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Abstract

We introduce the notion of mode-desirability of a
gamble, that generalizes the idea of non-negativeness
of the mode of a random variable. The lower and
upper previsions derived from this new definition co-
incide with the minimum and maximum values of the
set of modes of a gamble, when the credal set is a sin-
gleton, but they only bound them in the general case.
The reason why the minimum and the maximum of
the set of modes can not be written, in general, by
means of a pair of lower and upper previsions is dis-
cussed.
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1 Introduction

In Decision Making Literature, several criteria of pref-
erence between random variables have been proposed
within the setting of classical Probability Theory, like
for instance stochastic dominance [10], dominance in
the sense of expected utility [13], or statistical prefer-
ence [7, 14], the last one being based on Condorcet’s
voting criterion ([2]). The above mentioned criteria
share a commonality: the joint probability distribu-
tion induced by the pair of variables is assumed to
be known in order to define each preference criterion,
which is expressed in terms of it. Some generalizations
of the aforementioned preference criteria have been
recently reviewed ([3]) to the case where the joint dis-
tribution is not completely determined. Some of those
generalizations had been previously introduced in the
literature: Denoeux ([8]) generalized first-stochastic
dominance to the case of belief-plausibility measures
and Destercke ([9]) and Troffaes ([15]), for instance,
consider several generalizations of Savage dominance
criterion. We have shown that many of those pref-
erence generalizations can be expressed in terms of a
general formulation that is related to the expectation
of a function of both random variables, increasing in

the first component and decreasing in the second one.

Differently, in Walley’s setting, first hand information
is expressed by means of a family of ordered pairs of
variables (or “gambles”), the first one in the pair being
preferred to the second one. This kind of knowledge
can be equivalently represented by means of a coher-
ent family of “desirable” gambles (those preferred to
the null one). The family of desirable gambles induces
a closed and convex set of linear previsions (also called
a “credal set”). Each of those linear previsions is de-
fined on the initial space and induces, for each pair of
gambles, a (finitely-additive) joint probability. Thus,
what is primary information in this framework is sec-
ondary information in the previous setting and vice
versa. Notwithstanding, from a purely formal point
of view, Walley’s almost preference can be seen as a
particular case of the general formula introduced in
[3], if we consider the function that assigns, to each
pair, the difference between both components. With
those ideas in mind, we proposed in [6] a generaliza-
tion of the notion of statistical preference from the
setting of classical Probability Theory to the frame-
work of Imprecise Probabilities. It leaded us naturally
to a new desirability criterion that we called “signed-
desirability”. We say that X is signed-desirable if its
sign (the gamble that takes the value 1 when X takes
a positive value and −1, when it is negative) is desir-
able, according to Walley’s framework. In [5], a set of
axioms characterizing the family of signed-desirable
gambles induced by a coherent set of desirable gam-
bles is provided. Furthermore, we have found an in-
teresting connection with the notion of median: the
infimum and supremum of the set of medians of a
gamble, when we range an arbitrary credal set, can
be respectively expressed as the lower and upper pre-
visions, according to this new desirability definition.

In this paper, we will propose a new desirability con-
dition very closely related to the notion of mode. The
minimum and maximum values of the family of modes
of a gamble associated to a single prevision do coin-



cide with the lower and upper previsions of this new
desirability condition. However, when we consider an
arbitrary credal set, those lower and upper previsions
bound the set of modes, but do not necessarily coin-
cide with their minimum and maximum values. We
will explore in Section 4 the reasons why those pairs
of values do not coincide in general.

2 Preliminaries

The basics on Imprecise Probabilities are assumed to
be known by the reader. Notwithstanding we will
introduce here the formal notation used in the rest of
the paper, and specify the axioms that characterize
a coherent family of desirable gambles ([16]). Those
axioms have not been stable along the literature in
what concerns the inclusion of the null gamble (see
[4] for a detailed discussion). In this paper, we will
assume it to be non-desirable.

Let Ω denote the set of outcomes of an experiment. L
will denote the set of all gambles (bounded mappings
from Ω to R). For X,Y ∈ L let X ≥ Y mean that
X(ω) ≥ Y (ω), ∀ω ∈ Ω and let X > Y mean that
X ≥ Y and X(ω) > Y (ω) for some ω ∈ Ω. A subset
D of L is said to be a coherent set of desirable gambles
[16] when it satisfies the following four axioms:

D1. If X ≤ 0 then X 6∈ D. (Avoiding partial loss).

D2. If X > 0, then X ∈ D. (Accepting partial gain).

D3. If X ∈ D and c ∈ R+, then cX ∈ D. (Positive
homogeneity).

D4. If X ∈ D and Y ∈ D, then X + Y ∈ D. (Addi-
tion).

The lower prevision induced by a set of desirable gam-
bles D is the set function P : L → R defined as follows:

P (X) = sup{c : X − c ∈ D}.

The upper prevision induced by D is the set function
P : L → R defined as follows:

P (X) = inf{c : c−X ∈ D}.

The set of linear previsions induced by a coherent set
of gambles D is defined as:

PD = {P : P (X) ≥ 0 for all X ∈ D}.

PD is always a credal set (a closed and convex set
of linear previsions, whose restrictions to events are
finitely additive probability measures). P and P are
dual and they respectively coincide with the minimum

and the maximum of PD, which can be defined in
turn, as the set of linear previsions that dominate P .
On the other hand, a subset D− ⊂ L satisfying Ax-
ioms D2–D4 and

D1’. If supX < 0 then X 6∈ D−. (Avoiding sure loss).

D5. If X + δ ∈ D−, for all δ > 0 then X ∈ D−.
(Closure).

is called a coherent set of almost desirable gambles.
A set of almost desirable gambles D− determines a
pair of lower and upper previsions, and a credal set,
by means of expressions analogous to the case of de-
sirable gambles. Conversely, a credal set univocally
determines a coherent set of almost desirable gambles
via the formula:

D−P = {X ∈ L : P (X) ≥ 0, ∀P ∈ P}.

Finally, a set D+ ⊂ L is said to be a coherent set
of strict desirable gambles if it is a coherent set of
desirable gambles, and it satisfies, in addition, the
following axiom:

D6. If X ∈ D+, then either X > 0 or X − δ ∈ D+,
for some δ > 0. (Openness).

A coherent set of strict desirable gambles can be de-
rived from a credal set as follows:

D+
P = {X : X > 0 or P (X) > 0 ∀P ∈ P}.

Let the reader notice that D+
P can be alternatively

expressed in terms of the lower prevision P as follows:

D+
P = {X : X > 0 or P (X) > 0}. (1)

In Walley’s theory, the notion of preference between
two gambles is dual to the above notion of desirabil-
ity: X is said to be preferred to Y when their differ-
ence X − Y is desirable. Conversely, if our primary
information is described by means of a partial pref-
erence ordering, we will say that X is desirable when
it is preferred to the null gamble. Furthermore, there
exists a formal connection between preference crite-
ria in classical Probability literature and Walley’s no-
tion of preference: in the particular situation where
the credal set associated to a preference ordering (ac-
cording to Walley’s view) is a singleton, {P}, Wal-
ley’s almost preference of X over Y , P (X − Y ) ≥ 0,
is equivalent to dominance according to the expecta-
tion, i.e., X is almost preferred to Y if and only if
EP (X) ≥ EP (Y ). (In the last expression, P is con-
sidered as a probability defined on the set of events,
instead of a linear prevision defined in the set of gam-
bles.)



In [3], some known notions of dominance in the (clas-
sical) probabilistic setting were reviewed, and it was
shown that all of these orderings can be expressed
by means of the formula EP [g(X,Y )] ≥ 0, where
g : R2 → R is increasing in the first component,
and decreasing in the second one. It was also clar-
ified that some generalizations of the above notions
considered in the recent literature (see, for instance,
[8, 9, 12, 15]) are very closely related to the formula
EP [g(X,Y )] ≥ 0. This idea made possible to con-
nect Walley’s framework, where the initial informa-
tion is expressed in terms of a partial ordering and
the alternative setting considered in those reviewed
papers, where the initial information is represented
by means of a lower prevision. Therefore, we can join
both frameworks and say that X is g-preferred to Y if
g(X,Y ) is desirable according to Walley’s framework.
With this idea in mind we introduced the notion of
sign-desirability in ([6]). X is said to be sign-preferred
to Y if sgn(X−Y) = 1X>Y−1Y>X is desirable, where
1A denotes the indicator function of A ⊆ Ω, and
X > Y and Y > X respectively denote the subsets of
Ω where X and Y satisfy each of those inequalities.
According to this new preference condition, X is said
to be sign-desirable when sgn(X) = 1X>0−1X<0 is de-
sirable. In words, X is said to be sign-desirable when
we are disposed to pay one probability currency unit
if X takes a negative value in return for the gamble
1X>0 (receiving 1 unit if X takes a -strictly- posi-
tive value.). In [5] an axiomatic characterization of
“coherent” sets of sign-desirable gambles is provided.
The associated pair of lower and upper previsions can
be defined as follows:

PS(X) = sup{c : X − c is strictly sign-desirable}

PS(X) = inf{c : c−X is strictly sign-desirable}.

We have checked in [6] that those lower and upper
previsions do coincide, in fact, with the infimum and
the supremum of the set of medians of X when we
range the credal set associated to the initial coherent
set of desirable gambles.

In this paper, we will explore the generalization of the
notion of mode, and its connections with Walley’s de-
sirability theory. We will introduce a new notion of
desirability, but it will not be expressed in terms of
the desirability of an increasing function of the con-
sidered gamble, as it happens with the notion of sign-
desirability. We will also consider the pair of lower
and upper previsions of a gamble, according to the
new desirability condition. The infimum of the set of
modes associated to a credal set will be bounded by
the lower prevision, but it will not coincide in general
with it.

3 The notion of mode-desirability

Let LF denote the family of “simple gambles” (those
with a finite number of different possible values). Let
us consider an arbitrary but fixed probability measure
P on Ω. According to the classical definition, the set
of modes of a gamble X ∈ LF with a finite image
Im(X) = {x1, . . . , xn} is defined as follows:

MoP (X) =
{xi ∈ Im(X) : P (X = xj) ≤ P (X = xi), ∀ j 6= i} =
{xi ∈ Im(X) : 6 ∃xj 6= xi with P (X = xj) > P (X = xi)} =
{xi ∈ Im(X) : 6 ∃j 6= i s.t. EP (1X=xj − 1X=xi) > 0}.

Let us now consider the credal set, PD, associated to
an arbitrary coherent set of desirable gambles D. Let
P denote the induced lower prevision. A natural way
to extend the classical notion of mode seems to be the
following one:

MoP (X) =
{xi ∈ Im(X) : P (1X=xj − 1X=xi) ≤ 0, ∀ j 6= i} =
{xi ∈ Im(X) 6 ∃j 6= i s.t. P (1X=xj − 1X=xi) > 0}.

We will prove the following result, in order to connect
this definition with Walley’s desirability framework.

Lemma 1 Let P be the lower prevision induced by a
coherent set of gambles D. Let D+

P be the set asso-
ciated set of strictly desirable gambles, according to
Equation 1. Let X ∈ LF . For every x ∈ Im(X) and
all y ∈ R:

P (1X=y − 1X=x) > 0 iff 1X=y − 1X=x ∈ D+.

Proof: By definition, the gamble 1X=y − 1X=x is
strictly desirable if and only if it is some of the fol-
lowing conditions are fulfilled:

P (1X=y − 1X=x) > 0 or 1X=y − 1X=x > 0.

But 1X=y − 1X=x > 0 implies that x does not belong
to the set of outcomes of X, what is a contradiction.
�

According to the above lemma, we can alternatively
express the set of modes as follows:

MoP (X) =
{xi ∈ Im(X) : 6 ∃j 6= i s.t. 1X=xj − 1X=xi ∈ D+} =
{xi ∈ Im(X) : 6 ∃j 6= i s.t. (1{xj} − 1{xi}) ◦X ∈ D+},

where the symbol “◦” stands for the composition of
functions.

Furthermore, we can skip our reference to the set of
outcomes of X by taking into account the following
result.



Lemma 2 Let us consider a credal set P, and let D+

denote the set of strictly desirable gambles induced by
it. Let X ∈ L. Then:

1. If y 6∈ Im(X), and x ∈ R, 1X=y − 1X=x 6∈ D+.

2. A+
X = {x : 6 ∃y 6= x s.t. (1{y} − 1{x}) ◦X ∈ D+}

is included in Im(X).

Proof:

1. If y 6∈ Im(X), then (1X=y−1X=x) = −1X=x ≤ 0.
According to Axiom D1, this gamble does not
belong to D+.

2. The second part is also straightforward: if x 6∈
Im(X), then (1{y}−1{x})◦X > 0,∀ y ∈ Im(X),
and therefore, the gamble (1{y} − 1{x}) ◦ X be-
longs to D+ for every y ∈ Im(X) ⊆ R \ {x}.
�

According to the above lemma, the set of modes asso-
ciated to the credal set, MoP (X), can be alternatively
expressed as:

MoP (X) = A+
X =

{x : 6 ∃y 6= x s.t. (1{y} − 1{x}) ◦X ∈ D+}.

This new expression suggests us to consider the fol-
lowing new desirability condition. We will say that
X is mode-desirable when MoP (X) = A+

X does not
contain any negative number:

Definition 1 A gamble X ∈ LF is said to be mode-
desirable, if

[∀ x < 0, ∃y 6= x s.t. (1{y} − 1{x}) ◦X ∈ D+].

We will denote it X ∈ DMo.

Remark 3.1 There is an alternative equivalent def-
inition for the notion of mode-desirability of sim-
ple gambles. In fact we can check that X is mode-
desirable if and only if:

[∀ x < 0, ∃y > x s.t. (1{y} − 1{x}) ◦X ∈ D+].

One of the implications is straightforward, so we just
need to check the second one: Let us suppose that X ∈
DMo and let us consider an arbitrary but fixed value
x ≤ 0. According to the definition of DMo, there exists
y1 6= x such that (1{y1} − 1{x}) ◦ X. Furthermore,
we can assure that y1 belongs to Im(X). If y1 >
x, the proof is finished. Otherwise, there will exist
y2 6= y1, y2 ∈ Im(X) such that (1{y2} − 1{y1}) ◦X ∈
D+. According to the additivity of D+ (Axiom D4),
we can easily check that (1{y2} − 1{x}) ◦ X ∈ D+.
According to this procedure, after a finite number of

steps, k ≤ #Im(X), we will get yk+1 > x such that
(1yk+1

− 1yk) ◦X ∈ D+. Otherwise, we would need to
assume that yn is less than or equal to x, and it would
lead us to a contradiction, because, there would need
to exist y 6∈ Im(X) with (1y − 1yn) ◦X ∈ D+.

If X is mode-desirable, then, for every x < 0, there ex-
ists some y 6= x such that we are disposed to exchange
the gamble 1X=x in return for the gamble 1X=y. The
new desirability condition induces a pair of lower and
upper previsions as follows:

Definition 2 Let D be a coherent family of desir-
able gambles, and let DMo denote the family of mode-
desirable gambles induced by it. Let X ∈ LF . The
lower prevision of X is defined as follows:

PMo(X) = sup{c ∈ R : X − c ∈ DMo}

Analogously, the upper prevision is:

PMo(X) = inf{c ∈ R : c−X ∈ DMo}.

Now we will prove that the minimum and the maxi-
mum values of the set A+

X do coincide with the pair
of lower and upper previsions defined above. Let us
first prove the following supporting result:

Lemma 3

• The set C = {c : X − c ∈ DMo} can be alterna-
tively expressed as:

{c : [x < c⇒ ∃ y 6= x with (1{y}−1{x})◦X ∈ D+]} =

{c : [x < c⇒ x 6∈ A+
X ]} = (−∞,minA+

X ].

• The set D = {d : d−X ∈ DMo} can be alterna-
tively written as:

{d : [x > d⇒ ∃ y 6= x with (1{y}−1{x})◦X ∈ D+]} =

{d : [x > d⇒ x 6∈ A+
X ]} = [maxA+

X ,∞).

Proof: The proof is almost immediate, if we take
into account that 1{y} ◦ (X − c) = 1{y+c} ◦ X, and
1{y} ◦ (d−X) = 1{d−y} ◦X ∀ c, d, y ∈ R. �

The next result is straightforward, according to the
above lemma:

Proposition 4 The following equalities hold:
minA+

X = PMo(X) and maxA+
X = PMo(X).

Remark 3.2 According to the proof of Lemma 3, the
supremum of C and the infimum of D are, indeed,
maximum and minimum values, respectively, and they
do coincide with the minimum and the maximum of
A+
X , respectively.



Let us now consider the set of mode values associated
to the credal set:

MoPD (X) = ∪P∈PD{MoP (X)}.

If it coincided with A+
X , the minimum and the maxi-

mum of the family of modes associated to the credal
set would coincide with the lower and upper previsions
of X, according to the notion of mode-desirability.
Nevertheless, those lower and upper previsions just
bound, but they do not coincide in general with the
minimum and maximum of the set of modes of X.
More specifically, we can check that:

Proposition 5 The set of mode values associated to
the credal set PD, MoPD (X) is included in A+

X . Fur-
thermore, if the credal set is a singleton, both sets of
values do coincide.

Proof: The set of modes can be expressed as follows:

MoPD (X) = ∪P∈PD{MoP (X)} =

∪P∈PD{x : ∀ y 6= x, P (1{y} − 1{x}) ◦X ≤ 0} =

{x : ∃P ∈ PD s.t. ∀ y 6= xP (1{y} − 1{x}) ◦X ≤ 0}.
On the other hand,

A+
X = {x : ∀ y 6= x, P (1{y} − 1{x}) ◦X) ≤ 0}.

According to the above expressions, and taking into
account that P is the minimum of the credal set, we
can easily derive the thesis of this proposition. �

According to the last results, A+
X is a finite set con-

taining the set of modes, MoPD (X), and included in
the set of images of X. Under some additional con-
straints (PD being a singleton or, contrarily, express-
ing vacuous information, or A+

X being included in the
set of images with maximum upper probability, etc.)
they do coincide. But they do not in general, as we
illustrate in the following example.

Example 1 Let Ω be a finite set with four elements,
Ω = {ω1, ω2, ω3, ω4} and let us consider the credal set
P = {( 3

8−α,
1
8−

α
4 ,

1
8 + α

4 ,
3
8 +α) : α ∈ [− 3

8 ,
3
8 ]}. In the

above formula, each vector of the form (p1, p2, p3, p4)
represents the linear prevision P defined as:

P (X) =

4∑
i=1

piX(ωi), ∀X ∈ L.

Let D+
P denote the set of strictly desirable gambles as-

sociated to P: D+
P = {Y : Y > 0 or P (Y ) > 0}. Let

us now consider the gamble X defined as X(ωi) =
i, i = 1, 2, 3, 4. Let A+

X denote the collection of num-
bers:

A+
X = {x : 6 ∃y 6= x with (1{y} − 1{x}) ◦X ∈ D+} =

{i ∈ {1, . . . , 4} : ∀j 6= i, P (1{ωj} − 1{ωi}) ≤ 0}.

A+
X = {1, 2, 3, 4}, but MoP(X) = {1, 4}. In order to

check it, Tables 1 and 2 respectively display, for each
pair (j, i), the value that the linear prevision Pα ≡
( 3
8 − α,

1
8 −

α
4 ,

1
8 + α

4 ,
3
8 + α) and the lower prevision

P = minα∈[− 3
8 ,

3
8 ]
Pα assign to the gamble (1{xj} −

1{xi}) ◦X = 1{ωj} − 1{ωi}.

j \ i 1 2 3 4

1 0 1
4 −

3α
4

1
4 −

5α
4 2α

2 3α
4 −

1
4 0 −α2 − 1

4 −
5α
4

3 5α
4 −

1
4

α
2 0 − 1

4 −
3α
4

4 −2α 1
4 −

5α
4

1
4 + 3α

4 0

Table 1: It displays Pα(1{ωj} − 1{ωi}), for each (j, i).

j \ i 1 2 3 4

1 0 − 1
32 − 7

32 − 3
4

2 − 17
32 0 − 3

16 − 3
8

3 − 23
32 − 3

16 0 − 1
32

4 − 3
4 − 7

32 − 1
32 0

Table 2: It displays P (1{ωj} − 1{ωi}), for each (j, i).

None of the values in Table 2 is strictly positive, and
this means that A+

X coincides with the set of possible
outcomes of the gamble X, {1, 2, 3, 4}. On the other
hand, there does not exist any α ∈ [− 3

8 ,
3
8 ] such that

the values 2 or 3 belong to the set of modes of X as-
sociated to the linear prevision Pα, MoPα(X). Thus,
the set of modes associated to the credal set, MoP(X),
is strictly included in A+

X .

We can ask ourselves what happens if we replace, D+

by D or D− in the construction of the set of values:

{x : 6 ∃y 6= x with (1{y} − 1{x}) ◦X ∈ D+}.

Let us consider the pair of sets:

AX = {x : 6 ∃y 6= x with (1{y} − 1{x}) ◦X ∈ D}

and

A−X = {x : 6 ∃y 6= x with (1{y} − 1{x}) ◦X ∈ D−} =

{x : P ((1{y} − 1{x}) ◦X) < 0, ∀ y 6= x},

and let us compare them with A+
X .

Lemma 6 A−X ⊆ AX ⊆ A
+
X . Furthermore, if PD is a

singleton, PD = {P}, then A−X = ∅, unless the distri-
bution of X is unimodal. In that case, A−X = AX =
A+
X = MoP (X).



Proof: The first part is easy to prove if we take into
account the chain of inclusions D+ ⊆ D ⊆ D−. Sec-
ondly, if PD = {P}, we can easily check that x belongs
to A−X if and only if P (1X=y) < P (1X=x), ∀ y 6= x.
This only happens when x is the only mode of X, with
respect to the linear prevision P. �

Remark 3.3 Using expressions analogous to those
considered in Lemma 3, we can easily prove that the
minimum and maximum of A−X do respectively coin-
cide with sup{c : X − c ∈ D−Mo} and inf{d : d−X ∈
D−Mo}, where D−Mo is defined as:

{X ∈ LF : ∀x < 0 ∃ y 6= x s.t. (1{y}−1{x})◦X ∈ D−}.

Furthermore, we have seen that A−X is included in A+
X ,

and that the last one coincides with the set of modes,
when the credal set is a singleton. We can ask our-
selves whether A−X is, in general a subset of MoP(X),
and therefore it approximates it from below. But we
can easily check that this does not happen. In Exam-
ple 1, we have shown that none of the lower previsions
displayed in Table 2 was strictly positive. Further-
more, we observe that all of them are negative (except
for those in the diagonal). This means that A−X also
coincides with the whole family of possible outcomes
of X, A−X = {1, 2, 3, 4} and therefore, it strictly in-
cludes the set of mode values associated to the credal
set.

4 What’s the problem with
mode-desirability?

In Walley’s framework ([16]), any coherent set of gam-
bles satisfies Axioms D2 and D4. The following prop-
erty can be easily derived from both axioms:

Y ∈ D, and X > Y ⇒ X ∈ D. (2)

On the other hand, the set of sign-desirable gambles
induced by a coherent set of gambles D satisfies Ax-
iom D2, but it does not necessarily satisfy Axiom D4.
However we can easily check that it fulfills the prop-
erty mentioned in Equation 2, since it is connected
to D+ through the function sgn : R → R, that is
increasing. More explicitly:

Definition 3 Let D be a coherent set of desirable
gambles, and let f : R → R be an increasing func-
tion. We will say that X is f -desirable if and only if
f(X) belongs to D. We will denote it X ∈ Df .

Lemma 7 Let D be a coherent set of desirable gam-
bles, and let f : R → R be an increasing function.
The set of f -desirable gambles satisfies the property:

X ∈ Df , Y > X ⇒ Y ∈ Df .

A “coherent” set of mode-desirable gambles does not
necessarily satisfy the property considered in Equa-
tion 2 as we illustrate in Example 2:

Example 2 Let Ω be the unit interval, and let P de-
note the uniform probability distribution defined on it.
Let Y denote the gamble defined as follows:

Y (ω) =


−1 if ω ∈ [0, 1/3)

1 if ω ∈ [1/3, 5/6)

2 if ω ∈ [5/6, 1]

Y takes the values −1, 1 and 2 with respective prob-
abilities 1/3, 1/2 and 1/6. Thus, we can easily check
that Y is mode-desirable, since P (1{1} − 1{x} ◦ Y ) >
0, ∀x < 0. Let us now consider the gamble:

X(ω) =



−1 if ω ∈ [0, 1/3)

1 if ω ∈ [1/3, 1/2)

2 if ω ∈ [1/2, 2/3)

3 if ω ∈ [2/3, 5/6)

4 if ω ∈ [5/6, 1]

We clearly see that Y ≥ X, but it is not mode-
desirable. In fact, for x = −1 there does not exist
any y > x such that P (1{y} − 1{x} ◦X) > 0.

From this example, and according to Lemma 7, a “co-
herent” sets of mode-desirable gambles can not be ex-
pressed, in general, as the family of f -desirable gam-
bles, according to some increasing function f : R→ R
and some coherent set of desirable gambles D. This
fact seems to be essential in relation with the proper-
ties of the lower and upper previsions derived from it,
as we show below.

Lemma 8 Let D be a coherent set of desirable gam-
bles, and let us consider an increasing function f :
R→ R. The set C = {c : f(X − c) ∈ D} satisfies the
following property: c ∈ C, c′ ≤ c⇒ c′ ∈ C.

Proof: Let us suppose that c ∈ C and c′ ≤ c. By
definition, f(X− c) ∈ D. According to the properties
of f , f(X − c′) ≥ f(X − c) and, therefore, according
to the coherence of D, f(X − c′) belongs to it. �

Proposition 9 Let D be a coherent set of desirable
gambles, and let us consider an increasing function
f : R → R. Let D+

f denote the set of f−desirable

gambles with respect to the coherent set D+, D+
f =

{X : f(X) ∈ D+}. Let us also consider, for every
P ∈ PD, the set of f -desirable gambles with respect to
D+
{P}, i.e.: D+

f,{P} = {X : f(X) > 0 or P (f(X)) >

0}. Then:

sup{c : X−c ∈ D+
f } = inf

P∈PD
sup{c : X−c ∈ D+

f,{P}}.



Proof: First of all, let us take into account that D+ ⊆
D+
{P}, and therefore D+

f ⊆ D
+
f,{P}, ∀P ∈ P. Thus,

the set {c : X − c ∈ D+
f } is included in {c : X − c ∈

D+
f,{P}}, ∀P ∈ P, and therefore

sup{c : X−c ∈ D+
f } ≤ inf

P∈PD
sup{c : X−c ∈ D+

f,{P}}.

Let us now prove the reverse inequality.Let cP denote
the supremum of the set {c : f(X − c) ∈ D+

f,{P}}
and let c = infP∈P cP . Let us consider an arbitrary
c′ < c. It will suffice to check that, c′ ∈ {c : X − c ∈
D+
f }. Let us consider the difference ε = c − c′ > 0.

According to the definition of supremum, for every
P ∈ P there exists c′P ∈ {c : X−c ∈ D+

f,{P} such that

cP−ε < c′P ≤ cP . Therefore, c′ ≤ infP∈P c
′
P and thus,

according to Lemma 8, f(X − c′) ∈ D+
{P}, ∀P ∈ P.

Having into account that D+ = ∩P∈PD+
{P}, we have

that c′ ∈ {c : X − c ∈ D+
f }, and the result is proved.

�

According to the last result, when we consider an
increasing function f : R → R, and the supremum
sup{c : f(X − c) ∈ D+

{P}} coincides with some well-

known parameter, θP (X) induced by the probability
distribution PX (like, for instance, the expectation for
f(·) = ·, or the infimum of the interval of medians, for
f = sgn, the supremum sup{c : f(X−c) ∈ D+} coin-
cides with the infimum of the values of the parameter,
when we range the credal set, infP∈PD θP (X).

The condition of mode-desirability cannot be ex-
pressed in terms of an increasing function. According
to Example 2, it is something inherent to the stan-
dard definition of mode, and it does not depend on
the particular definition we have introduced in or-
der to extend the idea of non-negativity of the mode
to the Imprecise Probabilities framework. Even for
the family of single-pointed credal sets, we cannot
find an increasing function f : R → R such that
sup{c : f(X − c) ∈ D+

{P}} = minMoP (X), for ev-

ery linear prevision, P .

5 Alternative definitions of mode
desirability

As we have mentioned in the introduction, [3] re-
views several classical stochastic preference criteria
and shows that many of them can be written accord-
ing to the general formulation:

X is preferred to Y iff EP (g(X,Y )) ≥ 0,

where g : R2 → R is increasing in the first com-
ponent and decreasing in the second one. Further-
more, in most cases, g can be expressed in terms of

an increasing point-to-point function f : R → R as
g(x, y) = f(x) − f(y), ∀ (x, y) ∈ R2. As we clarify
in [3], some extensions of those stochastic orderings
introduced in the recent literature ([6, 8, 9, 11, 15])
can be written in terms of the non-negativity of the
lower prevision of g(X,Y ). Some others, instead,
take into account the pairs of lower and upper pre-
visions of f(X) and f(Y ), (E(f(X)), E(f(X))) and
(E(f(Y )), E(f(Y ))). Based on both pairs, we can gen-
erate four different preference relations, that, for the
sake of shortness, will be called min-max, max-max,
max-min and min-min.

In Section 3, we considered the following generaliza-
tion of the notion of mode:

MoP (X) = {xi : P (1X=xj − 1X=xi) ≤ 0, ∀ j 6= i}.

Instead of the lower prevision of gambles of the form
(1{xj} − 1{xi}) ◦X, we can alternatively consider the
pairs of lower and upper previsions of the gambles
1{xj} ◦X and 1{xi} ◦X and compare them, according
to the four criteria mentioned in the last paragraph.
In this section we will briefly discuss these four alter-
native definitions.

Min-max criterion

Let P and P respectively denote the lower and upper
previsions induced by a credal set P. Let X ∈ LF
be an arbitrary simple gamble. We will define the
min-max-mode of X with respect to P as the set:

M
mMoP(X) = {xi : P (1X=xj ) ≤ P (1X=xi), ∀ j 6= i}.

According to the super-additivity of P , and the dual-
ity between P and P , the following inequality holds:

P (1X=xj )− P (1X=xi) ≥ P (1X=xj )− P (1X=xi),

and therefore, we can easily check that the max-min-
mode of X contains the set MoP (X), that is, in turn,
a superset of the family of modes of X, when we range
the credal set. Therefore, the max-min-mode is even
less precise than our initial generalization of the mode.

Max-max criterion

We will define the max-max-mode of X with respect
to P as follows:

M
MMoP(X) = {xi : P (1X=xj ) ≤ P (1X=xi), ∀ j 6= i}.

This set is included in the set of modes of X, when
we range the credal set. In fact, according to the
coherence of P , it is the maximum of the credal set,
P, and that means that there exists, for every i ∈



M
MMoP(X), some Pi ∈ P that satisfies the equality
Pi(1X=xi) = P (1X=xi), that satisfies, by definition,
the inequalities P (1X=xi) ≥ P (1X=xj ), ∀ j. Thus, we
get the inequalities:

Pi(1X=xi) = P (1X=xi) ≥ P (1X=xj ) ≥ Pi(1X=xj ), ∀ j.

Therefore, the max-max-mode approximates the set
of modes from below.

Max-min criterion

We will define the max-min-mode of X with respect
to P as follows:

m
MMoP(X) = {xi : P (1X=xj ) ≤ P (1X=xi), ∀ j 6= i}.

This set of values is clearly included in the max-max-
mode, and therefore, it is a less precise approximation
of the family of modes MoP(X).

Min-min criterion

We will define the min-min-mode of X with respect
to P as the set:

m
mMoP(X) = {xi : P (1X=xj ) ≤ P (1X=xi), ∀ j 6= i}.

P ((1{xj} − 1{xi}) ◦ X) ≤ P ((1{xj} − 1{xi}) ◦ X) ≤
P (1{xj} ◦X)− P (1{xi} ◦X), ∀ i, j.

The above set does not necessarily include, nor is it
necessarily included in the family of modes, MoP(X).
Both sets may even be disjoint, as it happens in the
following example.

Example 3 Let us consider again the credal set of
Example 1, P = {( 3

8 − α, 18 −
α
4 ,

1
8 + α

4 ,
3
8 + α) :

α ∈ [− 3
8 ,

3
8 ]}. The lower previsions of the gambles of

the form 1X=xi , i = 1, 2, 3, 4, are, respectively 0, 1
32 ,

1
32 and 0. Thus, the min-min-mode, m

mMoP(X) =
{2, 3} is the complementary of the set of modes of X,
MoP(X) = {1, 4}.

6 Concluding remarks and open
problems

We have introduced the notion of mode-desirability,
and connected the classical notion of mode to Wal-
ley’s desirability framework. The lower and upper
previsions of a gamble bound, but do not necessarily
coincide with the minimum and the maximum of the
set of modes, when we consider an arbitrary credal
set. In Section 4, we have discussed the reason why
there does not seem to exist a way to express the pair
of minimum and maximum values as the pair of lower

and upper previsions, according to some desirability
condition.

We have also studied four alternative generalizations
of the notion of mode. The “min-max” approach leads
to a pair of bounds that are even less precise than the
lower and upper previsions induced from the notion
of mode-desirability. Notwithstanding, the number of
comparisons needed to calculate the outer approxima-
tion A+

X is greater than the number needed in order
to calculate the min-max mode. It will be the expert
that uses those approximations in practical problems
who has to decide what is the most convenient proce-
dure in each specific situation. On the other hand, the
min-min mode does not seem to be related in general
with the set of modes. Finally, the max-min and the
max-max modes are included in the family of modes,
the last one being the most precise of the two. In a
specific problem, we can consider the outer and inner
approximations of MoP(X) respectively derived from
the notions of mode-desirability (or, alternatively, the
min-max mode, when the calculation of A+

X is non-
viable) and max-max mode. According to the notion
of upper prevision, the max-max mode can be alter-
natively expressed as:

{
xi : ∪n

j=1{d : d− 1X=xj 6∈ D} ⊆ {d : d− 1X=xi 6∈ D}
}
.

(3)

The max-max mode and the set A+
X approximate the

set of bounds, respectively from below and above. At
first sight, the problem of characterizing the set of
modes associated to a credal set seems to be more
complicated: the mode of a linear convex combination
is not between the modes of both extremes. There-
fore, the set of modes associated to a credal set does
not seem to be easily characterized by the modes of
the extremes, as it happens with other parameters,
like the entropy (see [1], for instance). At least, the
fact of departing from a pair of inner and outer ap-
proximations can simplify the process of characteriz-
ing the set of modes in some specific problems.

In the future, we plan to study the properties of the
desirability condition that matches with the gener-
alization of the notion of mode considered in Equa-
tion 3, as well as for the notion of mode-desirability.
According to the definition introduced in this pa-
per, a gamble is mode-desirable if and only if A+

X ∩
(−∞, 0) 6= ∅. The set of mode-desirable gambles does
not satisfy, in general, Axiom D1 (“avoiding partial
loss”). In order to overcome this inconvenient, we
could have alternatively considered X to be mode-
desirable if and only if A+

X ∩ (−∞, 0] = ∅. But this
would not entail a substantial improvement, since the
set of mode-desirable gambles would no longer sat-
isfy Axiom D2 (“accepting partial gain”). We plan to
study other alternatives in order to find a new defini-



tion that simultaneously satisfies both axioms.

We also plan to study necessary and sufficient condi-
tions for a credal set P in order to satisfy the equality
MoP(X) = A+

X , so that the minimum and the max-
imum of the set of modes do coincide with the lower
and upper previsions induced by the set of mode-
desirable gambles.

In the paper, we have assumed that the outcomes of
the gambles were numbers, but we could easily ex-
tended this framework to a non-necessarily numeri-
cal setting. The definitions of mode-desirability and
lower and upper prevision would require, anyway, the
universe being an ordered set including a “neutral”
element that plays the role of the value 0 in the real
line.
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