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Abstract

We propose a new methodology to classify temporal
data with imprecise hidden Markov models. For each
sequence we learn a different model by coupling the
EM algorithm with the imprecise Dirichlet model. As
a model descriptor, we consider the expected value
of the observable variable in the limit of stationar-
ity of the Markov chain. In the imprecise case, only
the bounds of this descriptor can be evaluated. In
practice the sequence, which can be regarded as a
trajectory in the feature space, is summarized by a
hyperbox in the same space. We classify these static
but interval-valued data by a credal generalization of
the k-nearest neighbors algorithm. Experiments on
benchmark datasets for computer vision show that
the method achieves the required robustness whilst
outperforming other precise and imprecise methods.

Keywords. Time-series classification, credal sets,
Markov chains, credal classification.

1 Introduction

The theory of imprecise probability (IP, [17]) extends
Bayesian theory of subjective probability to cope with
sets of distributions, this providing more general and
robust models of uncertainty. These ideas have been
applied to classification and a number of IP-based, so-
called credal, classifiers for static data have been pro-
posed (e.g., [19]). A key feature of these approaches is
the ability of discriminating between hard-to-classify
instances (e.g., for Bayesian-like approaches, those
prior-dependent) for which multiple class labels are
returned in output, and the others “easy” instances
to which single labels are assigned. On the other side,
dynamical models such as Markov chains and hidden
Markov models (HMMs) have been also extended to
IP in order to model the non-stationarity of a process
(see e.g., [5, 6]). It seems therefore natural to merge
these two lines of research and develop a credal clas-
sifier for temporal data based on imprecise HMMs,

thus generalizing methods already developed for pre-
cise HMMs (e.g., [13]).

This is achieved as follows. First, from each sequence,
we learn an imprecise HMM by means of a technique,
already tested in [3] and [16], which combines the EM
algorithm, commonly used to learn precise HMMs,
with the imprecise Dirichlet model (IDM, [18]), a
popular approach to learn IPs from (complete) data.
After this step, each sequence is associated with an
imprecise HMM. As a descriptor of this model (and
hence of the sequence), we evaluate the lower and up-
per bounds of the expected values of the features in
the limit of stationarity. This is based on a charac-
terization of the limit behaviour of imprecise Markov
chains provided in [6]. As a result, the sequence is
associated with a hyperbox in the feature space. This
represents a static, but interval-valued, datum which
can be processed by a classifier. To achieve that, a
generalization of the k-nearest neighbors algorithm to
support interval data is proposed. Overall this cor-
responds to a credal classifier (i.e., a classifier which
might return more than a single class) for temporal
data. Its performances are tested on some of the most
important computer vision benchmarks. The results
are promising: the methods we propose achieve the
required robustness in the evaluation of the class la-
bels to be assigned to a sequence and outperform the
competing imprecise method proposed in [3] with re-
spect to state-of-the-art metrics [20] for performance
evaluation. The performance is also good when com-
paring the algorithm with the dynamic time warp-
ing, a state-of-the-art approach to the classification
of temporal sequences, whose performance degrades
when coping with multidimensional data [14].

2 Temporal data

Let us introduce the key features of our approach and
the necessary formalism for the precise case. Variables
O1, O2, . . . , OT denote the observations of a particular



phenomenon at T different (discrete) times. These
are assumed to be observable, i.e., their actual (real)
values are available and denoted by o1, o2, . . . , oT .

If the observations are all sampled from the same dis-
tribution, say P (O), the empirical mean converges to
its theoretical value (strong law of large numbers):

lim
T→+∞

∑T
i=1 oi
T

=

∫ +∞

−∞
o · P (o) · do. (1)

Under the stationarity assumption, the empirical
mean is therefore a sensible descriptor of the sequence.
More generally, observations at different times can be
sampled from different distributions (i.e., the process
can be non-stationary). Such a situation can be mod-
eled by pairing Ot with an auxiliary discrete vari-
able Xt, for each t = 1, . . . , T . Variables {Xt}Tt=1

are in correspondence with the generating distribu-
tions: they all take values from the same set, say X ,
whose M elements are in one-to-one correspondence
with the different distributions. In other words, for
each t = 1, . . . , T , Ot is sampled from P (Ot|Xt = xt),
and P (O|xt′) = P (O|xt′′) if and only if xt′ = xt′′ .

Variables {Xt}Tt=1 are, generally speaking, hidden
(i.e., their values are not directly observable). The
modeling of the generative process requires there-
fore the assessment of the joint mass function
P (X1, . . . , XT ). This becomes particularly simple
under the Markovian assumption: given Xt−1, all
previous values of X are irrelevant to Xt, i.e.,
P (Xt|xt−1, xt−2, . . . , x1) = P (Xt|xt−1). Together
with chain rule, this implies the factorization:1

P (x1, . . . , xT ) := P (x1) ·
T∏
t=2

P (xt|xt−1), (2)

for each (x1, . . . , xT ) ∈ X T . If the transition
probabilities among the hidden variables are time-
homogeneous, the specification of the joint model re-
duces to the assessment of P (X1) and P (Xt|Xt−1),
i.e., M2 + M parameters. A model of this kind is
called a Markov chain and, in the time-homogeneous
case, it is known to assume a stationary behaviour on
long sequences, i.e., the following limit exists:

P̃ (x) := lim
T→∞

P (XT = x), (3)

where the probability on the right-hand side is ob-
tained by marginalizing out all the variables in the
joint in Eq. (2) apart from XT . The marginal proba-
bility mass function P̃ over X is called the stationary
mass function of the chain and it can be computed
by standard algorithms.

1We use P for both probability mass functions and densities.

In this limit, also the generation of the observations
becomes stationary, i.e.,

P̃ (O) =
∑
x∈X

P (O|x) · P̃ (x). (4)

Again, as in Eq. (1), the empirical mean converges to
the theoretical value, which is now:

lim
T→+∞

∑T
i=1 oi
T

=
∑
x∈X

P̃ (x) ·
∫ +∞

−∞
o ·P (o|x) ·do. (5)

The two key points of this paper are the following:
(i) emphasize the fact that, although coincident in
the limit of infinite sequences, the weighted average
of the means on the right-hand side of Eq. (5) pro-
vides a better descriptor than the empirical mean on
the left-hand side; (ii) extend Eq. (5) to the imprecise-
probabilistic framework and then use the new descrip-
tor for robust classification of temporal data.

Concerning (i), the important remark is that the
arithmetic mean does not take into account the tem-
poral correlation of the data, while the learning of
the transition probabilities P (Xt|Xt−1) and hence the
corresponding value of the stationary mass function
takes that into account. An empirical validation of
this point is reported in Section 5. A discussion of
point (ii) is in the next two sections.

3 Imprecise hidden Markov models

By merging the Markov chain defined in the previous
section together with the time-homogeneous emission
terms P (Ot|Xt), we define a probabilistic model over
the whole set of variables X1, O1, . . . , XT , OT which is
called a hidden Markov model (HMM). An imprecise
HMM is obtained by simply replacing with credal sets,
i.e., convex sets of probability mass functions over
the same variables, the precise local models P (X1),
{P (Xt+1|xt)}xt∈X and {P (Ot|xt)}xt∈X . While a pre-
cise HMM defines a single distribution over its whole
set of variables, an imprecise HMM defines a joint
credal set, which is the convex closure of the whole set
of joint distributions obtained when each local model
takes its values in the corresponding credal set. In the
following we explain, respectively: (i) how to learn an
imprecise HMM from a sequence; (ii) how to extend
Eq. (5) to the case of imprecise HMMs; (iii) how to
perform classification with these models.

3.1 Learning

The hidden variables X1, . . . , XT of a HMM, no mat-
ter whether precise or imprecise, are by definition di-
rectly unobservable. Algorithms to learn model pa-
rameters from incomplete data in HMMs are therefore



needed. A typical choice in the precise case is the EM
algorithm, which finds a local optimum of the likeli-
hood by an iterative procedure. Extending EM to IP
is not trivial: credal sets can be described by a vari-
able number of parameters (e.g., its extreme points),
which cannot be easily tracked during the iteration.2

Despite the lack of a sound version of EM for IP, a
simple heuristic approach based on the IDM has been
shown to provide reasonable estimates [3]. In practice
the counts required by the IDM to learn IPs, which
are not available for incomplete data, are just replaced
by the expectations provided by the standard EM. For
the first variable in the chain, this corresponds to the
following constraints:

E[n(x1)]∑
x1
E[n(x1)] + s

≤ P (x1) ≤ E[n(x1)] + s∑
x1
E[n(x1)] + s

,

(6)
for each x1 ∈ X , where E[n(x1)] is the EM expec-
tation, after convergence, for X1 = x1, the sum is
over all the elements of X and s is a nonnegative
real parameter which describes the level of cautious-
ness in the learning process. Intervals in Eq. (6) are
used to compute the credal set K(X1) made of the
probability mass functions consistent with these (lin-
ear) constraints. We similarly proceed for the tran-
sition credal sets {K(Xt|xt−1)}xt−1∈X . Considering
the freedom in the choice of the number of hidden
states M , it is worth noticing that the above IDM-
based probability intervals are invariant with respect
to that number.

Regarding the emission part of the model (i.e., the re-
lation between hidden and observable variables), note
that the discussion was introduced in the case of a
scalar observable O just for sake of simplicity. In
real-world problems, we often need to cope with se-
quences of arrays of F > 1 features, say o1, . . . ,oT ,
with ot ∈ RF for each t = 1, . . . , T . To define a
joint model over the features we assume their condi-
tional independence given the corresponding hidden
variable. A Gaussian distribution is indeed used, for
each feature, to model the relation between hidden
and observable variables:

P (ot|xt) · dot =

F∏
f=1

N µf (xt)

σf (xt)
(oft ) · doft , (7)

where oft is the f -th component of the array ot, N µ
σ is

a Gaussian density with mean µ and standard devia-
tion σ, and µf (xt) and σf (xt) are the EM estimates
for the mean and standard deviation of the Gaussian

2An exception is the EM for belief functions proposed in [7].
Yet, belief functions correspond to a special class of credal sets
parametrized by a fixed number of elements.

over Oft given that Xt = xt.
3

Regarding the choice of the number of hidden states
M := |X |, with Gaussian emission terms the clus-
tering method in [12] provides an optimal criterion
to assess this value. The cluster information (means
and standard deviations) also defines a possible ini-
tialization of for the emission terms in the EM, while
uniform choices are adopted for the transition and the
prior. Overall, after this learning step, the sequence of
observations in the F -dimensional space is associated
with a time-homogeneous imprecise HMM, with im-
precise specification of the transition and prior prob-
abilities and precise specification of the (Gaussian)
emission terms.

3.2 An interval-valued descriptor for
imprecise HMMs

In this section we show how the descriptor proposed
in Eq. (5) for precise HMMs can be generalized to the
case of the imprecise HMM we learn from a sequence
of feature vectors. In the imprecise case the station-
ary mass function of a Markov chain is replaced by
a stationary credal set, say K̃(X). Its computation,
which is briefly summarized in Appendix A, can be
obtained by Choquet integration [6]. Thus, in this
generalized setup, distribution P̃ (X) in Eq. (5) is only
required to belong to K̃(X). Note that K̃ is a finitely
generated credal set which can be equivalently charac-
terized by (a finite number of) linear constraints. Re-
garding the emission terms, nothing changes as they
are assumed to be precise. Thus, for each feature of ,
with f = 1, . . . , F , we evaluate the bounds of the ex-
pectation as

of := min
P̃ (X)∈K̃(X)

∑
x∈X

P̃ (x) · µf (x), (8)

of := max
P̃ (X)∈K̃(X)

∑
x∈X

P̃ (x) · µf (x). (9)

Both of and of are solutions of linear programs with
|X | optimization variables and an equal number of
linear constraints (see Appendix A). The interval
[of , of ] represents therefore the range of the descriptor
in Eq. (5) in the case of imprecise HMMs.

The lower and upper vectors o,o ∈ RF are indeed ob-
tained by applying the optimization is Eqs. (8) and (9)
to each feature. They define a hyperbox in the feature
space, which can be regarded as the range of the F -
dimensional version of the descriptor in Eq. (5) when

3The choice of using a single Gaussian, separately for each
feature, is just for the sake of simplicity. An extension of the
methods proposed in this paper to a single multivariate Gaus-
sian with non-diagonal covariance matrix would be straightfor-
ward, even with mixtures.



IPs are introduced in the model. Overall, a static
interval-valued summary of the information contained
in the temporal sequence has been obtained: the se-
quence, which is a trajectory in the feature space is
described by a hyperbox in the same space (Fig. 1). In
the next section, a standard approach to the classifi-
cation of static data is extended to the case of interval
data like the ones produced by this method.

Figure 1: From trajectories to hyperboxes in the fea-
ture space. The example refers to footage data from
which two features are extracted at the frame level.

4 K-nearest neighbors for interval
data

4.1 Distances between hyperboxes

Consider the F -dimensional real space RF . Let us
make it a metric space by considering, for instance,
the Manhattan distance which, given x,y ∈ RF , de-
fines their distance δ as

δ(x,y) :=

F∑
f=1

|xf − yf |. (10)

Given two points x,x ∈ RF such that, for each f =
1, . . . , F , xf ≤ xf , the hyperbox associated with these
two points is denoted by [x,x] and defined as

[x,x] :=
{
x ∈ RF

∣∣xf ≤ xf ≤ xf } . (11)

The problem of extending a distance defined over
points to hyperboxes can be solved by considering the
general ideas proposed in [1].

Given two hyperboxes, their distance can be charac-
terized by means of a real interval whose bounds are,
respectively, the minimum and the maximum distance
(according to the distance defined for points) between
every possible pair of elements in the two hyperboxes.
Accordingly, the lower distance between two boxes is:

δ([x,x], [y,y]) := min
x∈[x,x],y∈[y,y]

δ(x,y), (12)

and similarly, with the maximum instead of the min-
imum for the upper distance δ([x,x], [y,y]). With
the Manhattan distance in Eq. (10), the evaluation of

the lower (and similarly for the upper) distance as in
Eq. (12) takes a particularly simple form:

δ([x,x], [y,y]) =

F∑
f=1

min
xf≤xf≤xf ,

y
f
≤yf≤yf

|xf − yf |. (13)

The optimization in the F -dimensional space is in fact
reduced to F , independent, optimizations on the one-
dimensional real space. Each task can be reduced to
linear program whose optimum is in a combination of
the extremes, unless intervals overlap. In other words:

min
xf≤xf≤xf

y
f
≤yf≤yf

|xf − yf | = min

{ |xf − yf |, |xf − yf |,
|xf − yf |, |xf − yf |

}
,

(14)
unless xf ≥ y

f
or yf ≥ xf , a case where the lower

distance is clearly zero. A dual relation holds for the
upper distance case with no special discussion in case
of overlapping.

Replacing the Manhattan with the Euclidean distance
makes little difference if we consider only the sum of
the squared differences of the coordinates without the
square root.4 In this case the lower distance is the
sum, for f = 1, . . . , F of the following terms:

min
xf≤xf≤xf ,

y
f
≤yf≤yf

(xf − yf )2. (15)

This is the minimum of a convex function, which is
attained on the border of its (rectangular) domain. It
is straightforward to check that the minimum should
lie on one of the four extreme points of the domain.
Thus, the minimum in Eq. (15) is the minimum of
the squares of the four quantities in Eq. (14). Again,
the only exception is when the two intervals overlap
(the global minimum is in xf = yf ), and the lower
distance becomes zero. Similar considerations hold
for the upper distance.

4.2 Hyperboxes classification

The above defined interval-valued distance for hyper-
boxes is the key to extend the k-nearest neighbors
(k-NN) algorithm to the case of interval-valued data.
First, let us review the algorithm for pointwise data.

Let C denote a class variable taking its values in a
finite set C. Given a collection of supervised data
{cd,xd}Dd=1 classification is intended as the problem
of assigning a class label c̃ ∈ C to a new instance x̃ on
the basis of the data. The k-NN algorithm for k = 1

4The square root is a monotone function, which has no effect
on the ranking-based classification method we define here.



assigns to x̃ the label associated with the instance
nearest to x̃, i.e., the solution is c̃ := cd

∗
with

d∗ = argmind=1,...,D δ(x,x
d). (16)

For k > 1, the k nearest instances need to be consid-
ered instead: a voting procedure among the relative
classes decides the label of the test instance.

To extend this approach to interval data just replace
the sharp distance among points used in Eq. (16) with
the interval-valued distance for hyperboxes proposed
in Section 4.1. Yet, to compare intervals instead of
points a decision criterion is required.

To see that, consider for instance three hyperboxes
and the two intervals describing the distance between
the first hyperbox and, respectively, the second and
the third. If the two intervals do not overlap, we can
trivially identify which is the hyperbox nearer to the
first one. Yet, in case of overlapping, this decision
might be controversial. The most cautious approach
is interval dominance, which simply suspends any de-
cision in this case.

When applied to classification, interval dominance
produces therefore a credal classifier, which might re-
turn more than a class in output. If the set of optimal
classes according to this criterion is defined as C∗, we
have that c ∈ C∗ if and only if there exists a datum
(ci,xi) such that c = ci and

δ([xi,xi], [x,x]) < δ([xd,xd], [x,x]) (17)

for each d = 1, . . . , D such that cd 6= ci. Classes
in the above defined set are said to be undominated
because they correspond to instances in the dataset
whose interval-valued distance from the test instance
is not clearly bigger that the interval distance associ-
ated to any other instance. A demonstrative example
is in Fig. 2. Note also that the case k > 1 simply
requires the iteration of the evaluation in Eq. (17).

Figure 2: Rectangular data processed by the 1-NN
classifier. Gray background denotes data whose in-
terval distance from the test instance is undominated.
Points inside the rectangles describe consistent precise
data and the diamond is the nearest instance.

4.3 Summary and related work

By merging the discussions in Sections 3 and 4 we
have a classifier, to be called iHMM-kNN, for tem-
poral data based on imprecise HMMs. In summary,
for each sequence we: (i) learn an imprecise HMM
(Section 3.1); (ii) compute its stationary credal set
(Appendix A); (iii) solve the LP tasks required to
compute the hyperbox associated with the sequence
(Section 3.2). These supervised hyperboxes are finally
used to learn a credal classifier (Section 4).

Another credal classifier for temporal data based on
imprecise HMMs, called here iHMM-Lik, has been
proposed in [3]. Each imprecise HMM learned from a
supervised sequence is used to “explain” the test in-
stance, i.e., the lower and upper bounds of the prob-
ability of the sequence are evaluated. These (proba-
bility) intervals are compared and the optimal classes
according to interval dominance returned.

Regarding traditional (i.e., not based on IP) clas-
sifiers, dynamic time warping (DTW) is a popular
state-of-the-art approach. Yet, its performance de-
grades in the multi-feature (i.e., F > 1) case [14].
Both these methods will be compared with our clas-
sifier in the next section.

Other approaches to the specific problem of classify-
ing interval data have been also proposed. E.g., re-
maining in the field of IP, the approach proposed in
[15] can be used to define a SVM for interval data.
Yet, time complexity increases exponentially with the
number of features, thus preventing an application of
the method to data with high feature dimensionality.
This is not the case for iHMM-kNN, whose complexity
is analyzed below.

4.4 Complexity analysis

Our approach to the learning of imprecise HMMs has
the same time complexity of the precise case, namely
O(M2TF ). The computation of the stationary credal
set is O(T ), while to evaluate the hyperboxes a LP
task should be solved for each feature, i.e., roughly,
O(M3F ). Also the distance between two hyperboxes
can be computed efficiently: the number of operations
required is roughly four times the number of opera-
tions required to compute the distance between two
points, both for Manhattan and Euclidean metrics.
To classify a single instance as in Eq. (17), lower
and upper distances should be evaluated for all the
sequences, i.e., O(DF ). Overall, the complexity is
linear in the number of features and in the length of
the sequence and polynomial in the number of hidden
states. Similar results can be found also for space.



4.5 Metrics for credal classifiers

Credal classifiers might return multiple classes in out-
put. Evaluating their performance requires there-
fore specific metrics, which are reviewed here. First,
a characterization of the level of indeterminacy is
achieved by: the determinacy (det), i.e., percentage
of instances classified with a single label; the aver-
age output size (out), i.e., average number of classes
on instances for which multiple labels are returned.
For accuracy we distinguish between: single-accuracy
(sing-acc), i.e., accuracy over instances classified as a
single label; set-accuracy (set-acc), i.e., the accuracy
over the instances classified with multiple labels5.

A utility-based measure has been recently proposed
in [20] to compare credal and precise classifiers with a
single indicator. In our view, this is the most princi-
pled approach to compare the 0-1 loss of a traditional
classifier with a utility score defined for credal classi-
fiers. The starting point is the discounted accuracy,
which rewards a prediction containing q classes with
1/q if it contains the true class, and with 0 other-
wise. This indicator can be already compared to the
accuracy achieved by a determinate classifier.

Yet, risk aversion demands higher utilities for
indeterminate-but-correct outputs when compared
with wrong-but-determinate ones (see [20] for details).
Discounted accuracy is therefore modified by a (mono-
tone) transformation uw with w ∈ [.65, .80]. A con-
servative approach consists in evaluating the whole
interval [u.65, u.80] for each credal classifier and com-
pare it with the (single-valued) accuracy of traditional
classifiers. Interval dominance can be used indeed to
rank performances.

The precise counterpart of a credal classifier is a clas-
sifier always returning a single class included in the
output of the credal classifier. E.g., a counterpart of
iHMM-kNN is obtained by setting s = 0 in the IDM.
If a precise counterpart is defined, it is also possible to
evaluate: the precise single accuracy (p-sing-acc), i.e.,
the accuracy of the precise classifier when the credal
returns a single label; the precise set-accuracy (p-set-
acc), i.e., the accuracy of the precise classifier when
the credal returns multiple labels.

5 Experiments

5.1 Benchmark datasets

To validate the performance of the iHMM-kNN al-
gorithm we use two of the most important computer
vision benchmarks: the Weizmann [8] and KTH [11]

5In this case, classification is considered correct if the set of
labels includes the true class.

datasets for action recognition. For this problem, the
class is the action depicted in the sequence (Fig. 3).

Figure 3: Frames extracted from the KTH dataset.

These data are footage material which requires a fea-
tures extraction procedure at the frame level. Our
approach is based on histograms of oriented optical
flows [4], a simple technique which describes the flows
distribution in the whole frame as an histogram with
32 bins representing directions (Fig. 4).

For a through validation also the AUSLAN dataset
[9] based on gestures in the Australian sign language
and the JAPVOW dataset [10] with speech about
Japanese vowels are considered. Table 1 reports rele-
vant information about these benchmark datasets.

Dataset |C| F D T
KTH1 6 32 150 51
KTH2 6 32 150 51
KTH3 6 32 149 51
KTH4 6 32 150 51
KTH 6 32 599 51

Weizmann 9 32 72 105-378
AUSLAN 95 22 1865/600 45-136
JAPVOW 9 12 370/270 7-29

Table 1: Datasets used for benchmarking. The
columns denotes, respectively, name, number of
classes, number of features, size (test/training
datasets sizes if no cross validation has been done)
and the number of frames of each sequence (or their
range if this number is not fixed). As usually done,
the KTH dataset is also split in four subgroups.

To avoid features with small ranges being penalized
by the k-NN with respect to others spanning larger
domains a feature normalization step has been per-
formed. This is a just a linear transformation in the
feature space which makes the empirical mean of the
sample equal to zero and the variance equal to one.



Figure 4: Low-level feature extraction. Rows correspond to different actions (i.e., class labels), columns to
subjects. In each cell, feature values are shown as gray levels, with the different feature variables on the y axis,
and frames on the x axis. Characteristic time-varying patterns are visible for each action.

5.2 Results

Our iHMM-kNN algorithm is empirically tested
against the iHMM-Lik algorithm and the DTW on
the seven datasets described in the previous section.
Five runs of ten-fold cross validation are considered
for KTH and Weizmann. A single run with fixed
test and training set is considered instead for AUS-
LAN and JAPVOW. We implemented in Matlab both
iHMM-kNN and iHMM-Lik.6 Regarding DTW, the
Mathworks implementation for Matlab has been used.

Our classification algorithm has only two parameters
to be specified: the integer value of k in the k-NN
and the real parameter s of the IDM as in Eq. (6).7

We choose k = 1 because higher values could make
the classifier too indeterminate. As reported in the
second column of Table 2, small values are used also
for s. The remaining columns of that table report the
determinacies and average output size of both our al-
gorithm and iHMM-Lik (with the same value of s).
As a comment, with the selected values of s, either
the determinacy is high or the average output size is
consistently lower than the number of class labels. For
AUSLAN, in particular, despite the very high number
of classes the classifier is mostly determinate and, if
not, much fewer than the original 95 classes are re-
turned. When compared to iHMM-Lik, iHMM-kNN
is less determinate and its average output size smaller.
This can be explained by the high dimensionality of
the feature space.

Tables 3 and 4 report information about accuracy.
Results in Table 3 about single and set accuracy
clearly report a higher performance of iHMM-kNN
when compared to iHMM-Lik.

As noted in Section 4.5, the interval [u.65, u.80] pro-

6Both these tools are available as a free software at
http://ipg.idsia.ch/software.

7Remember that the method described in [12] is used to
fix the number M of states of the hidden variables. In our
experiments this number ranges between 2 and 30.

Dataset s
iHMM-kNN iHMM-Lik
det out det out

KTH1 .5 .311 2.85 .700 2.28
KTH2 .5 .055 3.96 .565 2.13
KTH3 .5 .135 2.91 .820 2.00
KTH4 .5 .040 3.31 .600 2.42
KTH .5 .111 3.51 .601 2.28

Weizmann .5 .053 4.00 .766 2.00
AUSLAN .01 .749 6.77 .935 2.37
JAPVOW .01 .968 2.00 .965 2.15

Table 2: Determinacies and average output sizes for
the benchmark datasets.

Dataset
iHMM-kNN iHMM-Lik

sing-acc set-acc sing-acc set-acc
KTH1 .989 .990 .301 .017
KTH2 .534 .981 .180 .384
KTH3 .901 .972 .070 .083
KTH4 .680 1.000 .269 .524
KTH .883 .986 .299 .448

Weizmann 1.000 1.000 .275 .143
AUSLAN .782 .675 .021 .062
JAPVOW .958 .917 .283 .462

Table 3: Single and set accuracies on the benchmark.



vides a better summary of the credal classifiers perfor-
mance by also allowing for a comparison with a tradi-
tional classifier like DTW. The results are in Table 4.
Also this descriptor shows that iHMM-kNN clearly
outperforms iHMM-Lik. This basically means that
our interval-valued descriptor provides a better sum-
mary of a sequence rather than the interval-valued
likelihood. Impressively, iHMM-kNN also competes
with the DTW, showing both the quality of our ap-
proach and the (known) degradation of the DTW per-
formance in the multiple-features case.

Dataset
iHMM-kNN iHMM-Lik DTW
u.65 u.80 u.65 u.80 acc

KTH1 .659 .752 .211 .212 .613
KTH2 .409 .517 .201 .225 .369
KTH3 .550 .662 .073 .076 .529
KTH4 .474 .597 .281 .310 .480
KTH .495 .604 .283 .309 .525

Weizmann .463 .575 .236 .242 .540
AUSLAN .680 .702 .021 .022 .838
JAPVOW .946 .951 .283 .285 .697

Table 4: Accuracies for the benchmark datasets. Best
performances are boldfaced.

Moreover, we already noted that iHMM-kNN has a
precise counterpart obtained by setting s = 0 in the
IDM constraints as in Eq. (6) and corresponding to
the precise approach described in Section 2. This al-
lows to check whether the classifier discriminates be-
tween “easy” instances (on which a single class is re-
turned) and “difficult” ones. Results in Table 5 show
that the precise single accuracy is larger than the pre-
cise set accuracy. KTH4 is the only exception which
can be explained by its low determinacy.

Dataset p-sing-acc p-set-acc acc
KTH1 .989 .787 .849
KTH2 .534 .447 .451
KTH3 .901 .671 .703
KTH4 .680 .782 .779
KTH .883 .674 .698

Weizmann 1.000 .842 .853
AUSLAN .782 .351 .674
JAPVOW .958 .333 .938

Table 5: Precise single and set accuracy of iHMM-
kNN. The same classifier with s = 0 is used as a
precise counterpart and its accuracy is in the last col-
umn. The values of p-sing-acc in this table coincide
therefore with the sing-acc in Table 3.

As already discussed in Section 3.1, the adopted
IDM-EM approach to the learning is the most crit-

ical part of the whole methodology. An alternative
method, again heuristic and very naive, is therefore
tested: LIN-VAC adopts a credal set corresponding to
a linear-vacuous mixture [17] of the probability mass
functions estimated by the EM.8 The results of a com-
parison with this method for the Weizmann dataset
are in Table 6. To determine the value of ε, we choose
that leading to a determinacy comparable with that
of IDM-EM. The [u.65, u.80] intervals obtained in this
way are overlapping, this suggesting the need of new,
more sophisticated, models for this learning step.

Method IDM-EM LIN-VAC
parameter s = .5 ε = .03

det .053 .054
out 4.00 4.38

[u.65, u.80] [.463, .575] [.400, .504]

Table 6: An alternative to the IDM-EM learning ap-
proach tested on the Weizmann dataset.

Finally, to validate our argument about the descriptor
on the right-hand side of Eq. (5) being better than the
sample mean, we compare the two descriptors in the
precise case over datasets with different time lengths.
When coping with short sequences the difference is
in favor of our method (+2% on JAPVOW, +5%
KTH2) while the gap disappear with longer sequences
(e.g., −.4% on Weizmann). This remark makes our
method especially suited for the classification of short
sequences.

6 Conclusions and outlooks

A new credal classifier for temporal data has been
presented. Imprecise HMMs are learned from each
sequence, and described as hyperbox in the feature
space. These data are finally classified by a general-
ization of the k-NN approach. The results are promis-
ing: the algorithm outperforms another credal clas-
sifier proposed for this task and competes with the
state-of-the-art method DTW. As a future work, we
want to investigate novel, more reliable, learning tech-
niques like for instance the likelihood-based approach
already considered for complete data in [2]. Also more
complex topologies should be considered.

8Given a mass function P0(X), its linear-vacuous mixture
is a credal set K(X) defined by the constraints (1− ε)P0(x) ≤
P (x) ≤ (1−ε)P0(x)+ε. This corresponds to the vacuous credal
set for ε = 1 and to the original mass function for ε = 0.



A Computation of the stationary
credal set

Given an imprecise Markov chain as in Section 2, for
each X ′ ⊆ X , define QX ′ : X → R, such that, ∀x ∈ X :

QX ′(x) := min

∑
x∈X ′

P (x′|x), 1−
∑

x∈X\X ′
P (x′|x)

 .

(18)
Given this function, ∀g : X → R, define Rg : X → R,
such that:

Rg(x) := g +

∫ g

g

Q{x′∈X :g(x′)≥t}(x)dt, (19)

for each x ∈ X , with g := minx∈X g(x) and g :=
maxx∈X g(x). Proceed similarly for the unconditional
probability of the first hidden variable. In this way the
following numbers (instead of functions) are defined:

Q
0

X ′ := min

{∑
x∈X ′

P (x′), 1−
∑
x∈X ′

P (x′)

}
. (20)

R
0

g := g +

∫ g

g

Q
0

{x′∈X :g(x′)≥t}dt. (21)

A “lower” version of these functions and numbers can
be obtained by simply replacing the lower probabili-
ties with the uppers, maxima with the minima, and
vice versa. For each i = 1, . . . , n let hi : X → R. To
characterize the stationary credal set K̃(X), consider

P
∗
(x′) := maxP (X)∈K̃(X) P (x′). Given the recursion:

hj+1(x) := Rhj
(x), (22)

with initialization h1 := Ix′
9, we obtain:

P
∗
(x′) := lim

n→∞
R

0

hn
, (23)

and similarly for the upper.
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