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Abstract 
 

In this paper a novel imprecise probability description is 
applied to vibro-acoustic problems in engineering. 
Frequently little data is available concerning the 
variability of the key input parameters required for a 
predictive analysis. This has led to widespread use of 
several uncertainty descriptions. The hybrid Finite 
Element/Statistical Energy Analysis (FE/SEA) approach 
to the analysis of vibro-acoustic systems is based on 
subdividing a system into: (i) SEA components which 
incorporate a non-parametric model of uncertainty and 
(ii) FE components with parametric uncertainty. This 
approach, combined with the Laplace asymptotic 
method, allows the evaluation of the failure probability. 
A novel strategy for establishing bounds on the failure 
probability when an imprecise probability model (based 
on expressing the probability density function of a 
random variable in the form of a maximum entropy 
distribution with bounded parameters) is employed is 
presented. The approach is illustrated by application to a 
built-up plate system.  
 
Keywords. Uncertainties in probabilistic assignments, 
hybrid FE/SEA method, reliability analysis, parametric 
and non-parametric uncertainty models, maximum 
entropy distribution, vibro-acoustic analysis. 
  
1   Introduction 
 
In engineering problems it is frequently the case that 
little data is available concerning the variability of the 
key input parameters (geometry, material properties, and 
boundary conditions) required for a predictive analysis, 
and yet an engineering assessment of a design must 
nonetheless be performed. This topic has been the subject 
of much recent research, and various analytical and 
computational approaches have been proposed (for 
example, [1-9]). Such methods require some description 

of the underlying uncertainties (for example, 
uncertainties in material properties, loading conditions, 
and fabrication details) which could be probabilistic 
(parametric [1-4], non-parametric [5-7] or a combination 
of both [8,9]) or non-probabilistic [1,4]. 
Reliability methods aim to estimate the probability that 
design targets will be met [10,11]; this probability is 
referred to as the reliability of the system. These methods 
are often based on a parametric probabilistic description 
of the uncertain parameters of the system and rely on the 
assumption that the statistical distributions (i.e. 
probability density function (pdf)) of these parameters 
are precisely known [12]. The parametric probabilistic 
description requires a large amount of empirical data if 
the pdf is constructed using a frequentist view. 
Alternatively the pdf may be interpreted as a statement of 
belief based on expert opinion, as in the subjective 
approach to probability theory [13].  The more common 
frequentist approach is concerned with the outcome of 
experiments performed (hypothetically or in reality) on 
large ensembles of systems; these ensembles may either 
be real (for example cars from a production line), or 
virtual but realizable in principle (such as an ensemble of 
manufactured satellites, when only one satellite may 
actually be built). In contrast, with the subjective 
approach, no ensemble is necessarily involved. The 
frequentist and subjective views can be roughly aligned 
to the notions of aleatory and epistemic uncertainty; 
aleatory uncertainty is an irreducible uncertainty 
associated with an inherent variability of the properties 
of the system, while epistemic uncertainty is reducible, 
being associated with a lack of knowledge of the analyst 
with respect to the system’s properties which are fixed 
[4]. Clearly, the interpretation employed for defining the 
pdf of the uncertain parameters will affect the 
interpretation of the results obtained with a predictive 
analysis.  
In practice, only a limited amount of data may be 
available and therefore it is often difficult to identify the 
form of the distribution of the random variable and/or the 



parameters of the distribution. Moreover, the analyst may 
have uncertainties in belief, meaning that the specified 
pdf is itself subject to doubt. Using a pdf which differs 
from the actual one can significantly affect the prediction 
of the system performance with respect to safety, quality, 
design or cost constraints [12,14]. One way around this 
difficulty is to employ imprecise probability descriptions 
in the reliability assessment in order to establish bounds 
on the failure probability (that is the probability that the 
response exceeds a critical level). These bounds allow: 
(i) the evaluation of the sensitivity of the system response 
to the uncertainty of the system parameters; (ii) the 
identification of the worst case scenario (the highest 
failure probability expected). Many reliability 
approaches which includes imprecise probability 
descriptions have been developed in the past years, 
among which there are: (i) First Order Reliability 
Method (FORM) [10] approaches which employ pdfs 
with one [15] or two [16] bounded parameters (mean, 
variance or another distribution parameter), [15,16]; (ii) 
Dempster-Shafer theory (DST) [17,18] and P-box models 
of imprecise probabilities [19-21] applied to reliability 
analysis [22-25]; (iii) reliability analysis with random 
sets [26,27]; (iv) reliability assessment by means of 
Fuzzy Probabilities [4,28]; (v) Reliability models which 
account for the lack of information about the 
independence of the stress and strength, and about the 
parameters of each pdf [29]; (vi) reliability models based 
on imprecise Bayesian inference models [30]; (vii) 
Interval importance sampling methods combined with 
specified pdf with bounded parameters [31]. However, 
the application of these approaches is often limited to 
simple models, mainly because of the computational 
burden associated to the propagation of the imprecise 
probability description.  
In automotive and aerospace industries there are design 
requirements to ensure vibro-acoustic performance is 
met. Vibro-acoustic problems usually involve a very 
broad frequency range due to the broadband nature of the 
loadings acting on the system. Broadly speaking three 
frequency ranges can be identified: low-, mid- and high-
frequency ranges. In the low-frequency range the length 
scale of deformation of the system components is 
relatively long with respect to their overall dimension so 
that: (i) few degrees of freedom are required to model 
their dynamic behavior; (ii) the system response is 
insensitive to small changes in the system properties. The 
Finite Element method (FE) [32] is a well-established 
deterministic technique for acoustics and vibration 
analysis in the low-frequency range. In the high-
frequency range, instead, the length scale of deformation 
is comparable to small manufacturing imperfections 
producing high sensitivity to uncertainty and requiring a 
large number of degrees of freedom for capturing the 
components' dynamic behavior. An alternative to FE is to 
employ Statistical Energy Analysis (SEA) [6,33], a 
probabilistic technique which was developed specifically 
to deal with high frequency vibration. In SEA the system 

is modeled as an assembly of subsystems, whose 
response is described by their vibrational energy (defined 
as twice the time-averaged kinetic energy). The number 
of degrees of freedom employed is drastically reduced 
compared to the FE approach, since a single degree of 
freedom SEA subsystem might replace thousand of finite 
element nodes. The interaction between the SEA 
subsystems is described using the principle of 
conservation of energy flow, and this leads to a set of 
equations that can be solved to yield the subsystem 
energies. This method can predict both the ensemble 
average vibrational energy levels [33] (averaged across 
an ensemble of nominally identical structures) and the 
ensemble variance of the energy levels [6]. The 
application of this approach is limited to high frequency 
because of its underlying assumptions (i.e. each 
structural component is sufficiently random and that the 
coupling between subsystems is sufficiently weak [6]). 
Between the respective ranges of validity of FE and SEA 
there is a mid-frequency region and much research effort 
has been directed at the development of efficient 
analytical methods that can be applied in this range. One 
such method is the hybrid FE/SEA method [7,34]. This 
approach is based on subdividing a system into SEA 
components (which incorporate a non-parametric 
probabilistic model of uncertainty), and deterministic FE 
components. This partition leads to a large reduction of 
the number of degrees of freedom employed in the model 
and a large gain in numerical efficiency. Moreover the 
method enables the prediction of the mean and variance 
of the response (such as the energy response of a SEA 
subsystem or the mean squared amplitude of the finite 
element degrees of freedom) over a collection of systems 
with random SEA subsystems properties [7,34] without 
employing Monte Carlo simulations. The hybrid FE/SEA 
method has been recently generalized by introducing 
parametric uncertainty into the FE components [8] in 
order to provide an enhanced description of those 
components which may contain a degree of randomness, 
but cannot be appropriately modeled as SEA subsystems. 
The vibro-acoustic performance of a complex system in a 
broad frequency range can be established by applying the 
hybrid FE/SEA method in combination with the 
Laplace’s method (hybrid FE/SEA + Laplace) [35]. With 
this approach both parametric and non-parametric 
probabilistic uncertainty models are employed and the 
failure probability over the combined ensembles of 
uncertainty can be assessed. This approach is enhanced 
in this paper by considering a system with uncertain 
properties modeled with non-parametric, parametric and 
also imprecise parametric probabilistic descriptions in 
order to account for those input parameters of the FE 
components which are imprecisely known. In particular, 
the hybrid FE/SEA + Laplace is extended in this paper 
by employing a recently developed model of imprecise 
probability [36] in order to establish bounds on the 
failure probability. The imprecise model employed is 
based on expressing the probability density function of a 



random variable in the form of a maximum entropy 
distribution with bounded parameters [36]. This 
parametric probabilistic uncertainty model will be 
described in more details in Section 2. The hybrid 
FE/SEA + Laplace approach will be summarized in 
Section 3. In Section 4 an efficient approach for 
establishing bounds on the failure probability is 
presented. The method is illustrated by application to a 
built-up plate system in Section 5. 
 
2   Probability Density Function with 
Bounded Parameters 
 
In this Section a recently developed parametric model of 
uncertainty which admits uncertainty in the probabilistic 
assignments is described [36]. This uncertainty model 
requires as input bounded statistical expectations of 
specified functions of the random variable and it can be 
used to describe both aleatory and epistemic 
uncertainties. The uncertainty model is briefly described 
in Subsection 2.1. In Subsection 2.2, a procedure for 
treating the bounded statistical expectations is 
summarised.  
 
2.1  Basic Concepts 
 
The model of uncertainty is based on considering that the 
pdf of a random variable x  itself is subject to doubt. The 
pdf is expressed as the exponential of a series expansion, 
but the parameters within this model, the so-called basic 
variables, are allowed to have bounded description [36]: 
 

( ) ( )
1

S exp .
n

j j
j

p x a f x
=

 
∈ =  

 
∑a    (1) 

 
Eq. (1) represents a family of distributions defined over 
the set of basic variables a  (which has entries ja  with 

2,3...,j n= ) that lie within an admissible region S . A 
“basic variable” is defined here as one which can have 
any possible pdf within certain bounds, including the 
extreme case of a delta function at any point between the 
bounds. If a parameter is not “basic”, then its pdf can be 
expressed in terms of the basic parameters, and thus only 
this type of parameter is considered in what follows. The 
admissible region S  can be an interval, a convex region, 
etc. The term ( )jf x  is a specified function of the 
uncertain variable, such that ( )1 1f x = . The coefficient 

1a  is dependent on the bounded basic variables ja  and it 
is chosen to satisfy the normalisation condition.  
Eq. (1) describes a single distribution when the basic 
variables have fixed values, and accounts for a more 
general description (a set of pdfs) when these parameters 
are bounded. In particular, for fixed basic variables, the 
pdf expression corresponds to the maximum entropy 
distribution [13] that arises from specifying the expected 
values ( )E jf x   , where the basic variables are replaced 

by the Lagrange multipliers (which are constant values). 
It can be therefore argued that Eq. (1) represents a family 
of maximum entropy continuous distributions. When the 
constraints are expressed in terms of statistical 
expectation inequality constraints, such as: 
 

( ) ( ) ( ),min ,maxE d ,

2,3,...,

j j j j jv v f x f x p x x v

j n

 ≤ = = ≤ 

=
∫ a

(2) 

 
where ,minjv  and ,maxjv  are the lower and upper bound on 
the thj  statistical expectation jv , within a class of 
distribution (for example, polynomial distributions, 
maximum entropy distribution, etc.), there are many 
distributions which are consistent with the statistical 
expectation inequality constraints. The Principle of 
Maximum Entropy (MAXENT) selects, among the class 
of maximum entropy distributions, the distribution with 
the largest entropy [37]. The proposed approach, instead, 
constructs a family of maximum entropy distributions 
consistent with the statistical expectation inequality 
constraints and selects, among this family of pdfs, the pdf 
which maximises (or equivalently minimises) a specified 
engineering metric (for example, the probability of 
exceeding a specified limit value, the probability of being 
within a certain region). This pdf is potentially different 
from the pdf which maximises the entropy (which can be 
recovered as well); therefore the proposed approach is 
more useful from an engineering point of view. This 
aspect of the approach will be illustrated by a numerical 
application in Section 5 of this paper. 
The inequality constraints on the statistical expectation of 
the uncertain variable may arise by analysing a small 
data set or can be provided by an expert who may prefer 
to assign bounds rather than specifying a single value. If 

( )jf x x=  then the inequality constraints are specified 
on the mean value, alternatively if ( ) 2

jf x x= they are 
specified on the second moment. ( )jf x  can be also 
defined as an interval of possible values that the 
uncertain variable may take, i.e. ( ) [ ],jf x b c= ; in this 
case the constraints corresponds to the probability of 
finding the random variable within those bounds. 
The family of pdfs defined in Eq. (1) is constructed as 
follows: 

1. The form of the pdf which maximises the 
entropy is computed, as for the maximum 
entropy approach, by using the Lagrange 
multipliers method. 

2. The Lagrange multipliers are substituted by the 
basics variables a . 

3. The bounds on the statistical expectations of the 
uncertain variable are used to establish bounds 
on the basic variables. 

A procedure for obtaining an approximate mapping of 
the basic variables domain (a-domain) starting from a 
bounded description of the statistical expectations (m-



domain) of the uncertain variable [36,38] is summarized 
in the next Subsection.  
 
2.2  Bounds Conversion 
 
Consider the case for which two statistical expectations 
of the uncertain variable x  lie within a rectangle, as 
described in Figure 1.  

The first step of the approach requires the evaluation of 
the maximum entropy distribution, which for the present 
case take the form 
 

( ) ( ) ( )[ ]1 2 2 3 3exp .p x a a f x a f x= + +a   (3) 

 
In principle, each point of the basic variables domain (a-
domain), which is depicted in Figure 2, can be evaluated 
by solving a set of two non-linear equations in terms of 
the statistical expectations of the random variable.  

For example, point 1 of the m-domain can be mapped in 
the corresponding point 1 of the a-domain by solving: 
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∫

∫
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where 2a  and 3a  are the unknown coefficients, and 1a  is 
chosen to satisfy the normalisation condition.  
In practice, considering enough points along the edges of 
the m-domain would allow a good approximation of the 
shape of the a-domain to be obtained, reducing the 

number of sets of equations to be solved. The problem is 
that, even for a simple problem (like the 2D case 
depicted in Figure 1), the solution of each set of non-
linear equations can be time consuming and convergence 
problems may occur. 
An approximate mapping of the a-domain can be 
obtained by [36,38]: 

I. Evaluating the mid-points of the surfaces of the 
hypercube defining the m-domain 
( ( ) ( )* *

,max ,minE / 2j j j jf x v vν  = = −  ).  
II. Estimate the corresponding point *a  solving a set 

of non-linear equations for the mid-point of the m-
domain.  

III.  Each point of the a-domain is then calculated by 
using an approximate expression of the ths  
moment: 
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c a a
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∑
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where: 
 

( ) ( )( ) ( ) ( )( ){ }* * *E E E ,s
j s s j jc f x f x f x f x= − −      

      (6) 
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c
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× −     

      (7) 
 
This approach is expected to yield less accurate results 
when the variation of the ths  moment value with respect 
to the mid-point moment domain value becomes large.  
 
3   The Hybrid FE/SEA Method Combined 
with the Laplace Asymptotic Method 
 
In this Section the hybrid FE/SEA approach and its 
combination with the Laplace asymptotic method are 
briefly reviewed. 
 
3.1  Basic Concepts 
 
The hybrid Finite Element/Statistical Energy Analysis 
(FE/SEA) method [7,34] is a vibro-acoustic analysis 
technique which combines the strength of a well 
established low-frequency deterministic technique, the 
Finite Element method (FE) [32], with a high-frequency 
probabilistic method, the Statistical Energy Analysis 
method (SEA) [6,33], by means of the diffuse field 
reciprocity relation [39,40]. With this approach, within 
the frequency range of interest of the problem on hand, a 
complex system is considered as an assembly of (i) 
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Figure 1: Moment domain (m-domain). 
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Figure 2: Basic variables domain (a-domain). 



components with very few local modes, collectively 
called the “master” system and modelled by using FE; 
and (ii) components with many local modes, called 
“subsystems”, which are modelled with SEA, and it is 
assumed that all the SEA subsystems are coupled 
exclusively through the master system. For example, a 
generic class of engineering systems characterised by 
thin panels coupled through stiff structural components is 
often encountered in aerospace structures, where a frame 
is coupled with a skin panel, or in automotive structures, 
where the frame of the car is coupled to the roof panel 
and window panel. Within the hybrid FE/SEA modelling 
strategy, the panels would be modelled as SEA 
subsystems, and the stiff components would be modelled 
using FE. The response of the master system is described 
by a set of nodal degrees of freedom q , and the response 

of the SEA subsystems is described by a set of 
vibrational energies E  (defined as twice the time-
averaged kinetic energy).  
The properties of the hybrid FE/SEA model components 
(such as density, Young’s modulus, geometry, etc.) are 
represented by two groups of parameters to distinguish 
different models of uncertainty [8]: the master system 
properties are represented by a set of parameters b , 
while the properties of the SEA subsystem are 
represented by a set of parameters s . The effect of the 
uncertain parameters s  is accounted for via a non-
parametric statistical approach based on the fact that at 
high frequency the statistics of the natural frequencies 
and mode shapes of the subsystems can approach certain 
universal distributions, regardless of the detailed nature 
of the underlying uncertainty [7,8,40]. The effect of the 
uncertain parameters b  is accounted for by a 
probabilistic parametric uncertainty model [8]. The 
system is therefore varying over two ensembles: a non-
parametric ensemble (a collection of systems with 
random subsystem properties) and a parametric ensemble 
(a collection of systems with random master system 
properties).  
For fixed master system properties, the hybrid FE/SEA 
method enables the calculation of the conditional non-
parametric ensemble average ( )jµ b  and ensemble 
variance ( )2

jσ b  of a response variable w  (which can be 
the vibrational energy of the SEA subsystem j , or the 
cross spectrum of the finite element degrees of freedom) 
[7,34]. The ensemble is non-parametric in the sense that 
the details of the parameters s  are never considered in 
the model, but rather the Gaussian Orthogonal Ensemble 
(GOE) is used to described the statistics of the subsystem 
natural frequencies and mode shapes [7,40]. This 
approach obviates the need for any detailed knowledge 
of the variability or uncertainty of the parameters s  and 
does not require Monte Carlo Simulations to be 
performed to propagate the uncertainty. The equations 
necessary for the evaluation of ( )jµ b  are reviewed in 
the following Subsection. 

3.2  The Hybrid FE/SEA Equations for Fixed FE 
Properties 
 
The hybrid FE/SEA equations for evaluating the 
ensemble average response (( )jµ b ) at the excitation 
frequency ω  are [34]: 

a) Subsystem energy balance equations 
 

, , ,( ) ( / / ) ,ext
j d j j jk j j j k k in j in j

k

E n E n E n P Pω η η ωη+ + − = +∑  (8) 

 
where jη  is the damping loss factor of the subsystem j , 

,d jη  is an additional loss factor on the subsystem j  due 
to the energy dissipated in the FE components, jkη  is the 
coupling loss factor between subsystem j  and 
subsystem k , jn  is the modal density of subsystem j  
(which is defined as the average number the average 
number of natural frequencies within a unit frequency 
band), jE  is the ensemble average vibrational energy of 
subsystem j , ,

ext
in jP  is the external power input to the 

subsystem arising from the loads acting on the master 
system and ,in jP  is the power input arising from external 
loads directly applied to the subsystem j .  
Eq. (8) states that the power dissipated through damping 
( ,( )j d j jEω η η+ ) plus the net power transmitted to other 
subsystems ( ( / / )jk j j j k kk

n E n E nωη −∑ ) is balanced 
by the power input to the subsystem (, ,

ext
in j in jP P+ ), and it 

is based on the assumption that the power transmitted is 
proportional to the difference of the average modal 
energies (defined as /j jE n ) of the coupled subsystems. 
Eq. (8) has the same form as the standard SEA equations 
[33], but also contains two additional terms relating to: 
(i) the contribution of the master system to the power 
input ,

ext
in jP , and (ii) the power dissipated in the master 

system, ,d j jEωη . These two terms can be expressed in 
terms of: (i) the total dynamic stiffness matrix 

( )k
tot dir dk

= +∑D D D , where dD  is the dynamic stiffness 
matrix associated with the FE model 
( 2

d iω ω= − + +D M C K , where , M C and K  are 
respectively the FE component mass, damping and 
stiffness matrices), and ( )k

dirD  is the so-called direct field 
dynamic stiffness matrix for subsystem k  which can be 
computed using various techniques [34]; (ii) the cross-
spectral matrix of the loading applied directly to the 
master system *T

ff  =  S ff , so that 
 

{ } { }( )1 ( ) 1*T
, ,

2 
Im Im ,jk

d j d rs tot dir tot
rs

rsj

D
n

αωη
π

− −
 

=   
 

∑ D D D (9) 

 

{ }( )( ) 1 1*T
, ,( / 2) Im ,ext j

in j dir rs tot ff tot rs
rs

P Dω − −= ∑ D S D   (10) 

 
where the superscript *  indicates the complex conjugate, 
the superscript T  denotes the transpose, Im represents 
the imaginary part of the matrix, and kα  is a factor 



which takes into account the fact that the subsystem 
wave field may not be perfectly diffuse [7]. Generally 

kα  is equal to 1 when the subsystem wave field is 
diffuse, and close to 2 when the subsystem is excited 
predominantly by motion of the master system [7]. 
Three of the remaining terms in Eq. (8), specifically jη , 

jn , and ,in jP , are evaluated by using standard SEA 
procedures [33], while the coupling loss factors are 
expressed analytically as a function of the total dynamic 
stiffness matrix in the form [34] 
 

{ } { }( )( ) 1 ( ) 1*T
,

2 
Im Im .j kk

jk j dir rs tot dir tot
rs

rs

n D
αωη
π

− − =  
 

∑ D D D (11) 

 
Writing Eq. (8) for each subsystem leads to a set of 
equations that can be solved to yield the ensemble 
average vibrational energy jE  of each subsystem. This 
set of jE  is then used to calculate the average response 
of the master system. 

b) Master system response equation  
 

{ }1 ( ) 1*T4
Im ,kk k

qq tot ff dir tot
k k

E

n

α
ωπ

− −  
= +  

   
∑S D S D D  (12) 

 
here qqS  is the cross-spectrum of the response of the 
master system (averaged over the non-parametric 
ensemble), and the two terms on the right-hand side 
correspond to the forcing arising from external excitation 
(expressed in terms of the cross spectrum of the forces, 

ffS ) and the forcing arising from the subsystems, as 
yielded by the diffuse field reciprocity relation [39,40].  
By using the hybrid FE/SEA variance theory [7] it is also 
possible to estimate the covariance of the subsystem 
energies (Cov ,j kE E   , where /j j jE E n= ) and the 
variance of the cross-spectral matrix of the response of 
the master system (Var qqS   ) over the non-parametric 
ensemble, which are indicated in what follows as 

( )2
jσ b . These equations are required in the following 

developments of the theory for estimating the probability 
density of the general response variable, but for brevity 
they will not be included in this paper. The reader is 
referred to the paper by Langley and Cotoni [7] where 
their full derivations can also be found. 
 
3.3  Hybrid FE/SEA + Laplace 
 
The hybrid FE/SEA method has been recently combined 
with the Laplace’s method [35] (a technique used to 
approximate integrals expressed in the Laplace form 
[41]) in order to establish the failure probability of a 
complex built-up system with input parameters described 
by a combination of parametric and non-parametric 
probabilistic uncertainty models.  
The failure probability is defined as the probability that a 
deterministic limit value 0w  is reached and/or exceeded 

by the general response variable ( ),w w= b s  (which can 
be the vibrational energy of subsystem j , or the cross 
spectrum response of the master system). This condition 
can be expressed as: 
 

[ ] ( )
0

0P d .f w
P w w p w w

∞
= ≥ = ∫    (13) 

 
The application of the hybrid FE/SEA method for fixed 
b  yields the conditional non-parametric ensemble mean 
and variance of the response (( )jµ b and ( )2

jσ b , 
respectively), which can then be used to evaluate the 
probability density function of the general response 
variable conditional on b , ( )p w b ; for example, the pdf 
of the non-parametric ensemble vibrational energy is 
usually log-normal, and therefore the mean and variance 
yield the complete pdf [6,8,42]. Eq. (13) can be 
conveniently rewritten in terms of ( )p w b :  
 

( ) ( )
0

d d .f w
P p w p w

∞
= ∫ ∫b b b b    (14) 

 
The failure probability conditional on b  can be now 
defined as: 
 

( ) ( )
0

d ;f u
P p w w

∞
= ∫b b     (15) 

 
and therefore Eq. (13) can be written as an unbounded 
integral: 
 

( ) ( )d .f fP P p= ∫b b b b     (16) 

 
The integral in Eq. (16) can be evaluated numerically by 
considering a grid of integration points (direct 
integration), although this approach is unpractical when a 
large number of uncertain input parameters is considered 
[10]. Alternatively, an approximate evaluation of this 
integral can be obtained by applying the Laplace’s 
method to the integral expressed in the form 

( ) ( )exp ln dfP p    ∫b b b b . In particular, the failure 
probability can be approximated as [35]: 
 

( ) ( )( ) ( ) 1 2/2

1

2 det ,
d

f f j j j
j

P P p
ψ

π
−∗ ∗ ∗

=

 ≈  ∑ b b H b  (17) 

 
where ψ  stands for the number of local maxima of 

( ) ( )ln fP p  b b  at locations *
jb , d  is the dimension of 

the set of random variables b  involved in the problem, 
[ ]det  is the matrix determinant operator and ( )j

∗H b  is 
the Hessian matrix whose elements are given by 
 

( ) ( ) ( )( )
2

ln .ij f
i j

H P p
b b

∂
 = −  ∂ ∂

b b b   (18) 



This approximation (Eq. (17)) corresponds to replacing 
the integrand function with an n-dimensional Gaussian 
distribution with mean equal to *

jb  and covariance 
matrix equal to the inverse of ( )j

∗H b . Conditions for the 
accuracy of Eq. (17) are discussed in references [41,43].   
 
4   Bounds on the Failure Probability 
 
4.1  Hybrid FE/SEA + Laplace Using Imprecise 
Probabilities 
 
The hybrid FE/SEA + Laplace approach can be 
generalised considering the case in which the uncertain 
input parameters b  of the FE components can be 
subdivided into two groups: (i) a set of parameters b̂  
described by a specified probability density function 

( )ˆp b ; and (ii) a set of parameters impb  imprecisely 
known  described in terms of bounded  statistical 
expectations (derived from small data set or specified by 
an analyst). The second set of parameters impb  can be 
modelled by using the imprecise probability uncertainty 
model presented in Section 2. With this approach, the 
joint pdf of the random variables ( )impp b a  is expressed 
in the form of a maximum entropy distribution (Eq. (1)), 
and the bounds on the statistical expectations are 
converted into bounds on the so-called basic variables a  
(as described in Section 2). If these basic variables are 
taken to have fixed values a , then a single pdf  

( )impp b a  is identified.  
According to Eq. (17), the failure probability conditional 
on the basic variables is then given by 
 

( ) ( )
( ) ( ) ( )

0
ˆP , ,

ˆ ˆ, d .

f imp

f imp imp

P w w

P p p

 = ≥
 

= ∫b

a b b a s

b b a b b a b
  (19) 

 
where ( )ˆ ,f impP b b a  is the failure probability conditional 
on  ( )ˆ , impb b a . 
 
The hybrid FE/SEA + Laplace approach [35] can be then 
employed to estimate the failure probability as: 
 

( ) ( ) ( ) ( )

( ) ( )
, ,

1

1 2
/ 2

,

ˆ ˆ,

ˆ2 det ,

f f j imp j j imp j
j

d

j imp j

P P p p
ψ

π

∗ ∗ ∗ ∗

=

−
∗ ∗

≈

 ×
 

∑a b b a b b a

H b b a

 (20) 

 
The evaluation of the failure probability requires: 

I. Evaluation of ( )( ),
ˆ ,j imp jp w b b a  by using the 

results yielded by the hybrid FE/SEA method. 
II. Calculation of ( ),

ˆ ,f j imp jP b b a  by using Eq. (15). 
III.  Evaluation of  ( ),

ˆ ,j imp j
∗ ∗b b a  by applying a 

standard unconstrained minimization algorithm to 

( ) ( ) ( ), ,
ˆ ˆln ,f j imp j j imp jP p p∗ ∗ ∗ ∗ −

 
b b a b b a . 

IV. Evaluation of the Hessian matrix. 

If the basic variables are allowed to vary, a family of 
response pdfs is obtained and the bounds on the failure 
probability can be established as 
 

( )( ) ( )( )
S S

min max .f f fP P P≤ ≤a a    (21) 

 
These bounds give an indication of the sensitivity of the 
system reliability with respect to the uncertainty on the 
pdf of the input parameters. If the bounds are wide, the 
uncertainty in the input parameter description is 
significantly affecting the system reliability. On the other 
hand, if the bounds are narrow then the system reliability 
is little affected by the uncertainty in the pdf of the 
uncertain parameters.  
 
4.2  Steps for Implementing the Proposed Approach 
 
The reliability analysis can be summarised as follows:  

I. The system is subdivided into: (i) FE components 
with uncertain properties b ; and (ii) SEA 
components with uncertain properties s . 

II. The effect of the uncertain parameters s  of the 
SEA components is accounted for by using non-
parametric statistical methods.   

III.  The uncertain parameters of the FE components b  
are partitioned into two sets of parameters: (i) b̂  
modelled by using a specified pdf ( )ˆp b ;  and (ii) 

impb  modelled via the imprecise probability model 

( )impp b a  where a  are the basic variables which 
define the family of pdfs (Eq. (1)). 

IV.  The admissible region of the basic variable a-
domain) associated to the random variables impb  
(obtained as described in Section 2 from the 
knowledge of the bounds on statistical 
expectations) is overlaid with a grid of points. 
This grid is chosen in order to capture enough 
sampled points within and along the a-domain. 

V. For each sampled point of this grid, the 
corresponding 1̀a  is calculated via normalization. 
The set of basic variables associated to each point 
of the domain identifies a single( )impp b a . 

VI.  For fixed basic variable a , ( )fP a  is calculated 
using Eq. (20). 

VII.  The bounds on the failure probability are then 
calculated by using Eq. (21). 

 
5   Numerical Application 
 
The example system is composed by two simply 
supported plates coupled via a spring/mass system in 
order to represent with the simplest possible dynamic 
model a generic class of systems in which thin panels are 
coupled to stiff structural components (such as the frame 
of a car coupled to the roof and the window panels). The 
coupling is realised using three springs attached in the 
interior of each plate (point connections) linked to the 



second mass of the spring/mass system (Figure 3). The 
system is excited with a unit force applied to the first 
mass of the spring/mass system. The two plates are made 
of aluminium (Young’s modulus 9 271 10  /Y N m= × , 
density 32700 /Kg m  and Poisson’s ratio 0.3ν = ) and 
their properties are summarised in Table 1. 

 
Elements Thickness 

(mm) 
Size 

x yL L×  
( m m× ) 

Loss 
factor 

( ) %η   

Modal 
densityn 

(modes/Hz)  
Plate 1 1.25 1.4 1.2×  2 0.4286 

Plate 2 1.25 1.4 1.3×  2 0.4643 
 

Table 1: Properties of the plates. 
 
The spring connections in the interior of the first plate 
have stiffness ( )1 6ˆ 2 10 N/m,  1,2,3uk u= × = and 
attachment points ( ) ( ) ( )0.3,0.8 , 0.6,0.4 ,  and 0.8,0.6

 
measured in metres along the x  and y  directions and 
relative to point the 1o . The second plate is connected 
via springs of stiffness ( )2 4ˆ 2 10 N/m,  1,2,3lk l= × =  
attached at points ( ) ( ) ( )0.4,0.4 , 0.5,0.9 ,  and 0.9,0.7 
measured in metres along the x  and y  directions and 
relative to the point 2o . 
The hybrid FE/SEA model of the system comprises two 
SEA subsystems (the plates), which are highly random, 
and a mass/spring system (FE component) with two 
uncertain parameters, namely 1k  

and 2k . 1k  is described 
by a lognormal pdf with mean value 66 10 N/m×  and 
variance ( )21110 N/m . 2k  is imprecisely known and it is 
specified in terms of bounds on statistical expectations as 
summarised in Table 2 and depicted in Figure 4.  
 

1 2 3 4 

( )518 10 ,14.27×  ( )522 10 ,14.52×  ( )522 10 ,14.50×  ( )518 10 ,14.24×  

 
Table 2: Coordinates of the vertices of the m-domain. 

 
The system is forced by a unit force applied to the first 
mass of the mass/spring system (as shown in Figure 3). 
The design target is the energy level of plate 1 at 145 Hz, 
and a limiting value of 4

0 0.02 10E J−= ×  is considered. 

The initial step of the analysis consists of evaluating the 
probability density function of the uncertain parameter 

2k .  This is achieved by using the procedure described in 
Subsection 2.1. The pdf of 2k  has the form 
 

( ) ( )[ ]2 1 2 3exp ln ,p k a a x a x= − −a   (22) 
 
where 1a  is obtained by using the normalization 
condition as: 
 

( ) ( )( )3 1
1 2 3ln 1 ,aa a a−= − Γ −    (23) 

 
where ( )Γ i  is the gamma function.  
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Figure 4: Moment domain for 2k  

The a-domain is then calculated by using the strategy 
summarized in Subsection 2.2. In particular, the 
quadratic approximation of statistical expectations (Eq. 
(5)) was employed and 16 points along the m-domain (as 
shown in Figure 4) were mapped into the a-domain. The 
resulting approximate domain is shown in Figure 5. 
Each point of the a-domain defines a single pdf. Some of 
the pdfs corresponding to the a-domain are shown in 
Figure 6.  
The second step of the analysis consists of approximating 
the bounds on the failure probability as described in 
Subsection 4.2.  
The a-domain was overlaid with a grid of 50 50×  
equally-spaced points. The 16 points along the domain 
and 414 points internal to the domain were considered 
(for a total of 430 pdfs).  For each grid point ( )2 3,a a  the 
procedure illustrated in Subsection 4.1 was applied. In 
particular, for fixed ( ),

ˆ ,j imp jb b a  the hybrid FE/SEA 
method was applied to estimate the mean and variance of 
the response. These were used, under the assumption of a 
lognormal distribution of the vibrational energy of plate 
1, to evaluate ( )( ),

ˆ ,j imp jp w b b a . ( ),
ˆ ,f j imp jP b b a  was 

then calculated by using Eq. (15). The minimum point(s) 
of ( ) ( ) ( ), ,

ˆ ˆln ,f j imp j j imp jP p p∗ ∗ ∗ ∗ −
 

b b a b b a  was 
calculated by using the Matlab function fminunc. The 
Hessian matrix was approximated by using third order 
Lagrange polynomials. Finally, the failure probability 
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Figure 3: Built-up plate system under investigation. 



conditional on the basic variables was computed by using 
Eq. (20).  

The results obtained for each grid point are shown in 
Figure 7.  

The bounds on the failure probability are (by using Eq. 
(21)): 0.02192 0.04245fP≤ ≤  (respectively, at point 1 
and 9 of the a-domain), meaning that the uncertainty in 
the input parameters significantly affects the failure 

probability estimates. The computational time required 
by the proposed approach was of about 3 minutes.  
The failure probability obtained for the MAXENT 
distribution (corresponding to the point 10 of the a-
domain in Figure 7) is 0.03976. The MAXENT 
distribution would therefore underestimate the maximum 
failure probability. 
The results obtained with the proposed approach were 
validated against direct numerical integration of Eq. (19), 
which took about 6 hours, showing differences less than 
1%. Full FE Monte Carlo simulations for the present 
system considering a single point (and therefore a single 
pdf) of the a-domain requires about 45 hours. Full FE 
Monte Carlo simulations are therefore unfeasible even 
for this example system. It can be concluded that the 
proposed approach provides a very efficient tool for the 
reliability analysis of system with uncertain properties.  
 
6   Summary and Conclusions 
 
An imprecise probability model based on expressing the 
pdf of a random variable in the form of a maximum 
entropy distribution with bounded parameters was used 
to describe the parametric uncertainty of the FE 
components of a hybrid FE/SEA model. The hybrid 
FE/SEA + Laplace method, which fully accounts for 
both parametric (FE components) and non-parametric 
(SEA components) uncertainties, was applied to establish 
bounds on the failure probability. These bounds give an 
indication of the sensitivity of the system reliability to 
the uncertain input parameters and allow establishing the 
highest failure probability expected. 
This approach provides a very useful tool for evaluating 
the reliability of complex engineering systems given that: 
- The partition of the system in SEA and FE 

components leads to a large reduction of the number 
of degrees of freedom employed in the model 
(potentially thousand of finite elements nodes are 
substituted with a single degree of freedom SEA 
subsytem) and a large gain in numerical efficiency. 

- The SEA subsystem ensemble is dealt with 
analytically (without using MCS) leading to a 
further reduction in computational costs. 

- The uncertainty in FE components is dealt with 
using the Laplace asymptotic method instead of 
MCS. 

- The bounds on the failure probability can be 
efficiently established when the imprecise 
probability model is employed. 

The method has been illustrated by application to built-
up plate systems, showing a large reduction of the 
computational cost when compared to a direct integration 
procedure and to Full FE Monte Carlo simulations. 
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Figure 7: Failure probability as a function of the basic 
variables. The lower and upper bounds of the failure 

probability are labeled as “min” and “max”. 

 
 

Figure 5: Approximate a-domain. 

 
 

Figure 6: Pdfs generated from the a-domain. 
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