried out on real–world data sets. The simulation was
performed with two major questions in mind: Firstly,



what is the general performance of the proposed split-
ting criterion and secondly, how does varying the tun-
ing parameters T0 and γ affect it.

For that purpose 13 different databases from the UCI
repository of machine learning [10] were analysed. For
each database one classification variable was predicted
with the exception of the Pittsburgh Bridges database,
where five classification variables were independently
predicted1. Table 1 outlines the number of instances
(N), number of continuous and nominal attribute vari-
ables (Num and Nom) and total missing values (NA),
along with the ranges of the different states of the
classification variable (K) and the predicting variables
(R).

Database N Num Nom NA K R

abalone 4177 7 1 0 28 3-5
anneal 798 6 32 0 5 1-8
cmc 1473 2 7 0 3 2-5
credit 690 6 9 67 2 2-14
ecoli 336 7 0 0 8 2-5
hepatitis 155 6 13 167 2 2-5
lenses 24 0 4 0 3 2-3
monks1 432 0 6 0 2 2-4
bridges (deck type) 108 1 7 52 2 2-5
bridges (material) 108 1 7 48 3 2-5
bridges (span) 108 1 7 62 3 2-5
bridges (rel. span) 108 1 7 51 3 2-5
bridges (type) 108 1 7 48 7 2-5
po 90 0 8 3 4 2-4
soybean 683 1 34 2337 19 2-5
spect 267 0 22 0 2 2-2
zoo 101 0 16 0 7 2-6

Table 1: Database Overview

In a data pre–processing step any missing values were
replaced by the mean or mode for continuous and
nominal attributes respectively 2. Discretisation was
applied to the continuous variables by splitting them
into five ideally equal frequency intervals, according
to the quantiles 3. Any variables with less than five
unique values were not further discretised. Despite
being commonly used in such situations, Fayyad and
Irani’s popular discretisation method [9] was rejected,
as for some databases it returned for a notable propor-
tion of predicting variables just one class, essentially
removing those variables from the scope of predicting
variables. In contrast to previously mentioned deci-
sion in the leaves, when there were ties in the most

1This means effectively splitting the database into 5 new
databases.

2Following the data set description of the annealing
database, the missing values were considered to be a category
in themselves.

3Ideally in the sense that no overlapping of categories was
permitted and so some categories attained larger/smaller fre-
quencies.

frequent categories, all of those most frequent cate-
gories were returned, thus allowing the classification
tree to be imprecise in the prediction as well. The
simulation was completely performed with the open–
source statistical programming language R [14].

For each database different configurations of the split-
ting criterion were analysed: γ was varied over the
range [0, 1] and T0 over [−1, 1]. As the configuration
(1, 1) corresponds to the maximum frequency crite-
rion of Abellán and Moral, our criterion is implicitly
compared to it. Furthermore the case of interval dom-
ination is included as T0 is set to −1 in some config-
urations. For each setting 50 bootstrap samples were
generated and the achieved accuracy on each was re-
ported. On the training data two imprecise classifi-
cation trees were grown. Both trees employ our pro-
posed splitting criterion, but the underlying models
to obtain the set of probability distributions differ:
one employs the multinomial NPI and the other a
local IDM. The accuracy of the trees was measured
in terms of correct classification rate on the deter-
minately predicted instances on the test set 4. The
correct classification rate was evaluated for each tree
type on their determinate test data’s observations.

To assess the first motivation of the simulation, for
each database the optimal configuration of (γ, T0) is
chosen according to the average correct classification
rate over the bootstrap sample. However, configura-
tion (1, 1) was not taken into account when evaluating
the optimal configuration, because it serves as refer-
ence. According to the Wilcoxon signed rank there
was a significant difference on a significance level of
α = 0.05 in the achieved accuracy in favour of our
proposed splitting method when comparing it to the
Abellán and Moral tress for both the NPI and the
IDM approach.

As for the second aspect, there are differences present
between the databases, even for the underlying esti-
mation model. For all databases it was found that
varying γ resulted in notable variation; only the
dataset po demonstrated results independent of γ. In
general, varying T0 resulted in very little variation.
Overall, the observed behaviour seems reasonable as
a change in the weighting may change our splitting
criterion drastically, while a change in T0 only defines
the cut point of the splitting criterion when we have
non–interval dominating split candidates in a node.
Overall, with our method we are not able to advocate
a globally optimal γ as it appears database depen-
dent. For the Pittsburgh bridges (material) database

4Whenever an observation leads to a prediction of a single
class, this observation is said to be determinate, in all other
cases, whether two or more classes, it is said to be indetermi-
nate.



low values in γ led to higher accuracy, whereas for an-
neal and hepatitis the accuracy was greater for larger
values of γ; these comparisons are with respect to the
correct classification rate on the IDM–based trees, but
similar examples may be found for those based on the
NPI method.

Interestingly, there is also a substantial difference be-
tween the two tree types: for instance for the ecoli
data set a high valued γ performs better for the IDM–
based trees, but the opposite is true for the NPI–based
trees. Moreover on this database for the IDM–based
trees the accuracy is higher for T0 < 0 as in compar-
ison to T0 > 0, but for the method based upon NPI
the opposite holds.

To further outline the difference between the splitting
methods, the performance of each configuration was
compared to the one achieved by using the Abellán
and Moral splitting. Therefore a Wilcoxon signed
rank test was carried out. For most databases there
was no significant difference between them for most
configurations. However, on the anneal and Pitts-
burgh Bridges (T or D) datasets, most configurations
achieve a significantly lower accuracy, whereas for the
cmc and Pittsburgh Bridges (material) datasets, with
some configurations we are able to significantly im-
prove the accuracy with our splitting criterion.

Furthermore, if there were any significant differences
present for a database those were all in the same di-
rection, in the sense that accuracy was either non–
increasing or non–decreasing with respect to γ and
T0, with the exception of just three occurrences (two
in soybean and one in hepatitis).

As the previously mentioned difference between the
tree–types with respect to changes in γ and T0 may
suggest, substantial differences also exist when com-
paring variations in those values with the fixed values
used in the Abellán and Moral method. However, a
significant difference in a certain configuration for the
IDM–based tree does not necessarily imply one for
the NPI–based and vice versa. On the other hand,
for most databases, if there are significant differences
present, they are in the same direction, i.e both are
greater/less. Exceptions are the spect and zoo where
on some configurations the accuracy is significantly
improved using the IDM, but for the NPI on some
(other) configurations we are predicting significantly
worse.

In general, taking all databases into account, there is
only a small difference between our splitting criterion
and the Abellán and Moral one. On some databases
we are able to improve the achieved accuracy with a
certain database specific configuration of γ and T0,
while on others we are losing some accuracy for some

settings. However, in most cases there is a signifi-
cant difference between the Abellán and Moral split-
ting approach and our more general (and also more
complicated) approach. The choice of the underlying
probability model naturally influences the obtained
results. Our results concur with [2] in that we find
no significant difference between the NPI– and IDM–
based trees when comparing them according to their
best performance on each database. However, the
NPI approach has a slightly poorer performance with
our method in comparison to the Abellán and Moral
splitting criterion. Generally, we are not able to iden-
tify an overall optimal configuration of (γ, T0). This
difficulty in predicting the effects of a change in pa-
rameter casts doubt on the ability of users to sensibly
choose parameter values for the current model.

In our simulation we did not consider a comparison
of our method to the underlying ID3 splitting mech-
anism. As [4] pointed out in their simulations, their
splitting method has the ability to successfully com-
pete against the even more advanced splitting algo-
rithm C4.5.

5 Conclusions and further aspects

In this paper an approach to building classification
trees using entropy range comparisons was outlined
and tested. This process required the creation of
an entropy minimisation algorithm, which was pre-
sented here for the multinomial NPI method. This
algorithm was then used to compare trees built us-
ing the splitting criterion suggested in [4], which con-
siders only the upper bounds of the entropy inter-
val, and our method, which compares both upper and
lower bounds of the entropy interval, with a user–
defined weighting on these two comparisons determin-
ing which is the more important. A second user–
defined criterion determines the amount of dissimi-
larity between entropy intervals necessary to justify
a split; the ranges of these two user–defined criteria
means our model includes both that described in [2]
(which applies the model in [4] to the NPI case) and
that described in [8] (in which interval dominance is
required to allow splitting). These methods were com-
pared over 13 datasets, and the resulting simulation
bore interesting results. Whilst it is not the case that
there exists a specific combination of user–defined cri-
teria that improves upon consideration of the upper
bounds alone, it is possible in many cases to find a
combination that does improve upon that method for
the specific dataset. Moreover, our results support
the hypothesis that in situations in which compari-
son of upper bounds strongly support splitting it can
make a noticeable difference to accuracy whether or
not splits are allowed for variables with associated in-



tervals which have higher lower bounds than the in-
terval for the dataset.

Therefore it can be stated that our method has the
potential to improve accuracy, but more work is re-
quired in determining under what circumstances this
is the case. Related to this, further work is required
in justifying this method or one similar to it through
a decision theoretical foundation.

It also remains to be explored how our method per-
forms in comparison with [3] when the former is used
to generate ensemble trees. As mentioned in the
text, reducing to the case of a single tree allows for
quicker and more easily interpreted comparisons, but
our method was created with ensemble trees in mind,
and this should be considered further.

To allow for a comparison with precise classifiers fu-
ture simulations will also include a precise classifier.
Furthermore an investigation about the tree’s actual
length for the optimal configuration is worth carry-
ing out. Larger trees, especially with ensembles in
mind, induce a higher computational cost, even if it
decreases in the future with more powerful hardware
architecture.

Appendix

Algorithm 1 gives an outline of the minimum entropy
algorithm as proposed in section 2.

When considering its computational complexity, it
mainly depends on the ordering of the [li, ui]

n
1 . The

proposed algorithm requires generally the least steps,
when [li, ui]

n
1 is sorted according to decreasing li. Any

of the popular sorting algorithms may be applied to
obtain such a sorting, with complexity ranging from
O(n) to O(n2). The initialisation step means just
copying l to p and generation of and index set. Due
to the special ordering of l, getMaxIndex in the
while () do -loop finds the return value immediately
as it is j when in the jth loop. Furthermore, be-
cause of the special representation of the multinomial
NPI on a probability wheel, it is immediately clear
that the while () do -loop has at maximum dn2 e iter-
ations. Therefore the algorithm without the sorting
runs in linear time. Hence the computational most
time intensive part is the chosen sorting algorithm.5.

In the following the splitting procedure is outlined,
considering the splitting process within a node N . Let
LN be the set of the attribute variables which are not
used splitting variables on the path from the root node
to N . Finding the optimal split requires three steps:

5In the simulation the Shell-Sort algorithm was applied as
it is implemented in R [14]

Algorithm 1 Minimum Entropy Algorithm for NPI

Input: F-probability intervals [li, ui]
n
1

as generated by the NPI
Output: A probability distribution

p̂ = (p̂1, p̂2, . . . , p̂n)

Helping functions:
Sum(x): returns the sum of

the elements of array x
getMaxIndex(x, S): returns the first index

of the maximum value
of the array x considering
only indices in S

Initialization: S ← 1, . . . , n

minEntropyNPI(l, u, p̂){
for (i = 1 ton) do {p̂i ← li}
mass← 1− Sum(p̂)
while (mass > 0) do {

index← getMaxIndex(p̂, S)
d← uindex − p̂index
if (d ≤ mass) then {

p̂index ← uindex
S ← S − {index}
mass← mass− d

} else {
p̂index ← p̂index +mass
mass← 0

}
}

}

1. T ∗i is calculated for each Xi ∈ LN
6;

2. Xi∗ is chosen as reasonable splitting candidate
among the Xi in LN , where T ∗i∗ = mini (T ∗i );

3. A comparison of T ∗i∗ and T0 is made. Only if
T ∗i∗ < T0 is Xi∗ chosen as the split variable, oth-
erwise the node N is declared terminal.
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