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Abstract

In this paper we consider Bayesian-like inference pro-
cesses involving coherent T -conditional possibilities
assessed on infinite sets of conditional events. For
this, a characterization of coherent assessments of pos-
sibilistic prior and likelihood is carried on. Since we
are working in a finitely maxitive setting, the notions
of complete disintegrability and of complete conglom-
erability are also studied and their relevance in the
infinite version of the possibilistic Bayes formula is
highlighted.
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1 Introduction

This paper deals with finitely maxitive T -conditional
possibilities (with T any continuous t-norm) and fo-
cuses the attention on problems related to the updat-
ing of possibility by Bayesian-like procedures.

In the first part of the paper we mainly deal with
the characterization of coherent T -conditional possi-
bility assessments, both for arbitrary families of con-
ditional events and for particular families of the type
{Hi, E|Hi}i∈I , with I infinite, where the Hi’s form
a partition of the sure event while E is an arbitrary
event. For these last assessments we also characterize
the set of coherent values for their extension to E, in
the case T is the minimum or a strict t-norm and E
is logically independent of the Hi’s.

In the second part we take into consideration two
concepts: complete disintegrability and complete con-
glomerability for events, defined in analogy to those
introduced in probability theory (originally given for
countable partitions [18, 29, 1]), considering infinite
partitions with arbitrary cardinality. As it is well-
known, in probability theory the two properties (see,
e.g., [17, 21, 29, 30, 31, 4]) are strictly related to σ-

additivity. In fact for finitely additive conditional
probabilities it is possible to have examples which,
contrary to intuition, show that a P needs not be con-
glomerative (and so disintegrable). In Bayesian lit-
erature, the phenomenon of nonconglomerability has
emerged in the so-called marginalization paradoxes
[7]. In this paper we show similarities and differ-
ences between the probabilistic and possibilistic con-
texts about complete disintegrability and complete
conglomerability, moreover we investigate their con-
nection with complete maxitivity. In particular, we
find that, for a fixed infinite partition L, complete
disintegrability w.r.t. L implies both complete max-
itivity w.r.t. L and complete conglomerability w.r.t.
L but the implications are not invertible. Further-
more, complete conglomerability w.r.t. L and com-
plete maxitivity w.r.t. L are independent.

2 Coherent T -conditional possibility

In this section we recall the definition of conditional
possibility given in [5, 6, 13, 14], that can be obtained
as a particular instance of the one introduced in [10].

An event E is singled out by a Boolean proposition,
that is a statement that can be either true or false.
Since in general it is not known whether E is true
or not, we are uncertain on E, which is said to be
possible. Two particular events are the certain event
Ω and the impossible event ∅, that coincide with, re-
spectively, the top and the bottom of every Boolean
algebra B of events, i.e., a set of events closed w.r.t.
the familiar Boolean operations of contrary c, con-
junction ∧ and disjunction ∨ and equipped with the
partial order ⊆. Recall that due to Stone’s theorem,
events can be represented as subsets of a universe set
that is identified with Ω: in this case we continue to
use c, ∧ and ∨ in place of set-theoretic operations.

A conditional event E|H is an ordered pair (E,H),
with H 6= ∅, where E and H are events of the same
“nature”, but with a different role (in fact H acts as



a “possible hypothesis”). In particular any event E
can be seen as the conditional event E|Ω.

In what follows, B × H denotes a set of conditional
events with B a Boolean algebra andH an additive set
(i.e., closed with respect to finite disjunctions) such
that H ⊆ B0 = B \ {∅}. Moreover, given an arbitrary
set G = {Ej |Hj}j∈J , denote with 〈{Ej , Hj}j∈J〉 the
Boolean algebra generated by the events {Ej , Hj}j∈J .

We recall that a t-norm T is a commutative, asso-
ciative, increasing, binary operation on [0, 1], having
1 as neutral element. A t-norm is called continu-
ous (analogously, left-continuous or right-continuous)
if it is continuous as a function, in the usual interval
topology on [0, 1]2. Prototypical examples of continu-
ous t-norms are the minimum, the algebraic product
and the  Lukasiewicz t-norm, moreover, any continu-
ous t-norm is isomorphic to an ordinal sum of pre-
vious t-norms (see for instance [24]). A t-norm is
called strict if it is continuous and strictly monotone:
strict t-norms are isomorphic to the algebraic product
through an order automorphism of the unit interval.

Definition 1. Let T be any t-norm. A function Π :
B × H → [0, 1] is a T -conditional possibility if it
satisfies the following properties:

(i) Π(E|H) = Π(E ∧ H|H), for every E ∈ B and
H ∈ H;

(ii) Π(·|H) is a finitely maxitive possibility on B, for
any H ∈ H;

(iii) Π(E ∧F |H) = T (Π(E|H),Π(F |E ∧H)), for any
H,E ∧H ∈ H and E,F ∈ B.

Let us stress that condition (ii) requires that, for ev-
ery H ∈ H, Π(∅|H) = 0, Π(Ω|H) = 1 and for every
E1, . . . , En ∈ B, Π (

∨n
i=1Ei|H) = max

i=1,...,n
Π(Ei|H),

which is called finite maxitivity axiom [33]. More-
over conditions (i) and (ii) imply that Π(H|H) = 1
for every H ∈ H.

Notice that in this paper we do not postulate the
stronger condition of complete maxitivity, which re-
quires that for every {Ei}i∈I ⊆ B with

∨
i∈I Ei ∈ B

and arbitrary I, Π
(∨

i∈I Ei|H
)

= sup
i∈I

Π(Ei|H), thus

we always mean finitely maxitive T -conditional pos-
sibilities even when not explicitly stated.

Remark 1. Every finitely maxitive unconditional
possibility Π(·) on B can be seen as a T -conditional
possibility on B × {Ω}, where T is an arbitrary t-
norm. In particular, for a T -conditional possibility
Π on B×H, we will write Π(E) for Π(E|Ω), provided
that Ω ∈ H.

For every finite set of incompatible events
H1, . . . ,Hn ∈ H with H =

∨n
i=1Hi and for ev-

ery E ∈ B, axioms (ii) and (iii) imply a possibilistic
counterpart of the well-known disintegration formula

Π(E|H) = max
i=1,...,n

{T (Π(E|Hi),Π(Hi|H))}. (1)

Definition 1 does not require any particular property
for the t-norm T . The only constraint is the distribu-
tivity over the maximum operation used in condition
(ii), but this constraint is vacuous since every t-norm
is distributive over max.

Nevertheless, continuity of the t-norm T is fundamen-
tal [14, 27] in order to guarantee the extendability
(generally not in a unique way) of a T -conditional
possibility on B×H to a full T -conditional possibility
on B (i.e., with domain B × B0). For this, in the rest
of the paper we will always assume T is continuous
when not explicitly stated.

Differently from other common notions of condition-
ing in possibility theory [36, 23, 22, 15], a full T -
conditional possibility Π(·|·) is not singled out by a
single unconditional possibility measure Π(·), in gen-
eral, but one needs a class of finitely maxitive mea-
sures [33] defined on a family of ideals linearly ordered
by proper set inclusion.

Remark 2. We notice that in the particular case
where the t-norm T is the usual product, Ω ∈ H and
Π(H) = Π(H|Ω) > 0, for every H ∈ H, the definition
of T -conditional possibility coincides with Dempster’s
rule [20]:

ΠD(E|H) =
Π(E ∧H)

Π(H)
.

We recall that the conditional possibility ΠD is not
necessarily a coherent conditional upper probability
(see [16, 35]), vice versa a conditional possibility ob-
tained as upper envelope of a class of conditional prob-
abilities in general does not satisfy condition (iii) of
Definition 1.

Definition 2. Let B be a Boolean algebra and T a
continuous t-norm. A family {(Ii, πi) : i ∈ I} is a
T -nested class if:

(a) for every i ∈ I, Ii is a Boolean ideal of B and the
family {Ii : i ∈ I} is linearly ordered by proper
set inclusion;

(b) for every E ∈ B0, there exists i ∈ I such that
E ∈ Ii \

⋃
{Ij : Ij ⊂ Ii};

(c) for every i ∈ I, πi is a (non-identically equal to 0)
finitely maxitive measure on Ii ranging in [0, 1],
such that for every E ∈ Ii, πi(E) < 1 if and only
if E ∈

⋃
{Ij : Ij ⊂ Ii};



(d) for every i, j ∈ I such that Ii ⊂ Ij and every
E,F ∈ Ii, all the solutions of equation πi(E ∧
F ) = T (x, πi(F )) are solutions of the equation
πj(E ∧ F ) = T (x, πj(F ));

(e) for every i, j ∈ I such that Ii ⊂ Ij, πj |Ii ≤ πi.

Notice that, Definition 2 is equivalent in the finite case
to the notion of T -nested class introduced in [14]. In
particular, each finitely maxitive measure πi on Ii is
a restriction of a finitely maxitive possibility measure
on B.

The algebraic requirement on the domain of the func-
tion Π in Definition 1 cannot be relaxed, indeed ax-
ioms (i)–(iii) are no more sufficient to characterize
Π if it is defined on an arbitrary set of conditional
events G. Hence, in order to deal with this eventu-
ality, the axiomatic system must be reinforced going
back to the concept of coherence, originally introduced
by de Finetti [19] in the context of (finitely additive)
probabilities.

Definition 3. Let T be any continuous t-norm.
A function Π : G → [0, 1] is a coherent T -
conditional possibility (assessment) if there ex-
ists a T -conditional possibility Π′ : B×H → [0, 1] such
that Π′|G = Π, where B ×H ⊇ G with B a Boolean al-

gebra and H ⊆ B0 and additive class.

Remark 3. Previous definition can be equivalently
formulated by requiring that Π can be extended as a
full T -conditional possibility on B. In fact in [27] the
extendability of any T -conditional possibility on B ×
H to a full T -conditional possibility on B has been
proved.

Coherent T -conditional possibility assessments on fi-
nite domains have been characterized in [14]. Such
characterization has been extended to the infinite case
in [27], where the coherence of an assessment Π on G
is expressed in terms of coherence of Π|F on every fi-
nite F ⊆ G. The following Theorem 1 provides also a
characterization in terms of a T -nested class agreeing
with the assessment.

Theorem 1. Let T be a continuous t-norm, G =
{Ej |Hj}j∈J an arbitrary set of conditional events and
B the Boolean algebra generated by {Ej , Hj}j∈J . For
any F = {E1|H1, . . . , En|Hn} ⊆ G, let BF be the
Boolean algebra generated by {Ei, Hi} whose set of
atoms is CF , and HF ⊆ B0

F an additive set such that
{Hi} ⊆ HF . For a function Π : G → [0, 1], the fol-
lowing statements are equivalent:

(i) Π is a coherent T -conditional possibility on G;

(ii) for any F = {E1|H1, . . . , En|Hn} ⊆ G,
if CF 0 = {Cr ∈ CF : Cr ⊆ H0

0} and

H0
0 =

∨
H∈HF

H, there exists a sequence of

compatible systems SΠ
Fα, for α = 0, . . . , k, with

unknowns xαr ≥ 0 for Cr ∈ CFα,

SΠ
Fα :



max
Cr⊆Ei∧Hi

xαr = T

(
Π(Ei|Hi), max

Cr⊆Hi
xαr

)
[

for Ei|Hi ∈ F s.t. max
Cr⊆Hi

ξα−1
r < 1

]
xαr ≥ ξα−1

r , if Cr ∈ CFα

ξα−1
r = T

(
xαr , max

Cs∈CFα
ξα−1
s

)
, if Cr ∈ CFα

max
Cr∈CFα

xαr = 1

(2)

where ξ
α

(with r-th component ξαr ) is the so-
lution of the system SΠ

Fα and CFα is the set
of atoms {Cr ∈ CFα−1 : Cr ⊆ Hα

0 } with

Hα
0 =

∨{
H ∈ HF : max

Cr⊆H
ξβr < 1, β ≤ α− 1

}
,

moreover ξ−1
r = 0 for any Cr in CF 0;

(iii) there exists a T -nested class {(Ii, πi) : i ∈ I}
on B such that for every Ej |Hj ∈ G there exists
i ∈ I such that Hj ∈ Ii and πi(Hj) = 1 and
πi(Ej ∧Hj) = Π(Ej |Hj).

Proof. The equivalence between (i) and (ii) has been
proved in [27]. To prove the equivalence between (i)
and (iii) we follow the line of the construction in-
troduced by Krauss in [25] for full conditional prob-
abilities. Due to space limitations we give here just
a sketch of the proof. For this aim, consider that for
any full T -conditional possibility Π′ on B it is possible
to define a total preorder � on B0, setting E � F if
and only if Π′(F |E ∨ F ) = 1, for every E,F ∈ B0.
For every E ∈ B0, the relation � determines the
Boolean ideal IE = {F ∈ B0 : F � E} ∪ {∅}, and
the family {IE : E ∈ B0} results to be linearly or-
dered by set inclusion. For every E ∈ B0, define
πE(F ) = Π′(F |E ∨ F ) for every F ∈ IE , which re-
sults to be a finitely maxitive measure on the ideal
IE . The family {(IE , πE) : E ∈ B0} is such that if
IE = IF then πE = πF . Thus, up to equal ideals, we
can obtain a unique T -nested class {(Ii, πi) : i ∈ I}
which uniquely represents the full T -conditional pos-
sibility Π′ on B, since for every E|H ∈ B × B0, there
exists an index i ∈ I such that πi(H) = 1 and
πi(E ∧H) = Π′(E|H). Now, since by Remark 3 the
coherence of the assessment Π is equivalent to the ex-
istence of a full T -conditional possibility Π′ on B ex-
tending Π, this is equivalent, in turn, to the existence
of a T -nested class on B agreeing with the assessment
Π.

Remark 4. In condition (ii) of previous theorem, for



any finite F ⊆ G, the sequence of solutions ξ
0
, . . . , ξ

k

gives rise to a class of possibilities PΠ = {Π0, . . . ,Πk}
on BF representing a T -conditional possibility on
BF × HF extending Π|F [27]. The choice of HF es-
sentially impacts on the number of systems to solve
[2, 3]. Let us notice that for the sake of convenience
one can always take for HF the minimal additive set
containing {Hi}, that is, the additive set generated by
the Hi’s. In the particular case HF is taken equal to

B0
F , then the solutions ξ

0
, . . . , ξ

k
correspond exactly

to a finite T -nested class {(I0, π0), . . . , (Ik, πk)} with
Iα ⊂ Iα−1, α = 1, . . . , k.

Remark 5. The characterization of coherence given
in Theorem 1 implies that if Π : G′ → [0, 1] is coher-
ent, then for any subset G ⊂ G′ also Π|G is coherent.

Now we focus on the main t-norms used for condi-
tioning in possibility theory, i.e., the minimum and
strict t-norms. Under this choice, the coherence of
an assessment is a sufficient (and necessary) condi-
tion for the extendability to any superset of condi-
tional events, as stated in next theorem [27], which is a
possibilistic counterpart of the celebrated de Finetti’s
fundamental theorem for conditional probabilities.

Theorem 2. Let T be the minimum or a strict t-
norm. Let G be an arbitrary set of conditional events
and Π : G → [0, 1] a coherent T -conditional pos-
sibility. Then Π can be extended as a coherent T -
conditional possibility Π′ to any superset G′ ⊃ G.
Moreover, if G′ = G ∪{E|H} then the coherent values
for Π′(E|H) lie in a closed interval [π∗, π

∗].

Previous theorem, whose proof relies on Zorn’s
lemma, generalizes to the infinite case a result proved
in [14] for finite domains. In particular, the exten-
sion interval [π∗, π

∗] is computed as the intersection
of all the intervals [πF∗, πF

∗] expressing the coherent
extensions of Π|F on E|H, for any finite subfamily
F ⊆ G.

Remark 6. Let Π : G′ → [0, 1] be a coherent T -
conditional possibility and G ⊂ G′. If we denote with
[π′∗, π

′∗] the extension interval of Π on E|H and with
[π∗, π

∗] the extension interval of Π|G on E|H, then it
holds [π′∗, π

′∗] ⊆ [π∗, π
∗].

Example 1. Take N as universe, let E = {Ei =
{i}}i∈N, and H = {H1 = {1}c,N}. Consider the
assessment Π defined for every Ei ∈ E and H ∈ H
as

Π(Ei|H) =

{
1
i if Ei ∧H 6= ∅,
0 otherwise.

The function Π is a coherent min-conditional possi-
bility as it can be extended as a min-conditional pos-
sibility on B×H, where B is the field of finite-cofinite
subsets of N. For example, a possible extension is the

function Π′ defined for H ∈ H putting Π′(E|H) = 1
if E is cofinite, while if E is finite we set

Π′(E|H) =

{ 1
min{i : i∈E∧H} if E ∧H 6= ∅,
0 otherwise.

Actually, Π′ turns out to be a T -conditional possibility
for every continuous t-norm T . Indeed, conditions
(i) and (ii) are easily verified, while condition (iii)
reduces to

Π′(E ∧H1) = T (Π′(E|H1),Π′(H1)),

for every E ∈ B, which trivially holds since Π′(H1) =
1 and Π′(E ∧H1) = Π′(E|H1) for every E ∈ B.

We want to determine the coherent extension interval
of the coherent min-conditional possibility Π to the
new event H1 = H1|N. By previous discussion we
know that 1 is the upper bound, thus we only need
to compute the lower bound. Recalling that E × H
is a countable set, for every {i1, . . . , in} ⊆ N we can
focus on the family F = {Eij , Eij |H1, : j = 1, . . . , n}.
Indeed, by virtue of Remark 6 every finite subset of F
gives rise to a larger extension interval, thus it can be
ignored.

Denote with Cij = Eij ∧ H1 and C ′ij = Eij ∧ Hc
1,

j = 1, . . . , n, and Cin+1
=
∧n
j=1E

c
ij
∧H1 and C ′in+1

=∧n
j=1E

c
ij
∧Hc

1, the atoms generated by {Eij , H1 : j =

1, . . . , n}, where only possible ones are considered.

The lower bound of the extension interval of Π|F
on H1 is computed solving the following optimization
problem under the system SΠ

F0
[27], which has un-

knowns x0
ij
, x0
ij

′ ≥ 0 for atoms Cij , C
′
ij

, j = 1, . . . , n+
1, and results to be

minimize

[
max

j=1,...,n+1
{x0

ij}
]

SΠ
F 0 :



max{x0
ij
, x0
ij

′} = 1
ij

[j = 1, . . . , n]

x0
ij

= min

{
1
ij
, max
j=1,...,n+1

{x0
ij
}
}

[j = 1, . . . , n]

max
j=1,...,n+1

{x0
ij
, x0
ij

′} = 1

where equations of the second kind in which Cij = ∅
are neglected as well as unknowns corresponding to
Cij = ∅ or C ′ij = ∅.

The lower bound can be written as m{i1,...,in} =

max
{

1
ij

: j = 1, . . . , n, ij 6= 1
}

.

Hence, the coherent min-conditional possibility values



for H1 range in the closed interval⋂
{i1,...,in}⊆N

[m{i1,...,in}, 1] =

[
1

2
, 1

]
.

3 Possibilistic likelihood functions
and possibilistic priors on infinite
partitions

Theorem 1 and 2 deal with coherence and extension
in their most general form. Nevertheless, there are
situations in which coherence is immediately implied
by some conditions and the extension on a new con-
ditional event is easily computed.

This is the case of Bayesian-like inference processes
in which one considers a prior possibility π(·) on a
partition {Hi}i∈I and a possibilistic likelihood f(E|·)
on the set {E|Hi}i∈I , where E is the evidence event.
The aim is to evaluate the posterior possibility of the
conditional events {Hi|E}i∈I .

To accomplish this task it is fundamental to establish
whether the two assessments π and f are coherent per
se and moreover whether the global assessment {f, π}
is coherent.

A complete characterization of the coherence of pre-
vious assessments has been given for a finite I =
{1, . . . , n} in [9]. In this case, the coherence of {f, π}
allows to regard the global assessment as a Π(·|·) on
the set G = {Hi, E|Hi}i∈I and to apply the following
possibilistic counterpart of the Bayes formula (where
we denote with Π also the posterior) for i = 1, . . . , n,

T

(
Π(Hi|E), max

j=1,...,n
{T (Π(E|Hj),Π(Hj))}

)
=

= T (Π(E|Hi),Π(Hi)). (3)

Notice that, differently from the probabilistic case,
depending on the particular t-norm T , the posterior
possibility Π(·|E) could be non-unique on some Hi

even requiring Π(E) > 0. In particular, if we consider
T = min or a strict t-norm, Theorem 2 implies that
each posterior Π(Hi|E) lies in a (possibly degenerate)
closed interval. Hence, in case of non-uniqueness, an
arbitrary value in each interval can be chosen: the
only constraint we have is that max

i=1,...,n
Π(Hi|E) = 1.

Example 2. Consider the finite partition L =
{H1, H2, H3} together with the event E such that
E∧H1 = ∅. The following global assessment Π(H1) =
1, Π(H2) = Π(H3) = 1

3 , Π(E|H1) = 0, Π(E|H2) = 1
2

and Π(E|H3) = 1
3 , is a coherent min-conditional pos-

sibility.

In order to get the posterior (that we still denote with

Π) we compute

max
j=1,2,3

{min{Π(E|Hj),Π(Hj)}} =
1

3
,

thus for i = 1, 2, 3 we need to solve

min

{
Π(Hi|E),

1

3

}
= min{Π(E|Hi),Π(Hi)},

that implies Π(H1|E) = 0, Π(H2|E),Π(H3|E) ∈[
1
3 , 1
]

such that max{Π(H2|E),Π(H3|E)} = 1.

Our goal in this section is to generalize previous
results to the case of an infinite index set I with
card I ≥ cardN.

Next theorem puts in evidence that every function de-
fined on an infinite partition L = {Hi}i∈I and ranging
in [0, 1] (in particular the null function) is a coherent
finitely maxitive possibility (i.e., it can be extended as
a finitely maxitive possibility on 〈L〉), and so, by Re-
mark 1, a coherent T -conditional possibility, for any
continuous t-norm T .

Theorem 3. Let L = {Hi}i∈I be a partition of Ω
with card I ≥ cardN. Then any function π : L →
[0, 1] is a coherent T -conditional possibility (for every
continuous t-norm T ).

Proof. We use condition (ii) of Theorem 1. Then for
every {i1, . . . , in} ⊆ I, take the set F = {Hij : j =
1, . . . , n} and denote Cij = Hij for j = 1, . . . , n, and
Cin+1

=
∧n
j=1H

c
ij

, the atoms generated by F .

Consider the sequence of systems SΠ
Fα with HF =

{Ω}. The first (and unique) system of the sequence
has unknowns x0

ij
≥ 0 for Cij , j = 1, . . . , n + 1, and

results to be

SΠ
F 0 :


x0
ij

= π(Hij ) j = 1, . . . , n

max
j=1,...,n+1

{x0
ij
} = 1.

System SΠ
F 0 admits the solution x0

ij
= π(Hij ), for

j = 1, . . . , n, and x0
in+1

= 1, and so π is coherent.

Let L = {Hi}i∈I be an arbitrary partition of Ω and E
an arbitrary event, in the following we call likelihood
function any function f : {E}×L → [0, 1] defined as:

f(E|Hi) =

 0 when E ∧Hi = ∅,
1 when Hi ⊆ E,
a value γi ∈ [0, 1] otherwise.

(4)

We underline that for the values γi’s the only con-
straint is to be between 0 and 1.

Theorem 4. Let L = {Hi}i∈I be a partition of Ω
with card I ≥ cardN and E an arbitrary event. For
a likelihood function f : {E} × L → [0, 1], defined by
(4), the following statements hold:



(i) f is a coherent conditional probability;

(ii) f is a coherent T -conditional possibility (for ev-
ery continuous t-norm T ).

Proof. In [9] this theorem has been proved for a finite
partition L, we prove it for the infinite case. Con-
dition (i) follows by Proposition 1 in [8] and The-
orem 4 in [11]. To prove (ii), by condition (ii) of
Theorem 1, for every {i1, . . . , in} ⊆ I, take the set
F = {E|Hij : j = 1, . . . , n} and denote Cij = E ∧Hij

and C ′ij = Ec ∧ Hij for j = 1, . . . , n, and Cin+1
=

E ∧
∧n
j=1H

c
ij

and C ′in+1
= Ec ∧

∧n
j=1H

c
ij

, the atoms

generated by {E,Hij : j = 1, . . . , n}, where only pos-
sible ones are considered.

Consider the sequence of systems SΠ
Fα with HF equal

to the additive set generated by the Hij ’s. The first
(and unique) system of the sequence has unknowns

x0
ij
, x0
ij

′ ≥ 0 for Cij , C
′
ij

, j = 1, . . . , n, and results to
be

SΠ
F 0 :


x0
ij

= T
(
f(E|Hij ),max{x0

ij
, x0
ij

′}
)

[j = 1, . . . , n]

max
j=1,...,n

{x0
ij
, x0
ij

′} = 1

where equations in which Cij = ∅ are neglected as well
as unknowns corresponding to Cij = ∅ or C ′ij = ∅. A

solution for SΠ
F 0 is x0

ij
= f(E|Hij ) and x0

ij

′
= 1 for

j = 1, . . . , n, implying that f is coherent.

Previous theorem highlights that no significant prop-
erty characterizes a likelihood function (defined by
(4)) regarded either as coherent conditional probabil-
ity or as coherent T -conditional possibility.

Remark 7. We notice that Theorem 4 is related to
a function defined only on a set of events {E} × L,
(the conditioned event E is only one). Obviously, if
we have a family of likelihood functions {fj : j ∈
J} each defined on {Ej} × L, where E = {Ej}j∈J is
an arbitrary set, the assessment could be non-globally
coherent. In particular if E is a finite partition we
must take into account additivity in the probabilistic
case and maxitivity in the possibilistic case, as the
following Theorem 5 shows.

Theorem 5. Let E = {Ej}j=1,...,m and L = {Hi}i∈I
be two partitions and let F be a (finite) class {fj :
j = 1, . . . ,m} of likelihood functions, where each fj is
defined by (4) on {Ej} × L, for j = 1, . . . ,m. Then
the following statements hold:

(i) the global assessment F is a coherent conditional

probability if and only if
m∑
j=1

fj(Ej |Hi) = 1 for

every Hi;

(ii) the global assessment F is a coherent T -
conditional possibility (for every continuous t-
norm T ) if and only if max

j=1,...,m
fj(Ej |Hi) = 1

for every Hi.

Proof. In [9] this theorem has been proved for a finite
partition L, we prove it for the infinite case. Condi-
tion (i) follows by Theorem 4 in [11]. Condition (ii)
follows by Theorem 1 on the same line of the proof of
Theorem 4.

Next theorem focuses on a likelihood function taking
into account also a probabilistic or possibilistic prior.

Theorem 6. Let L = {Hi}i∈I be a partition of Ω with
card I ≥ cardN and E an arbitrary event. Consider
a likelihood function f : {E} × L → [0, 1], defined by
(4), a coherent probability assessment p : L → [0, 1]
and a coherent possibility assessment π : L → [0, 1].
The following statements hold:

(i) the global assessment {f, p} is a coherent condi-
tional probability;

(ii) the global assessment {f, π} is a coherent T -
conditional possibility (for every continuous t-
norm T ).

Proof. In [9] this theorem has been proved for a finite
partition L, we prove it for the infinite case. Condi-
tion (i) follows by Proposition 2 in [8] and Theorem 4
in [11] (see also [28, 32]). Condition (ii) follows by
Theorem 1 in analogy to the proof of Theorem 4, and
taking into account Remark 5.

Example 3. Consider N as universe and take the
partition L = {Hi = {2i − 1, 2i}}i∈N, together with
E = {2i : i ∈ N}. Consider the assessments
f(E|Hi) = 1

i , p(Hi) = π(Hi) = 0 for i ∈ N. We have
that f(E|·) verifies condition (4), moreover p(·) and
π(·) are, respectively, a coherent probability and a co-
herent possibility. This implies {f, p} and {f, π} are,
respectively, a coherent conditional probability and a
coherent T -conditional possibility (for every continu-
ous T -norm).

4 Complete disintegrability and
complete conglomerability

In this section we consider a T -conditional possibility
Π on B × H, with H containing Ω and a partition
L = {Hi}i∈I , where I is arbitrary. Moreover, we say
that an event E ∈ B is logically independent of the
elements of L if ∅ 6= E ∧Hi 6= Hi, for i ∈ I.



Definition 4. A T -conditional possibility Π on B×H
is completely maxitive on L if it holds

sup
i∈I

Π(Hi) = 1. (5)

Definition 5. Given an event E ∈ B, and a T -
conditional possibility Π on B × H, we say that Π is
completely L-disintegrable on E if it holds

Π(E) = sup
i∈I

T (Π(E|Hi),Π(Hi)). (6)

We introduce now a notion of conglomerability analo-
gous the one introduced by de Finetti [17, 18, 19] (see
also [29, 7, 30, 31, 1]), involving only events. We recall
that in probability theory a stronger notion of con-
glomerability involving linear spaces of bounded ran-
dom variables is present (see for instance [21, 28, 4]).

Definition 6. Given an event E ∈ B, and a T -
conditional possibility Π on B × H, we say that Π is
completely L-conglomerative on E if it holds

inf
i∈I

Π(E|Hi) ≤ Π(E) ≤ sup
i∈I

Π(E|Hi). (7)

Remark 8. Definitions 5 and 6 actually involve only
a family G = {E,Hi, E|Hi}i∈I contained in B×H, so
they can be given for a coherent T -conditional possibil-
ity assessment on G, if we are interested only on com-
plete L-conglomerability or complete L-disintegrability
on E (for instance in Bayesian-like updating). In
fact, these properties are satisfied (for the given E and
L) by all the possible extensions on B×H. Neverthe-
less, as discussed in the following, the above proper-
ties required only for one event E are not particularly
meaningful, so we use a Π on B × H to enforce the
properties to all the events of B.

In the case the partition L is finite, it is readily veri-
fied that complete maxitivity on L collapses into finite
maxitivity and complete L-disintegrability and com-
plete L-conglomerability always hold for every E ∈ B,
as simple implications of Definition 1. Nevertheless,
previous properties could not be verified when the
partition is infinite. In particular, in analogy with
finitely additive conditional probability [18, 29], there
can exist events E ∈ B on which Π is completely
L-disintegrable but not completely L-conglomerative
and vice versa, as shown in next example.

Example 4. Let T be a continuous t-norm and con-
sider the countable set G = {E,Hi, E|Hi}i∈N with E
logically independent of the elements of the partition
L = {Hi}i∈N. Recall that the coherence of an assess-
ment on G implies its extendability on B × H, where
B = 〈{E} ∪ L〉 and H is the additive set generated by
L.

The coherent T -conditional possibility assessment
Π(E) = 1

2 , Π(E|Hi) = 1
i and Π(Hi) = 0 for i ∈ N is

completely L-conglomerative on E, but not completely
L-disintegrable on E. In fact, we have Π(E) = 1

2 6=
0 = supi∈I T (Π(E|Hi),Π(Hi))

On the other hand, the coherent assessment Π(E) =
Π(Hi) = 0 and Π(E|Hi) = 1

2 for i ∈ N is com-
pletely L-disintegrable on E, but it is not completely
L-conglomerative on E, since we have Π(E) = 0 <
1
2 = infi∈I Π(E|Hi).

Previous claim suggests to give a definition
of complete L-disintegrability and complete L-
conglomerability which is not dependent on the event
E.

Definition 7. A T -conditional possibility Π on B×H
is completely L-disintegrable if it is completely L-
disintegrable on E, for every E ∈ B.

Definition 8. A T -conditional possibility Π on B×H
is completely L-conglomerative if it is completely
L-conglomerative on E, for every E ∈ B.

Let us note that the notion of conglomerability given
in previous definition differs from the ones proposed
for coherent lower and upper previsions (see for in-
stance [34, 16, 26]). The difference is essentially due
to the different concepts of conditioning adopted (see
Remark 2).

Remark 9. Suppose to have a possibilistic prior π
on a partition L and two likelihood functions fj on
{Ej} × L, with Ej ∈ B, (j = 1, 2), such that each
{fj , π} admits a completely L-conglomerative exten-
sion on B × H. Even in the case {f1, f2, π} is glob-
ally coherent there could not exist a completely L-
conglomerative extension on B×H (similarly for com-
plete L-disintegrability). Previous discussion general-
izes to a larger class of likelihood functions.

It is well-known that, in the probabilistic framework
(see for instance [18, 21, 29]), for a countable I,
L-disintegrability and σ-additivity on L are equiva-
lent. Nevertheless, since in the case of probability the
equivalence is implied by the subtractive property, the
same equivalence does not hold in the case of possi-
bility, as shown by next example.

Example 5. Let T be a continuous t-norm and I
an index set s.t. card I ≥ cardN. Consider the set
G = {E,Hi, E|Hi}i∈I , where the Hi’s form a partition
L of Ω and E is logically independent of the Hi’s.

The assessment Π(E) = Π(Hi) = 1 and Π(E|Hi) = 0
for i ∈ I, is a coherent T -conditional possibility.

We have that Π is completely maxitive on the parti-
tion L since supi∈I Π(Hi) = 1, while it is not com-
pletely L-disintegrable on E since Π(E) = 1 6= 0 =



supi∈I T (Π(E|Hi),Π(Hi)).

In the possibilistic setting, complete maxitivity on
L is only a necessary condition for complete L-
disintegrability.

Proposition 1. If a coherent T -conditional possibil-
ity Π on B × H is completely L-disintegrable, then it
is completely maxitive on L.

Proof. It holds

1 = Π(Ω) = sup
i∈I

T (Π(Ω|Hi),Π(Hi)) = sup
i∈I

Π(Hi).

We notice that if Π is not completely maxitive on L
then, if there exists an E ∈ B such that Π is com-
pletely L-disintegrable on E then Π is not completely
L-disintegrable on Ec.

Next theorem shows that, analogously to the proba-
bilistic case [19], complete L-disintegrability implies
the complete L-conglomerative property.

Theorem 7. If a T -conditional possibility Π on B×H
is completely L-disintegrable, then it is completely L-
conglomerative.

Proof. For every E ∈ B, complete L-disintegrability
implies that

Π(E) = sup
i∈I

T (Π(E|Hi),Π(Hi)) ≤ sup
i∈I

Π(E|Hi),

moreover, setting κ = infi∈I Π(E|Hi) and recalling
Proposition 1 and that any left-continuous t-norm
commutes with the supremum, we get

Π(E) = sup
i∈I

T (Π(E|Hi),Π(Hi))

≥ sup
i∈I

T (κ,Π(Hi)) = T

(
κ, sup

i∈I
Π(Hi)

)
= κ.

Nevertheless, as it is shown in [29] for probability the-
ory in the case of a countable partition, complete L-
disintegrability and complete L-conglomerability are
not equivalent. The next example in fact shows that
complete L-disintegrability is just a sufficient condi-
tion for the complete L-conglomerative property.

Example 6. Take N as universe, let B be the field of
finite-cofinite subsets of N and L = {Hi = {i}}i∈N.
Consider on B × B0 the function Π defined for any
E|H ∈ B × B0 putting if H is cofinite

Π(E|H) =

{
0 if E ∧H is finite,
1 otherwise,

while if H is finite

Π(E|H) =

{
0 if E ∧H = ∅,
1 otherwise.

First we show that Π is a full T -conditional possibility
on B for any continuous t-norm T . For this, it is
sufficient to show that axiom (iii) of Definition 1 is
satisfied, since axioms (i) and (ii) are easily seen to
be verified. At this aim, for any H,E ∧H ∈ B0 and
E,F ∈ B we consider the following cases.

(Case 1). If E ∧H and H are cofinite then we have
Π(E|H) = 1, thus axiom (iii) is verified both when
E ∧ F ∧ H is cofinite (in this case we have Π(E ∧
F |H) = Π(F |E∧H) = 1) and when E∧F∧H is finite
(in this case we have Π(E∧F |H) = Π(F |E∧H) = 0).

(Case 2). If E ∧ H is finite and H is cofinite then
we have Π(E|H) = 0, thus axiom (iii) is verified for
every value of Π(F |E ∧H), since E ∧ F ∧H is finite
and so we have Π(E ∧ F |H) = 0.

(Case 3). If E ∧ H and H are finite then we have
Π(E|H) = 1, thus axiom (iii) is verified both when
E ∧ F ∧H 6= ∅ (in this case we have Π(E ∧ F |H) =
Π(F |E ∧H) = 1) and when E ∧ F ∧H = ∅ (in this
case we have Π(E ∧ F |H) = Π(F |E ∧H) = 0).

It is easily seen that Π is not completely maxitive on
L, since

Π(N) = 1 > 0 = sup
i∈N

Π(Hi),

thus by virtue of Proposition 1, Π is not completely
L-disintegrable. On the contrary, we have that Π
is completely L-conglomerative. Indeed, if E is cofi-
nite we have Π(E) = 1 ≥ infi∈N Π(E|Hi), and there
must exist j ∈ N such that E ∧ Hj 6= ∅, thus
supi∈N Π(E|Hi) = 1. Moreover, if E is finite we have
Π(E) = 0 ≤ supi∈N Π(E|Hi), and there must exist
j ∈ N such that E∧Hj = ∅, thus infi∈N Π(E|Hi) = 0.

Since complete L-disintegrability and complete L-
conglomerability refer to a partition L ⊂ H, it is
natural to ask if their validity w.r.t. an infinite L
implies the validity w.r.t. any other infinite partition
L′ ⊂ H. In next example, inspired to the well-known
Lévy’s paradox [19, 30, 31, 7], we show that it is not
the case.

Example 7. Take N2 as universe, let B be the power
set of N2 and take the two partitions L1 = {Hi =
{i} × N}i∈N and L2 = {Ki = N × {i}}i∈N. Consider
on B×(L1∪L2) the function Π defined for any E|H ∈
B × (L1 ∪ L2) putting

Π(E|H) =

{
0 if E ∧H is finite,
1 otherwise.



It is possible to show that the assessment Π is a co-
herent T -conditional possibility for any continuous t-
norm T .

The coherence of Π implies its extendability to B×H,
where H is the additive set generated by L1 ∪ L2.
In particular, taking E = {(i, j) ∈ N2 : i ≥ j}
we have Π(E|Hi) = Π(Ec|Ki) = 0, for any i ∈ N,
which implies that no extension Π′ can be simulta-
neously completely L1-conglomerative and completely
L2-conglomerative.

Finally, by virtue of Theorem 7 it follows that no
extension Π′ can be simultaneously completely L1-
disintegrable and completely L2-disintegrable.

Complete L-disintegrability and complete L-
conglomerability are particularly relevant in the
context of Bayesian-like inference processes since
they constrain the set of coherent values for the
posterior possibility. Anyway, when they are not
satisfied, one needs to go back to the general enlarge-
ment procedure in which the posterior values are
determined by Theorem 2.

For this, we are interested in the coherent extensions
Π′ on G ∪ {E} of a coherent T -conditional possibility
Π assessed on a family G = {Hi, E|Hi}i∈I , card I ≥
cardN, where the set L = {Hi}i∈I is a partition of Ω
and E is an arbitrary event. Let us stress that Π is
nothing else than the global assessment corresponding
to a likelihood f and a possibilistic prior π (coherent
by Theorem 6).

Next theorem characterizes the set of coherent val-
ues for the possibility Π′(E) in the case E is logically
independent of the Hi’s and T is the minimum or a
strict t-norm. Notice that if Hi ⊆ E for every i ∈ I,
then it must be Π(E|Hi) = 1 for every i ∈ I and so
Π′(E) = 1; similarly, if Hi ∧ E = ∅ for every i ∈ I,
then it must be Π(E|Hi) = 0 for every i ∈ I and so
Π′(E) = 0. Thus in this two trivial situations com-
plete L-conglomerability on E holds compulsorily.

Theorem 8. Let Π be a coherent T -conditional pos-
sibility on G (with T = min or strict) such that for
i ∈ I it is ∅ 6= E ∧ Hi 6= Hi, Π(E|Hi) = πi and
Π(Hi) = π′i, with card I ≥ cardN. Then the set of
coherent values for Π′(E) is⋂

{i1,...,in}⊆I

[
M{i1,...,in}, 1

]
, (8)

where M{i1,...,in} = max
j=1,...,n

T (πij , π
′
ij

).

Proof. By Theorem 2 the coherent values for Π′(E)
are a closed interval [π∗, π

∗], that is obtained as the
intersection of all the intervals [πF∗, πF

∗] expressing

the coherent extensions of Π|F on E, for any finite
subfamily F ⊆ G.

Thus, for every {i1, . . . , in} ⊆ I take the set F =
{Hij , E|Hij : j = 1, . . . , n}. Notice that by Remark 6
every finite subset of F gives rise to a larger exten-
sion interval than the one induced by F and thus can
be ignored. Denote with Cij = E ∧ Hij and C ′ij =

Ec ∧ Hij , j = 1, . . . , n, and Cin+1 = E ∧
∧n
j=1H

c
ij

and C ′in+1
= Ec ∧

∧n
j=1H

c
ij

, the atoms generated by

{E,Hij : j = 1, . . . , n}.

The endpoints of the extension interval of Π|F on E
are computed solving the following two optimization
problems under the system SΠ

F0
, which has unknowns

x0
ij
, x0
ij

′ ≥ 0 for atoms Cij , C
′
ij

, j = 1, . . . , n + 1, and
result to be

minimize

/
maximize

[
max

j=1,...,n+1
{x0

ij}
]

SΠ
F 0 :


max{x0

ij
, x0
ij

′} = π′ij j = 1, . . . , n

x0
ij

= T
(
πij ,max{x0

ij
, x0
ij

′}
)

j = 1, . . . , n

max
j=1,...,n+1

{x0
ij
, x0
ij

′} = 1

for which any solution is such that x0
ij

= T (πij , π
′
ij

),
for j = 1, . . . , n, thus the possibility of E is de-
termined by the value assigned to x0

in+1
which is

only asked to belong to [0, 1]. This implies the ex-
tension of Π|F on E ranges in

[
M{i1,...,in}, 1

]
with

M{i1,...,in} = max
j=1,...,n

T (πij , π
′
ij

), and the conclusion

follows.

In particular, previous theorem implies that if
Π(E|Hi) = π for i ∈ I, then the extension Π′ on
G ∪ {E} of every coherent T -conditional possibility Π
on G is generally not completely L-conglomerative on
E if π < 1, since the value Π′(E) = 1 is always co-
herent. Theorem 8 also implies the coherence of the
posterior (that we still denote with Π) defined as:

Π(Hi|E) = T (Π(E|Hi),Π(Hi)) for i ∈ I. (9)

5 Conclusions

In probability theory, in particular in modern
Bayesian analysis, concepts of conglomerability and
disintegrability have been deeply studied, especially
with respect to finitely additive probability, where
many famous examples of nonconglomerative con-
ditional probability assessments are proposed. We
studied the analogous concepts in possibility theory,
starting from the definition of finitely maxitive T -
conditional possibility, with T any continuous t-norm.
We put in evidence analogies and differences between
the two frameworks.
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