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Abstract

In this paper a novel imprecise probability dedaipis
applied to vibro-acoustic problems in engineering.
Frequently little data is available concerning the
variability of the key input parameters required o
predictive analysis. This has led to widespread afse
several uncertainty descriptions. The hybrid Finite
Element/Statistical Energy Analysis (FE/SEA) appgioa
to the analysis of vibro-acoustic systems is based
subdividing a system into: (i) SEA components which
incorporate a non-parametric model of uncertaimg a
(i) FE components with parametric uncertainty. sThi
approach, combined with the Laplace asymptotic
method, allows the evaluation of the failure praligb

A novel strategy for establishing bounds on théufai
probability when an imprecise probability model {bd
on expressing the probability density function of a
random variable in the form of a maximum entropy
distribution with bounded parameters) is employsd i
presented. The approach is illustrated by apptioatd a
built-up plate system.

Keywords. Uncertainties in probabilistic assignments,
hybrid FE/SEA method, reliability analysiparametric
and non-parametric uncertainty models, maximum
entropy distribution, vibro-acoustic analysis.

1 Introduction

In engineering problems it is frequently the cakatt
little data is available concerning the variability the

key input parameters (geometry, material propertiesl

boundary conditions) required for a predictive gsis,

and yet an engineering assessment of a design mu fj

nonetheless be performed. This topic has beernuthject

of much recent research, and various analytical an
computational
example, [1-9]). Such methods require some desanipt

approaches have been proposed (f f
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of the wunderlying uncertainties (for example,
uncertainties in material properties, loading ctiods,
and fabrication details) which could be probakist
(parametric [1-4], non-parametric [5-7] or a condtian
of both [8,9]) or non-probabilistic [1,4].
Reliability methods aim to estimate the probabilityat
design targets will be met [10,11]; this probapilis
referred to as the reliability of the system. Themghods
are often based on a parametric probabilistic detsmn
of the uncertain parameters of the system andomlthe
assumption that the statistical distributions (i.e.
probability density function (pdf)) of these parasre
are precisely known [12]. The parametric probatidis
description requires a large amount of empiricahdh
the pdf is constructed using a frequentist view.
Alternatively the pdf may be interpreted as a siatet of
belief based on expert opinion, as in the subjectiv
approach to probability theory [13]. The more coomm
frequentist approach is concerned with the outcafe
experiments performed (hypothetically or in redlipn
large ensembles of systems; these ensembles nhey eit
be real (for example cars from a production lina),
virtual but realizable in principle (such as anemble of
manufactured satellites, when only one satellitey ma
actually be built). In contrast, with the subjeetiv
approach, no ensemble is necessarily involved. The
frequentist and subjective views can be roughlgredd
to the notions of aleatory and epistemic uncermaint
aleatory uncertainty is an irreducible uncertainty
associated with an inherent variability of the m@s
of the system, while epistemic uncertainty is réblec
being associated with a lack of knowledge of thalyst
with respect to the system’s properties which @xedf
[4]. Clearly, the interpretation employed for défig the
B f of the wuncertain parameters will affect the
Interpretation of the results obtained with a pcéde
nalysis.
practice, only a limited amount of data may be
available and therefore it is often difficult toetify the
form of the distribution of the random variable &rdhe



parameters of the distribution. Moreover, the astatyay  is modeled as an assembly of subsystems, whose
have uncertainties in belief, meaning that the ifipgec  response is described by their vibrational enedgyirfed

pdf is itself subject to doubtJsing a pdf which differs as twice the time-averaged kinetic energy). The lsem
from the actual one can significantly affect thegiction  of degrees of freedom employed is drastically reduc
of the system performance with respect to safetslity, compared to the FE approach, since a single degfree
design or cost constraints [12,14]. One way arotinel  freedom SEA subsystem might replace thousand wéfin
difficulty is to employ imprecise probability degutions element nodes. The interaction between the SEA
in the reliability assessment in order to establisinds  subsystems is described using the principle of
on the failure probability (that is the probabilityat the  conservation of energy flow, and this leads to facofe
response exceeds a critical level). These bourlde:al equations that can be solved to yield the subsystem
(i) the evaluation of the sensitivity of the systegaponse energies. This method can predict both the ensemble
to the uncertainty of the system parameters; (i@ t average vibrational energy levels [33] (averagegs
identification of the worst case scenario (the bggh an ensemble of nominally identical structures) émel
failure  probability expected). Many reliabilty ensemble variance of the energy levels [6]. The
approaches which includes imprecise probabilityapplication of this approach is limited to highduency
descriptions have been developed in the past yearbecause of its underlying assumptions (i.e. each
among which there are: (i) First Order Reliability structural component is sufficiently random anct ttie
Method (FORM) [10] approaches which employ pdfs coupling between subsystems is sufficiently weak. [6
with one [15] or two [16] bounded parameters (mean,Between the respective ranges of validity of FE SR
variance or another distribution parameter), [1B,16 there is amid-frequencyegion and much research effort
Dempster-Shafer theory (DST) [17,18] and P-box nede has been directed at the development of efficient
of imprecise probabilities [19-21] applied to réliy analytical methods that can be applied in this eal@ne
analysis [22-25]; (iii) reliability analysis withandom  such method is the hybrid FE/SEA method [7,34].sThi
sets [26,27]; (iv) reliability assessment by mearis approach is based on subdividing a system into SEA
Fuzzy Probabilities [4,28]; (v) Reliability modelghich components (which incorporate a non-parametric
account for the lack of information about the probabilistic model of uncertainty), and deternticis-E
independence of the stress and strength, and @beut components. This partition leads to a large reductf
parameters of each pdf [29]; (vi) reliability mosldlased the number of degrees of freedom employed in théaino
on imprecise Bayesian inference models [30]; (vii) and a large gain in numerical efficiency. Moreotee
Interval importance sampling methods combined withmethod enables the prediction of the mean and negia
specified pdf with bounded parameters [31]. Howgver of the response (such as the energy response &fa S
the application of these approaches is often linit®e  subsystem or the mean squared amplitude of thee fini
simple models, mainly because of the computationaklement degrees of freedom) over a collection sfesys
burden associated to the propagation of the impeeci with random SEA subsystems properties [7,34] withou
probability description. employing Monte Carlo simulations. The hybrid FEASE

In automotive and aerospace industries there asigmle method has been recently generalized by introducing
requirements to ensure vibro-acoustic performarsce iparametric uncertainty into the FE components [8] i
met. Vibro-acoustic problems usually involve a very order to provide an enhanced description of those
broad frequency range due to the broadband nafuheo components which may contain a degree of randomness
loadings acting on the system. Broadly speakingethr but cannot be appropriately modeled as SEA subsgste
frequency ranges can be identified: low-, mid- &igh- The vibro-acoustic performance of a complex system
frequency ranges. In the low-frequency range thgtle  broad frequency range can be established by agppthie
scale of deformation of the system components ishybrid FE/SEA method in combination with the
relatively long with respect to their overall dinsgon so  Laplace’s method (hybrid FE/SEA + Laplace) [35].thVi
that: (i) few degrees of freedom are required tadeho this approach both parametric and non-parametric
their dynamic behavior; (i) the system response isprobabilistic uncertainty models are employed ahe t
insensitive to small changes in the system progeeriihe  failure probability over the combined ensembles of
Finite Element method (FE) [32] is a well-estabdidh uncertainty can be assessed. This approach is ezdhan
deterministic technique for acoustics and vibrationin this paper by considering a system with uncertai
analysis in the low-frequency range. In the high- properties modeled with non-parametric, parametnd
frequency range, instead, the length scale of deftion  also imprecise parametric probabilistic descripgtidn

is comparable to small manufacturing imperfectionsorder to account for those input parameters of Rke
producing high sensitivity to uncertainty and reiug a  components which are imprecisely known. In particul
large number of degrees of freedom for capturing th the hybrid FE/SEA + Laplace is extended in thisgvap
components' dynamic behavior. An alternative tad-© by employing a recently developed model of imprecis
employ Statistical Energy Analysis (SEA) [6,33], a probability [36] in order to establish bounds ore th
probabilistic technique which was developed speailfy failure probability. The imprecise model employexl i
to deal with high frequency vibration. In SEA thestem  based on expressing the probability density fumctiba



random variable in the form of a maximum entropy
distribution with bounded parameters [36]. This
parametric probabilistic uncertainty model will be
described in more details in Section 2. The hybrid
FE/SEA + Laplace approach will be summarized in
Section 3. In Section 4 an efficient approach for
establishing bounds on the failure probability is
presented. The method is illustrated by applicatmm
built-up plate system in Section 5.

2 Probability Density Function with
Bounded Parameters

In this Section a recently developed parametric ehod
uncertainty which admits uncertainty in the proliatic
assignments is described [36]. This uncertainty ehod
requires as input bounded statistical expectatiohs
specified functions of the random variable andaih be
used to describe both aleatory and
uncertainties. The uncertainty model is briefly aésed

in Subsection 2.1. In Subsection 2.2, a procedore f
treating the bounded statistical expectations
summarised.

2.1 Basic Concepts

The model of uncertainty is based on consideriiag tine
pdf of a random variable itself is subject to doubt. The
pdf is expressed as the exponential of a serieanssipn,
but the parameters within this model, the so-callasic
variables, are allowed to have bounded descrifpd6h

Eq. (1) represents a family of distributions defirmer
the set of basic variables (which has entries; with

j =2,3...n) that lie within an admissible regio8. A
“basic variable” is defined here as one which cawmeh
any possible pdf within certain bounds, includirg t
extreme case of a delta function at any point betwee
bounds. If a parameter is not “basic”, then its gaifi be
expressed in terms of the basic parameters, arsdottiy
this type of parameter is considered in what foloihe
admissible regiors can be an interval, a convex region,
etc. The term f;(x) is a specified function of the
uncertain variable, such thaf (x) =1. The coefficient
& is dependent on the bounded basic variableand it

is chosen to satisfy the normalisation condition.

Eq. (1) describes a single distribution when thsida
variables have fixed values, and accounts for aemor
general description (a set of pdfs) when thesenpeters
are bounded. In particular, for fixed basic varshlthe

Sa (%

j=1

p(xlads) = exr{ (1)

is

by the Lagrange multipliers (which are constantiga).

It can be therefore argued that Eq. (1) represefdsnily

of maximum entropy continuous distributioNghen the
constraints are expressed in terms of statistical
expectation inequality constraints, such as:

j.min SVj :E[ fj (X):|:J. ]j (X) d *a)d x Jvmax'(z)
j=2,3,..n
wherev, ., andv, . are the lower and upper bound on

the jth statistical expectationv;, within a class of
distribution (for example, polynomial distributigns
maximum entropy distribution, etc.), there are many
distributions which are consistent with the statat
expectation inequality constraints. The Principlé o
Maximum Entropy (MAXENT) selects, among the class
of maximum entropy distributions, the distributiaith

epISteMiGpe |argest entropy [37]. The proposed approacheid,

constructs a family of maximum entropy distribugon
consistent with the statistical expectation inetyal
constraints and selects, among this family of pitifs,pdf
which maximises (or equivalently minimises) a sfiedi
engineering metric (for example, the probability of
exceeding a specified limit value, the probabitifybeing
within a certain region). This pdf is potentialliffdrent
from the pdf which maximises the entropy (which &an
recovered as well); therefore the proposed apprasch
more useful from an engineering point of view. This
aspect of the approach will be illustrated by a arioal
application in Section 5 of this paper.
The inequality constraints on the statistical expigon of
the uncertain variable may arise by analysing allsma
data set or can be provided by an expert who mefepr
to assign bounds rather than specifying a singleevdf
f; (x) = x then the inequality constraints are specified
on the mean value, alternatively if; (x) = X*they are
specified on the second moment; (x) can be also
defined as an interval of possible values that the
uncertain variable may take, i.d;(x)=[b,c]; in this
case the constraints corresponds to the probalofity
finding the random variable within those bounds.
The family of pdfs defined in Eq. (1) is construttas
follows:
1. The form of the pdf which maximises the
entropy is computed, as for the maximum
entropy approach, by using the Lagrange
multipliers method.
The Lagrange multipliers are substituted by the
basics variables .
The bounds on the statistical expectations of the
uncertain variable are used to establish bounds
on the basic variables.

3.

pdf expression corresponds to the maximum entropyA procedure for obtaining an approximate mapping of

distribution [13] that arises from specifying thepected

the basic variables domain (a-domain) starting fram

values E[f,- (x)] where the basic variables are replacedbounded description of the statistical expectatitms



domain) of the uncertain variable [36,38] is summedt
in the next Subsection.

2.2 Bounds Conversion
Consider the case for which two statistical expéemta

of the uncertain variablex lie within a rectangle, as
described in Figure 1.

E[f,(x)] 4
V3,max - 2 3
V3,min - 4

I/Z,min

V2 max E[ fZ(X):I
Figure 1: Moment domain (m-domain).

The first step of the approach requires the evanatf
the maximum entropy distribution, which for the gzat
case take the form

p(xja) =expla + a h( X+ a &( J]. ®3)
In principle, each point of the basic variables dom(a-
domain), which is depicted in Figure 2, can be eatdd

by solving a set of two non-linear equations inmerof
the statistical expectations of the random variable

a-domain

v

Figure 2: Basic variables domain (a-domain).

For example, point 1 of the m-domain can be mapped
the corresponding point 1 of the a-domain by s@vin

[f.()expla+ah(X+at(Y]dxe v,

4
[t(exp[a+a f(H+a t(R]dx= v,

where a, and a, are the unknown coefficients, ar is

chosen to satisfy the normalisation condition.

In practice, considering enough points along thgeedf

number of sets of equations to be solved. The proh$
that, even for a simple problem (like the 2D case
depicted in Figure 1), the solution of each senohf-
linear equations can be time consuming and conueme
problems may occur.
An approximate mapping of the a-domain can be
obtained by [36,38]:
I. Evaluating the mid-points of the surfaces of the
hypercube defining the m-domain
(v; =E[ £ (X)]= (VY e ¥ anin)/2*).
Il. Estimate the corresponding poiat solving a set
of non-linear equations for the mid-point of the m-
domain.
lll.  Each point of the a-domain is then calculated by
using an approximate expression of thath
moment:

n

vs=vi+ 2 cf (aj- )
i=2

o (5)
+EZZCJSI:(aJ -4 )(a - &),
j=2k=2
where:
& ={(t(x)-E £ (0)])( ;(0-E f(9])}.
(6)

. _ E{( fs(x) - E[ f;(x)])( fi(x)—E[ fi( x)])}
T () - E[ K (%)]) |
(7)

This approach is expected to yield less accuragalte
when the variation of theth moment value with respect
to the mid-point moment domain value becomes large.

3 The Hybrid FE/SEA Method Combined
with the L aplace Asymptotic M ethod

In this Section the hybrid FE/SEA approach and its
combination with the Laplace asymptotic method are
briefly reviewed.

3.1 Basic Concepts

The hybrid Finite Element/Statistical Energy Anddys
(FE/SEA) method [7,34] is a vibro-acoustic analysis
technique which combines the strength of a well
established low-frequency deterministic techniqthe
Finite Element method (FE) [32], with a high-frequg
probabilistic method, the Statistical Energy Anays
method (SEA) [6,33], by means of the diffuse field
reciprocity relation [39,40]. With this approachithin

the m-domain would allow a good approximation @ th the frequency range of interest of the problem andh a
shape of the a-domain to be obtained, reducing thegomplex system is considered as an assembly of (i)



components with very few local modes, collectively 3.2 The Hybrid FE/SEA Equations for Fixed FE
called the “master” system and modelled by using FE Properties

and (ii) components with many local modes, called

“subsystems”, which are modelled with SEA, andsit i The hybrid FE/SEA equations for evaluating the
assumed that all the SEA subsystems are couplednsemble average responsg, (b)) at the excitation
exclusively through the master system. For example, frequencyw are [34]:

generic class of engineering systems characteiiged a) Subsystem energy balance equations

thin panels coupled through stiff structural comguts is

often encountered in aerospace structures, where _ \E _ _ _ - py p (8

is coupled with a skin paneﬁ), or in automotive stues, AT+ e, ), +Zk:w7’k G/ =R/ =R R ()
where the frame of the car is coupled to the rcarigb

and window panel. Within the hybrid FE/SEA modedlin where 7, is the damping loss factor of the subsystgm
strategy, the panels would be modelled as SEAy, ; is an additional loss factor on the subsystgndue
subsystems, and the stiff components would be rteatlel to the energy dissipated in the FE componensiis the
using FE. The response of the master system isidedc  coupling loss factor between subsystemj and
by a set of nodal degrees of freedomand the response  subsystemk, n; is the modal density of subsystejn

of the SEA subsystems is described by a set ofwhich is defined as the average number the average
vibrational energiesg (defined as twice the time- number of natural frequencies within a unit frequen

averaged kinetic energy). band), E; is the ensemble average vibrational energy of
The properties of the hybrid FE/SEA model composient subsystemj, R is the external power input to the
(such as density, Young's modulus, geometry, &e)  subsystem arising from the loads acting on the enast
represented by two groups of parameters to disBhgu system andR, ; is the power input arising from external
different models of uncertainty [8]: the masterteys  |5ads direcﬂy’app“ed to the subsystgm

properties are represented by a set of paramdiers g (g) states that the power dissipated throughpitag
while the properties of the SEA subsystem are(w(nj +1,.;)E,) plus the net power transmitted to other
represented by a set of parametstsThe effect of the subsystems z wy,n (E In-E/R)) is balanced
uncertain parameters is accounted for via a non- py the power mput to the subsyste®{ + R, ), and it

parametric statistical approach based on the fettdt 5 pased on the assumption that the power traresinist
high frequency the statistics of the natural fremies  ,qnortional to the difference of the average modal
and mode shapes of the subsystems can approaamcertenergies (defined ag, /) of the coupled subsystems.

universal distributions, regardless of the detaihatlure .
. ro Eg. (8) has the same form as the standard SEAiegsat
of the underlying uncertainty [7,8,40]. The effettthe [33], but also contains two additional terms relgtio:

uncs rtt?:n " parametet[s_b IS atc cp:mted dfcljr 8by TT] (i) the contribution of the master system to theveo
probabilistic parametric uncertainty model [8]. € input P, and (ii) the power dissipated in the master

system is therefore varying over two ensemblesora n in.j .
- - .. system, ar, .E.. These two terms can be expressed in
parametric ensemble (a collection of systems with oy

random subsystem properties) and a parametric daleem tgrm_s 0f|:3“‘)(2 Dthe htotaID dynaLnlc d st|ffn.ess .ffmatrlx
(a collection of systems with random master system totfzk ar +Dy, Where D, Is the dynamic stiffness
properties). matrix associated with the FE model

For fixed master system properties, the hybrid EAS (Dq :—.an *iaC+K, where M,Cand K are
method enables the calculation of the conditiormi-n '€SPectively the FE component mass, damping and

parametric ensemble average (b) and ensemble stiffness matrices), an@f,f) is the so-called direct field
varianceo? (b) of a response variable (which can be dynamic stiffness matrix for subsysteknwhich can be
the vibrational energy of the SEA subsystgmor the ~ cOmputed using various techniques [34]; (ii) theser
cross spectrum of the finite element degrees efdipen) ~ SPectral matrix of th*eT loading applied directly tioe
[7,34]. The ensemble is non-parametric in the sénae master systens, :[ff J , S0 that

the details of the parametess are never considered in
the model, but rather the Gaussian Orthogonal Ebgem | 2a, Im{D }(D
(GOE) is used to described the statistics of thsgstem Wa; = ; d.rs
natural frequencies and mode shapes [7,40]. This

approach obviates the need for any detailed knayeled . _ .

of the variability or uncertainty of the parametarsand I:?ne,xjt =(wf 2)2 Im{ Dtgirj)v"s} (Dt;Sﬁ DmltT)rs’ (10)
does not require Monte Carlo Simulations to be *
performed to propagate the uncertainty. The eqostio
necessary for the evaluation ¢f (b) are reviewed in
the following Subsection.

wim{DY}D5T) @

j

where the superscript indicates the complex conjugate,
the superscriptT denotes the transpose, Im represents
the imaginary part of the matrix, and, is a factor



which takes into account the fact that the subsyste by the general response variae= w(b,s) (which can

wave field may not be perfectly diffuse [7]. Gerlgra be the vibrational energy of subsystejm or the cross

a, is equal to 1 when the subsystem wave field isspectrum response of the master system). This tondi

diffuse, and close to 2 when the subsystem is excit can be expressed as:

predominantly by motion of the master system [7].

Three of the remaining terms in Eq. (8), specifica}, , P, = P[WZ V\6] :J'°° p( v\) dw (13)

n;, and B ,, are evaluated by using standard SEA wO

procedures [33], while the coupling loss factore ar

expressed analytically as a function of the totadanic ~ The application of the hybrid FE/SEA method forefik

stiffness matrix in the form [34] b yields the conditional non-parametric ensemblermea
and variance of the responsey,(b)ando?(b),

_ B - respectively), which can then be used to evalub& t
JZ'm{chijr),rs}(Dw%'m{Dékir)}DwiT),s'(ll) probability density function of the general respons
* variable conditional orb, p(wb); for example, the pdf
Writing Eq. (8) for each subsystem leads to a det 0of the non-parametric ensemble vibrational energy i

equations that can be solved to yield the ensembl&Sually log-normal, and therefore the mean andanas
average vibrational energ, of each subsystenThis yield the complete pdf [6,8,42]. E(_J' (13) can be
set of E; is then used to calculate the average responsEonveniently rewritten in terms of wb):

of the master system.

_(2a
W, = p

b) Master system response equation P, :f; _[b p(vx{b) p(b)dbd w (14)
- 4a,E o The failure probability conditional ob can be now
S, =D S, +Y | ——= [Im{DW} DT, 12 P y
qq to{ ! Zk:[ a)nnkj { “”}:l o (12) defined as:
here S, is the cross-spectrum of the response of theP; (b) :fuw p(vqb)d w (15)

master system (averaged over the non-parametric

ensemble), and the t.WO tgrms on the right?ha.nd Sid%lnd therefore Eq. (13) can be written as an unbedind
correspond to the forcing arising from externalietion integral:

(expressed in terms of the cross spectrum of thee$o

S, ) and the forcing arising from the subsystems, as_

yielded by the diffuse field reciprocity relatio8g4]. P =], P (b) p(b)db. (16)

By using the hybrid FE/SEA variance theory [7sitalso

possible to estimate the covariance of the subsyste The integral in Eq. (16) can be evaluated numdyida)
energies Cov[Ej,E(], where E, =E /n) and the considering a grid of integration points (direct
variance of the cross-spectral matrix of the respoof  integration), although this approach is unpractwiaén a
the master system\/(ar[Sqq;) over the non-parametric large number of uncertain input parameters is cmed
ensemble, which are indicated in what follows as[10]. Alternatively, an approximate evaluation dfist
sz(b). These equations are required in the followingintegral can be obtained by applying the Laplace’s
developments of the theory for estimating the pbdlig method to the integral expressed in the form
density of the general response variable, but fewity J‘bexpLIn[Pf (b) p(b)] do. In particular, the failure
they will not be included in this paper. The reader probability can be approximated as [35]:

referred to the paper by Langley and Cotoni [7] wehe

their full derivations can also be found. 12

R = 3R (0]) o) (2" def (b))

i=1

3.3 Hybrid FE/SEA + Laplace

The hybrid FE/SEA method has been recently combineq‘:]h[e;e(b‘/j) S(ts)ndztfﬁ)rcéggngg*mbgrisihf%?:nglﬁé?ifﬁ
with the Laplace's method [35] (a technique used to he sfet ofpran;om variablds Jin’volved in the problem
approximate integrals expressed in the Laplace for det[ ] s the matrix determinant operator ahk?bi) ) ,
[41]) in order to establish the failure probabiliof a h . i wh | P . bj
complex built-up system with input parameters déescr the Hesslan matrix whose elements are given by

by a combination of parametric and non-parametric ,

probabilistic uncertainty models. H. (b) —_ 0 |:|n(Pf (b) p(b))] (18)
The failure probability is defined as the probadpithat a : ohob,

deterministic limit valuew, is reached and/or exceeded




This approximation (Eg. (17)) corresponds to reipigc If the basic variables are allowed to vary, a fgnuf
the integrand function with an n-dimensional Gaassi response pdfs is obtained and the bounds on theefai
distribution with mean equal td; and covariance Probability can be established as

matrix equal to the inverse ¢ (bf) . Conditions for the

accuracy of Eq. (17) are discussed in referenceg$3. msin(Pf (a)) <P < msax( P (a)) . (21)

4 Bounds on the Failure Probability These bounds give an indication of the sensitigityhe
) _ ) system reliability with respect to the uncertaioty the

4.1 Hybrid FE/SEA + Laplace Using Imprecise  pdf of the input parameters. If the bounds are witle

Probabilities uncertainty in the input parameter description is

significantly affecting the system reliability. Qine other

The hybrid FE/SEA + Laplace approach can behand, if the bounds are narrow then the systerahity

generalised considering the case in which the tamicer is little affected by the uncertainty in the pdf tife

input parametersb of the FE components can be uncertain parameters.

subdivided into two groups: (i) a set of parametbrs

described by a specified probability density fuoti 4.2 Stepsfor Implementing the Proposed Approach

p(b) and (i) a set of parameters, = imprecisely

known described in terms of bounded statisticalThe reliability analysis can be summarised as ¥ato

expectations (derived from small data set or sjEetiby I. The system is subdivided into: (i) FE components
an analyst). The second set of parametgfs can be with uncertain propertiesb; and (i) SEA
modelled by using the imprecise probability undetta components with uncertain properties
model presented in Section 2. With this approabk, t Il. The effect of the uncertain parametessof the
joint pdf of the random varlablea(bImp is expressed SEA components is accounted for by using non-
in the form of a maximum entropy distribution (Et)), parametric statistical methods.
and the bounds on the statistical expectations arelll. The uncertain parameters of the FE componbnts
converted into bounds on the so-called basic viasad are partitioned into two sets of parameters:i(i)
(as described in Section 2). If these basic vezmlare modelled by using a specified pqh‘(b); and (ii)
taken to have fixed valuesa, then a single pdf b, modelled via the imprecise probability model
p bimja is identified. p(bimp|a wherea are the basic variables which
According to Eq. (17), the failure probability catiainal define the family of pdfs (Eq. (1)).
on the basic variables is then given by IV. The admissible region of the basic variable a-
domain) associated to the random varia
P (a):P[ ( |as)>w)} (obtained as described in Section 2 from the
P (19) knowledge of the bounds on statistical
J ( |mp| ) (b) p(bimp|a)db. expectations) is overlaid with a grid of points.
This grid is chosen in order to capture enough
. ) N B sampled points within and along the a-domain.
whereP (b,b,mp| ) is the failure probability conditional V. For each sampled point of this grid, the

( ,mp|a correspondinga, is calculated via normalization.
The set of basic variables associated to each point

The hybrid FE/SEA + Laplace approach [35] can eath of the domain identifies a singteb, |a

employed to estimate the failure probability as: VI. For fixed basic variablea, P, (a) is calculated
v using Eq. (20).
P.(a)=Y P (b”,b” %) olbZ VIl. The bounds on the failure probability are then
' (a) Z‘ f( ! 'mp’| ) ( )p( 'mp] ) (20) calculated by using Eq. (21).

x(2m)""? det[H bD b.?np,| )J 1/2

5 Numerical Application

The evaluation of the failure probability requires: The example system is composed by two simply
I. Evaluation of p vv{ ijb.mp, a)] by using the supported plates coupled via a spring/mass system i
results yielded b the hybrid FE/SEA method. order to represent with the simplest possible dyoam

ll. Calculation ofP, |a) by using Eq. (15). model a generic class of systems in which thin |saze

IIl. Evaluation of b?,'mELJ a) by applying a coupled to stiff structural components (such asftme

standard unconstrained minimization algorithm to Of & car coupled to the roof and the window pandlsg
mL (bu b |a D bu) p(b.mpj|a)] coupling is realised using three springs attacmethe

IV. Eval anoﬁ’ofmﬁ]le Hessian matrix. interior of each plate (point connections) linkexdthe



second mass of the spring/mass system (Figurel®. T The initial step of the analysis consists of eviihgathe

system is excited with a unit force applied to thst
mass of the spring/mass system. The two platesade
of aluminium (Young’s modulusY =71x10 N /nf,
density 2700Kg /m®> and Poisson’s ratiov =0.3) and
their properties are summarised in Table 1.

Plate 1

A
ks ks &

Plate 2

>
N N
ERN

Figure 3: Built-up plate system under investigation

Element: Thickness Size Loss Modal
() LxL, |factor | densityn

(mxn) |7 (%) |(modes/Hz)
Plate 1 1.25 14x1.2 2 0.4286
Plate 2 1.25 14x1Ls 2 0.4643

Table 1: Properties of the plates.

The spring connections in the interior of the fiptate
have  stiffness ki =2x10° N/m, (u= 1,2,3and
attachment  points (0.3,0.9 ( 0.6,0% , anfl 0.8,0.
measured in metres along the and y directions and

probability density function of the uncertain pasier

k,. This is achieved by using the procedure destribve
Subsection 2.1. The pdf &, has the form
p(ko|a) =exp[a - ax- &n( X], (22)

where g is obtained by using the normalization
condition as:
a = —In(al®r (1- a)), (23)

wherel (+) is the gamma function.

14.5

Elln (k)] (N/m)

21

l‘.9 2
Elko] (N/m) x 10
Figure 4: Moment domain fdk,

The a-domain is then calculated by using the gyate
summarized in Subsection 2.2. In particular, the
quadratic approximation of statistical expectatidgs.

relative to point theo,. The second plate is connected (5)) was employed and 16 points along the m-dor(esn

via springs of stiffnessk? =2x10"N/m, (1= 1,2,
attached at points(0.4,0.4 ( 0.5,0p , anfl 0.9,
measured in metres along the and y directions and
relative to the poinb, .

shown in Figure 4) were mapped into the a-domaie T
resulting approximate domain is shown in Figure 5.

Each point of the a-domain defines a single pdm&of

the pdfs corresponding to the a-domain are shown in

The hybrid FE/SEA model of the system comprises twofigure 6. _ . 3
SEA subsystems (the plates), which are highly remdo The second step of the.analy5|s con.s.|sts of aprptap(_ng
and a mass/spring system (FE component) with twdhe bounds on the failure probability as descrilied

uncertain parameters, namety and k, . k; is described
by a lognormal pdf with mean valuéx1® N/m and
variance10"( N/m)z. k, is imprecisely known and it is
specified in terms of bounds on statistical expéemta as
summarised in Table 2 and depicted in Figure 4.

1 2 3 4
(18x1(§ ,14.2)7 (zleé ,14.5}2 (22x1é ,14.5)1 (18x1(§ ,14.2)a

Table 2: Coordinates of the vertices of the m-domai

The system is forced by a unit force applied to fitst
mass of the mass/spring system (as shown in Figure
The design target is the energy level of plate 14&t Hz,
and a limiting value ofg, =0.02x 10" J is considered.

Subsection 4.2.

The a-domain was overlaid with a grid d&0x 50
equally-spaced points. The 16 points along the doma
and 414 points internal to the domain were considler
(for a total of 430 pdfs). For each grid po{ia,, as) the
procedure illustrated in Subsection 4.1 was applied
particular, for fixed gbj,bimpv1|a) the hybrid FE/SEA
method was applied to estimate the mean and variahc
the response. These were used, under the assurnpaon
lognormal distriution of the yjbrational energy jafite
1, to evaluatepz]vq(bj,b. |aj. P |b..b, |a3/ was

imp, j jr~imp,
then calculated by usinf Eq. (15). The minimum f{s)n
a

of -In LPf (6? by ) p(f)?z) p(bi?np'j|a)l

B, | ~was
calculated by using the "Matlab function Tminunc.eTh
Hessian matrix was approximated by using third orde

Lagrange polynomials. Finally, the failure probéil



conditional on the basic variables was computeddiyg
Eq. (20).

1.6 1.8 2 22 24 2.6 2.8
a, x10°

Figure 5: Approximate a-domain.

x10”

p(kyla,.a3)

0 1 2 3 4 5 6 7
k, (N/m) x 106

Figure 6: Pdfs generated from the a-domain.

The results obtained for each grid point are shamvn
Figure 7.

0.04

0.035
Playa,)

0.03

0.025
2 \ . 5
. min
) e
a, 4 \_v,_____ 5 25 3
615 a, x10°

Figure 7: Failure probability as a function of thesic
variables. The lower and upper bounds of the failur
probability are labeled as “min” and “max”.

The bounds on the failure probability are (by uskgy

(21)): 0.02192< P, < 0.0424 (respectively, at point 1
and 9 of the a-domain), meaning that the uncestamt
the input parameters significantly affects the uial

probability estimates. The computational time reegi
by the proposed approach was of about 3 minutes.

The failure probability obtained for the MAXENT
distribution (corresponding to the point 10 of the
domain in Figure 7) is 0.03976. The MAXENT
distribution would therefore underestimate the mmaxn
failure probability.

The results obtained with the proposed approacte wer
validated against direct numerical integration qgf E.9),
which took about 6 hours, showing differences lass
1%. Full FE Monte Carlo simulations for the present
system considering a single point (and therefosegle
pdf) of the a-domain requires about 45 hours. [l
Monte Carlo simulations are therefore unfeasiblenev
for this example system. It can be concluded that t
proposed approach provides a very efficient tooltfe
reliability analysis of system with uncertain protpes.

6 Summary and Conclusions

An imprecise probability model based on expressimgy
pdf of a random variable in the form of a maximum
entropy distribution with bounded parameters wasdus
to describe the parametric uncertainty of the FE
components of a hybrid FE/SEA model. The hybrid
FE/SEA + Laplace method, which fully accounts for
both parametric (FE components) and non-parametric
(SEA components) uncertainties, was applied tdéista
bounds on the failure probability. These bounds gin
indication of the sensitivity of the system reliili to

the uncertain input parameters and allow estabilisttie

highest failure probability expected.

This approach provides a very useful tool for estihg

the reliability of complex engineering systems givkat:

- The partition of the system in SEA and FE
components leads to a large reduction of the number
of degrees of freedom employed in the model
(potentially thousand of finite elements nodes are
substituted with a single degree of freedom SEA
subsytem) and a large gain in numerical efficiency.

-  The SEA subsystem ensemble is dealt with
analytically (without using MCS) leading to a
further reduction in computational costs.

- The uncertainty in FE components is dealt with
using the Laplace asymptotic method instead of
MCS.

- The bounds on the failure probability can be
efficiently established when the imprecise
probability model is employed.

The method has been illustrated by applicationitt-b

up plate systems, showing a large reduction of the

computational cost when compared to a direct irattgn

procedure and to Full FE Monte Carlo simulations.
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