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Abstract

We consider multi-attribute utility functions, particu-
larly applied to the choice of a design and sample sizes
for an experiment. We extend earlier work, which al-
lowed imprecision in the trade-offs between attributes,
to allow imprecision also in the shape of marginal util-
ity functions. The method is illustrated with a sim-
ple example involving a two-group binomial experi-
ment.
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1 Introduction

In earlier work [8, 9, 10] a method for decision analysis
with multiattribute utilities has been developed which
does not require the specification of precise trade-offs
between different risks. The original motivation for
this work was the design of experiments [7, 8]. Multi-
attribute utilities may be imprecisely specified, due to
an unwillingness or inability on the part of the client
to specify fixed trade-offs or precise marginal utility
functions or because of disagreement within a group
with responsibility for the decision. In particular this
may be so when the decision is the choice of a de-
sign or sample size for an experiment. For example,
in the design of a medical experiment, participants in
the decision-making process may have different view-
points, may put different weights on such attributes
as the information gain and the risks to trial subjects
and may be more or less risk averse in terms of these
attributes.

An approach to constructing imprecise multi-
attribute utility hierarchies and finding the Pareto op-
timal rules was introduced in [8]. The structure used
was based on a utility hierarchy with utility indepen-
dence at each node and used the notion of impre-
cise utility trade-offs within such a hierarchy, based
on limited collections of stated preferences between

outcomes. Pareto optimality, over the set of possible
trade-off specifications, was used to reduce the set of
alternatives.

Many real decision problems, for example in exper-
imental design, have very large spaces of possible
choices. Relaxing the requirement for precise utility
specification reduces our ability to eliminate choices
by dominance and can leave us with a large class
of choices, none of which is dominated by any other
over the whole range of possible utility functions al-
lowed by the imprecise specification. Methods were
described in [9] to reduce the class of alternatives that
must be considered, by eliminating choices which are
“ε-dominated” and combining choices which are “ε-
equivalent.” The effects of different values of ε and of
different parts of the hierarchy were explored to see
when and why choices were eliminated.

To choose a single alternative d∗ from our reduced
list, we can use the boundary linear utility approach
described in [8], or select the choice which is the last
to be eliminated as we increase the value of our ε
criterion as described in [9]. We can then find the
set D∗ of choices which are “almost equivalent” to d∗

and perhaps use secondary considerations to choose
among them. In [10] methods based on the boundary
linear utility for exploring the sensitivity of possible
choices to variation in the utility trade-offs were de-
scribed. This helps us to find a decision which, as far
as possible, is a good choice over the whole range of
possible trade-offs.

For some other approaches to imprecise utility, see, for
example, [12, 2, 13, 16, 17, 5]. A particular feature of
the approach used in [8, 9, 10] and this paper is the
generality of the form of the utility hierarchy and of
the shape of the feasible region.

The purpose of this paper is twofold. Firstly we show
how the imprecise utility structure can be extended
in a simple way to include imprecision in the shape
of the marginal utility functions for attributes, and



therefore in the degree of risk aversion, and that this
extension preserves all of the results derived for the
structure in previous work. Secondly, we return to
the original motivation of the work by applying the
methods to the choice of design and determination of
sample size for experiments.

In Section 2 we briefly outline the Bayesian approach
to experimental design, viewing it as a multi-attribute
decision problem. In Section 3 we review the earlier
work on decisions with imprecise utility trade-offs. In
Section 4 we introduce the extension to include impre-
cision in the shape of the marginal utility functions.
Finally, in Section 5, we apply the ideas to sample-size
determination for a simple two-group experiment.

2 Bayesian Experimental Design

2.1 Introduction

The problem of experimental design is essentially that
of choosing a design for an experiment from a, pos-
sibly infinite, set of possibilities. In simple cases this
might just be a matter of choosing a sample size. In
more complicated cases it may involve choosing sev-
eral sample sizes, for observations of different types,
or even of selecting types of observations to make, for
example determining the values of covariates to use.
In any case, this is clearly a decision and, usually, the
values of various attributes, typically more than one,
which are relevant to us, are unknown before the ex-
periment and our distributions for them depend on
the choice of design. We therefore formulate exper-
imental design as a multi-attribute decision problem
and choose the design which maximises our expecta-
tion of a multi-attribute utility function.

A recent, brief, introduction to this view of experi-
mental design is given by [6]. For a more technical
introduction to the field of Bayesian experimental de-
sign see, for example, [3]. A discussion of sample-size
determination in clinical trials is given in Chapter 6
of [19]. See also, for example, [15, 20].

In much published work on Bayesian experimental de-
sign, a fixed total number of observations N is as-
sumed. The problem is then to allocate these ob-
servations to design points (ie types of observation)
while keeping the total fixed (sometimes allowing non-
integer allocations on the grounds that it is the pro-
portions of the total sample size which are being de-
termined). Often some measure of information gain
is used to provide a utility function and costs are as-
sumed to depend only on the total sample size and
therefore need not be considered. This is described as
the “design problem” (although, perhaps, “allocation
problem” might be a better name).

In contrast, in the “ sample size problem”, the trade-
off between costs and benefits is explicitly considered
so a utility function is required which involves both, eg
[20]. Usually, relatively simple designs are considered.

In many real practical problems we need both to de-
termine a total sample size and how the observations
should be allocated to different design points. In this
paper we do not distinguish between these two types
of problem.

Typically, in experimental design we require a multi-
attribute utility function where the attributes include
costs and benefits. Each of these may be of more than
one kind.

In some cases we might represent the “benefit” from
an experiment in terms of some measure of informa-
tion. For example we might use the posterior preci-
sion for some quantity of interest. We may, of course,
be interested in several different unknown quatities
so each would have its respective marginal utility and
these utilities need to be combined. In other cases we
might base our benefit utility directly on the pay-off
from some terminal decision, in which our choice is
informed by the result of the experiment. In fact the
information-measure approach is (usually, at least)
a special case of the terminal-decision approach, in
which the terminal decision is to declare a value for
some unknown (vector) quantity. The benefit utility
is then based on the difference between our declared
value and the true value.

Figure 1 shows an influence diagram for a typical
problem in experimental design. For example this
could refer to the design of a clinical trial in which
we wish to compare two or more treatments. There
could also be several groups of patients, for example
divided by age-group, severity-group, sex etc. The ini-
tial decision DX consists of the choice of design dX .
Often the set of possible choices will include the op-
tion of no experiment at all. In the experiment, we
observe data X. The distribution of X depends on dX

and on unknown quantities (parameters) θ. A vector
of pay-offs CX refers to various attributes, for example
financial costs or effects on subjects. The distribution
of these depends on dX and X. Having seen the data
X we make a terminal decision DY . This may well be
the choice of treatment for future patients. We choose
dY . The outcomes Y of this terminal decision may be,
for example, the clinical outcomes for some future pa-
tients but may also include other attributes such as
costs of future treatments. The distribution of these
depends on dY and on the unknown θ . These out-
comes lead to rewards (pay-offs) CY which depend on
dY and Y. (More generally, they may also depend on
θ). There may, of course, be a potentially unbounded
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Figure 1: Influence diagram for a typical problem in
experimental design.

number of future patients. However, in our utility
function, we might discount outcomes as we look fur-
ther into the future. This might be justified on the
grounds that, further into the future, it becomes less
likely that our choice of treatment will still be dic-
tated by this experiment. Finally, our overall utility
U = U(CX , CY ) depends on CX and on CY .

To determine our choice of design d(X) we work our
way backwards through the influence diagram. Af-
ter observing the data X = x in our experiment, we
choose

dY = arg max
dY ∈DY

[EdY
{U(CX , CY ) | x}]

= arg max
dY ∈DY

[U(dY ;CX , CY | x)].

Our expected utility at this stage is

max
dY ∈DY

[U(dY ;CX , CY ) | x].

Before observing the data, we choose the design

dX = arg max
dX∈DX

EdX
{ max

dY ∈DY

[U(dY ;CX , CY ) | X]}.

A useful variation on this is to use two different prior
distributions, an inference or fitting or terminal prior,
which is used for choosing dY , and a design or sam-
pling prior which is used for choosing dX . This ap-
proach was suggested by [21]. Similarly we can have
different utility functions for the two decisions.

2.2 Risks in Experimental Design

Since we are concerned in this paper with degrees of
risk aversion, let us briefly consider some of the many
risks associated with experimental design.

We have already mentioned the financial cost of the
experiment, which may not be known in advance with
certainty, and the effects on experimental subjects.

Particularly in the cases of human and animal sub-
jects we are likely to be concerned about the possi-
bility of adverse reactions but, even in other exper-
iments, there might be other costs concerned with
effects on valuable material or equipment. We may
come to a conclusion, based on our experiment, which
is far from the truth. This could lead to a bad choice
in a terminal decision and therefore to a bad pay-off.
A type of risk which seems to have had little formal
consideration is that something may go wrong with
the experiment and that this leads to less useful in-
formation than expected or perhaps to none at all. In
particular we may suffer from missing observations.
Some designs, for example those for microarray ex-
periments, could be very sensitive to missingness. See
eg [1].

In choosing an experimental design we will be seeking
to optimise our expectation of a utility function which
involves some or all of these risks. Our choice will
therefore depend on how we are willing to trade these
risks against each other and this, in turn, depends
on our attitudes to these risks, including the shapes
of our marginal utility functions since these shapes
describe our degrees of risk aversion with respect to
the various attributes.

2.3 Utility Hierarchy

A hierarchical structure for utilities in a multi-
attribute problem was suggested by [14] and [8]
adopted such a structure. In [8], an example was used
in which there were financial costs of the experiment
and also “ethical costs” which related to possible ef-
fects on the experimental subjects. The marginal util-
ities of these are combined into a Cost utility. In an
experiment we potentially learn about a number of
quantities and, in their example, [8] represented this
collection in four groups, each of which had a marginal
utility based on the distance of our posterior expec-
tation from the true value. These were combined into
a Benefit utility. Finally the Cost and Benefit utili-
ties were combined in an overall utility for the chosen
design.

3 Imprecision in utility trade-offs

3.1 Mutually utility independent hierarchies

In order to introduce imprecision into the trade-offs
between attributes, [8] proposed a general class of
multi-attribute utility functions which uses the con-
cept of mutual utility independence among sets of at-
tributes in order to impose a structure on the utility
function. Attributes Y = (Y1, ..., Yk) are utility in-
dependent of the attributes Z = (Z1, ..., Zr) if condi-



tional preferences over lotteries with differing values
of Y but fixed values, z, of Z, do not depend on the
particular choice of z. Attributes X = (X1, ..., Xs)
are mutually utility independent if every subset of X
is utility independent of its complement. If attributes
X are mutually utility independent, then [14] showed
that the utility function for X must be given by the
multiplicative form

U(X) = B−1

{
s∏

i=1

[1 + kaiUi(Xi)]− 1

}
, (1)

where B does not depend on U1(X1), . . . , Us(Xs), or
the additive form

U(X) =
s∑

i=1

aiUi(Xi), (2)

where Ui(Xi) is a conditional utility function for at-
tribute Xi, namely an evaluation of the utility of Xi

for fixed values of the other attributes. The coef-
ficients in (1) and (2) are the trade-off parameters;
the ai reflect the relative importance of the attributes
and k reflects the degree to which rewards may be re-
garded as complementary, if k > 0, or as substitutes,
if k < 0.

The assumption of mutual utility independence is
enough in itself to reduce the problem to one of con-
sidering a finite number of parameters.

The next step is to form a hierarchical structure, in
which, at each node, several utilities are merged into
a combined utility. This combined utility is merged
with others at a node in the next level until, finally,
one overall utility function is formed. If, at each node,
we have mutual utility independence for the utilities
combined at that node, then we term such a util-
ity function a Mutually Utility Independent Hierar-
chic (MUIH) utility. Thus, in a MUIH utility, at each
node we combine utilities using either (1) or (2).

This hierarchical structure allows us to relax the re-
quirement for overall mutual utility independence by
allowing the user to specify utility independence just
at the nodes of the hierarchy and, of course, the user
can choose this structure.

Nodes in the hierarchy, other than the marginal nodes,
are termed child nodes and classified by [8] into the
following three types:

1. an additive node, where utilities are combined
as in (2) with

∑s
i=1 ai ≡ 1 and ai > 0 for

i = 1, . . . , s;

2. a binary node, where precisely two utilities are
combined, where we rescale the combined utility

as
U = a1U1 + a2U2 + hU1U2 (3)

where 0 < ai < 1 and −ai ≤ h ≤ 1 − ai, for
i = 1, 2, and a1 + a2 + h ≡ 1. Note that (3) is
derived by setting s = 2 and h = ka1a2 in (1).

3. a multiplicative node, where more than two utili-
ties are combined and the parameter k in (1) may
be nonzero. We scale the utility using

B =
s∏

i=1

(1 + kai)− 1 (4)

with a1 ≡ 1, k > −1 and, for i = 1, . . . , s, we have
ai > 0 and kai > −1. When k = 0 we obtain (2).

At each child node n, we have a collection φ
n

=
(φn,1, . . . , φn,rn

) of trade-off parameters which deter-
mine how the parent utilities at node n are combined
to give the value at the child node. If there are N
child nodes, then we denote by θ = (φ

1
, . . . , φ

N
) the

collection of all the trade-off parameters in the hier-
archy. A hierarchy in which imprecision is allowed in
some of the elements of θ is called an imprecise in-
dependence hierarchy (IIH). If the hierarchy contains
only additive and binary nodes, then the specification
is a simple imprecise independence hierarchy (SIIH)

So that the interpretation of utility values does not de-
pend on the choice of trade-off parameters, we place
all utilities in the hierarchy on a standard scale. Each
marginal utility is normed to lie between 0, the worst
outcome that we shall consider for the problem, and
1, the best outcome. The relative weights of the
marginal utilities are governed by the trade-off pa-
rameters at the nodes of the hierarchy and these are
chosen to reflect this norming. Consider a child node
n. Let Cn be an outcome such that all marginal pre-
decessor nodes have utility 1, and cn be an outcome
such that all marginal predecessor nodes have utility
0. The scalings described above for additive, binary
and multiplicative nodes ensure that, at n, the utili-
ties of Cn and cn are 1 and 0 respectively. Therefore, a
utility value of u at node n may always be interpreted
as the utility of a gamble giving Cn with probability
u and cn with probability 1 − u, irrespective of the
chain of trade-off parameters in the hierarchy.

3.2 Specification of imprecise utility
trade-offs

In standard utility theory, the decision maker must
make statements which define the preferences between
all combinations of outcomes. In the case of impre-
cise utility, the decision maker may state preferences



just for some, but not all, choices of outcome com-
binations. Imprecise utility is defined by obeying all
of the constraints implied by the stated preferences.
In [8, 9, 10] it was supposed that the decision maker
could make preference statements over all outcomes
of each individual attribute, and so could specify pre-
cise marginal utilities, but could only make preference
statements for some, but not all, combinations of the
various attributes. Each such preference statement
imposed constraints on the tradeoff parameters which
are used to combine the individual attributes into an
imprecise multi-attribute utility. These constraints
together specify a feasible region R for θ. Comments
on the process of elicitation are made in [8, 9, 10].

In Section 4 below we will drop the assumption that
the decision maker has to specify precise marginal
utilities.

3.3 Analysis with imprecise utility trade-offs

In earlier work [8, 9, 10], methods have been devel-
oped which exploit the IIH structure to reduce the
number of choices to be considered and select choices
and to explore the sensitivity of choices. Our aim in
Section 4 below will be to extend the structure to al-
low imprecision in the marginal utility functions while
preserving the various results derived and retaining
our ability to carry out these analyses. In this section
we briefly summarise these results and methods.

Having obtained our imprecise specification for the
parameters of our multi-attribute utility function we
can reduce the number of possible choices, that is de-
signs, by retaining only choices which are Pareto op-
timal (non-dominated) with respect to the range R of
the parameters θ.

We have to choose from a set D of choices. We de-
note the utility of a particular choice A ∈ D, evaluated
with trade-off parameters θ as UAθ. This is evaluated
as the expected value of Uθ, with respect to the prob-
ability distribution, induced by the choice A, over the
marginal attributes involved in U. For two alterna-
tives, A, B, let dAB(θ) = UAθ − UBθ.

We write A � B, if UAθ ≥ UBθ ∀θ ∈ R. We say that A
is preferred to B over R, written A � B, if A � B and
UAθ > UBθ for some θ ∈ R, and that A is equivalent
to B, written A ' B, if UAθ = UBθ ∀θ ∈ R. We call
alternative A Pareto optimal for R if there is no other
allowable alternative B for which B � A over R. We
restrict attention to Pareto optimal alternatives. Fur-
thermore, if we form equivalence classes of equivalent
decisions A1 ' A2 ' ... ' Ar, then it is reasonable to
restrict attention to only one representative member
of each equivalence class.

To reduce the number of choices further, [9] intro-
duced the concept of ε-preference as follows. Let
ε ≥ 0 be a value chosen to indicate a practical indif-
ference between utility values. For two alternatives A
and B, we say that A is almost-preferable with toler-
ance ε, or, more concisely, “ε-preferable” to B, written
A �ε B, over the set R of parameter specifications if
infR(dAB(θ)) ≥ −ε. Two alternatives A,B are said to
be almost-equivalent with tolerance ε, or, more con-
cisely, “ε-equivalent”, written A 'ε B, if both A �ε B
and B �ε A. Note that ε-preference does not define
a complete ordering of the alternatives and nor does
ε-equivalence define an equivalence relation. Alter-
native A is said to ε-dominate alternative B, written
A �ε B, if A �ε B but B 6�ε A, where the negation of
the relationship is indicated in the usual way. Setting
ε = 0, an alternative which is not 0-dominated by any
other is Pareto optimal. The notation is extended to
collections of alternatives as follows. The collection
A is ε-preferable to the collection B of alternatives,
written A �ε B if, for each B ∈ B, there is at least
one A ∈ A for which A �ε B.

In [9] a number of results are derived concerning the
properties and uses of ε-preference in IIH utilities.
In particular, an algorithm is presented for gradually
reducing the number of choices by increasing ε from
zero and eliminating choices while our retained list
remains an ε-Pareto set. Eventually we are left with
a single choice d∗. Notice that this choice is made
without having to specify a value for ε in advance.

In [10] methods for exploring the sensitivity of choices
are presented. In particular the boundary linear util-
ity, which had been introduced in [8], is described and
results concerning its properties and uses with IIH
utilities are given. Let P be the set of vertices of R.
In [8] it is shown that, for a SIIH utility, Pareto opti-
mal alternatives for R are the same as Pareto optimal
alternatives for P. This forms part of the motivation
for the boundary linear utility

Ūλ =
s∑

i=1

λiUi

where Ui is the utility function determined by the
choice of trade-offs θi ∈ P = {θ1, . . . , θs} and
λ1, . . . , λs are nonnegative constants with

∑s
i=1 λi =

1.

The results and methods which are developed, some
of which may be extended to the case of general IIH
utilities, allow us to exploit the idea that, by varying
the λ weights, we can change the emphasis which is
placed on different parts of the feasible region.



4 Imprecise risk aversion

4.1 Use of basis functions

Now we consider dropping the assumption that the
decision maker can give a precise specification of each
marginal utility function. Recall that two utility
functions, UA and UB , are strategically equivalent if
UB = c+dUA where c and d are constants with d > 0.
Therefore, without loss of generality we can rescale a
marginal utility function to be on the standard scale,
as in [8, 9, 10]. Without loss of generality we can also
rescale a scalar attribute Z so that the “worst value”
is z = 0 and the “best value” is z = 1. All that is left
is to determine the shape of the utility curve between
the points (0, 0) and (1, 1). The shape will typically re-
flect the degree of risk aversion, with a concave curve
representing a risk-averse utility function and a con-
vex curve representing a risk-seeking utility function,
with respect to the (rescaled) attribute Z. See, for
example, Section 4.4.1 of [14].

We could introduce imprecision into the shape of a
marginal utility function U(z) by introducing a collec-
tion of basis functions U1(z), . . . , Us(z) so that U(z) =∑s

i=1 biUi(z) with bi ≥ 0 for all i and
∑s

i=1 bi = 1.
We would then elicit a feasible region for the weights
b1, . . . , bs. An important feature of this approach is
that, in effect, we are simply adding an extra layer to
the utility hierarchy by making each marginal utility
an additive node and introducing the basis functions
as new marginal quantities which are parents to the
previously marginal nodes. Therefore all of the theory
and methods developed previously for the case where
imprecision applied only to the trade-offs extends to
cover imprecision in the marginal utility functions as
well.

A simple example of basis functions is given by
quadratic functions. Consider Ui(z) = c0 +c1z+c2z

2.
The constraints U(0) = 0 and U(1) = 1 simplify this
to U(z) = cz+(1−c)z2. The constraints U ′(0) ≥ 0 and
U ′(1) ≥ 0, where U ′(z) = dU(z)/dz, imply 0 ≤ c ≤ 2.
With c = 0, we obtain U1(z) = z2 and, with c = 2,
we obtain U2(z) = 2z − z2. Let b = c/2. Then

U(z) = (1− b)U1(z) + bU2(z)

with 0 ≤ b ≤ 1. If b > 1/2 we have a risk averse
utility function, with b = 1/2 it is risk neutral and
with b < 1/2 it is risk seeking. Curves with b =
0, 0.25, 0.5, 0.75, 1 are shown in Figure 2.

Note that we can rewrite the basis functions as
U1(z) = z − h(z) and U2(z) = z + h(z) with, in
this case, h(z) = z − z2. It can be seen from Fig-
ure 2 that this offers a rather limited range of shapes.
While restricting ourselves to monotonic functions,
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Figure 2: Quadratic utility curves with b =
0.0, 0.25, 0.5, 0.75, 1.

the greatest range that we can obtain in this form
is with h(z) = z (0 ≤ z ≤ 1/2) and h(z) = 1 − z
(1/2 < z ≤ 1). Even this is somewhat restricted in
range and certainly in shape. We can obtain greater
flexibility with a more direct approach to eliciting the
utility function.

While an elicitation procedure for use in practice
might involve more refined questions, in principle we
can use the probability-equivalent method. In its sim-
plest form, to determine a range for U(z∗) where
0 < z∗ < 1, we offer the decision maker a choice
between dA : the attribute value corresponding to
z = z∗, with certainty, and dB : with probability α,
the attribute value corresponding to z = 1 and, with
probability 1 − α, the attribute value corresponding
to z = 0. For large α the decision maker will choose
dB , for small α the decision maker will choose dA but
for an intermediate range the decision maker may ex-
press no clear preference. The lower utility for z∗,
U1(z∗) is the largest value of α at which the decision
maker would choose dA and the upper utility for z∗,
U2(z∗) is the smallest value of α at which the decision
maker would choose dB . By repeating this process at
a range of values z∗ and using suitable interpolation,
we obtain lower and upper utility functions, U1(z) and
U2(z). These can then be our two basis functions. Lin-
ear interpolation may well be adequate.

With two basis functions, all allowable utility func-
tions are weighted averages of these two. We could ob-
tain more degrees of flexibility in the shape by adding
additional basis functions, for example one which is
closer to U1(z) for some of the range of z and oth-
erwise closer to U2(z). This would, of course, require
more sophisticated elicitation procedures.



4.2 Effect on trade-offs

While the standard scale ensures that all utilities are
in [0, 1], where in that range they are likely to be will
be different for the lower and upper utility functions.
In itself this does not cause a problem. Of more con-
cern is the fact that U ′(z) may be different between
the lower and upper marginal utility functions. This
could affect our consideration of the trade-off at the
immediate successor node in the hierarchy. For ex-
ample, suppose that our marginal utility is Uz and,
at the child node, this is combined with another util-
ity Ux to give Un = anUz + (1 − an)Ux. Then, if
Uz = (1− b)U1(z)+ bU2(z), the effect on Un of a fixed
change in z may depend on the choice of b. This may
be acceptable. After all, the average gradient, given
a uniform distribution for Z, will remain 1. However
the decision maker, with the help of the analyst, needs
to consider this consequence of allowing imprecision
in the shape of Uz(z). A possible solution would be to
elicit a joint feasible region for a and b (or, more gener-
ally, for all of the parameters involved at the marginal
and child nodes) so that the range of a can depend on
the choice of b. If the child node is an additive node it
can be extended straightforwardly to include all the
basis functions at its parent (marginal) nodes as sepa-
rate parents. If the child node is a binary node then it
can similarly be extended although its new form will
not imply mutual utility independence between all of
its new parents.

5 Sample size example

To illustrate the method we consider a simple exam-
ple. Suppose we wish to design a trial, for example
a clinical trial, with two treatments and binary out-
comes (eg cure/not cure). For g = 1, 2, we will give
treatment g to ng subjects and observe the number
Xg of successes. Using these data, a choice will be
made between these treatments for use with future
cases.

Suppose that the unknown success rate with treat-
ment g is θg. For simplicity assume that our ter-
minal prior gives a Beta(at,g, bt,g) distribution to θg

with θ1 and θ2 independent and that our terminal
utility is such that we will choose whichever treat-
ment has the greater posterior probability of success.
That is we choose treatment g if the posterior ex-
pectation of θg is greater than that of θg′ . We set
at,1 = at,2 = bt,1 = bt,2 = 1.5.

In our design prior, θ1 and θ2 are not independent. A
number of methods are available for constructing this
joint distribution. For example we could use a bivari-
ate normal distribution for the logits or probits of θ1

Component Probability Parameters
c ac,1 bc,1 ac,2 bc,2

1 0.25 7.5 3.0 4.5 4.5
2 0.50 4.5 3.0 3.0 4.5
3 0.25 4.5 6.0 3.0 6.0

Table 1: Parameters of design prior mixture distribu-
tion. Within each component θg ∼ Beta(ag, bg).
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Figure 3: Lower and upper benefit utility functions.

and θ2 or we could link beta marginal distributions
using a copula. However, in this example, the prior
is constructed using a mixture distribution. In each
component, c, we give θ1 and θ2 independent beta dis-
tributions, Beta(ac,g, bc,g), g = 1, 2. The effect of the
mixture is to induce correlation between θ1 and θ2. A
three component mixture is used, with parameters as
given in Table 1. The advantage of this form of prior
distribution is that prior predictive distributions for
the observations can be calculated analytically within
each component leading to simple calculations of ex-
pected utilities. The results can then be averaged over
components.

For simplicity in this example we use a simple (pre-
cise) form for the marginal cost design utility. Let
nmax,1 and nmax,2 be the largest sample sizes which
we would consider. Let

ZC,g =

{
1 (ng = 0)
1− h0,g+h1,gng

h0,g+h1,gnmax,g
(ng > 0) . (5)

Then the marginal cost utility is UC = ac,1ZC,1 +
ac,2ZC,2. We use ac,1 = ac,2 = 0.5, h0,1 = h0,2 =
10, h1,1 = h1,2 = 1, nmax,1 = 100 and nmax,2 = 60.

The overall design utility is U = bCUC + bBUB . We
use 0.03 ≤ bC ≤ 0.07 and bB = 1− bC .



Order n1 n2 ε Order n1 n2 ε Order n1 n2 ε
17 13 25 19 15 0.000084 12 20 15 0.000022

37 0 0 0.004334 24 16 12 0.000067 11 25 19 0.000018
36 19 16 0.000724 23 16 10 0.000048 10 25 16 0.000018
35 14 12 0.000571 22 15 11 0.000048 9 22 19 0.000013
34 18 15 0.000295 21 22 18 0.000048 8 21 17 0.000010
33 21 18 0.000271 20 18 14 0.000044 7 23 17 0.000009
32 13 10 0.000220 19 16 15 0.000043 6 16 16 0.000008
31 15 12 0.000134 18 18 16 0.000043 5 23 19 0.000008
30 21 16 0.000126 17 17 15 0.000040 4 13 13 0.000007
29 17 14 0.000114 16 16 11 0.000037 3 19 17 0.000002
28 13 11 0.000095 15 15 15 0.000033 2 24 18 0.000001
27 24 19 0.000092 14 15 13 0.000023 1 20 16 0.000001
26 16 13 0.000088 13 12 12 0.000022

Table 2: Results of selection by ε-preference. The order of dropping is shown. The last-retained design is
n1 = 17, n2 = 13.

The benefit utility depends on the outcomes for fu-
ture patients. For a future patient i, let Zi be 1 or
0 depending on the success or failure of the treat-
ment. This suggests an attribute of the form ZB =∑∞

i=1 kiZi with
∑∞

i=1 ki = 1. For example, we could
use ki = (1 − λ)λi−1 with 0 < λ < 1. Another pos-
sibility is ki = m−1 for i = 1, . . . ,m and ki = 0 for
i > n. For simplicity in this example we adopt the sec-
ond form and furthermore let m → ∞ so that, given
a value of θ, ZB → θ.

Using the probability-equivalent method we elicit a
lower and an upper utility function UB,L(θ) and
UB,U (θ) with evaluations at a range of values of θ
and linear interpolation. At θ = 0, 0.25, 0.5, 0.75, 1,
the lower values are chosen to be UB,L(θ) = θ, giv-
ing risk neutrality. The upper values are UB,L(θ) =
0.00, 0.45, 0.85, 0.95, 1.00, giving risk aversion. These
two functions are shown in Figure 3.

Let θ = (θ1, θ2)T and x = (x1, x2)T . We can write the
joint probability density of component c, parameters
θ1, θ2, observations X1, X2, and the benefit utility UB ,
given sample sizes n1, n2, as

P = Pr(c)fc,θ,X(θ, x | c)fU (UB | x, θ, c) (6)

where

fc,θ,X(θ, x | c) =
2∏

g=1

fc,g(θg | c)fX|θ,n1(xg | θg)

=
2∏

g=1

fX|ng
(xg | c)fc,g|x(θg | xg, c)

where fX|ng
(xg | c) is the prior predictive probability

function of Xg, given c, and fc,g|x(θg | xg, c) is the
conditional posterior density, using the design prior,

given c, of θg after observing the data Xg = xg. The
density of UB depends on x1 and x2 both because we
use the posterior density of θ1 and θ2 and because the
choice of treatment (and hence θ1 or θ2) for future
cases depends on the posterior distributions, given x1

and x2, using the terminal prior. From (6) we can see
that we can evaluate conditional expectations within
each component of the mixture straightforwardly and
then average over the mixture components. The con-
ditional posteriors are beta distributions and the con-
ditional prior predictive distributions for Xg can be
evaluated analytically.

With 0 ≤ n1 ≤ 100 and 0 ≤ n2 ≤ 60, there are 6161
potential designs. Of these, 38 are non-dominated.
With the exception of (0, 0), all of the non-dominated
designs have 12 ≤ n1 ≤ 25, all have 0.6n1 < n2 ≤ n1

and all but three have 0.7n1 < n2 ≤ n1. Applying the
ε-preference algorithm described in Section 5.2 of [9],
we obtain the results shown in Table 2. Designs are
eliminated one by one as we increase the value of the
tolerance ε. Finally one design, n1 = 17, n2 = 13,
is left. Interestingly, the last eliminated design is the
null experiment, reflecting the fixed cost of any non-
null experiment given in (5).

6 Concluding comments

Imprecision in the shape of the marginal utility func-
tions is a natural extension of the earlier work on im-
precision in utility trade-offs. In this paper this ex-
tension has been made in a way which preserves the
results from the earlier work.

The remaining extension to give a fully imprecise
analysis would be to allow imprecision in the probabil-
ity distributions for outcomes given choices. In fact,



if our utility hierarchy is fully additive then we can
work directly in terms of previsions of marginal util-
ities and thus deal with this imprecision in the same
way as we have done in this paper. When our mul-
tiattribute utility involves products of marginal util-
ities then incorporation of imprecision in our beliefs
in this way would still be possible if we were prepared
to regard all of the marginal utilities as uncorrelated.
The generalisation to the case without this assump-
tion awaits further work. See, for example, [4] for a
different approach.

The simple example in this paper presented no serious
computational difficulty. However more complicated
experimental design problems will often present com-
putational challenges, both because of the number of
potential designs to be compared and, particularly in
cases where computationally intensive methods would
normally be used to evaluate posterior distributions,
the difficulty of evaluating the expected utility for any
proposed design. These difficulties apply even with-
out the introduction of imprecision. One possible
approach in such cases is to use a simulation-based
method, as in [18]. Another possibility is to use a
method which does not require such intensive com-
putation, such as Bayes linear methods [8] or Bayes
linear kinematics [11, 22] and such an approach, using
Bayes linear kinematics is under investigation.
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inance, potential optimality and alternative rank-
ing in imprecise multi-attribute decision mak-
ing. Journal of the Operational Research Society,
58:326–336, 2007.



[18] P. Müller. Simulation-based optimal design. In
Bayesian Statistics 6 (J.M.Bernardo, J.O.Berger,
A.P.Dawid and A.F.M.Sith Eds.) Oxford Univer-
sity Press, 459–474, 1999.

[19] D. J. Spiegelhalter, K. R. Abrams and J. P.
Myles. Bayesian Approaches to Clinical Trials and
Health-Care Evaluation. John Wiley & Sons, 2004.

[20] S. B. Tan and A. F. M. Smith. Exploratory
thoughts on clinical trials with utilities. Statistics
in Medicine, 17:2771–2791, 1998.

[21] F. Wang and A. E. Gelfand. A simulation-based
approach to Bayesian sample size determination
for performance under a given model and for sep-
arating models. Statistical Science, 17:193–208,
2002.

[22] K. J. Wilson and M. Farrow. Bayes linear kine-
matics in the analysis of failure rates and failure
time distributions. Journal of Risk and Reliability,
224:309–321, 2010.


