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Abstract

Consistency of partial assessments with different
frameworks (probability, possibility, plausibility) is
studied. We are interested in inferential processes
like the Bayesian one, with particular attention when
a part of the information is expressed in natural lan-
guage and can be modeled by a possibilistic or a plau-
sibilistic likelihood.
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1 Introduction

Fuzzy set theory, introduced by Zadeh [42], has be-
come very popular and it provides a formalization
of some concepts expressed by means of natural lan-
guage. Different interpretations of fuzzy sets have
been given [35, 26, 38] in terms of (conditional) prob-
abilities, we refer to that given in [9, 10, 8], where the
membership function of a fuzzy subset is interpreted
in terms of a coherent conditional probability assess-
ment. This interpretation, as shown in [5, 14, 13], is
particularly useful when fuzzy and statistical informa-
tion is simultaneously available.

Nevertheless sometimes the statistical information is
related to a family of events different from that of in-
terest and in which the fuzzy information is available
(as a particular case we can have two partitions such
that the elements of one are finite conjunctions of the
element of the others): by extending the probabilistic
assessment a la de Finetti [20, 41] we obtain a fam-
ily of probabilities, whose upper envelope, which is in
general only an upper probability, could be a plausi-
bility [23, 31, 40, 11] or a possibility [28, 15, 22].

In this paper we consider the above problems by focus-
ing mainly on plausibility and possibility measures,
for which many proposals of conditioning are present.
We adopt the definition of T -conditional possibility,

with T any t-norm (introduced in [3] for minimum
and generalized in [17] for any t-norm): this class of
conditional measures includes as a particular case the
conditional possibilities obtained by using the Dubois
and Prade rule based on minimum specificity principle
[27]. For conditional plausibility we adopt a definition
generalizing Dempster rule, introduced in [6, 36], also
if, as it is well known, it cannot be obtained as the
lower envelope of a class of conditional probabilities.
Nevertheless it assures a “weak disintegration rule”
and admits as particular case T -conditional possibil-
ity, with T the usual product.

In the first part (Section 2 and 3) of the paper, in order
to consider a generalized Bayesian inferential proce-
dure, by using the concept of coherence (that is the
consistency of a partial assessment with a conditional
possibility or plausibility), we study the properties of
likelihood functions, both as point and set functions,
in the different frameworks. Moreover, we study the
coherence of a likelihood with a plausibility (or possi-
bility) measure having the role of “a prior”.

In Section 4 we give an interpretation of the member-
ship of fuzzy sets as a possibilistic or a plausibilistic
likelihood function and we study which properties of
fuzzy set theory are maintained. In both cases the se-
mantic of the interpretation seem to be very similar:
if ϕ is a property, related to a variable X, the mean-
ing associated to the membership µϕ(x) on x con-
sists into the possibility [plausibility] that You claim
that X is ϕ under the hypothesis that X assumes
the value x. We show that from a syntactical point of
view many differences and common features can oc-
cur. About the specific feature the most relevant is
that the membership µϕ∨ψ of the union of two fuzzy
sets, with memberships µϕ and µψ, is not linked to
µϕ∧ψ by the Frank equation ([30]), as in probability
theory. On the contrary, in the case of possibilistic
setting µϕ∨ψ is univocally determined by µϕ and µψ
independently of µϕ∧ψ. While in the case of plau-
sibilistic framework it is not univocally determined,



but µϕ∨ψ(x) must be between max{µϕ(x), µψ(x)} and
min{µϕ(x) + µψ(x)} − µϕ∧ψ(x), 1}.

In this interpretation the fuzzy membership µϕ coin-
cides with a likelihood and the fuzzy event Eϕ is the
Boolean event “You claim that X is ϕ”; moreover for
the measure of uncertainty of Eϕ when the prior on
X is a plausibility we get an upper bound, while when
the prior is a possibility we give an analytic formula
depending on the chosen t-norm.

2 Conditional measures

Usually in literature a conditional measure is pre-
sented as a derived notion of the unconditional one,
by introducing a law involving the joint measure and
its marginal. Nevertheless, this could be restrictive,
since for some pair of events the solution of the equa-
tion (the conditional measure) can either not exists
or to be not unique. So, in analogy with conditional
probability [21], it is preferable to define conditional
measures in an axiomatic way, directly as a function
defined on a suitable set of conditional events. We re-
call here the notion of T -conditional possibility (with
T any t-norm)[3, 17]

Definition 1. Let T be any t-norm. Given a Boolean
algebra B and an additive set (closed under finite dis-
junctions) H with H ⊆ B0 = (B \ {∅}), a function
Π : B × H → [0, 1] is a T -conditional possibility if it
satisfies the following properties:

(i) Π(E|H) = Π(E ∧ H|H), for every E ∈ B and
H ∈ H;

(ii) Π(·|H) is a (finitely maxitive) possibility on B,
for any H ∈ H;

(iii) Π(E ∧F |H) = T (Π(E|H),Π(F |E ∧H)), for any
H,E ∧H ∈ H and E,F ∈ B.

Condition (ii) of previous definition requires that
Π(Ω|H) = 1, Π(∅|H) = 0 and for every H ∈ H,
Π(

∨
i=1,...,nAi|H) = maxi=1,...,n Π(Ai|H), for every

A1, ..., An ∈ B [37]. Moreover from (i) and (ii)
Π(H|H) = 1 for every H ∈ H.

Actually, conditional possibility (according to Defi-
nition 1) cannot be in general induced by a unique
possibility, but by a class of possibilities (for more de-
tails, see [17]). Nevertheless, by using some principle,
conditional possibility could be defined by means of
a unique possibility measure. Obviously some prin-
ciples can give rise to assessments inconsistent with
axioms (i) – (iii), see [16, 17].

Taken the minimum t-norm, by considering the min-
imum specificity principle the following notion of

conditioning [27] arises (in the following called DP-
conditional possibility, where DP stands for Dubois
and Prade):

for any E|H in B×H0, Π(E|H) = 1, when Π(E∧H) =
Π(H) and E∧H 6= ∅, Π(E|H) = Π(E∧H) otherwise.

It is easy to see that a DP-conditional possibility is
a conditional possibility in the sense of Definition
1. More generally, for a continuous t-norm, the T -
conditional possibility Π(E|H) can be seen as the
residuum →T of the t-norm T

x→T y = sup{z ∈ [0, 1] : T (x, z) = y}

that means Π(H)→T Π(E ∧H) whenever E ∧H 6= ∅
(see [19]). In [2] a link between these kinds of con-
ditioning and Jeffrey’s rule is studied, while in [25]
connections between conditioning in possibility and
belief function context are studied.

In [17] we proved that if T is a continuous t-norm, a
conditional possibility can be extended on any other
set B′ ×H′ with B′ a Boolean algebra and H′ an ad-
ditive set (H′ ⊆ B0) with B×H ⊂ B′×H′. Moreover,
for any E|H in B′ ×H′ \ B ×H the admissible values
lay on a closed interval.

Analogously, conditional plausibility can be defined
axiomatically as follows (see [6, 11]):

Definition 2. Let B be a Boolean algebra and H ⊆ B0
an additive set. A function Pl defined on C = B ×H
is a conditional plausibility if it satisfies the following
conditions

i) Pl(E|H) = Pl(E ∧H|H);

ii) Pl(·|H) is a plausibility function ∀H ∈ H;

iii) For every E ∈ B and H,K ∈ H

Pl(E ∧H|K) = Pl(E|H ∧K) · Pl(H|K).

Moreover, given a conditional plausibility, a condi-
tional belief function Bel(·|·) is defined by duality as
follows: for every event E|H ∈ C

Bel(E|H) = 1− Pl(Ec|H).

Condition i) and ii) requires that Pl(Ω|H) =
Pl(H|H) = 1 and Pl(∅|H) = 0 and moreover, for
any n, Pl(·|H) is n-alternating [23]:

Pl(A|H) ≤
∑

(−1)|I|+1Pl(∧i∈IAi|H) (1)

for any A1, ..., An, A ∈ A with A = ∨ni=1Ai. Then,
Bel(·|H) is n-monotone for any n.

This axiomatization extends the Dempster’s rule, i.e.

Bel(F |H) = 1− Pl(F c ∧H)

Pl(H)
,



for all conditioning events H such that Pl(H) > 0.
When all the conditioning events have positive plau-
sibility, i.e. Pl(H|H0) > 0 for any H ∈ H (with
H0 = ∨H∈HH), the above notions of conditional
plausibility and conditional belief coincide with that
given in [24]. In fact, if Pl(H) > 0 it follows

Bel(F |H) =
Bel(F ∨Hc)−Bel(Hc)

Pl(H)
. (2)

An easy consequence of Definition 2 is a weak form of
disintegration formula for the plausibility of an event
E|H with respect to a partition H1, ...,HN of H

Pl(E|H) ≤
N∑
k=1

Pl(Hk|H)Pl(E|Hk) (3)

Taking into the following definition of conditioning
(see [29, 33, 40, 41]):

Pl(F |H) =
Pl(F ∧H)

Pl(F ∧H) +Bel(F c ∧H)
(4)

the obtained conditional plausibility Pl does not sat-
isfy axiom iii) of Definition 2. Therefore conditional
plausibilities given trough equation (4) does not sat-
isfy equation (3).

Note that for T equal to the usual product every T -
conditional possibility is a conditional plausibility.

In the next result we show that every conditional plau-
sibility on B × H can be extended (not uniquely) to
a full conditional plausibility on B (i.e., a conditional
plausibility on B × B0).

Theorem 1. Let B be a finite algebra. If Pl on
B×H → [0, 1] is a conditional plausibility, then there
exists a conditional plausibility Pl′ : B × B0 → [0, 1]
such that Pl′|B×H = Pl.

Proof. Denote H0
0 =

∨
H∈HH. If H0

0 coincides
with the certain event Ω, Pl(·|Ω) defines univocally
Pl′(E|H) for Pl(H|Ω) > 0. Let H1

0 = {H ∈ B0 :
Pl(H|Ω) = 0}, H1

0 =
∨
H1

0
H belongs to B0 and

Pl′(H1
0 |Ω) = 0 since Pl(H1

0 |Ω) ≤
∑
H∈H1

0
Pl(H|Ω).

If H1
0 ∈ H again for Pl(H|H1

0 ) > 0 Pl′(·|H) is univo-
cally defined, so proceed as before.

While for H1
0 6∈ H check whether the set

K = {H ∈ H : Pl(H|H1
0 )} is not empty. If it is

not empty, consider the event K1 =
∨
H∈KH in H

and K1 ⊆ H1
0 . Define Pl′(E|H1

0 ) = Pl(E|K1) for any
E ∈ B. Note that Pl′(K|H1

0 ) = 1, Pl′(Kc|H1
0 ) = 0

and Pl′(·|H1
0 ) is a plausibility since Pl(·|K1) is. Oth-

erwise if K is empty define Pl′(E|H1
o ) = 1 for any

E ∈ B such that E ∧H1
0 6= ∅. It is easy to check that

even in this case Pl′(·|H1
0 ) is a plausibility.

Now, define H2
0 = {H ∈ B0 : Pl(H|H1

0 ) = 0} and
proceed as before.

It is easy to check that Pl′ satisfies the axioms iii) of
Definition 2 and so it is a conditional plausibility.

Now we show that every full conditional plausibility
on B can be extended as a full conditional plausibility
on every finite superalgebra B′ ⊇ B.

Theorem 2. Let B be a finite algebra and B′ ⊇ B a
finite superalgebra. If Pl : B × B0 → [0, 1] is a full
conditional plausibility, then there exists a full con-
ditional plausibility Pl′ : B′ × B′0 → [0, 1] such that
Pl′|B×B0 = Pl.

Proof. For any A′ ∈ B′ consider the smallest event
A ∈ B containing A′, A = ∨C∈B:C∧A′ 6=∅C and define
Pl′(A′) = Pl(A).
Since for any A′, B′ ∈ B′, Pl(A ∧ B) = Pl′(A′ ∧ B′)
the function Pl′ is a plausibility and induces a full
conditional plausibility on B′. By construction for
any A|B ∈ B × B0 it holds Pl′(A|B) = Pl(A|B).

Note that the full conditional plausibility on B′
extending the given conditional plausibility is not
unique, that one given in the proof of Theorem 2 is
just an example.

2.1 Coherent conditional plausibility

Analogously to probability theory, it is possible to in-
troduce a notion of coherence in the context of plausi-
bility functions, as done for conditional probabilities
[21] and also for T -conditional possibilities [17].

Definition 3. A function (or assessment) γ : C →
[0, 1], on a set of conditional events C, is a coherent
conditional plausibility (T -conditional possibility) iff
there exists a full conditional plausibility Pl (full T -
conditional possibility Π) on an algebra B such that
C ⊆ B × B0 and the restriction of Pl (Π) on C coin-
cides with γ.

For a characterization of (coherent) conditional pos-
sibility, with T -continuous t-norm, see [17, 1]. Theo-
rem 3 characterizes (coherent) conditional plausibility
functions in terms of a class of plausibilities.

Theorem 3. Let F = {E1|F1, E2|F2, . . . , Em|Fm}
and denote by B the algebra generated by
{E1, . . . , Em, F1, . . . , Fm}, H0

0 = ∨mj=1Fj. For
Pl : F → [0, 1] the following statements are
equivalent:

(a) Pl is a coherent conditional plausibility;

(b) there exists a class P = {Plα} of plausibility

functions such that Plα(Hα
0 ) = 1 and Hα

0 ⊂ Hβ
0



for all β < α, where Hα
0 is the greatest (with

respect to the inclusion) element of K for which
Pl(α−1)(H

α
0 ) = 0.

Moreover, for every Ei|Fi, there exists a unique
index α such that Plβ(Fi) = 0 for all α > β,
Plα(Fi) > 0 and

Pl(Ei|Fi) =
Plα(Ei ∧ Fi)
Plα(Fi)

, (5)

(c) all the following systems (Sα), with α =
0, 1, 2, ..., k ≤ n, admit a solution Xα =
(xα1 , ...,x

α
jα

) with xαj = mα(Hj) (j = 1, ..., jα):

(Sα) =


∑

Hk∧Fi 6=∅
xαk · Pl(Ei|Fi) =

∑
Hk∧Ei∧Fi 6=∅

xαk , ∀Fi⊆Hα
0∑

Hk∈Hα0
xαk = 1

xαk ≥ 0, ∀Hk⊆Hα
0

where Hα
0 is the greatest element of K such that∑

Hi∧Hα0 6=∅
m(α−1)(Hi) = 0.

In particular, conditions (b) and (c) stress that this
conditional measure can be written in terms of a suit-
able class of basic assignments, instead of just one as
in the classical case, where all the conditioning events
have positive plausibility.

Note that every class P (condition (b) of Theorem 3)
is said to be agreeing with conditional plausibility Pl.
Whenever there are events in K with zero plausibility
the class of unconditional plausibilities contains more
than one element and we can say that Pl1 gives a re-
finement of those events judged with zero plausibility
under Pl0.

For an example showing the construction of the class
P characterizing (in the sense of the above result) a
conditional plausibility see [36].

3 Likelihood functions

This section is devoted to a comparative analysis
of likelihood functions under different frameworks:
probability, possibility, plausibility.

Given an event E and a partition L, a likelihood func-
tion is an assessment on {E|Hi : Hi ∈ L} (that is a
function f : {E} × L → [0, 1]) satisfying only the
following trivial condition:

(L1) for every Hi such that E ∧ Hi = ∅ one has
f(E|Hi) = 0 and for every Hi such that Hi ⊆ E
one has f(E|Hi) = 1

Theorem 4. Let L = {H1, . . . ,Hn} be a finite parti-
tion of Ω and E an event. For every likelihood func-
tion f on {E} × L the following statements hold:

a) f is a coherent conditional probability;

b) f is a coherent T -conditional possibility (for ev-
ery continuous t-norm T );

c) f is a coherent conditional plausibility.

Proof. Condition a) and b) have been proved in [10]
and [7], respectively.

Condition c) derives from a) and the fact that any
coherent conditional probability is a coherent condi-
tional plausibility (or equivalently from condition b)
and the fact that any coherent T -conditional possibil-
ity, with T the usual product, is a coherent conditional
plausibility).

Theorem 5. Let L = {H1, . . . ,Hn} be a finite par-
tition of Ω and E an event. If the only coherent
conditional plausibility (possibility) f takes values in
{0, 1}, then it is Hi ∧ E = ∅ for every Hi such that
f(E|Hi) = 0 and it is Hi ⊆ E for every Hi such that
f(E|Hi) = 1.

Proof. It follows directly from Theorem 3 and the
characterization theorem for T -conditional possibili-
ties [17].

The above results put in evidence that (in all con-
texts) no significant property characterizes likelihood
as point function (i.e. an assessment on a partition).

This implies that since two likelihoods

fi : {Ei} × Li → [0, 1]

(i = 1, 2), related to events logically independent Ei
are coherent with a conditional probability, then they
should be coherent also with a conditional plausibility.

It is easy to show that {f1, f2} are coherent also with
a T -conditional possibility.

3.1 Likelihood and prior

The aim now is to make inference with a Bayesian-
like procedure, so we have to deal with an initial as-
sessment consisting of a “prior” ϕ on a partition L
and a “likelihood function” f related to the set of
conditional events E|Hi’s, with E an arbitrary event
and Hi ∈ L. This topic has been deeply discussed in
[40, 41] by considering several interesting examples.

First of all we need to test the consistency of the global
assessment

{f, ϕ} = {f(E|Hi), ϕ(A) : Hi ∈ L, A ∈ 〈L〉}

with respect to the framework of reference (〈L〉 de-
notes the algebra generated by L). The choice of the



framework of reference is essentially decided by the
prior, since as shown in Theorem 4, a likelihood can
be re-read in any framework. This can happen also
when the prior comes from a previous inferential pro-
cess such as the enlargement of an uncertainty assess-
ment (see [15, 22, 28, 41]).

Theorem 6. Let L be a partition of Ω, consider a
likelihood f related to an event E on L and consider
a probability P , a plausibility Pl and a possibility Π
on the algebra 〈L〉. Then, the following conditions
hold:

a) the global assessment {f, P} is a coherent condi-
tional probability;

b) the global assessment {f, P l} is a coherent con-
ditional plausibility;

c) the global assessment {f,Π} is a coherent T -
conditional possibility (for every continuous t-
norm T );

Proof. Condition a) has been proved in [39], while
condition c) has been proved in [1].

Concerning condition b) note that Pl on 〈L〉 defines
a unique basic assignment function m0 on 〈L〉 that is
the unique solution of S0

Pl concerning the coherence
of Pl. Then, we need to establish whether the assess-
ment {f, P l} is coherent inside conditional plausibil-
ity, so we need to check whether the relevant system
S0
Pl,f has solution and so whether there is a class of

basic assignment {m′α} on 〈E,L〉. Notice if the sys-
tem S0

Pl,f has a solution then coherence with respect
to conditional plausibility follows from Theorem 5.

Actually, the atoms in 〈E,L〉 are all the events
E ∧Hi, E

c ∧Hi with Hi ∈ L. From [18] any plausi-
bility on 〈L〉 induces a unique function, called basic
plausibility assignment, ν (possibly taking also nega-
tive values) on 〈L〉 such that

∑
A∈〈L〉 ν(A) = 1 and∑

A∈〈L〉:A⊆B ν(A) = Pl(B).

Let µ be on 〈L〉 be the plausibility assignment induced
by Pl, consider µ′ defined on 〈E,L〉 as µ′(Hi) = 0,
µ′(E ∧Hi) = f(E|Hi)Pl(Hi), µ

′(Ec ∧Hi) = µ(Hi)−
µ′(E ∧Hi), and, for any A ∈ 〈L〉 \ L, µ(A) = µ′(A).
By construction

∑
A∈〈E,L〉 µ

′(A) = 1. For any B in

〈E,L〉, but not in (〈L〉 ∪ {E ∧Hi, E
c ∧Hi : Hi ∈ L})

one has µ′(B) = 0. Then, the function f on 〈E,L〉
defined as

∑
A∈〈E,L〉:A⊆B µ

′(A) = f(B) is such that

by construction, for any B ∈ 〈L〉,

f(B) =
∑

A∈〈E,L〉:A⊆B

µ′(A) =

∑
A∈〈L〉:A⊆B

µ′(E ∧A) + µ′(Ec ∧A) + µ′(A) =

∑
A∈〈L〉:A⊆B

µ(A) = Pl(B)

then f extends Pl.

We need to prove that f is a plausibility: the proof
can be made by induction, we prove here that is 2-
alternating, the proof that it is n-alternating under
the hyphothesis that is (n− 1)-alternating is similar.

For any event A ∈ 〈E,L〉 there is an event Ā ∈ 〈L〉
such that Ā ⊆ A and no event B ∈ 〈L〉 such that Ā ⊂
B ⊆ A, that is the maximal event of 〈L〉 contained
in A. Then, given any pair of events A,B ∈ 〈E,L〉
let Ā, B̄ ∈ 〈L〉 be the two maximal events contained,
respectively in A and B. Thus,

f(A∨B) =
∑

C∈〈E,L〉:C⊆A∨B

µ′(C) =
∑

E∧Hi⊆A∨B

µ′(E∧Hi)+

∑
Ec∧Hi⊆A∨B

µ′(Ec ∧Hi) +
∑

C∈〈L〉\L,C⊆A∨B

µ′(C) =

∑
Hi⊆A∨B

µ(Hi) +
∑

E∧Hi⊆A∨B,Ec∧Hi 6⊆A∨B

µ′(E ∧Hi)+

∑
Ec∧Hi⊆A∨B,E∧Hi 6⊆A∨B

µ′(Ec ∧Hi) +
∑

C∈〈L〉\L,C⊆A∨B

µ(C)

= Pl(A ∨B) +
∑

E∧Hi⊆A∨B,Ec∧Hi 6⊆A∨B

µ′(E ∧Hi)+

∑
Ec∧Hi⊆A∨B,E∧Hi 6⊆A∨B

µ′(Ec ∧Hi) =

Pl(Ā ∨ B̄) +
∑

Hi⊆A∨B,Hi 6⊆Ā∨B̄

µ(Hi)+

∑
E∧Hi⊆A∨B,Ec∧Hi 6⊆A∨B

µ′(E ∧Hi)+

∑
Ec∧Hi⊆A∨B,E∧Hi 6⊆A∨B

µ′(Ec ∧Hi).

Note that A = Ā∨
∨

Hi∈L:Hi 6⊆A((E∧Hi∧A)∨(Ec∧Hi∧A))

and analogously for B. Obviously, Ā ∨ B̄ ⊆ A ∨ B and
Ā∧ B̄ coincides with A ∧B. Moreover, Ā∨ B̄ is included
into A ∨B, but does not coincide with it, in fact Hi ∈ L
could be included in A∨B, but Hi is not included neither
in A nor in B (e.g. E∧Hi ⊆ A and Ec∧Hi ⊆ B). Hence,

f(A∨B) ≤ Pl(Ā)+Pl(B̄)−Pl(Ā∧B̄)+
∑

Hi⊆ ¯A∨B,Hi 6⊆Ā∨B̄

µ(Hi)+

∑
E∧Hi⊆A∨B,Ec∧Hi 6⊆A∨B

µ′(E ∧Hi)+

∑
Ec∧Hi⊆A∨B,E∧Hi 6⊆A∨B

µ′(Ec ∧Hi)

≤ Pl(Ā) + Pl(B̄)− Pl(Ā ∧ B̄)+∑
Hi⊆A∨B,Hi 6⊆Ā∨B̄

(µ′(E ∧Hi) + µ′(Ec ∧Hi))+

∑
E∧Hi⊆A∨B,Ec∧Hi 6⊆A∨B

µ′(E ∧Hi)+



∑
Ec∧Hi⊆A∨B,E∧Hi 6⊆A∨B

µ′(Ec ∧Hi)

= f(A) + f(B)− Pl(Ā ∧ B̄)

−
∑

E∧Hi⊆A∧B,Ec∧Hi 6⊆A∨B

µ′(E ∧Hi)

−
∑

Ec∧Hi⊆A∧B,E∧Hi 6⊆A∨B

µ′(Ec ∧Hi)

= f(A) + f(B)− f(A ∧B)

Finally, f induces a conditional plausibility, that we
continue to denote by f , on 〈E,L〉×H where H is the
additive set generated by Hi ∈ L such that f(Hi) > 0.
For any Hi ∈ L one has

f(E|Hi) = f(E∧Hi)
f(Hi)

= µ′(E∧Hi)
Pl(Hi)

= f(E|Hi).

This implies that the system S0
Pl,f admits a solution

and so for the above consideration the assessment
{Pl, f} is a coherent conditional plausibility.

3.2 Aggregated likelihoods

Now we study the properties of aggregated likelihood
functions, that is all the coherent extensions g of the
assessment {f(E|Hi) : Hi ∈ L} to the events E|K,
with K belonging to the additive set H = 〈L〉0 =
(〈L〉 \ {∅}).

The interest derives from inferential problems in
which the available information consists of a (prob-
abilistic or plausibilistic or possibilistic) “prior” on a
partition {Kj} and a likelihood related to the events
of another partition refining the previous one. So first
of all we need to aggregate the likelihood function pre-
serving coherence with the framework of reference.

In what follows g : {E}×H → [0, 1] denotes a function
such that its restriction to {E} × L coincides with f .

We recall a common feature of probabilistic and pos-
sibility framework: any aggregated likelihood g, re-
garded as a coherent conditional probability or a co-
herent T -conditional possibility, satisfies the following
condition for every K ∈ H:

min
Hi⊆K

f(E|Hi) ≤ g(E|K) ≤ max
Hi⊆K

f(E|Hi). (6)

Now the question is to investigate whether an aggre-
gated likelihood seen as a coherent conditional plau-
sibility must satisfy the same constraints.

In the following example we show that, for a coherent
conditional plausibility, the value max

Hi⊆K
f(E|Hi) is not

an upper bound.

Example 1. Let L = {H1, H2} be a partition and E
an event logically independent of the events Hi ∈ L.
Consider the following likelihood on L

f(E|H1) =
1

4
; f(E|H2) =

1

2

and let g be a function extending f on {E} ×H such
that g(E|H1 ∨H2) = 3

4 = f(E|H1) + f(E|H2).

From equation (6) it follows that g is not a coherent
T -conditional possibility or conditional probability;
we prove that it is indeed a coherent conditional
plausibility. For that let us consider the following
system with unknowns m0(C) , where C ∈ 〈E,L〉

(S0)=



1/4 ·
∑

H1∧C 6=∅
m0(C) =

∑
H1∧E∧C 6=∅

m0(C),

1/2 ·
∑

H2∧C 6=∅
m0(C) =

∑
H2∧E∧C 6=∅

m0(C),

3/4 ·
∑

(H1∨H2)∧C 6=∅
m0(C) =

∑
(H1∨H2)∧E∧C 6=∅

m0(C),∑
C⊆H1∨H2

m0(C) = 1

m0(C) ≥ 0, ∀C ∈ 〈E,L〉

It is easy to see that the basic assignment:

m0((E∧H1)∨(Ec∧H2)) = m0(H1∨(Ec∧H2)) =
1

8
,

m0((Ec ∧H1) ∨ (E ∧H2)) = m0((Ec ∧H1) ∨H2) =

m0(Ec ∧ (H1 ∨H2)) =
1

4
and m0(C) = 0 for any other event C ∈ 〈E,L〉, is a
solution of S0, giving positive plausibility to both the
events Hi.

The following example shows that also the lower
bound of condition (6) can be violated in the plau-
sibility framework.

Example 2. Let L = {H1, H2} be a partition and E
an event logically independent of all the events Hi.

Consider the following aggregated likelihood on H

f(E|H1) = f(E|H2) =
2

3
, f(E|H1 ∨H2) =

1

2
.

To prove that the assessment is coherent within a
conditional plausibility, we consider the following
system with unknowns m0(C) , where C ∈ 〈E,L〉

(S0)=



2/3 ·
∑

H1∧C 6=∅
m0(C) =

∑
H1∧E∧C 6=∅

m0(C),

2/3 ·
∑

H2∧C 6=∅
m0(C) =

∑
H2∧E∧C 6=∅

m0(C),

1/2 ·
∑

(H1∨H2)∧C 6=∅
m0(C) =

∑
(H1∨H2)∧E∧C 6=∅

m0(C),∑
C⊆H1∨H2

m0(C) = 1

m0(C) ≥ 0, ∀C ∈ 〈E,L〉

The following basic assignment on 〈E,L〉:

m0 = (Ec∧H1) = m0(Ec∧H2) = m0(E) = m0(Ω) =
1

4



and m0(C) = 0 for any other event C ∈ 〈E,L〉, is a
solution of S0, giving positive plausibility to both the
events Hi.

The fact that the lower bound of coherent
values of Pl(E|Hi ∨ Hj) can be less than
inf{Pl(E|Hi), P l(E|Hj)} is an indirect proof that a
conditional plausibility (Definition 2) is not an upper
envelope of a set of conditional probabilities.

Theorem 7. Any coherent conditional plausibility
Pl, extending a likelihood f : E×L → [0, 1] on E×H,
satisfies the following inequality for every K ∈ H:

(L2) 0 ≤ Pl(E|K) ≤ min{
∑

Hi⊆K
f(E|Hi), 1}.

Proof. Since f is a coherent conditional plausibility
assessment, then there is a coherent conditional plau-
sibility Pl on B × H with B = 〈H ∪ {E}〉, extending
f. The restriction of Pl to E × H is a coherent con-
ditional plausibility and for every K ∈ H, satisfies
(3) and Pl(E|K) ≥ 0. So we have 0 ≤ g(E|K) ≤∑
Hi⊆K

f(E|Hi)g(Hi|K), and then the thesis.

Theorem 7 shows that in plausibility framework there
is much more freedom than in both probabilistic and
possibilistic ones, where aggregated likelihood func-
tions are monotone, with respect to ⊆, only if the
extension is obtained, for every K, as max

Hi⊆K
f(E|Hi)

and they are anti-monotone if and only if their exten-
sions are obtained as min

Hi⊆K
f(E|Hi).

Since any likelihood (see Theorem 4) is also a coherent
conditional probability and in [10, 12] it is proved that
an aggregated likelihood coherent within conditional
probability can be obtained by taking the minimum
(maximum), this extension is obviously also a coher-
ent conditional plausibility.

In the following Proposition we prove that we could
take the sum of likelihoods.

Theorem 8. Let f be a likelihood on L related to
an event E and consider the function g on {E} × H
defined as follows: for all K1,K2 ∈ H with K1∧K2 =
∅

g(E|K1 ∨K2) = g(E|K1) + g(E|K2).

If
∑
Hi∈L f(E|Hi) ≤ 1, then g

is a coherent conditional plausibility extending f .

Proof. To prove the result it is enough to consider the
following basic assignment m on 〈E,L〉:

m((E ∧Hi) ∨
∨
j 6=i

(Ec ∧Hj))+

m(Hi ∨
∨
j 6=i

(Ec ∧Hj)) = f(E|Hi)

for Hi ∈ L and m(Ec) = 1−
∑
Hi∈L f(E|Hi).

It is easy to show that this basic assignment m is
agreeing with g (see Theorem 3) and the plausibility
of Hi is positive.

4 Fuzzy sets

The aim of this sections is to apply the results of the
previous section to an inferential problem, starting
from linguistic information (fuzzy sets) and statistical
information. We refer to the interpretation of fuzzy
sets in terms of coherent conditional probabilities [8,
9, 5]: the idea behind such interpretation is related to
that given in the seminal work [32], and we extend it
inside imprecise probabilities.

Let X be a (not necessarily numerical) variable, with
range CX , and, for any x ∈ CX , let us indicate by Ax
the event {X = x}. Let ϕ be any property related
to the variable X and let us refer to the state of in-
formation of a real (or fictitious) person that will be
denoted by “You”. A coherent conditional probabil-
ity (possibility) [plausibility] f(Eϕ|Ax) measures (in
different frameworks) the degree of belief of You in
Eϕ, when X assumes the different values x in CX .

Then f(Eϕ|·) comes out to be a natural interpretation
of the membership function µϕ(·), analogously to the
probabilistic case [9] (see also [8, 5]).

Definition 4. For any variable X with range CX and
a related property ϕ, the fuzzy subset E∗ϕ of CX is the
pair

E∗ϕ = {Eϕ , µEϕ},

with µEϕ(x) = f(Eϕ|Ax) for every x ∈ CX (f stands
for a coherent conditional probability or plausibility or
possibility).

Theorem 4 assures that any assessment
{f(E|Ax)}x∈CX is coherent within conditional
probability, plausibility and possibility: so we have
no syntactical restriction for f ; Theorem 5 assures
that in all the three frameworks the notion of fuzzy
subsets, defined by a likelihood, is a generalization of
crisp subsets.

Now denote by ϕ ∨ ψ , ϕ ∧ ψ, respectively, the prop-
erties “ϕ or ψ ” , “ϕ and ψ ”, and define

Eϕ∨ψ = Eϕ ∨ Eψ ,

Eϕ∧ψ = Eϕ ∧ Eψ .

Let us consider two fuzzy subsets E∗ϕ, E∗ψ, corre-
sponding to the same variable X, with the events



Eϕ, Eψ logically independent with respect to X. As
proved in [9], for any given x in the range of X, the
assessment P (Eϕ ∧ Eψ|Ax) = v is coherent within a
conditional probability if and only if takes values in
the interval

max{P (Eϕ|Ax) + P (Eψ|Ax)− 1, 0} ≤ v ≤

≤ min{P (Eϕ|Ax), P (Eψ|Ax)}.

It is easy to see that the assessment f(Eϕ∧Eψ|Ax) =
v is coherent within a conditional plausibility or pos-
sibility if and only if takes values in the interval

0 ≤ v ≤ min{f(Eϕ|Ax), f(Eψ|Ax)}.

Then, the lower bound of conditional probability does
not continue to be valid.

While probability rules imply that given a value to
f(Eϕ∧Eψ|Ax), we get also the value of f(Eϕ∨Eψ|Ax),
in the case of possibility we have that the value of
f(Eϕ∨Eψ|Ax) is univocally determined by f(Eϕ|Ax)
and f(Eψ|Ax) without taking into account the value
of f(Eϕ ∧ Eψ|Ax).

In the case of plausibility we have that the value of
f(Eϕ ∨ Eψ|Ax) is not univocally determined but it
must be

max{f(Eϕ|Ax), f(Eψ|Ax)} ≤ f(Eϕ ∨ Eψ|Ax) ≤

min{f(Eϕ|Ax) + f(Eψ|Ax)− f(Eϕ ∧ Eψ|Ax), 1}

Then we can put

E∗ϕ ∪ E∗ψ = {Eϕ∨ψ , µϕ∨ψ} ,

E∗ϕ ∩ E∗ψ = {Eϕ∧ψ , µϕ∧ψ} ,

with
µϕ∨ψ(x) = f(Eϕ ∨ Eψ|Ax) ,

µϕ∧ψ(x) = f(Eϕ ∧ Eψ|Ax) .

Moreover, denoting by E∗¬ϕ the complementary fuzzy
set of E∗ϕ, the relation E¬ϕ 6= (Eϕ)c holds, since the
propositions “You claim ¬ϕ” and “You do not claim
ϕ” are logically independent. In fact, we can claim
both “X has the property ϕ” and “X has the property
¬ϕ′′, or only one of them or finally neither of them;
similarly are logical independent Eϕ and Eψ, where
ψ is the superlative of ϕ.

Then, while Eϕ ∨ (Eϕ)c = CX , we have instead Eϕ ∨
E¬ϕ ⊂ CX , and, if we consider the union of a fuzzy
subset and its complement

E∗ϕ ∪ (E∗ϕ)′ = {Eϕ∨¬ϕ , µϕ∨¬ϕ}

we obtain in general a fuzzy subset of CX .

The constraints on the function f depend, as shown
before, on the framework of reference.

The concept of fuzzy event, as introduced by Zadeh,
can be seen an ordinary event of the kind

Eϕ = “You claim that X is ϕ”.

and for any uncertainty measure (probability, possi-
bility and plausibility) on the events related to X the
assessment together µϕ is coherent with respect the
relative measure (see Theorem 6) and so coherently
extendible to Eϕ (Theorem 2 for plausibilities, [17]
for conditional possibilities).

In the case of probability and possibility it is easily to
see that the only coherent value for the probability or
possibility of Eϕ is

g(Eϕ) =
⊕
x∈CX

µϕi(x)
⊙

g(x) ,

where
⊕

and
⊙

are the sum and the product in the
case of probability, while they are the maximum and
minimum in the case of possibility.

Obviously, only in the case of probability it coincides
with Zadeh’s definition of the probability of a “fuzzy
event” [42].

5 Conclusion

The first part of the paper is devoted into studying
likelihood functions seen as assessment on a set of
conditional events E|Hi, with E the evidence and
Hi varying on a partition L. It is shown that like-
lihood functions are assessment coherent with respect
probability, possibility and plausibility. Then, infer-
ential processes, like Bayesian one, are studied in the
different setting taking a likelihood function and a
prior, that could be a probability or a possibility or a
plausibility. I particular we prove that any likelihood
function on E × L and any plausibility on L, with L
a partition, are globally coherent within conditional
plausibility. Then, a comparison of aggregated like-
lihoods, that are coherent extensions of a likelihood
function on E × L to E × 〈L〉0 is studied in the dif-
ferent setting by showing the common characteristic
and the specific features.

Finally, by using the above results we give an inter-
pretation of fuzzy sets in terms of likelihood function
in the different setting: by starting from the interpre-
tation in the probabilistic setting given in [9] we give a
similar interpretation in plausibility and possibilistic
settings.
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calcolo delle probabilità. Annali Univ. Trieste, 19,
3–55 1949 - Engl. transl.: Ch.5 in Probability, In-
duction, Statistics, Wiley, London, 1972.

[22] G. de Cooman, E. Miranda, and I. Couso. Lower
previsions induced by multi-valued mappings. J.
of Statistical Planning and Inference, 133: 173–
197, 2005.

[23] A.P. Dempster. A generalizatin of Bayesian Infer-
ence. The Royal Stat. Soc. B, 50: 205–247, 1968.

[24] T. Denoeux, P. Smets, Classification using Be-
lief Functions: the Relationship between the Case-
based and Model-based Approaches, IEEE Trans-
actions on Systems, Man and Cybernetics B,
36(6): 1395-1406, 2006.

[25] S. Destercke and D. Dubois. Idempotent conjunc-
tive combination of belief functions: Extending
the minimum rule of possibility theory. Informa-
tion Sciences, 181: 3925–3945, 2011.



[26] D. Dubois, S. Moral and H. Prade. A seman-
tics for possibility theory based on likelihoods. J.
Math. Anal. Appl., 205: 359-380, 1997.

[27] D. Dubois and H. Prade. Possibility theory.
Plenum Press, New-York, 1988

[28] D. Dubois and H. Prade. When upper probabili-
ties are possibility measures. Fuzzy Sets and Sys-
tems, 49: 65–74, 1992.

[29] R. Fagin and J. Y. Halpern. A New Approach to
Updating Beliefs. In P. P. Bonissone, M. Henrion,
L. N. Kanal, J. F. Lemmer (eds.), Uncertainty in
Artificial Intelligence 6: 347-374, 1991.

[30] M. J. Frank. On the simultaneous associativity
of F (x, y) and x+y−F (x, y). Aequationes Math.,
19: 194–226, 1979.

[31] J. Halpern. Reasoning about uncertainty. The
MIT Press, Boston, 2003.

[32] E. Hisdal. Are grades of membership probabili-
ties. Fuzzy Sets and Systems, 25: 325–348, 1988.

[33] J.Y. Jaffray. Bayesian Updating and Belief Func-
tions. IEEE Transactions on Systems, Man, and
Cybernetics, 22: 1144-1152, 1992.

[34] C. Kraft, J. Pratt, A. Seidenberg. Intuitive prob-
ability on finite sets, Annals of Mathematical
Statistics 30, 408-419, 1959.

[35] V.I. Loginov. Probability treatment of Zadeh
membership functions and theris use in patter
recognition. Engineering Cybernetics, 68-69, 1966.

[36] M. Mastroleo and B. Vantaggi. An independence
concept under plausibility function. Proceeding of
5th International Symposium on Imprecise Proba-
bilities and their Applications, 287–296, 2007.

[37] , N. Shilkret. Maxitive measure and integration.
Indagationes Mathematicae, 74: 109–116, 1971.

[38] N.D. Singpurwalla and J.M. Booker. Member-
ship functions and probability measures of fuzzy
sets (with discussion). Journal of America Statist.
Association 99: 867–889, 2004.

[39] B. Vantaggi. Statistical matching of multiple
sources: A look through coherence. International
Journal of Approximate Reasoning, 49: 701–711,
2008.

[40] P. Walley. Belief function representations of sta-
tistical evidence. Annals of Statistics, 4, 1439–
1465, 1987.

[41] P. Walley. Statistical reasoning with Imprecise
Probabilities. Chapman and Hall, London 1991.

[42] L. Zadeh. Fuzzy sets. Information and Control,
8: 338–353, 1965.


