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Preface

The Eighth International Symposium on Imprecise Probability: Theories and Applications is held in Compiègne,
France, 2–5 July 2013.

The ISIPTA meetings are a primary forum for presenting and discussing advances in imprecise probability
and are organized once every two years. The first meeting was held in Gent in 1999, followed by meetings
in Ithaca (Cornell University), Lugano (IDSIA), Pittsburgh (Carnegie Mellon University), Prague, Durham
(UK) and Innsbruck. In the decade since the first meeting, imprecise probability has come a long way, which
is reflected by the wide range of topics presented at the 2013 meeting, but particularly also in the increased
presence of imprecise probability in journals and at other conferences.

As with previous ISIPTA meetings, the program only contains plenary sessions. In total, 38 papers are
presented by a short talk and a poster, which guarantees ample time for discussion. The papers are included
in these proceedings and are also available on the SIPTA webpage (www.sipta.org). Submitted papers have
undergone a high quality reviewing process by members of the Program Committee, ensuring the quality of the
presented research results.

To provide a platform for preliminary ideas and challenging applications for which the research is not
yet completed, poster-only presentations have been introduced at ISIPTA’09 and the initiative pursued in
ISIPTA’11. We continue with this tradition; short abstracts of these poster-only presentations are included in
the proceedings and are available on the SIPTA webpage.

As with previous ISIPTA meetings, a wide variety of theories and applications of imprecise probability are
presented. New application areas and novel ways for dealing with limited information prove the increasing
success of imprecise probability.

Most participants having a good knowledge of the basics of imprecise probabilities, the two introductory
tutorials introducing have been scheduled the day before the start of the conference. We thank Thierry Denœux
and Matthias Troffaes for preparing and presenting tutorials on Belief functions and imprecise probabilities,
respectively.

Invited talks are intended to present both recent developments in selected fields and topics that are related
but not directly linked to the main topics of ISIPTA. We thank Alessio Benavoli (Switzerland) for preparing
and presenting the talk Pushing Dynamic Estimation to the Extremes: from the Moon to Imprecise Probability,
Linda van der Gaag (Netherlands) for preparing and presenting the talk Recent Advances in Sensitivity Analysis
of Bayesian Networks, Christophe Labreuche (France) for preparing and presenting the talk Robustness in
Multi-Criteria Decision Making and its relation with Imprecise Probabilities and Jean-Marc Tallon (France) for
preparing and presenting the talk Ambiguity and ambiguity attitudes in economics.

During the conference two prizes are awarded: the Best Poster Award, sponsored by Springer-Verlag, and
the IJAR Young Researcher Award, granted by the International Journal of Approximate Reasoning.

We believe that, in the fourteen years since ISIPTA’99, imprecise probability has found a solid place in
research on uncertainty quantification and related fields. Because applications are increasing, both in number
and success, we are optimistic about the future impact of imprecise probability. We think that the current
format of ISIPTA is successful, and we hope that all participants will find the meeting pleasant, informative,
and beneficial. We hope that ISIPTA’13 provides a good platform to present and discuss work, and also leads
to new ideas and collaborations.

Finally, we wish to thank several people for their support. We thank Thomas Fetz and Matthias Troffaes
for their precious advices, inherited from the organization of past ISIPTAs. We thank Seraf́ın Moral for his
extensive and expert help in managing the system supporting the conference website.

We thank the members of the Program Committee for their excellent reviewing activities. Special thanks
also to the Local Organizing Committee, in particular, to Nathalie Alexandre and Cécile Poncin for their help.

vii
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We thank all our sponsors for their support and help in organizing this conference.
Finally, we thank all who have contributed to the success of ISIPTA’13, be it by submitting their research

results, presenting them at the conference, or by attending sessions and participating in discussions. We hope
that these proceedings will convey the state of the art of imprecise probability, raise interest and contribute to
the further dissemination of the fascinating ideas of this active and highly relevant research field.

Fabio Cozman
Thierry Denœux

Sébastien Destercke
Teddy Seidenfeld

Compiègne, France
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Sébastien Destercke, France
Thomas Fetz, Austria
Seraf́ın Moral, Spain
Teddy Seidenfeld, USA
Matthias Troffaes, UK

Program Committee Board

Fabio Cozman, Brazil
Thierry Denœux, France
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Abstract
The inclusion-exclusion principle is a well-known prop-
erty of set cardinality and probability measures, that is
instrumental to solve some problems such as the evalua-
tion of systems reliability or of uncertainty over Boolean
formulas. However, when using sets and probabilities con-
jointly, this principle no longer holds in general. It is there-
fore useful to know in which cases it is still valid. This
paper investigates this question when uncertainty is mod-
elled by belief functions. After exhibiting necessary and
sufficient conditions for the principle to hold, we illustrate
its use on some applications, i.e. reliability analysis and
uncertainty over Boolean formulas. 1

1 Introduction

Probability theory is the most well-known approach to
model uncertainty. However, even when the existence of
a single probability is assumed, it often happens that the
distribution is partially known, in which case one is forced
to use a selection principle (e.g., maximum entropy [13])
to work within probability theory. This is particularly the
case in the presence of severe uncertainty (few samples,
imprecise or unreliable data, . . . ) or when subjective be-
liefs are elicited. Many authors claim that in situations in-
volving imprecision or incompleteness, uncertainty can-
not be modelled faithfully by a single probability, and they
have proposed frameworks to properly model such uncer-
tainty: possibility theory [11], belief functions [16], impre-
cise probabilities [17], info-gap theory [3], . . .

A known practical drawback of belief functions and of
other imprecise probabilistic theories is that their manipu-
lation can be computationally more demanding than prob-
abilities. Indeed, the fact that belief functions are more
general than classical probabilities prevents the use of

11 HEUDIASYC, UMR 7253. Université de Technologie de Compiègne.
Centre de Recherches de Royallieu. 60205 COMPIEGNE, France
2 Institut supérieur de l’aéronautique et de l’espace (ISAE) 10, avenue E.
Belin - Toulouse
3 Institut de Recherche en Informatique de Toulouse (IRIT), ADRIA

some properties that hold for the latter but not for the
former. This is the case, for instance, of the well known
and useful inclusion-exclusion principle (also known as
the sieve formula or Sylvester-Poincaré equality).

Given a space X , a probability measure P over this space
and a collection AN = {A1, . . . ,AN |Ai ⊆X } of measur-
able subsets of X , the inclusion-exclusion principle states
that

P(∪n
i=1Ai) = ∑

I⊆An

(−1)|I |+1P(∩A∈I A) (1)

where |I | is the cardinality of I . This equality allows
to easily compute the probability of ∪n

i=1Ai. This princi-
ple is used in numerous problems, including the evaluation
of the reliability of complex systems when using minimal
paths.

In this paper, we investigate in Section 2 necessary and
sufficient conditions under which a similar equality holds
for belief functions. Section 3 then studies how the re-
sults apply to the practically interesting case where events
Ai and focal sets are Cartesian products. Section 4 then
shows that such conditions are met for specific events of
monotone functions, and applies this result to the reliabil-
ity analysis of multi-state systems. Finally, Section 5 com-
putes the belief and plausibility of Boolean formulas ex-
pressed in normal forms.

2 General Additivity Conditions for Belief
Functions

After introducing notations, Section 2.2 provides general
conditions for families of subsets for which the inclusion-
exclusion principle holds for belief functions. We then in-
terest ourselves to the specific case where focal sets of be-
lief functions are Cartesian products of subsets.

2.1 Setting

A mass distribution [16] defined on a (finite) space X is a
mapping m : 2X → [0,1] from the power set of X to the

3



unit interval such that m( /0) = 0 and ∑E⊆X m(E) = 1. A
set E that receives a strictly positive mass is called focal
set, and the set of focal sets of m is denoted by Fm. From
the mapping m are usually defined two set-functions, the
plausibility and the belief functions, respectively defined
for any A⊆X as

Pl(A) = ∑
E∩A6= /0

m(E), (2)

Bel(A) = ∑
E⊆A

m(E) = 1−Pl(Ac). (3)

They are such that Bel(A)≤ Pl(A). The plausibility func-
tion measures how much event A is possible, while the
belief function measures how much event A is certain. In
the theory of evidence [16], belief and plausibility func-
tions are interpreted as confidence degrees not necessarily
related to probabilities. However, the mass distribution m
can also be interpreted as the random set corresponding
to an imprecisely observed random variable [8], in which
case Bel,Pl can be interpreted as probability bounds in-
ducing a convex set P(Bel) such that

P(Bel) = {P|∀A,Bel(A)≤ P(A)≤ Pl(A)}

is the set of all probabilities bounded by Bel and Pl. Note
that, since Bel and Pl are dual (Bel(A) = 1−Pl(Ac)), we
can concentrate on one of them. A distribution m can be
seen as a probability distribution over sets, and in this
sense it captures both probabilistic and set-based mod-
elling: any probability p can be modelled by a mass m
such that m({x}) = p(x) and any set E can be modelled
by the mass m(E) = 1.

Consider now a collection of events An =
{A1, . . . ,An|Ai ⊆X } of subsets of X and a mass
distribution m from which can be computed a belief
function Bel. Usually, we have the inequality [16]

Bel(∪n
i=1Ai)≥ ∑

I⊆An

(−1)|I |+1Bel(∩A∈I A) (4)

that is to be compared to Eq. (1). Belief functions are said
to be n-monotonic for any n> 0. Note that we can assume
without loss of generality that for any i, j, Ai 6⊆ A j (other-
wise Ai can be suppressed from Equation 4), that is there
is no inclusion between the sets of An. If Equation 4 be-
comes an equality, we will say that the belief is additive
for collection An, or An-additive for short.

2.2 General necessary and sufficient conditions

In the case of two events A1 and A2, none of which
is included in the other one, the basic condition for the
inclusion-exclusion law to hold is that focal sets included
in A1 ∪A2 should only lie (be included) in A1 or A2. In-
deed, otherwise, if ∃E 6⊆ A1 and E 6⊆ A2 with m(E) > 0,

then

Bel(A1∪A2)≥ m(E)+ Bel(A1)+ Bel(A2)−Bel(A1∩A2)

> Bel(A1)+ Bel(A2)−Bel(A1∩A2).

So, one must check that Fm satisfies:

Fm∩2A1∪A2 = Fm∩
(
2A1 ∪2A2

)

where 2C denote the set of subsets of C. So, one must
check that ∀E ∈Fm such that E ⊆ A1∪A2, either E ⊆ A1
or E ⊆ A2, or equivalently
Lemma 1. A belief function is additive for {A1,A2} if and
only if ∀E ⊆ A1∪A2 such that (A1 \A2)∩E 6= /0 and (A2 \
A1)∩E 6= /0 then m(E) = 0.

Proof. Immediate, as E overlaps A1 and A2 without being
included in one of them if and only if (A1 \A2)∩E 6= /0
and (A2 \A1)∩E 6= /0.

This result can be extended to larger collections of sets
An,n> 2 in quite a straightforward way
Proposition 1. Fm satisfies the property
Fm ∩ 2A1∪...∪An = Fm ∩

(
2A1 ∪ . . .∪2An

)
if and only

if ∀E ⊆ (A1 ∪ . . .∪An), if E ∈Fm then 6 ∃Ai,A j such that
(Ai \A j)∩E 6= /0 and (A j \Ai)∩E 6= /0.

Proof. Fm∩2A1∪...∪An = Fm∩
(
2A1 ∪ . . .∪2An

)

if and only if 6 ∃E ∈Fm∩
(
2A1∪...∪An \

(
2A1 ∪ . . .∪2An

))

if and only if 6 ∃E ⊆ (A1∪ . . .∪An),E ∈Fm such that ∀i =
1, . . . ,n,E 6⊆ Ai
if and only if 6 ∃i 6= j,E ∈ Fm,E 6⊆ Ai,E 6⊆ A j,E ∩Ai 6=
/0,E ∩A j 6= /0
if and only if 6 ∃i 6= j,E ∈Fm, with (Ai \A j)∩E 6= /0 and
(A j \Ai)∩E 6= /0

So, based on Proposition 1, we have:
Theorem 2. The equality

Bel(∪n
i=1Ai) = ∑

I⊆An

(−1)|I |+1Bel(∩A∈I A) (5)

holds if and only if ∀E ⊆ (A1∪ . . .∪An), if m(E)> 0, then
6 ∃Ai,A j such that (Ai \A j)∩E 6= /0 and (A j \Ai)∩E 6= /0.

Theorem 2 shows that going from A2-additivity for 2
given sets to An-additivity is straightforward, as ensuring
An-additivity comes down to checking the additivity con-
ditions for every pair of subsets in A .

Note that by duality one also can write a form of inclusion-
exclusion property for plausibility functions:

Pl(∩n
i=1Bi) = ∑

I⊆Bn

(−1)|I |+1Pl(∪B∈I B) (6)

for a family of sets Bn = {Ai : Ai ∈An}where An satisfies
the condition of Proposition 1.
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3 When focal sets are Cartesian products

In this section, we investigate a practically important sub-
case where focal sets and events Ai, i = 1, . . . ,n are Carte-
sian products. That is, we assume that X = X 1× . . .×
X D := X 1:D is the product space of finite spaces X i,
i = 1, . . . ,D. We will call the spaces X i dimensions. We
will denote by Xi the value of a variable (e.g., the state of a
component, the value of a propositional variable) on X i.

Given A ⊆X , we will denote by Ai the projection of A
on X i. Let us call rectangular a subset A ⊆X that can
be expressed as the Cartesian product A = A1× . . .×AD

of its projections (in general, we only have A⊆ A1× . . .×
AD for any subset A). Note that a rectangular subset A is
completely characterized by its projections.

In the following we study the additivity property for fam-
ilies An containing rectangular sets only, when the focal
sets of mass functions defined on X are also rectangular
(to simplify the proofs, we will also assume that all rectan-
gular sets are focal sets). Note that, in practice, assuming
sets of A to be rectangular is not very restrictive, as in the
finite case, any set A⊆X can be decomposed into a union
of rectangular subsets.

3.1 Two sets, two dimensions

Let us first explore the case n = 2 and D = 2, that is
A2 = {A1,A2} with Ai = A1

i ×A2
i for i = 1,2. The main

idea in this case is that if A1 \A2 and A2 \A1 are rectangu-
lar with disjoint projections, then A2-additivity holds for
belief functions and this is characteristic.

Lemma 2. If A and B are rectangular and have disjoint
projections, then there is no rectangular subset of A∪B
overlapping both A and B

Proof. Consider C = C1×C2 overlapping both A and B.
So there is a1×a2 ∈ A∩C and b1×b2 ∈ B∩C. Since C is
rectangular, a1×b2 and b1×a2 ∈C. However if C⊆ A∪B
then a1× b2 ∈ A∪B and either b2 ∈ A2 or a1 ∈ B1. Since
a1 ∈ A1 and b2 ∈ B2 by assumption, we reach a contradic-
tion since projections are not disjoint.

We can now study characteristic conditions for additivity
for belief functions on two sets:

Theorem 3. Additivity applied to A2 = {A1,A2} holds for
belief functions if and only if one of the following condition
holds

1. A1
1∩A1

2 = A2
1∩A2

2 = /0

2. A1
1 ⊆ A1

2 and A2
2 ⊆ A2

1 (or changing both inclusion di-
rections)

X 1x1
1 x1

2 x1
3

x2
1

x2
2

x2
3

X 1x1
1 x1

2 x1
3

x2
1

x2
2

x2
3

A1 A2

Figure 1: Situations satisfying Theorem 3

X 1x1
1 x1

2 x1
3

x2
1

x2
2

x2
3

X 1x1
1 x1

2 x1
3

x2
1

x2
2

x2
3

A1 A2

Figure 2: Situations not satisfying Theorem 3

Proof. First note that inclusions of Condition 2 can be
considered as strict, as we have assumed A1,A2 to not be
included in each other (otherwise the result is trivial).
⇐ 1.: If A1

1 ∩A1
2 = A2

1 ∩A2
2 = /0, A1 and A2 are disjoint,

as well as their projections. Then by Lemma 2 additivity
holds for belief functions on any two sets.
⇐ 2.: A1

1 ⊂ A1
2 and A2

2 ⊂ A2
1 implies that A1 \A2 = A1

1×
(A2

1 \A2
2) and A2 \A1 = (A1

2 \A1
1)×A2

2. As they are rectan-
gular and have disjoint projections, Lemma 2 applies.
⇒ 1.: Suppose A1∩A2 = /0 with A1

1∩A1
2 6= /0. Then (A1

1∩
A1

2)× (A2
1∪A2

2) is rectangular, not contained in A1 nor A2
but contained in A1∪A2, so additivity does not hold.
⇒ 2.:Suppose A1

1 ⊂ A1
2 but A2

2 6⊂ A2
1. Again, (A1

1 ∩A1
2)×

(A2
1 ∪ A2

2) = A1
1 × (A2

1 ∪ A2
2) is rectangular, neither con-

tained in A1 nor A2 but contained in A1∪A2.

Figure 1 and 2 show various situations where conditions
of Theorem 3 are satisfied and not satisfied, respectively.

3.2 The multidimensional case

We can now proceed to extend Theorem 3 to the case
of any number D of dimensions. However, this extension
will not be as straightforward as going from Lemma 1 to
Proposition 1, and we need first to characterize when the
union of two disjoint singletons is rectangular. We will call
such rectangular unions minimal rectangles. A singleton is
a degenerated example of minimal rectangle.

Lemma 3. Let a = {a1}× . . .×{aD} and b = {b1}× . . .×
{bD} be two distinct singletons in X . Then, a∪b forms a
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minimal rectangle if and only if there is only one i ∈ [1,D]
such that ai 6= bi

Proof. ⇒: If ai 6= bi for only one i, then a∪ b = {a1}×
. . .×{ai,bi}× . . .{aD} is rectangular.

⇐: Consider the case where singletons differ on two com-
ponents, say a1 6= b1 and a2 6= b2, without loss of general-
ity. In this case,

a∪b ={{a1}×{a2}×{a3}× . . .×{aD},
{b1}×{b2}×{a3}× . . .×{aD}}.

The projections of a∪ b on dimensions 1 and 2 of X are
{a1,b1} and {a2,b2} respectively, {ai} for i > 2. Hence,
the Cartesian product of the projections of a∪ b is the set
{a1,b1} × {a2,b2} × {a3} × . . .× {aD}. It contains ele-
ments not in a∪b (e.g. {a1}××{b2}×{a3}× . . .×{aD}).
Since a∪ b is not characterised by its projections on di-
mensions Xi, it is not rectangular, and this finishes the
proof.

As mentioned before, any set can be decomposed into rect-
angular sets, and in particular any rectangular set can be
decomposed into minimal rectangles. Let us now show
how Theorem 3 can be extended to D dimensions.

Theorem 4. Additivity holds on A2 = {A1,A2} for belief
functions if and only if one of the following condition holds

1. ∃ distinct p,q ∈ {1, . . . ,D} such that Ap
1 ∩Ap

2 = Aq
1∩

Aq
2 = /0

2. ∀i ∈ {1, . . . ,D} either Ai
1 ⊆ Ai

2 or Ai
2 ⊆ Ai

1

Proof. Again, we can consider that there are at least two
distinct p,q ∈ {1, . . . ,D} such that inclusions Ap

1 ⊂ Ap
2 and

Aq
2 ⊂ Aq

1 of Condition 2 are strict, as we have assumed
A1,A2 to not be included in each other (otherwise the re-
sult is trivial).
⇐ 1.: Any two singletons a1 ∈ A1 and a2 ∈ A2 will be such
that ai

1 ∈ Ai
1 and ai

2 ∈ Ai
2 must be distinct for i = p,q since

Ap
1 ∩Ap

2 = Aq
1∩Aq

2 = /0. Thus it will be impossible to create
minimal rectangles included in A1∪A2, and therefore any
rectangular set in it.
⇐ 2.: Let us denote by P the set of indices p such that
Ap

1 ⊂ Ap
2 and by Q the set of indices q such that Aq

2 ⊂ Aq
1.

Now, let us consider two singletons a1 ∈ A1 \ A2 and
a2 ∈ A2 \A1. Then

• ∃p ∈ P such that ap
1 ∈ Ap

1 \ Ap
2 , otherwise a1 is in-

cluded in A1∩A2

• ∃q ∈ Q such that aq
2 ∈ Aq

2 \ Aq
1, otherwise a2 is in-

cluded in A1∩A2

but since aq
1 ∈Aq

1 and ap
2 ∈Ap

2 by definition, a1 and a2 must
differ at least on two dimensions, hence one cannot form a
minimal rectangle not in A1∩A2.
⇒ 1: Suppose A1 ∩A2 = /0 with Aq

1 ∩Aq
2 6= /0 only for q.

Then the following rectangular set contained in A1∪A2

(A1
1∩A1

2)×·· ·× (Aq−1
1 ∩Aq−1

2 )× (Aq
1∪Aq

2)

×(Aq+1
1 ∩Aq+1

2 ) . . .× (AD
1 ∩AD

2 ) (7)

is neither contained in A1 nor A2, so additivity will not
hold.
⇒ 2.: suppose A1∩A2 6= /0 and Aq

1 6⊆ Aq
2, Aq

1 6⊇ Aq
2 for some

q. Again, the set (7) is rectangular, neither contained in A1
nor A2 but contained in A1∪A2.

Using Proposition 1, the extension of An-additivity to D-
dimensional sets is straightforward:

Theorem 5. Additivity holds on AN = {A1, . . . ,AN} for
belief functions if and only if, for each pair Ai,A j, one of
the following condition holds

1. ∃ distinct p,q ∈ {1, . . . ,D} such that Ap
i ∩Ap

j = Aq
i ∩

Aq
j = /0

2. ∀` ∈ {1, . . . ,D} either A`i ⊆ A`j or A`j ⊆ A`i

3.3 On the practical importance of rectangular focal
sets

While limiting ourselves to rectangular subsets in A is not
especially restrictive, the assumption that focal sets have
to be restricted to rectangular sets may seem restrictive (as
it is not allowed to cut any focal set into smaller rectan-
gular subsets without redistributing the mass). However,
such mass assignments on rectangular sets are found in
many practical situations:

• such masses can be obtained by defining marginal
masses mi on each space X i, i = 1, . . . ,D and then
combining them under an assumption of (random set)
independence [7]. In this case, the joint mass m as-
signs to each rectangular set E the mass

m(E) =
D

∏
i=1

mi(E i). (8)

Additionally, computing belief and plausibility func-
tions of any rectangular set A becomes easier in this
case, as

Bel(A) =
D

∏
i=1

Beli(Ai), Pl(A) =
D

∏
i=1

Pli(Ai), (9)

where Beli,Pli are the measures induced by mi;
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• as all we need is to restrict masses to product events,
we can also consider cases of unknown independence
or of partially known dependence, as long as this
knowledge can be expressed by linear constraints on
the marginal masses [1];

• using more generic models than belief functions is
possible [9], since the mass positivity assumption can
be dropped without modifying our results.

4 Inclusion-exclusion for monotone
functions

In this section, we show that the inclusion-exclusion prin-
ciple can be applied to evaluate some events of interest for
monotone functions, and we provide an illustration from
Multi-State Systems (MSS) reliability.

4.1 Checking the conditions

Let φ : X 1:D→ Y be a D-placed function, where X j =

{x j
1, . . . ,x

j
k j
} is a finite ordered set, for every j = 1, . . . ,D.

We note ≤ j the order relation on X j and assume (with-
out loss of generality) that elements are indexed such that
x j

i < j x j
k iff i < k. We also assume that the output space

Y is ordered and we note ≤Y the order on Y , assuming
an indexing such that yi <Y yk iff i < k. Given two ele-
ments x,y ∈X 1:D, we simply write x ≥ y if x j ≥ j y j for
j = 1, . . . ,n, and x < y if moreover x 6= y (i.e., x j < j y j for
at least one j).

We assume that the function is non-decreasing in each of
its arguments X j, that is

φ(x1
i1 , . . . ,x

`
i` , . . . ,x

D
iD)≤Y φ(x1

i1 , . . . ,x
`
i′`
, . . . ,xD

iD) (10)

iff i` ≤ i′`. Note that a function monotone in each variable
X j can always be transformed into a non-decreasing one,
simply by reversing≤ j for those variables X j in which φ
is non-increasing.

We now consider the problem of estimating the uncertainty
of some event {φ(·)≥ d} (or {φ(·)< d}, obtained by du-
ality). Evaluating the uncertainty over such events is in-
strumental in a number of applications, such as risk anal-
ysis [2]. Given a value d ∈ Y , let us define the concept of
minimal path and minimal cut vectors.

Definition 1. A minimal path (MP) vector x of function
φ for value d is an element x ∈X 1:D such that φ(x) ≥ d
and φ(y) < d for any x > y (x is a minimal element in
{x : φ(x)≥ d}).
Definition 2. A minimal cut (MC) vector x of function φ
for value d is an element x ∈ X 1:D such that φ(x) < d
and φ(y) ≥ d for any x < y (x is a maximal element in
{x : φ(x)< d}).

Let p1, . . . , pP be the set of all minimal path vectors of
some function for a given performance level d (means
to obtain minimal paths are provided by Xue [18]).
We note Api = {x ∈X 1:D|x≥ pi} the set of configura-
tions dominating the minimal path vector pi and AP =
{Ap1 , . . . ,ApP} the set of events induced by minimal path
vectors. Note that

Api =×D
j=1{x j|x j ≥ j p j

i } (11)

is rectangular, hence we can use results from Section 3.

Lemma 4. The rectangular sets AP induced by minimal
path vectors satisfy Theorem 5

Proof. Consider two minimal path vectors Api , Ap j and a
dimension `, then either {x`≥` p`i }⊆ {x`≥` p`j} or {x`≥`
p`i } ⊇ {x` ≥` p`j}.

It can be checked that {x ∈X 1:D|φ(x)≥ d} = ∪P
i=1Api .

We can therefore write the inclusion/exclusion formula for
belief functions:

Bel(φ(x)≥ d) = Bel(Ap1 ∪ . . .∪ApP)

= ∑
I⊆AP

(−1)|I |+1Bel(∩A∈I A),

= 1−Pl(φ(x)< d) (12)

Under the hypothesis of random set independence, com-
puting each term simplifies into

Bel(Ap j ∩ . . .∩Apk ) =
D

∏
i=1

Bel({xi ≥max{pi
j, . . . , p

i
k})

The computation of Bel(φ(x) < d) can be done simi-
larly by using minimal cut vectors. Let C1, . . . ,CC be
the set of all minimal cut vectors of φ . Then ACi =

{x ∈X 1:D|x≤ Ci} = ×D
j=1{x j|x j ≤ j C j

i } is rectangular
and we have the following result, whose proof is similar
to the one of Lemma 4.

Lemma 5. The rectangular sets AC induced by minimal
cut vectors satisfy Theorem 5

Denoting by AC = {AC1 , . . . ,ACC} the set of events
induced by minimal cut vectors, we have that
{x ∈X 1:D|φ(x)< d} = ∪C

i=1ACi , hence applying the
inclusion/exclusion formula for belief functions gives

Bel(φ(x)< d) = Bel(AC1 ∪ . . .∪ACC )

= ∑
I⊆AC

(−1)|I |+1Bel(∩A∈I A),

= 1−Pl(φ(x)≥ d). (13)

Let us now illustrate how this result can be applied to reli-
ability problems.
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4.2 Application to Multi-State Systems (MSS)
reliability

Using the inclusion/excusion formula is a classical way
of estimating system reliability. In this section we show
that, thanks to our results, we can extend it to the case
where system components can be in multiple states and
where the uncertainty about these states is given by belief
functions. We refer to Lisnianski and Levitin [15] for a
detailed review of the problem.

MSS analysed in this section are such that

• their components are s-independent, meaning that the
state of one component has no influence over the state
of other components;

• the states of each component are mutually exclusive;

• the MSS is coherent (if one state component effi-
ciency increases, the overall efficiency increases).

Let us now show that for such systems, we can define min-
imal path sets and minimal cut sets that satisfy the exclu-
sion/inclusion principle.

In reliability analysis, variables X j, j = 1, . . . ,D corre-
spond to the D components of the system and the value
x j

i is the ith state of component j. Usually, states are or-
dered according to their performance rates, hence we can
assume the spaces X j to be ordered. X 1:D corresponds
to the system states and Y = {y1, . . . ,yY} is the ordered
set of global performance rates of the system.

The structure function φ : X 1:D → Y links the system
states to its global performance. As the system is coherent,
function φ is non-decreasing, in the sense of Eq. (10).

As a typical task in multi-state reliability analysis is to es-
timate with which certainty a system will guarantee a level
d of performance, results from Section 4.1 directly apply.
Example 1. Let us now illustrate our approach on a com-
plete example, inspired from Ding and Lisnianski [10].

In this example, we aim to evaluate the availability of a
flow transmission system design presented in Fig. 3 and
made of three pipes. The flow is transmitted from left to
right and the performance levels of the pipes are measured
by their transmission capacity (tons of per minute). It is
supposed that elements 1 and 2 have three states: a state
of total failure corresponding to a capacity of 0, a state of
full capacity and a state of partial failure. Element 3 only
has two states: a state of total failure and a state of full
capacity. All performance levels are precise.

The state performance levels and the state probabilities
of the flow transmitter system are given in Table 2.
These probabilities could have been obtained the impre-
cise Dirichlet model [4] considered in Li et al. [14]. We

1

2

3

Figure 3: Flow transmission system

aim to estimate the availability of the system when d = 1.5.
The minimal paths are

p1 = (x1
1,x

2
2,x

3
3) = (0,1.5,4), p2 = (x1

3,x
2
1,x

3
3) = (1.5,0,4).

The set Ap1 and Ap2 of vectors a such that a≥ p1, b≥ p2
are

Ap1 = {0,1,1.5}×{1.5,2}×{4} and
Ap2 = {1.5}×{0,1.5,2}×{4},

and their intersection Ap1 ∩Ap2 consists of vectors c such
that c≥ p1∨ p2 (with ∨= max), that is:

Ap1 ∩Ap2 = {1.5}×{1.5,2}×{4}.

Applying the inclusion/exclusion formula for a requested
level d = 1.5, we obtain

Bel(φ ≥ 1.5) = Bel(Ap1)+ Bel(Ap2)−Bel(Ap1 ∩Ap2)

For example, we have

Bel(Ap1) = Bel({0,1,1.5}×{1.5,2}×{4})
= Bel({0,1,1.5}).Bel({1.5,2}).Bel({4})
= 1∗0.895∗0.958
= 0.8574

and Bel(Ap2), Bel(Ap1 ∩Ap2) can be computed similarly.
Finally we get

Bel(φ ≥ 1.5) = 0.8574 + 0.7654−0.6851 = 0.9377

and by duality with Bel(φ < 1.5), we get

Pl(φ ≥ 1.5) = 1−Bel(φ < 1.5) = 0.9523.

The availability As of the flow transmission system
for a requested performance level d = 1.5 is given by
[Bel(A),Pl(A)] = [0.9377,0.9523].

5 The case of Boolean formulas

In this section, we consider binary spaces X i, and lay bare
conditions for applying the inclusion/exclusion property to
Boolean formulas expressed in Disjunctive Normal Form
(DNF).
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x1 0 0 0 0 0 0 1 1 1 1 1 1 1.5 1.5 1.5 1.5 1.5 1.5
x2 0 0 1.5 1.5 2 2 0 0 1.5 1.5 2 2 0 0 1.5 1.5 2 2
x3 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4

y = Φ(x1,x2,x3) 0 0 0 1.5 0 2 0 1 0 2.5 0 3 0 1.5 0 3 0 3.5

Table 1: Performance rates of the oil transmission system

X j 1 2 3
p j

1 [0.096,0.106] [0.095,0.105] -
p j

2 [0.095,0.105] [0.195,0.205] [0.032,0.042]
p j

3 [0.799,0.809] [0.7,0.71] [0.958,0.968]
g j

1 0 0 -
g j

2 1 1.5 0
g j

3 1.5 2 4

Table 2: Parameters of the flow transmission system

In propositional logic, each X i = {xi,xi} can be associ-
ated to a variable also denoted by xi, and X 1:D is the set
of interpretations of the propositional language generated
by the set V of variables xi. In this case, xi is understood as
an atomic proposition, while xi denotes its negation. Any
rectangular set A⊆X 1:D can then be interpreted as a con-
junction of literals (often called a partial model), and given
a collection of n such partial models An = {A1, . . . ,An},
the event A1 ∪ . . .∪An is a Boolean formula expressed in
Disjunctive Normal Form (DNF - a disjunction of conjunc-
tions). All Boolean formulas can be written in such a form.

A convenient representation of a partial model A is in
the form of an orthopair [6] (P,N) of disjoint subsets
of indices of variables P,N ⊂ [1,D] such that A(P,N) =∧

k∈P xk∧∧k∈N xk. Then a singleton in X 1:D is of the form∧
k∈P xk ∧∧k∈P xk, i.e. corresponds to an orthopair (P,P).

We consider that the uncertainty over each Boolean vari-
able xi is described by a belief function Beli. For sim-
plicity, we shall use xi as short for {xi} in the argument
of set-functions. As X i is binary, its mass function mi

only needs two numbers to be defined, e.g., li = Beli(xi)
and ui = Pli(xi). Indeed, we have Beli(xi) = li = mi(xi),
Pli(xi) = 1−Beli(xi) = 1−mi(xi) and mi(X i) = ui− li.
For D marginal masses mi on X i, i = 1, . . . ,D, the joint
mass m on X 1:D can be computed as follows for any par-
tial model A(P,N), applying Equation(8):

m(A(P,N)) = ∏
i∈P

li ∏
i∈N

(1−ui) ∏
i/∈P∪N

(ui− li) (14)

We can particularize Theorem 5 to the case of Boolean
formulas, and identify conditions under which the belief
or the plausibility of a DNF can be easily estimated us-
ing Equality (1), changing probability into belief. Let us
see how the conditions exhibited in this theorem can be
expressed in the Boolean case.

Consider the first condition of Theorem 5

∃p 6= q ∈ {1, . . . ,D} such that Ap
i ∩Ap

j = Aq
i ∩Aq

j = /0.

Note that when spaces are binary, Ap
i = xp (if p ∈ Pi),

or Ap
i = xp (if p ∈ Ni), or yet Ap

i = X i (if p 6∈ Pi ∪Ni).
Ai ∩A j = /0 therefore means that for some index p, p ∈
(Pi ∩N j)∪ (Pj ∩Ni) (there are two opposite literals in the
conjunction).

The condition can thus be rewritten as follows, using or-
thopairs (Pi,Ni) and (Pj,N j):

∃p 6= q ∈ {1, . . . ,D} such that p,q ∈ (Pi∩N j)∪ (Pj ∩Ni).

For instance, consider the equivalence connective x1 ⇐⇒
x2 = (x1 ∧ x2)∨ (x1 ∧ x2) so that A1 = x1 ∧ x2 and A2 =
x1 ∧ x2. We have p = 1 ∈ P1 ∩N2,q = 2 ∈ P1 ∩N2, hence
the condition is satisfied and Bel(x1 ⇐⇒ x2) = Bel(x1 ∧
x2)+ Bel(x1∧ x2) (the remaining term is Bel( /0).

The second condition of Theorem 5 reads

∀` ∈ {1, . . . ,D} either A`i ⊆ A`j or A`j ⊆ A`i

and the condition A`i ⊆ A`j can be expressed in the Boolean
case as:

` ∈ (Pi∩N j)∪ (Ni∩P j)∪ (Pi∩Ni∩P j ∩N j).

The condition can thus be rewritten as follows, using or-
thopairs (Pi,Ni) and (Pj,N j):

Pi∩N j = /0 and Pj ∩Ni = /0

For instance consider the disjunction x1 ∨ x2, where A1 =
x1 and A2 = x2, so that P1 = {1},P2 = {2},N1 = N2 = /0.
So Bel(x1∨ x2) = Bel(x1)+ Bel(x2)−Bel(x1∧ x2).

We can summarize the above results as

Proposition 6. The set of partial models An =
{A1, . . . ,An} satisfies the inclusion/exclusion principle if
and only if, for any pair Ai,A j one of the two following
conditions is satisfied:

• ∃p 6= q ∈ {1, . . . ,D} s.t. p,q ∈ (Pi∩N j)∪ (Pj ∩Ni).

• Pi∩N j = /0 and Pj ∩Ni = /0

This condition tells us that for any pair of partial models, :
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• either conjunctions Ai,A j contain at least two oppo-
site literals,

• or events Ai,A j have a non-empty intersection and
have a common model.

These conditions allow us to check, once a formula has
been put in DNF, whether or not the inclusion/exclusion
principle applies. Important particular cases where it ap-
plies are disjunctions of partial models having only pos-
itive (negative) literals, of the form A1 ∪ . . .∪ An, where
N1 = . . . = Nn = /0 (P1 = . . . = Pn = /0). This is the typical
Boolean formula one obtains in fault tree analysis, where
the system failure is due to the failures of some subsets of
components, the latter failures being modelled by positive
literals. More generally, the inclusion/exclusion principle
applies to disjunctions of partial models which can, via a
renaming, be rewritten as a disjunction of conjunctions of
positive literals: namely, whenever a single variable never
appears in a positive and negative form in two of the con-
junctions.

As an example where the inclusion/exclusion principle
cannot be applied, consider the formula x1 ∨ (x1 ∧ x2)
(which is just the disjunction x1 ∨ x2 we already consid-
ered above). It does not hold that Bel(x1 ∨ (x1 ∧ x2) =
Bel(x1)+Bel(x1∧x2), since the latter sum neglects m(x2),
where x2 is a focal set that implies neither x1 nor x1 ∧ x2.
Note that this remark suggests that normal forms that are
very useful to compute the probability of a Boolean for-
mula efficiently may not be useful to speed up compu-
tations of belief and plausibility degrees. For instance,
x1 ∨ (x1 ∧ x2) is a binary decision diagram (BDD) [5] for
the disjunction, and this form prevents Bel(x1 ∨ x2) from
being computed using the inclusion/exclusion principle.

We can give explicit expressions for the belief and plausi-
bility of conjunctions or disjunctions of literals in terms of
marginal mass functions:

Proposition 7. The belief of a conjunction C(P,N) =∧
k∈P xk ∧ ∧k∈N xk, and that of a disjunction D(P,N) =∨
k∈P xk ∨∨k∈N xk of literals forming an orthopair (P,N)

are respectively given by:

Bel(C(P,N)) = ∏
i∈P

li ∏
i∈N

(1−ui), (15)

Bel(D(P,N)) = 1−∏
i∈P

(1− li)∏
i∈N

ui. (16)

Proof. Bel(C(P,N)) can be obtained by applying Equa-
tion (9) to C(P,N).

For Bel(D(P,N)), we have

Pl(C(N,P)) = Pl(∧i∈Nxi∧∧i∈Pxi)

= ∏
i∈N

(1− li)∏
i∈P

ui

= 1− (1−∏
i∈N

(1− li)∏
i∈P

ui)

= 1−Bel(∨i∈Nxi∨∨i∈Pxi)

= 1−Bel(D(P,N))

where the second equality following from Equation (9).

Using the fact that Bel(C(N,P)) = 1−Pl(D(P,N)), we can
deduce

Pl(D(P,N)) = 1−∏
i∈P

li ∏
i∈N

(1−ui). (17)

Pl(C(P,N)) = ∏
i∈P

ui ∏
i∈N

(1− li). (18)

To compute the plausibility of a formula φ , we can put
it in conjunctive normal form, that is as a conjunction of
clauses ∧k

i=1κi where the κi’s are disjunctions of literals.
Then we can write:

Pl(φ) = 1−Bel(¬(∧k
i=1κi)) = 1−Bel(∨k

i=1¬κi) (19)

Noticing that the terms ¬κi are rectangular (partial mod-
els), we can apply Proposition 6 again (this trick can be
viewed as an application of results of Subsection 4.1 to
ordered scale X = {0 < 1}). As a consequence we can
compute the belief and the plausibility of any logical for-
mula that obeys the conditions of Proposition 6 in terms of
the belief and plausibilities of atoms xi.
Example 2. For instance consider the formula φ = (x1 ∧
x2)∨(x1∧x2)∨x3, with A1 = x1∧x2, A2 = x1∧x2, A3 = x3.
It satisfies Proposition 6, and

Bel(φ) = Bel(x1∧ x2)+ Bel(x1∧ x2)

+ Bel(x3)−Bel(x1∧ x2∧ x3)−Bel(x1∧ x2∧ x3)

= l1(1−u2)+(1−u1)l2 + l3(1− l1(1−u2)− (1−u1)l2)

In CNF, this formula reads : (x1∨x2)∧(x1∨x2)∧x3. Then:

Pl(φ) = 1−Bel((x1∧ x2)∨ (x1∧ x2)∨ x3);

= 1−Bel(x1∧ x2)−Bel(x1∧ x2)−Bel(x3)

+ Bel(x1∧ x2∧ x3)+ Bel(x1∧ x2∧ x3)

= 1− l1l2− (1−u1)(1−u2)−1 + u3 + l1l2(1−u3)

+(1−u1)(1−u2)(1−u3)

6 Conclusion

We provided necessary and sufficient conditions for the in-
clusion/exclusion principle to hold with belief functions.
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To demonstrate the usefulness of those results, we dis-
cussed their application to system reliability and to uncer-
tainty evaluation over DNF and CNF Boolean formulas.

We can mention several lines of research that would com-
plement the present results: (1) find necessary and suf-
ficient conditions for the inclusion/exclusion principle to
hold for plausibilities in the general case (a counterpart
to Proposition 5); (2) investigate the relation between the
assumption of random set independence (made in this pa-
per) and other types of independence [12]; (3) investigate
how to decompose an event / a formula into a set of event
satisfying the inclusion/exclusion principle (e.g., classical
BDDs do not always provide adequate solutions).

Acknowledgements

This work was carried out in the framework of the Labex
MS2T, which was funded by the French Government,
through the program ‘Investments for the future” man-
aged by the National Agency for Research (Reference
ANR-11-IDEX-0004-02) and is also partially supported
by @MOST Prototype, a joint project of Airbus, LAAS,
ONERA and ISAE.

References
[1] C. Baudrit and D. Dubois. Comparing methods for

joint objective and subjective uncertainty propaga-
tion with an example in a risk assessment. In Proc.
Fourth International Symposium on Imprecise Prob-
abilities and Their Application (ISIPTA’05), pages
31–40, Pittsburg (USA, Pennsylvanie), 2005.

[2] C. Baudrit, D. Guyonnet, and D. Dubois. Joint prop-
agation and exploitation of probabilistic and possi-
bilistic information in risk assessment. IEEE Trans.
Fuzzy Systems, 14:593–608, 2006.

[3] Y. Ben-Haim. Info-gap decision theory: decisions
under severe uncertainty. Academic Press, 2006.

[4] J.M. Bernard. An introduction to the imprecise
dirichlet model for multinomial data. International
Journal of Approximate Reasoning, 39(2):123–150,
2005.

[5] R.E. Bryant. Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Computing
Surveys (CSUR), 24(3):293–318, 1992.

[6] D. Ciucci. Orthopairs: A simple and widely used-
way to model uncertainty. Fundam. Inform., 108(3-
4):287–304, 2011.

[7] I. Couso, S. Moral, and P. Walley. A survey of con-
cepts of independence for imprecise probabilities.
Risk Decision and Policy, 5:165–181, 2000.

[8] A.P. Dempster. Upper and lower probabilities in-
duced by a multivalued mapping. Annals of Math-
ematical Statistics, 38:325–339, 1967.

[9] S. Destercke. Independence and 2-monotonicity:
Nice to have, hard to keep. International Journal of
Approximate Reasoning (In press), 2012.

[10] Y. Ding, M. J. Zuo, A. Lisnianski, and Z. G. Tian.
Fuzzy multi-state system: General definition and per-
formance assessment. IEEE Transactions on Relia-
bility, 57:589 – 594, 2008.

[11] D. Dubois and H. Prade. Possibility Theory: An Ap-
proach to Computerized Processing of Uncertainty.
Plenum Press, New York, 1988.

[12] C. Jacob, D. Dubois, and J. Cardoso. Evaluating
the uncertainty of a boolean formula with belief
functions. Advances in Computational Intelligence,
pages 521–531, 2012.

[13] E.T. Jaynes. Probability Theory: The Logic of Sci-
ence. Cambridge University Press, 2003.

[14] C-Y. Li, X. Chen, X-S. Yi, and J y. Tao. Interval-
valued reliability analysis of multi-state systems.
IEEE Transactions on Reliability, 60:323 – 330,
2011.

[15] A. Lisnianski and G. Levitin. Multi-State System
Reliability: Assessment, Optimization and Applica-
tions. World Scientific Publishing Co Pte Ltd, 2003.

[16] G. Shafer. A mathematical Theory of Evidence.
Princeton University Press, New Jersey, 1976.

[17] P. Walley. Statistical reasoning with imprecise Prob-
abilities. Chapman and Hall, New York, 1991.

[18] J. Xue. On multistate system analysis. IEEE Trans-
actions on Reliability, pages 329–337, 1985.

ISIPTA ’13: Inclusion/exclusion principle for belief functions 11





8th International Symposium on Imprecise Probability: Theories and Applications, Compiègne, France, 2013
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Abstract

We propose a new methodology to classify temporal
data with imprecise hidden Markov models. For each
sequence we learn a different model by coupling the
EM algorithm with the imprecise Dirichlet model. As
a model descriptor, we consider the expected value
of the observable variable in the limit of stationar-
ity of the Markov chain. In the imprecise case, only
the bounds of this descriptor can be evaluated. In
practice the sequence, which can be regarded as a
trajectory in the feature space, is summarized by a
hyperbox in the same space. We classify these static
but interval-valued data by a credal generalization of
the k-nearest neighbors algorithm. Experiments on
benchmark datasets for computer vision show that
the method achieves the required robustness whilst
outperforming other precise and imprecise methods.

Keywords. Time-series classification, credal sets,
Markov chains, credal classification.

1 Introduction

The theory of imprecise probability (IP, [17]) extends
Bayesian theory of subjective probability to cope with
sets of distributions, this providing more general and
robust models of uncertainty. These ideas have been
applied to classification and a number of IP-based, so-
called credal, classifiers for static data have been pro-
posed (e.g., [19]). A key feature of these approaches is
the ability of discriminating between hard-to-classify
instances (e.g., for Bayesian-like approaches, those
prior-dependent) for which multiple class labels are
returned in output, and the others “easy” instances
to which single labels are assigned. On the other side,
dynamical models such as Markov chains and hidden
Markov models (HMMs) have been also extended to
IP in order to model the non-stationarity of a process
(see e.g., [5, 6]). It seems therefore natural to merge
these two lines of research and develop a credal clas-
sifier for temporal data based on imprecise HMMs,

thus generalizing methods already developed for pre-
cise HMMs (e.g., [13]).

This is achieved as follows. First, from each sequence,
we learn an imprecise HMM by means of a technique,
already tested in [3] and [16], which combines the EM
algorithm, commonly used to learn precise HMMs,
with the imprecise Dirichlet model (IDM, [18]), a
popular approach to learn IPs from (complete) data.
After this step, each sequence is associated with an
imprecise HMM. As a descriptor of this model (and
hence of the sequence), we evaluate the lower and up-
per bounds of the expected values of the features in
the limit of stationarity. This is based on a charac-
terization of the limit behaviour of imprecise Markov
chains provided in [6]. As a result, the sequence is
associated with a hyperbox in the feature space. This
represents a static, but interval-valued, datum which
can be processed by a classifier. To achieve that, a
generalization of the k-nearest neighbors algorithm to
support interval data is proposed. Overall this cor-
responds to a credal classifier (i.e., a classifier which
might return more than a single class) for temporal
data. Its performances are tested on some of the most
important computer vision benchmarks. The results
are promising: the methods we propose achieve the
required robustness in the evaluation of the class la-
bels to be assigned to a sequence and outperform the
competing imprecise method proposed in [3] with re-
spect to state-of-the-art metrics [20] for performance
evaluation. The performance is also good when com-
paring the algorithm with the dynamic time warp-
ing, a state-of-the-art approach to the classification
of temporal sequences, whose performance degrades
when coping with multidimensional data [14].

2 Temporal data

Let us introduce the key features of our approach and
the necessary formalism for the precise case. Variables
O1, O2, . . . , OT denote the observations of a particular
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phenomenon at T different (discrete) times. These
are assumed to be observable, i.e., their actual (real)
values are available and denoted by o1, o2, . . . , oT .

If the observations are all sampled from the same dis-
tribution, say P (O), the empirical mean converges to
its theoretical value (strong law of large numbers):

lim
T→+∞

∑T
i=1 oi
T

=

∫ +∞

−∞
o · P (o) · do. (1)

Under the stationarity assumption, the empirical
mean is therefore a sensible descriptor of the sequence.
More generally, observations at different times can be
sampled from different distributions (i.e., the process
can be non-stationary). Such a situation can be mod-
eled by pairing Ot with an auxiliary discrete vari-
able Xt, for each t = 1, . . . , T . Variables {Xt}Tt=1

are in correspondence with the generating distribu-
tions: they all take values from the same set, say X ,
whose M elements are in one-to-one correspondence
with the different distributions. In other words, for
each t = 1, . . . , T , Ot is sampled from P (Ot|Xt = xt),
and P (O|xt′) = P (O|xt′′) if and only if xt′ = xt′′ .

Variables {Xt}Tt=1 are, generally speaking, hidden
(i.e., their values are not directly observable). The
modeling of the generative process requires there-
fore the assessment of the joint mass function
P (X1, . . . , XT ). This becomes particularly simple
under the Markovian assumption: given Xt−1, all
previous values of X are irrelevant to Xt, i.e.,
P (Xt|xt−1, xt−2, . . . , x1) = P (Xt|xt−1). Together
with chain rule, this implies the factorization:1

P (x1, . . . , xT ) := P (x1) ·
T∏

t=2

P (xt|xt−1), (2)

for each (x1, . . . , xT ) ∈ X T . If the transition
probabilities among the hidden variables are time-
homogeneous, the specification of the joint model re-
duces to the assessment of P (X1) and P (Xt|Xt−1),
i.e., M2 + M parameters. A model of this kind is
called a Markov chain and, in the time-homogeneous
case, it is known to assume a stationary behaviour on
long sequences, i.e., the following limit exists:

P̃ (x) := lim
T→∞

P (XT = x), (3)

where the probability on the right-hand side is ob-
tained by marginalizing out all the variables in the
joint in Eq. (2) apart from XT . The marginal proba-
bility mass function P̃ over X is called the stationary
mass function of the chain and it can be computed
by standard algorithms.

1We use P for both probability mass functions and densities.

In this limit, also the generation of the observations
becomes stationary, i.e.,

P̃ (O) =
∑

x∈X
P (O|x) · P̃ (x). (4)

Again, as in Eq. (1), the empirical mean converges to
the theoretical value, which is now:

lim
T→+∞

∑T
i=1 oi
T

=
∑

x∈X
P̃ (x) ·

∫ +∞

−∞
o ·P (o|x) ·do. (5)

The two key points of this paper are the following:
(i) emphasize the fact that, although coincident in
the limit of infinite sequences, the weighted average
of the means on the right-hand side of Eq. (5) pro-
vides a better descriptor than the empirical mean on
the left-hand side; (ii) extend Eq. (5) to the imprecise-
probabilistic framework and then use the new descrip-
tor for robust classification of temporal data.

Concerning (i), the important remark is that the
arithmetic mean does not take into account the tem-
poral correlation of the data, while the learning of
the transition probabilities P (Xt|Xt−1) and hence the
corresponding value of the stationary mass function
takes that into account. An empirical validation of
this point is reported in Section 5. A discussion of
point (ii) is in the next two sections.

3 Imprecise hidden Markov models

By merging the Markov chain defined in the previous
section together with the time-homogeneous emission
terms P (Ot|Xt), we define a probabilistic model over
the whole set of variables X1, O1, . . . , XT , OT which is
called a hidden Markov model (HMM). An imprecise
HMM is obtained by simply replacing with credal sets,
i.e., convex sets of probability mass functions over
the same variables, the precise local models P (X1),
{P (Xt+1|xt)}xt∈X and {P (Ot|xt)}xt∈X . While a pre-
cise HMM defines a single distribution over its whole
set of variables, an imprecise HMM defines a joint
credal set, which is the convex closure of the whole set
of joint distributions obtained when each local model
takes its values in the corresponding credal set. In the
following we explain, respectively: (i) how to learn an
imprecise HMM from a sequence; (ii) how to extend
Eq. (5) to the case of imprecise HMMs; (iii) how to
perform classification with these models.

3.1 Learning

The hidden variables X1, . . . , XT of a HMM, no mat-
ter whether precise or imprecise, are by definition di-
rectly unobservable. Algorithms to learn model pa-
rameters from incomplete data in HMMs are therefore
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needed. A typical choice in the precise case is the EM
algorithm, which finds a local optimum of the likeli-
hood by an iterative procedure. Extending EM to IP
is not trivial: credal sets can be described by a vari-
able number of parameters (e.g., its extreme points),
which cannot be easily tracked during the iteration.2

Despite the lack of a sound version of EM for IP, a
simple heuristic approach based on the IDM has been
shown to provide reasonable estimates [3]. In practice
the counts required by the IDM to learn IPs, which
are not available for incomplete data, are just replaced
by the expectations provided by the standard EM. For
the first variable in the chain, this corresponds to the
following constraints:

E[n(x1)]∑
x1
E[n(x1)] + s

≤ P (x1) ≤ E[n(x1)] + s∑
x1
E[n(x1)] + s

,

(6)
for each x1 ∈ X , where E[n(x1)] is the EM expec-
tation, after convergence, for X1 = x1, the sum is
over all the elements of X and s is a nonnegative
real parameter which describes the level of cautious-
ness in the learning process. Intervals in Eq. (6) are
used to compute the credal set K(X1) made of the
probability mass functions consistent with these (lin-
ear) constraints. We similarly proceed for the tran-
sition credal sets {K(Xt|xt−1)}xt−1∈X . Considering
the freedom in the choice of the number of hidden
states M , it is worth noticing that the above IDM-
based probability intervals are invariant with respect
to that number.

Regarding the emission part of the model (i.e., the re-
lation between hidden and observable variables), note
that the discussion was introduced in the case of a
scalar observable O just for sake of simplicity. In
real-world problems, we often need to cope with se-
quences of arrays of F > 1 features, say o1, . . . ,oT ,
with ot ∈ RF for each t = 1, . . . , T . To define a
joint model over the features we assume their condi-
tional independence given the corresponding hidden
variable. A Gaussian distribution is indeed used, for
each feature, to model the relation between hidden
and observable variables:

P (ot|xt) · dot =

F∏

f=1

N µf (xt)

σf (xt)
(oft ) · doft , (7)

where oft is the f -th component of the array ot, N µ
σ is

a Gaussian density with mean µ and standard devia-
tion σ, and µf (xt) and σf (xt) are the EM estimates
for the mean and standard deviation of the Gaussian

2An exception is the EM for belief functions proposed in [7].
Yet, belief functions correspond to a special class of credal sets
parametrized by a fixed number of elements.

over Oft given that Xt = xt.
3

Regarding the choice of the number of hidden states
M := |X |, with Gaussian emission terms the clus-
tering method in [12] provides an optimal criterion
to assess this value. The cluster information (means
and standard deviations) also defines a possible ini-
tialization of for the emission terms in the EM, while
uniform choices are adopted for the transition and the
prior. Overall, after this learning step, the sequence of
observations in the F -dimensional space is associated
with a time-homogeneous imprecise HMM, with im-
precise specification of the transition and prior prob-
abilities and precise specification of the (Gaussian)
emission terms.

3.2 An interval-valued descriptor for
imprecise HMMs

In this section we show how the descriptor proposed
in Eq. (5) for precise HMMs can be generalized to the
case of the imprecise HMM we learn from a sequence
of feature vectors. In the imprecise case the station-
ary mass function of a Markov chain is replaced by
a stationary credal set, say K̃(X). Its computation,
which is briefly summarized in Appendix A, can be
obtained by Choquet integration [6]. Thus, in this
generalized setup, distribution P̃ (X) in Eq. (5) is only
required to belong to K̃(X). Note that K̃ is a finitely
generated credal set which can be equivalently charac-
terized by (a finite number of) linear constraints. Re-
garding the emission terms, nothing changes as they
are assumed to be precise. Thus, for each feature of ,
with f = 1, . . . , F , we evaluate the bounds of the ex-
pectation as

of := min
P̃ (X)∈K̃(X)

∑

x∈X
P̃ (x) · µf (x), (8)

of := max
P̃ (X)∈K̃(X)

∑

x∈X
P̃ (x) · µf (x). (9)

Both of and of are solutions of linear programs with
|X | optimization variables and an equal number of
linear constraints (see Appendix A). The interval
[of , of ] represents therefore the range of the descriptor
in Eq. (5) in the case of imprecise HMMs.

The lower and upper vectors o,o ∈ RF are indeed ob-
tained by applying the optimization is Eqs. (8) and (9)
to each feature. They define a hyperbox in the feature
space, which can be regarded as the range of the F -
dimensional version of the descriptor in Eq. (5) when

3The choice of using a single Gaussian, separately for each
feature, is just for the sake of simplicity. An extension of the
methods proposed in this paper to a single multivariate Gaus-
sian with non-diagonal covariance matrix would be straightfor-
ward, even with mixtures.
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IPs are introduced in the model. Overall, a static
interval-valued summary of the information contained
in the temporal sequence has been obtained: the se-
quence, which is a trajectory in the feature space is
described by a hyperbox in the same space (Fig. 1). In
the next section, a standard approach to the classifi-
cation of static data is extended to the case of interval
data like the ones produced by this method.

Figure 1: From trajectories to hyperboxes in the fea-
ture space. The example refers to footage data from
which two features are extracted at the frame level.

4 K-nearest neighbors for interval
data

4.1 Distances between hyperboxes

Consider the F -dimensional real space RF . Let us
make it a metric space by considering, for instance,
the Manhattan distance which, given x,y ∈ RF , de-
fines their distance δ as

δ(x,y) :=

F∑

f=1

|xf − yf |. (10)

Given two points x,x ∈ RF such that, for each f =
1, . . . , F , xf ≤ xf , the hyperbox associated with these
two points is denoted by [x,x] and defined as

[x,x] :=
{
x ∈ RF

∣∣xf ≤ xf ≤ xf
}
. (11)

The problem of extending a distance defined over
points to hyperboxes can be solved by considering the
general ideas proposed in [1].

Given two hyperboxes, their distance can be charac-
terized by means of a real interval whose bounds are,
respectively, the minimum and the maximum distance
(according to the distance defined for points) between
every possible pair of elements in the two hyperboxes.
Accordingly, the lower distance between two boxes is:

δ([x,x], [y,y]) := min
x∈[x,x],y∈[y,y]

δ(x,y), (12)

and similarly, with the maximum instead of the min-
imum for the upper distance δ([x,x], [y,y]). With
the Manhattan distance in Eq. (10), the evaluation of

the lower (and similarly for the upper) distance as in
Eq. (12) takes a particularly simple form:

δ([x,x], [y,y]) =

F∑

f=1

min
xf≤xf≤xf ,

y
f
≤yf≤yf

|xf − yf |. (13)

The optimization in the F -dimensional space is in fact
reduced to F , independent, optimizations on the one-
dimensional real space. Each task can be reduced to
linear program whose optimum is in a combination of
the extremes, unless intervals overlap. In other words:

min
xf≤xf≤xf

y
f
≤yf≤yf

|xf − yf | = min

{ |xf − yf |, |xf − yf |,
|xf − yf |, |xf − yf |

}
,

(14)
unless xf ≥ y

f
or yf ≥ xf , a case where the lower

distance is clearly zero. A dual relation holds for the
upper distance case with no special discussion in case
of overlapping.

Replacing the Manhattan with the Euclidean distance
makes little difference if we consider only the sum of
the squared differences of the coordinates without the
square root.4 In this case the lower distance is the
sum, for f = 1, . . . , F of the following terms:

min
xf≤xf≤xf ,

y
f
≤yf≤yf

(xf − yf )2. (15)

This is the minimum of a convex function, which is
attained on the border of its (rectangular) domain. It
is straightforward to check that the minimum should
lie on one of the four extreme points of the domain.
Thus, the minimum in Eq. (15) is the minimum of
the squares of the four quantities in Eq. (14). Again,
the only exception is when the two intervals overlap
(the global minimum is in xf = yf ), and the lower
distance becomes zero. Similar considerations hold
for the upper distance.

4.2 Hyperboxes classification

The above defined interval-valued distance for hyper-
boxes is the key to extend the k-nearest neighbors
(k-NN) algorithm to the case of interval-valued data.
First, let us review the algorithm for pointwise data.

Let C denote a class variable taking its values in a
finite set C. Given a collection of supervised data
{cd,xd}Dd=1 classification is intended as the problem
of assigning a class label c̃ ∈ C to a new instance x̃ on
the basis of the data. The k-NN algorithm for k = 1

4The square root is a monotone function, which has no effect
on the ranking-based classification method we define here.
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assigns to x̃ the label associated with the instance
nearest to x̃, i.e., the solution is c̃ := cd

∗
with

d∗ = argmind=1,...,D δ(x,x
d). (16)

For k > 1, the k nearest instances need to be consid-
ered instead: a voting procedure among the relative
classes decides the label of the test instance.

To extend this approach to interval data just replace
the sharp distance among points used in Eq. (16) with
the interval-valued distance for hyperboxes proposed
in Section 4.1. Yet, to compare intervals instead of
points a decision criterion is required.

To see that, consider for instance three hyperboxes
and the two intervals describing the distance between
the first hyperbox and, respectively, the second and
the third. If the two intervals do not overlap, we can
trivially identify which is the hyperbox nearer to the
first one. Yet, in case of overlapping, this decision
might be controversial. The most cautious approach
is interval dominance, which simply suspends any de-
cision in this case.

When applied to classification, interval dominance
produces therefore a credal classifier, which might re-
turn more than a class in output. If the set of optimal
classes according to this criterion is defined as C∗, we
have that c ∈ C∗ if and only if there exists a datum
(ci,xi) such that c = ci and

δ([xi,xi], [x,x]) < δ([xd,xd], [x,x]) (17)

for each d = 1, . . . , D such that cd 6= ci. Classes
in the above defined set are said to be undominated
because they correspond to instances in the dataset
whose interval-valued distance from the test instance
is not clearly bigger that the interval distance associ-
ated to any other instance. A demonstrative example
is in Fig. 2. Note also that the case k > 1 simply
requires the iteration of the evaluation in Eq. (17).

Figure 2: Rectangular data processed by the 1-NN
classifier. Gray background denotes data whose in-
terval distance from the test instance is undominated.
Points inside the rectangles describe consistent precise
data and the diamond is the nearest instance.

4.3 Summary and related work

By merging the discussions in Sections 3 and 4 we
have a classifier, to be called iHMM-kNN, for tem-
poral data based on imprecise HMMs. In summary,
for each sequence we: (i) learn an imprecise HMM
(Section 3.1); (ii) compute its stationary credal set
(Appendix A); (iii) solve the LP tasks required to
compute the hyperbox associated with the sequence
(Section 3.2). These supervised hyperboxes are finally
used to learn a credal classifier (Section 4).

Another credal classifier for temporal data based on
imprecise HMMs, called here iHMM-Lik, has been
proposed in [3]. Each imprecise HMM learned from a
supervised sequence is used to “explain” the test in-
stance, i.e., the lower and upper bounds of the prob-
ability of the sequence are evaluated. These (proba-
bility) intervals are compared and the optimal classes
according to interval dominance returned.

Regarding traditional (i.e., not based on IP) clas-
sifiers, dynamic time warping (DTW) is a popular
state-of-the-art approach. Yet, its performance de-
grades in the multi-feature (i.e., F > 1) case [14].
Both these methods will be compared with our clas-
sifier in the next section.

Other approaches to the specific problem of classify-
ing interval data have been also proposed. E.g., re-
maining in the field of IP, the approach proposed in
[15] can be used to define a SVM for interval data.
Yet, time complexity increases exponentially with the
number of features, thus preventing an application of
the method to data with high feature dimensionality.
This is not the case for iHMM-kNN, whose complexity
is analyzed below.

4.4 Complexity analysis

Our approach to the learning of imprecise HMMs has
the same time complexity of the precise case, namely
O(M2TF ). The computation of the stationary credal
set is O(T ), while to evaluate the hyperboxes a LP
task should be solved for each feature, i.e., roughly,
O(M3F ). Also the distance between two hyperboxes
can be computed efficiently: the number of operations
required is roughly four times the number of opera-
tions required to compute the distance between two
points, both for Manhattan and Euclidean metrics.
To classify a single instance as in Eq. (17), lower
and upper distances should be evaluated for all the
sequences, i.e., O(DF ). Overall, the complexity is
linear in the number of features and in the length of
the sequence and polynomial in the number of hidden
states. Similar results can be found also for space.
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4.5 Metrics for credal classifiers

Credal classifiers might return multiple classes in out-
put. Evaluating their performance requires there-
fore specific metrics, which are reviewed here. First,
a characterization of the level of indeterminacy is
achieved by: the determinacy (det), i.e., percentage
of instances classified with a single label; the aver-
age output size (out), i.e., average number of classes
on instances for which multiple labels are returned.
For accuracy we distinguish between: single-accuracy
(sing-acc), i.e., accuracy over instances classified as a
single label; set-accuracy (set-acc), i.e., the accuracy
over the instances classified with multiple labels5.

A utility-based measure has been recently proposed
in [20] to compare credal and precise classifiers with a
single indicator. In our view, this is the most princi-
pled approach to compare the 0-1 loss of a traditional
classifier with a utility score defined for credal classi-
fiers. The starting point is the discounted accuracy,
which rewards a prediction containing q classes with
1/q if it contains the true class, and with 0 other-
wise. This indicator can be already compared to the
accuracy achieved by a determinate classifier.

Yet, risk aversion demands higher utilities for
indeterminate-but-correct outputs when compared
with wrong-but-determinate ones (see [20] for details).
Discounted accuracy is therefore modified by a (mono-
tone) transformation uw with w ∈ [.65, .80]. A con-
servative approach consists in evaluating the whole
interval [u.65, u.80] for each credal classifier and com-
pare it with the (single-valued) accuracy of traditional
classifiers. Interval dominance can be used indeed to
rank performances.

The precise counterpart of a credal classifier is a clas-
sifier always returning a single class included in the
output of the credal classifier. E.g., a counterpart of
iHMM-kNN is obtained by setting s = 0 in the IDM.
If a precise counterpart is defined, it is also possible to
evaluate: the precise single accuracy (p-sing-acc), i.e.,
the accuracy of the precise classifier when the credal
returns a single label; the precise set-accuracy (p-set-
acc), i.e., the accuracy of the precise classifier when
the credal returns multiple labels.

5 Experiments

5.1 Benchmark datasets

To validate the performance of the iHMM-kNN al-
gorithm we use two of the most important computer
vision benchmarks: the Weizmann [8] and KTH [11]

5In this case, classification is considered correct if the set of
labels includes the true class.

datasets for action recognition. For this problem, the
class is the action depicted in the sequence (Fig. 3).

Figure 3: Frames extracted from the KTH dataset.

These data are footage material which requires a fea-
tures extraction procedure at the frame level. Our
approach is based on histograms of oriented optical
flows [4], a simple technique which describes the flows
distribution in the whole frame as an histogram with
32 bins representing directions (Fig. 4).

For a through validation also the AUSLAN dataset
[9] based on gestures in the Australian sign language
and the JAPVOW dataset [10] with speech about
Japanese vowels are considered. Table 1 reports rele-
vant information about these benchmark datasets.

Dataset |C| F D T
KTH1 6 32 150 51
KTH2 6 32 150 51
KTH3 6 32 149 51
KTH4 6 32 150 51
KTH 6 32 599 51

Weizmann 9 32 72 105-378
AUSLAN 95 22 1865/600 45-136
JAPVOW 9 12 370/270 7-29

Table 1: Datasets used for benchmarking. The
columns denotes, respectively, name, number of
classes, number of features, size (test/training
datasets sizes if no cross validation has been done)
and the number of frames of each sequence (or their
range if this number is not fixed). As usually done,
the KTH dataset is also split in four subgroups.

To avoid features with small ranges being penalized
by the k-NN with respect to others spanning larger
domains a feature normalization step has been per-
formed. This is a just a linear transformation in the
feature space which makes the empirical mean of the
sample equal to zero and the variance equal to one.
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Figure 4: Low-level feature extraction. Rows correspond to different actions (i.e., class labels), columns to
subjects. In each cell, feature values are shown as gray levels, with the different feature variables on the y axis,
and frames on the x axis. Characteristic time-varying patterns are visible for each action.

5.2 Results

Our iHMM-kNN algorithm is empirically tested
against the iHMM-Lik algorithm and the DTW on
the seven datasets described in the previous section.
Five runs of ten-fold cross validation are considered
for KTH and Weizmann. A single run with fixed
test and training set is considered instead for AUS-
LAN and JAPVOW. We implemented in Matlab both
iHMM-kNN and iHMM-Lik.6 Regarding DTW, the
Mathworks implementation for Matlab has been used.

Our classification algorithm has only two parameters
to be specified: the integer value of k in the k-NN
and the real parameter s of the IDM as in Eq. (6).7

We choose k = 1 because higher values could make
the classifier too indeterminate. As reported in the
second column of Table 2, small values are used also
for s. The remaining columns of that table report the
determinacies and average output size of both our al-
gorithm and iHMM-Lik (with the same value of s).
As a comment, with the selected values of s, either
the determinacy is high or the average output size is
consistently lower than the number of class labels. For
AUSLAN, in particular, despite the very high number
of classes the classifier is mostly determinate and, if
not, much fewer than the original 95 classes are re-
turned. When compared to iHMM-Lik, iHMM-kNN
is less determinate and its average output size smaller.
This can be explained by the high dimensionality of
the feature space.

Tables 3 and 4 report information about accuracy.
Results in Table 3 about single and set accuracy
clearly report a higher performance of iHMM-kNN
when compared to iHMM-Lik.

As noted in Section 4.5, the interval [u.65, u.80] pro-

6Both these tools are available as a free software at
http://ipg.idsia.ch/software.

7Remember that the method described in [12] is used to
fix the number M of states of the hidden variables. In our
experiments this number ranges between 2 and 30.

Dataset s
iHMM-kNN iHMM-Lik
det out det out

KTH1 .5 .311 2.85 .700 2.28
KTH2 .5 .055 3.96 .565 2.13
KTH3 .5 .135 2.91 .820 2.00
KTH4 .5 .040 3.31 .600 2.42
KTH .5 .111 3.51 .601 2.28

Weizmann .5 .053 4.00 .766 2.00
AUSLAN .01 .749 6.77 .935 2.37
JAPVOW .01 .968 2.00 .965 2.15

Table 2: Determinacies and average output sizes for
the benchmark datasets.

Dataset
iHMM-kNN iHMM-Lik

sing-acc set-acc sing-acc set-acc
KTH1 .989 .990 .301 .017
KTH2 .534 .981 .180 .384
KTH3 .901 .972 .070 .083
KTH4 .680 1.000 .269 .524
KTH .883 .986 .299 .448

Weizmann 1.000 1.000 .275 .143
AUSLAN .782 .675 .021 .062
JAPVOW .958 .917 .283 .462

Table 3: Single and set accuracies on the benchmark.
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vides a better summary of the credal classifiers perfor-
mance by also allowing for a comparison with a tradi-
tional classifier like DTW. The results are in Table 4.
Also this descriptor shows that iHMM-kNN clearly
outperforms iHMM-Lik. This basically means that
our interval-valued descriptor provides a better sum-
mary of a sequence rather than the interval-valued
likelihood. Impressively, iHMM-kNN also competes
with the DTW, showing both the quality of our ap-
proach and the (known) degradation of the DTW per-
formance in the multiple-features case.

Dataset
iHMM-kNN iHMM-Lik DTW
u.65 u.80 u.65 u.80 acc

KTH1 .659 .752 .211 .212 .613
KTH2 .409 .517 .201 .225 .369
KTH3 .550 .662 .073 .076 .529
KTH4 .474 .597 .281 .310 .480
KTH .495 .604 .283 .309 .525

Weizmann .463 .575 .236 .242 .540
AUSLAN .680 .702 .021 .022 .838
JAPVOW .946 .951 .283 .285 .697

Table 4: Accuracies for the benchmark datasets. Best
performances are boldfaced.

Moreover, we already noted that iHMM-kNN has a
precise counterpart obtained by setting s = 0 in the
IDM constraints as in Eq. (6) and corresponding to
the precise approach described in Section 2. This al-
lows to check whether the classifier discriminates be-
tween “easy” instances (on which a single class is re-
turned) and “difficult” ones. Results in Table 5 show
that the precise single accuracy is larger than the pre-
cise set accuracy. KTH4 is the only exception which
can be explained by its low determinacy.

Dataset p-sing-acc p-set-acc acc
KTH1 .989 .787 .849
KTH2 .534 .447 .451
KTH3 .901 .671 .703
KTH4 .680 .782 .779
KTH .883 .674 .698

Weizmann 1.000 .842 .853
AUSLAN .782 .351 .674
JAPVOW .958 .333 .938

Table 5: Precise single and set accuracy of iHMM-
kNN. The same classifier with s = 0 is used as a
precise counterpart and its accuracy is in the last col-
umn. The values of p-sing-acc in this table coincide
therefore with the sing-acc in Table 3.

As already discussed in Section 3.1, the adopted
IDM-EM approach to the learning is the most crit-

ical part of the whole methodology. An alternative
method, again heuristic and very naive, is therefore
tested: LIN-VAC adopts a credal set corresponding to
a linear-vacuous mixture [17] of the probability mass
functions estimated by the EM.8 The results of a com-
parison with this method for the Weizmann dataset
are in Table 6. To determine the value of ε, we choose
that leading to a determinacy comparable with that
of IDM-EM. The [u.65, u.80] intervals obtained in this
way are overlapping, this suggesting the need of new,
more sophisticated, models for this learning step.

Method IDM-EM LIN-VAC
parameter s = .5 ε = .03

det .053 .054
out 4.00 4.38

[u.65, u.80] [.463, .575] [.400, .504]

Table 6: An alternative to the IDM-EM learning ap-
proach tested on the Weizmann dataset.

Finally, to validate our argument about the descriptor
on the right-hand side of Eq. (5) being better than the
sample mean, we compare the two descriptors in the
precise case over datasets with different time lengths.
When coping with short sequences the difference is
in favor of our method (+2% on JAPVOW, +5%
KTH2) while the gap disappear with longer sequences
(e.g., −.4% on Weizmann). This remark makes our
method especially suited for the classification of short
sequences.

6 Conclusions and outlooks

A new credal classifier for temporal data has been
presented. Imprecise HMMs are learned from each
sequence, and described as hyperbox in the feature
space. These data are finally classified by a general-
ization of the k-NN approach. The results are promis-
ing: the algorithm outperforms another credal clas-
sifier proposed for this task and competes with the
state-of-the-art method DTW. As a future work, we
want to investigate novel, more reliable, learning tech-
niques like for instance the likelihood-based approach
already considered for complete data in [2]. Also more
complex topologies should be considered.

8Given a mass function P0(X), its linear-vacuous mixture
is a credal set K(X) defined by the constraints (1− ε)P0(x) ≤
P (x) ≤ (1−ε)P0(x)+ε. This corresponds to the vacuous credal
set for ε = 1 and to the original mass function for ε = 0.
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A Computation of the stationary
credal set

Given an imprecise Markov chain as in Section 2, for
each X ′ ⊆ X , define QX ′ : X → R, such that, ∀x ∈ X :

QX ′(x) := min




∑

x∈X ′
P (x′|x), 1−

∑

x∈X\X ′
P (x′|x)



 .

(18)
Given this function, ∀g : X → R, define Rg : X → R,
such that:

Rg(x) := g +

∫ g

g

Q{x′∈X :g(x′)≥t}(x)dt, (19)

for each x ∈ X , with g := minx∈X g(x) and g :=
maxx∈X g(x). Proceed similarly for the unconditional
probability of the first hidden variable. In this way the
following numbers (instead of functions) are defined:

Q
0

X ′ := min

{∑

x∈X ′
P (x′), 1−

∑

x∈X ′
P (x′)

}
. (20)

R
0

g := g +

∫ g

g

Q
0

{x′∈X :g(x′)≥t}dt. (21)

A “lower” version of these functions and numbers can
be obtained by simply replacing the lower probabili-
ties with the uppers, maxima with the minima, and
vice versa. For each i = 1, . . . , n let hi : X → R. To
characterize the stationary credal set K̃(X), consider

P
∗
(x′) := maxP (X)∈K̃(X) P (x′). Given the recursion:

hj+1(x) := Rhj
(x), (22)

with initialization h1 := Ix′
9, we obtain:

P
∗
(x′) := lim

n→∞
R

0

hn
, (23)

and similarly for the upper.
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Abstract 

The paper is devoted to the description of extreme points 
in the set of 2-monotone measures. We describe them 
using lattices on which an extreme 2-monotone measure 
is additive. We also propose the way of generation 
extreme monotone measures based on the aggregation of 
extreme measures with the help of multilinear extension. 
We describe also the class of extreme 2-monotone 
measures that are additive on the filter on which a 2-
monotone measure has positive values.  

Keywords. 2-monotone measures, extreme points, 
additivity on lattices, filters, partially ordered sets, 
multilinear extension.  

 1   Introduction 
2-monotone measures play an important role in the 
theory of imprecise probabilities [17], because for 
imprecise probabilities represented by 2-monotone 
measures it is possible to find analytical solutions for 
many problems and, therefore, such models are more 
attractive in a computational point of view. Meanwhile, 
some unsolved problems concerning 2-monotone 
measures can be solved [5] if we know the structure of 
extreme points of the set of all 2-monotone measures. It 
is worth to mention that finding description of extreme 
points of a convex set is usually a hard problem. This 
problem is solved for the set of all monotone measures 
[13,15], p-symmetrical measures [7,8], but for some 
convex families, e.g. k -additive measures [7], is far 
from the final solution.  
The aim of this paper is to make one step forward in this 
direction, providing some general necessary and 
sufficient conditions that a 2-monotone measure is an 
extreme point and giving descriptions of some special 
families of them. 
The paper has the following structure. We remind first 
some results concerning monotone measures and criteria 
of 2-monotonicity. After that we provide general 
necessary and sufficient conditions that a 2-monotone 
measure is an extreme point through lattices on which it 
is additive. After that we remind the multilinear 
extension of monotone measures and using it we define 
the composition of monotone measures. We show that 
the composition of extreme 2-monotone measures is an 
extreme 2-monotone measure again. The paper is ended 

by describing a special class of 2-monotone measures 
which are additive on the filter of sets on which a 2-
monotone measure has positive values.  

2   Monotone measures 
Let X  be a finite set and let : 2 [0,1]Xμ →  be a set 

function on the powerset 2X . Then μ  is called a 

monotone measure [9] if the following conditions hold: 
1) ( ) 0μ ∅ =  and ( ) 1Xμ = ; 

2) A B⊆  for , 2XA B∈  implies ( ) ( )A Bμ μ≤ . 

Let us denote the set of all monotone measures on 2X  by 
( )monM X  or briefly monM  if the set X  is clearly defined 

from the context. For monotone measures 1 2, monMμ μ ∈  

we define their convex sum as 1( ) ( )A a Aμ μ= +  

2(1 ) ( )a Aμ− , where [0,1]a∈  and 2XA∈ . Clearly, 

monMμ∈ , i.e. the set monM  is convex and it is possible 

to show [13,15] that extreme points of monM  are {0,1} -

valued monotone measures, i.e. monotone measures with 
values in {0,1} . Let the algebra 2X  be considered as a 

partially ordered set w.r.t. inclusion of sets. By 
definition, a filter f  in 2X  is a nonempty subset of 2X  
such that A∈f , A B⊆  implies B∈ f . Any filter can be 
uniquely defined by the set of its minimal elements 

{ }1,..., mA A . This fact is denoted by 1,..., mA A=f . The 

connection between filters of algebra 2X  and {0,1} -

valued monotone measures is shown in the following 
lemma [13]. 
Lemma 1. Any {0,1} -valued monotone measure η  

defines a filter { }2 | ( ) 0XA Aη= ∈ >f  such that ∅∉f . 

Conversely, any filter f  with ∅∉ f  defines a {0,1} -

valued monotone measure η  by  

1, ,
( )

0, .

A
A

A
η

∈⎧= ⎨ ∉⎩

f

f
   (1) 

In the sequel we denote a {0,1}-valued measure as ηf  if 
it corresponds to a filter f .  

Remark 1. Clearly, a set { }( ) 2 | ( )Xt A A tμ= ∈ >f  for 

any given monMμ∈  and [0,1)t∈  is a filter in algebra 
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2X , moreover, 
1

( )

0

( ) ( )tA A dtμ η= ∫ f  and if { }1 2, ,..., kt t t  is 

the set of all values of μ  and 1 20 ... 1kt t t= < < < = , then 
1

1 ( )
1

( )
i

k

i i t
i

t tμ η
−

+
=

= −∑ f . 

3   2-monotone measures 
A monotone measure μ  is called 2-monotone [9] if the 

following inequality 
( ) ( ) ( ) ( )A B A B A Bμ μ μ μ+ ≤ ∩ + ∪   (2) 

is fulfilled for any , 2XA B∈ . We denote the set of all 2-

monotone measures on the algebra 2X  by 2 ( )monM X− . 

The condition (2) can be simplified [3]. It is sufficient to 
check inequalities of the following type: 

( { }) ( { }) ( ) ( { , })i j i jA x A x A A x xμ μ μ μ∪ + ∪ ≤ + ∪ , (3) 

for all 2XA∈  and , 2X
i jx x ∈  such that \ 2X A ≥ , 

, \i jx x X A∈  and i jx x≠ . 

In the next we can also consider nonnegative set 
functions μ  on 2X  with ( ) 0μ ∅ = . Such set functions 

are called 2-monotone if they are monotone and 
inequalities (2) or equivalently inequalities (3) are 
fulfilled. The next proposition shows that the 
monotonicity of μ  is not necessary to check. 

Proposition 1. Let μ  be a nonnegative set function on 

2X with ( ) 0μ ∅ = . Then it is 2-monotone iff inequalities 

(3) are fulfilled for all 2XA∈  and , 2X
i jx x ∈  such that 

\ 2X A ≥ , , \i jx x X A∈  and i jx x≠ .  

Let us consider how Proposition 1 can be strengthened if 
we know that the sets on which a nonnegative set 
function is positive, form a filter. In this case we say that 

μ  is 2-monotone on the filter { }2 | ( ) 0XA Aμ= ∈ >f , if 

inequalities (3) are fulfilled, when { }iA x∪ ∈ f  and 

{ }jA x∪ ∈ f . In addition, we say that a set function μ , 

which is 2-monotone on the filter f , is also 2-monotone 
on its borders if inequalities (3) are fulfilled if at least 

{ }iA x∪ ∈ f  or { }jA x∪ ∈ f . Next proposition is the 

direct consequence of Proposition 1.  
Proposition 2. Given a nonnegative set function μ  such 

that { }2 | ( ) 0XA Aμ= ∈ >f  is a filter. Then μ  is 2-

monotone iff it is 2-monotone on the filter f  and its 
borders. 
In some cases the 2-monotonicity on the filter can imply 
the 2-monotonicity on its borders. The description of 
such a case is given in the following proposition. 
Proposition 3. Let a nonnegative set function be 2-

monotone on the filter { }2 | ( ) 0XA Aμ⊇ ∈ >f  and let 

1{ ,..., }mC C=C  be the set of its minimal elements. Then 

μ  is 2-monotone on borders of f , if for every kC ∈C  

and every i kx C∉  there exists a lC ∈C , such that 

{ } \i l kx C C= . 

4  Additivity properties of 2-monotone 
measures on lattices  
We denote by ( )prM X  the set of all probability 

measures on the algebra 2X . Let 2 monMμ −∈ , then the 

core of μ  is the set of probability measures defined by 

{ }( ) |prcore P M Pμ μ= ∈ ≥ . It is well known [16] that 

( )core μ  is a nonempty convex set for any 2 monMμ −∈  

and its extreme points are probability measures Pγ , 

where :{1,2,..., } {1,2,..., }n nγ →  is a permutation of the 

set {1,2,..., }n  and any Pγ  is constructed with the help of 

the chain of sets 1 (1){ }B xγ= , 2 (1) (2){ , }B x xγ γ= , …, 

(1) ( ){ ,..., }n nB x xγ γ=  by the rule: ( ) ( )i iP B Bγ μ= , 

1,...,i n= . Let us remind the result from [2,4], that can 
be also found in [10]. 
Proposition 4. Let 2 monMμ −∈ , then the system of sets 

( ) { 2 | ( ) ( )}XA A P Aγ γμ μ= ∈ =L  is a lattice w.r.t. 

operations ∩  and ∪ , i.e. , ( )A B γ μ∈L  implies 

, ( )A B A B γ μ∩ ∪ ∈L  and it is a maximal lattice, on 

which μ  is additive.  

Remark 2. Additivity of μ  on ( )γ μL  means that if 

, ( )A B γ μ∈L , then  

( ) ( ) ( ) ( )A B A B A Bμ μ μ μ+ = ∩ + ∪ . 

As we will see in the next such maximal lattices play an 
important role for the extreme points description of 2-
monotone measures. Therefore, we also present here 
some results showing the connections between such 
lattices and partially ordered sets.  
Let us assume that a maximal lattice L , on which a 2-
monotone measure μ  is additive, contains maximal 

chains described by a set of permutations { }iγΓ = . We 

put into correspondence the linear order γρ  on X  to 

each permutation γ ∈Γ  in a way that i jx xγρ  if 

( ) ( )i jγ γ≤ . Then the following theorem is valid. 

Theorem 1. Let L  be a maximal lattice, on which a 2-
monotone measure μ  is additive, and let the maximal 

chains in L  be described by a a set of permutations 

{ }iγΓ = . Consider the partial order γ
γ

ρ ρΓ
∈Γ

=∩ 1, where 

linear orders γρ  are defined as above. Then { }γ γ
ρ

∈Γ
 is 

the set of all linear orders satisfying γρ ρΓ⊇ . 

                                                 
1 Here is used the usual intersection of relations, i.e. if 

1 2, {1,..., } {1,..., }n nρ ρ ∈ × , then 1 2ρ ρ∩  is the usual intersection 

defined for sets.  
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Next result can be considered as a corollary of more 
general result that can be found in [10]. 
Theorem 2. Let ρ  be a partial order on X  and let 

{ }γ γ
ρ

∈Γ
 be the set of all linear extensions ρ , i.e. each 

γρ  is a linear order and γρ ρ⊇ . Then any γρ , γ ∈Γ , 

induces a chain of sets 0B = ∅ , { }1 (1)B xγ= , 

{ }2 (1) (2),B x xγ γ= , ..., { }(1) (2) ( ), ,...,n nB x x xγ γ γ=  and the 

union of all such chains is a lattice of sets w.r.t. union 
and intersection.  

5   The description of extreme 2-monotone 
measures through lattices 
Proposition 5.  Let us consider the set of all maximal 
lattices ( )γ μL , on which a 2-monotone measure μ  is 

additive, and  let { }2 | ( ) 0XA Aμ μ= ∈ >f . Then μ  is not 

an extreme point in 2 monM −  iff there exists a 2-monotone 

measure ν  (ν μ≠ ) such that 

1) ( ) ( )γ γμ ν⊆L L  for any permutation γ ; 

2) ν μ⊆f f . 

Corollary 1. Let μ  be an extreme point in 2 monM − . Then 

the filter μf  and the system of lattices ( )Lγ μ  define μ  

uniquely.  

6   Multilinear extension and composition of 
monotone measures 
In this section we will use the notion of pseudo-Boolean 
functions [12]. Any pseudo-Boolean function is a 
mapping :{0,1}nϕ → \ . For our purpose, it is sufficient 

to consider pseudo-Boolean functions taking their values 
in [0,1] , i.e. we assume that :{0,1} [0,1]nϕ → . It is easy 
to see that there is a one-to-one correspondence between 
pseudo-Boolean functions and set functions. For this 
purpose, we consider set functions defined on the algebra 
2Z , where {1,..., }Z n= , and consider vectors 

A1 = ( )1,..., nx x , where 2ZA∈  and 1ix =  if i A∈  and 

0ix =  otherwise. Then obviously ( ) ( )AAμ ϕ= 1 , where 

2ZA∈  is a set function on 2Z . If we consider the class 
of monotone pseudo-Boolean functions 

:{0,1} [0,1]nϕ →  with ( ) 0ϕ =0  and ( ) 1ϕ =1 , where 

(0,...,0)=0  and (1,...,1)=1 , then it corresponds to the 

class of monotone measures on 2Z .  
Any pseudo-Boolean function can be uniquely 
represented as a multilinear polynomial [14] as 

2

( ) ( )
Z

i
i AA

m A xϕ
∈∈

= ∑ ∏x ,   (4) 

where m  is the Möbius transform m  of the set function 
( ) ( )AAμ ϕ= 1 , defined by  

\( ) ( 1) ( )A B

B A

m A Bμ
⊆

= −∑ . 

We see that there is a one-to-one correspondence 
between multilinear polynomials and pseudo-Boolean 

functions. In addition, we can assume that the vector x  
in formula (4) can take values in [0,1]n . In this case, the 

function : [0,1] [0,1]nϕ →�  is called [14] the multilinear 

extension of ϕ . 

The next proposition [3] shows how to check 
monotonicity and 2-monotonicity of a set function using 
its multilinear extension. 
Proposition 6. Let : 2 [0,1]Zμ →  and let ϕ  be its 

corresponding pseudo-Boolean function. Then μ  is a 

monotone measure iff the multilinear extension ϕ�  of ϕ  

has the following properties: 
1) ( ) 0ϕ =0�  and ( ) 1ϕ =1� ; 

2) 
( )

0
ix

ϕ∂ ≥
∂

x�
 for any ix  and at any point [0,1]n∈x . 

In addition, μ  is 2-monotone iff  

3) 
2 ( )

0
i jx x

ϕ∂ ≥
∂ ∂

x�
 for any ,i jx x  and at any point [0,1]n∈x . 

Proposition 6 shows that the multilinear extension of a 
monotone measure is an aggregation function. Let us 
remind that, by definition [11], an aggregation function 
ϕ�  is a mapping : [0,1] [0,1]nϕ →�  such that 

1) ( ) 0ϕ =0�  and ( ) 1ϕ =1� ; 

3) ( ) ( )ϕ ϕ≤x y� �  for , [0,1]n∈x y  if ≤x y  ( ≤x y means 

for 1( ,..., )nx x=x  and 1( ,..., )ny y=y  that i ix y≤ , 

1,...,i n= ). 
We can generate monotone measures using aggregation 
functions as follows. Let : [0,1] [0,1]nϕ →�  be an 

aggregation function and 1,..., nX X  be mutually disjoint 

finite nonempty sets and let iμ , 1,..,i n= , be monotone 

measures on 2 iX . Then a set function μ  on 2X , where 

1 ... nX X X= ∪ ∪ , defined by  

( )1 1( ) ( ),..., ( )n nA A X A Xμ ϕ μ μ= ∩ ∩� , 2XA∈ , (5) 

is also a monotone measure. For the measure μ , defined 

by formula (5), we will use the notation μ ϕ= μ� D , where 

1( ,..., )nμ μ=μ .  

In this section, we will use multilinear polynomials as 
aggregation functions. It can be shown [3] that if ϕ  is a 

multilinear extension of a 2-monotone measure and iμ , 

1,...,i n= , be 2-monotone measures on 2 iX , then 
μ ϕ= μD  is also a 2-monotone measure. 

Obviously, we can introduce the same representation like 
(5) for pseudo-Boolean functions. Let : [0,1] [0,1]nϕ →�  

be an aggregation function and let ( )( )i
iμ x , 1,...,i n= , 

be pseudo-Boolean functions. Then the aggregation of 
these functions is defined as 

 ( )(1) ( )
1( ) ( ),..., ( )n

nμ ϕ μ μ=x x x� , where ( )(1) ( ),..., n=x x x .  

Proposition 7. Let : [0,1]nϕ →� \  be the multilinear 

extension of a pseudo-Boolean function ϕ  and let 
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( )( )i
iμ x , 1,...,i n= , be pseudo-Boolean functions. Let us 

consider the pseudo-Boolean function 

( )(1) ( )
1( ) ( ),..., ( )n

nμ ϕ μ μ=x x x� , where ( )(1) ( ),..., n=x x x . 

Then the multilinear extension of μ  can be computed as 

( )(1) ( )
1( ) ( ),..., ( )n

nμ ϕ μ μ=x x x�� � � . 

Remark 3. Proposition 7 allows us to represent the 
aggregation (5) using more simple aggregations as 
follows. Let ( )1,..., nt tϕ�  be a multilinear extension of a 

pseudo-Boolean function :{0,1} [0,1]nϕ → . Then we can 

consider the following sequence of pseudo-Boolean 
functions  

( )0 1,..., nt tϕ ϕ= � , ( )(1)
1 1 2( ), ,..., nt tϕ ϕ μ= x� , 

( )(1) (2)
2 1 2 3( ), ( ), ,..., nt tϕ ϕ μ μ= x x� , 

( )(1) ( )
1( ) ( ),..., ( )n

n nϕ ϕ μ μ=x x x� , 

 where {0,1}it ∈ , 1,...,i n= , and corresponding 

aggregation functions: 

( )0 1,..., nt tϕ ϕ=� � , ( )(1)
1 1 2( ), ,..., nt tϕ ϕ μ= x� � � , 

( )(1) (2)
2 1 2 3( ), ( ), ,..., nt tϕ ϕ μ μ= x x� � � � , 

( )(1) ( )
1( ) ( ),..., ( )n

n nϕ ϕ μ μ=x x x� � � � , 

 that have to be obviously multilinear extensions of 
corresponding pseudo-Boolean functions. Each iϕ  is 

generated from 1iϕ −  by replacing variable it  with the 

pseudo-Boolean function ( )( )i
iμ x .  

The interpretation of simple aggregations, considered in 
Remark 3, through set functions is given in the following 
lemma. 
Lemma 2. Let 1 :{0,1} [0,1]nϕ →  and 2 :{0,1} [0,1]mϕ →  

be pseudo-Boolean functions and let iϕ� , 1,2i = , be their 

multilinear extensions. Consider their aggregation of the 
following type: 

1 1 1 1 1 1 2 1( ,..., , ,...., ) ( ,..., , ( ,...., )),n n n m n n n mx x x x x x x xϕ ϕ ϕ− + + − + += �
and corresponding set functions on 2Z , where 

{1,..., }Z n m= + : 

1 1( ) ( )AAμ ϕ= 1 , where {1,2,..., }A n⊆ ; 

2 2( ) ( )BBμ ϕ= 1 , where { 1,..., }B n n m⊆ + + ; 

( ) ( )CCμ ϕ= 1 , where {1,..., 1, 1,..., }C n n n m⊆ − + + . 

Then  

1 1 1 2( ) ( ) ( ( { }) ( )) ( )A B A A n A Bμ μ μ μ μ∪ = + ∪ − , 

where {1,..., 1}A n⊆ −  and { 1,..., }B n n m⊆ + + . 

Like in the theory of Boolean functions, let us introduce 
the notion of essential variable for pseudo-Boolean 
functions. Let :{0,1} [0,1]nϕ →  be a pseudo-Boolean 

function. The variable ix  is called essential for ϕ  if 

there are vectors ( )1 1 1 1,..., ,0, ,...,i i nx x x x− +=x  and 

( )2 1 1 1,..., ,1, ,...,i i nx x x x− +=x  in {0,1}n  such that 

1 2) )ϕ ϕ≠(x (x . It is easy to express such a property using 

set functions. Let ( ) ( )AAμ ϕ= 1 , where 2ZA∈ . Then the 

variable ix  is essential if the set function 

( ) ( { }) ( )A A i Aν μ μ= ∪ − , where 2ZA∈ , is not identical 

to zero.  
Proposition 8. Let :{0,1} [0,1]nϕ →  be a pseudo-

Boolean function and let : [0,1] [0,1]nϕ →�  be its 

multilinear extension. Then the variable ix  is essential 

for ϕ  iff there is a [0,1]n∈x  such that 
( )

0
ix

ϕ∂ ≠
∂

x�
. 

Proposition 9. Let μ ϕ= μ� D  be the aggregation defined 

by formula (5), and let : [0,1] [0,1]nϕ →�  be a multilinear 

extension of a monotone measure ϕ . Then 

representation μ ϕ= μ� D  for fixed sets 1X ,…, nX  is 

defined uniquely iff each variable in ϕ  is essential.  

In this section we will prove the following result. 
Theorem 3. Let : [0,1] [0,1]nϕ →�  be a multilinear 

extension of a 2-monotone measure ϕ  on 2Z  and let all 

variables of ϕ�  be essential. Let us assume that iμ  are 2-

monotone measures on 2 iX , where 1,..., nX X  are 

mutually disjoint finite nonempty sets. Then μ ϕ= μ� D  is 

an extreme point iff 2-monotone measures ϕ , 1μ ,…, nμ  

are extreme points too.  

7   Examples of extreme 2-monotone 
measures 
Let μ  be an extreme 2-monotone measure. Then we call 

it perfect if it is uniquely defined by a filter 

{ }2 | ( ) 0XA Aμ= ∈ >f , in other words, an extreme 

measure is not perfect if there is another extreme 2-
monotone measure with the same filter f , on which it 
has positive values. We will describe next the class of 
such extreme 2-monotone measures. 
Let μ  be a set function on 2X . We say that μ  is 

additive on a filter f  if 
a) ( ) 0Aμ =  for any A∉ f ; 

b) ( { }) ( { }) ( ) ( { , })i j i jA x A x A A x xμ μ μ μ∪ + ∪ = + ∪  

for any sets { }, { }i jA x A x∪ ∪ ∈ f  such that ,i jx x A∉  

and i jx x≠ . 

Lemma 3. Let a set function μ  be additive on a filter f . 

Consider any A∈ f  and ix A∉ . Then ( { })iA xμ ∪ −  

( ) ( { }) ( )iA C x Cμ μ μ= ∪ −   for any C∈ f  with C A⊆ .  

Corollary 2. If the set function μ  is additive on a filter 

f , then ( { }) ( ) ( { }) ( )i iA x A C x Cμ μ μ μ∪ − = ∪ −  for any 

,A C∈ f  such that , \ { }iA C X x⊆ .  

The results formulated in Lemma 3 and Corollary 2 can 
be better described by the function  

( ) ( { }) ( )i ix A x Aν μ μ= ∪ − , 
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where A∈ f  and ix A∉ . Let us notice that ( )ixν  does 

not depend on the choice of A . The value ( )ixν  is called 

the weight of ix  on filter f  for a set function μ .  

Proposition 10. Let a nonnegative set function μ  be 

additive on a filter f , and ( ) 0ixν ≥  for all ix X∈ . 

Then μ  is 2-monotone. 

Proposition 11. Let a nonnegative set function μ  be 

additive on a filter f . Let us consider the system of sets 
2 \X f  and the set of its maximal elements { }1,..., kC C . 

Then μ  is 2-monotone if { }1,..., kC C  is a covering of X . 

Let us consider how to construct 2-monotone measures 
that are additive on a filter. We prove first the following 
auxiliary lemma.  
Lemma 4. Let f  be a filter of the algebra 2X . Then the 
system of sets  

{0 |A=f }{ }, { } , ,i j i jA x A x x x A∪ ∪ ∈ ∉f  

is also a filter and 0 ⊇f f .  

Proposition 12. Let we use the notations from Lemma 4, 

0A∈f , jx A∉ , and let a set function μ  be additive on 

the filter f . Then the value ( ) ( { }) ( )j jx A x Aν μ μ= ∪ −  

does not depend on the choice of 0A∈f . 

Corollary 3. Let 0A∈ f , B A⊇ , and let μ  be additive 

on the filter f . Then 

\

( ) ( ) ( )
i

i
x B A

B A xμ μ ν
∈

= + ∑ . 

Corollary 4. Let 0A B∩ ∈f  for sets A  and B , and let 

μ  be additive on the filter f . Then 

( ) ( ) ( ) ( )A B A B A Bμ μ μ μ+ = ∩ + ∪ . 

Proposition 13. Let a set function μ  be additive on the 

filter f . Then values of ν  obeys the following system of 
equations: 

( ) ( )
i

i
x B

x Xν μ
∉

=∑  for all 0 \B∈f f ,   (6) 

in addition  

0, ,
( ) ( ) ( ), ,

i

i
x B

B
B X x Bμ μ ν

∉

∉⎧⎪= ⎨ − ∈
⎪⎩

∑
f

f    (7) 

Conversely, each set function μ  obeying equalities (6) 

and (7) is additive on the filter f . 
Remark 4. Solving equations (6) and (7) w.r.t. ( )ixν  we 

can find all set functions that are additive on the filter f , 
i.e. it is guaranteed that any such function satisfies  
1) ( { }) ( { }) ( ) ( { , })i j i jA x A x A A x xμ μ μ μ∪ + ∪ = + ∪  

for { }iA x∪ , { }jA x∪ ∈ f  and { , }i jA x x∩ =∅ ; 

2) ( ) 0Aμ =  for A∉ f . 

However, we can not guarantee that μ  is 2-monotone, 

because 2-monotonicity of μ  in this case is equivalent to 

( ) 0ixν ≥  for all ix X∈  by Proposition 10. 

Proposition 14. Let μ  be a 2-monotone measure that is 

additive on the filter { }2 | ( ) 0XA Aμ= ∈ >f . Then μ  is 

an extreme 2-monotone measure if it is defined uniquely. 
Proposition 15. Let the filter f  obey the conditions 
formulated in Proposition 3. Then if an extreme 2-
monotone measure μ , which is additive on 

{ }2 | ( ) 0XA Aμ= ∈ >f , exists, then it is perfect.  

Proposition 16. Let the filter f  obey the conditions 
formulated in Proposition 11. Then if an extreme 2-
monotone measure μ , which is additive on 

{ }2 | ( ) 0XA Aμ= ∈ >f , exists, then it is defined 

uniquely.  
Let us consider examples of perfect 2-monotone 
measures that are additive on filter. A monotone measure 
is called symmetrical if its values depend only on the 
cardinality of the corresponding set. The next proposition 
gives the description of extreme symmetrical 2-
monotone measures.  
Proposition 17. Let 1 2{ , ,..., }nX x x x= . Then any 

symmetrical monotone measure, defined by  

0, 1,
( )

( 1) /( 1), 1,k

A k
A

m k n k A m k
μ

< −⎧
= ⎨ − + − + = ≥ −⎩

 

where 2,...,k n= , is a perfect extreme 2-monotone 
measure. 
Remark 5. It is easy to show that the set of all 
symmetrical 2-monotone measures on 2X , where 

1 2{ , ,..., }nX x x x= , is convex and the extreme points of it 

are measures kμ , 1,...,k n= . Obviously, 1μ  is not an 

extreme point of 2 monM −  if 1n = , because it is 

represented as 1 { }
1

(1/ )
k

n

x
k

nμ η
=

= ∑ . 

1 2 3 41{ , , , }x x x x

2
1 2 33

{ , , }x x x 2
1 2 43

{ , , }x x x 2
1 3 43

{ , , }x x x 1
2 3 43

{ , , }x x x

1
1 23

{ , }x x 1
1 33

{ , }x x
1

1 43
{ , }x x

 
Figure. 1: A perfect extreme 2-monotone measure that is 

additive on the filter. 

Remark 6. Let 1 2 3{ , , }X x x x= , then the extreme points 

of 2 ( )monM X−  are perfect and they are additive on the 

filter of their positive values. These measures are Aη , 

where 0A > , and the symmetrical measure 2μ  for 

3n = . If 1 2 3 4{ , , , }X x x x x= , then extreme points of 

2 ( )monM X−  are not necessarily measures described in 

Proposition 17. For example, let us consider the filter 

1 2 1 3 1 4 2 3 4{ , },{ , },{ , },{ , , }x x x x x x x x x=f . Let us try to 

find a 2-monotone measure μ  that is additive on 
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{ }2 | ( ) 0XA Aμ= ∈ >f . In this case, 0 1 2 3{ },{ , },x x x=f  

2 4 3 4{ , },{ , }x x x x , and the function ( )ixν , ix X∈ , 

should obey the following linear system of equations:  

2 3 4

1 2

1 3

1 4

( ) ( ) ( ) 1,

( ) ( ) 1,

( ) ( ) 1,

( ) ( ) 1,

x x x

x x

x x

x x

ν ν ν
ν ν
ν ν
ν ν

+ + =⎧
⎪ + =⎪
⎨ + =⎪
⎪ + =⎩

 

that has the following unique solution 1( ) 2 / 3xν = , 

2 3 4( ) ( ) ( ) 1/ 3x x xν ν ν= = = . After that we can calculate 

the values of 2-monotone measure μ  by the formula (7). 

This measure is depicted on Figure 1. Using Proposition 
15 it easy to check that μ  is a perfect extreme 2-

monotone measure.  
Let us consider an example of extreme 2-monotone 
measure μ , depicted on Figure 2, that is not additive on 

the filter { }2 | ( ) 0XA Aμ= ∈ >f . Using Corollary 1, it is 

easy to show that it is an extreme point of 2 monM − . In 

addition, it is possible to show that μ  is a perfect 

extreme 2-monotone measure. 

1 2 3 41{ , , , }x x x x

1
1 2 32

{ , , }x x x 1
1 2 42

{ , , }x x x 1
1 3 42

{ , , }x x x 1
2 3 42

{ , , }x x x

1
1 22

{ , }x x
 

Figure. 2: A perfect extreme 2-monotone measure that is 
not additive on the filter. 

It is easy to find extreme 2-monotone measures that are 
not perfect. Such measures are depicted on Figure 3, with 
parameters , , ,α β γ  and λ , given in Table 1. 

1 2 3 41{ , , , }x x x x

1 2 3{ , , }x x xα 1 2 4{ , , }x x xα 1 3 4{ , , }x x xβ 2 3 4{ , , }x x xβ

1 2{ , }x xγ 1 3{ , }x xλ 1 4{ , }x xλ 2 3{ , }x xλ 2 4{ , }x xλ
 

Figure 3: Extreme 2-monotone measures that are not 
perfect. 

 

No. α  β  γ  λ  

1. 2/3 1/2 1/2 1/6 
2. 2/3 1/2 1/3 1/6 
3. 1/3 1/2 1/6 1/6 
4. 1/3 1/3 1/6 1/6 
5. 5/6 1/3 2/3 1/6 

Table 1: Values of parameters , , ,α β γ λ . 

8   Conclusion 
In this paper we give general necessary and sufficient 
conditions under which 2-monotone measures are 

extreme points of 2 monM − , describe some important 

classes of them, and give ways of their generation. As 
shown by examples, the introduced class of extreme 2-
monotone measures, that are additive on filters do not 
cover all possible extreme 2-monotone measures, and we 
cannot generate all possible extreme 2-monotone 
measures based on aggregations with the help of 
multilinear extension. However, this paper can be 
considered as the first step to the desirable solution. As 
one can see from the examples, general extreme 2-
monotone measures have structures that are similar to a 
structure of extreme 2-monotone measures that are 
additive on filter and there is a possibility to generalize it. 
This can be the topic for the future research. 

Appendix  
Proof of Proposition 1. We should prove monotonicity, i.e. 

( { })kA xμ ∪ −  ( ) 0Aμ ≥  for 2XA∈  and kx A∉ . Let us 

consider a chain of sets 0B = ∅ , 1 1{ }B y= , 1 1 2{ , }B y y= ,…, 

1{ ,..., }m mB y y= . Then inequalities (2) imply  

0 0 1 10 ( { }) ( ) ( { }) ( ) ...k kB x B B x Bμ μ μ μ≤ ∪ − ≤ ∪ − ≤ ≤

( { }) ( )m k mB x Bμ μ∪ − , i.e. ( { }) ( ) 0kA x Aμ μ∪ − ≥ . ■  

Proof of Proposition 3. It is necessary to show that (3) is valid 
for { }iA x∪ ∈ f  and { }jA x∪ ∉ f . Since ( { }) 0jA xμ ∪ =  and 

( ) 0Aμ = , this inequality is transformed to 

( { }) ( { } { })i i jA x A x xμ μ∪ ≤ ∪ ∪ . 

Let us prove that ( { }) ( ) 0jB x Bμ μ∪ − ≥  for any B∈ f  and 

jx B∉ . Since B∈ f , then there exists a minimal element 

kC ∈C  such that kC B⊆ . Let us show first that  

( { }) ( ) 0k j kC x Cμ μ∪ − ≥    (A1). 

According to the statement of the proposition for kC ∈C  and 

j kx C∉  there exists lC ∈C  such that { } \j l kx C C= . Since 

\k lC C ≠ ∅ , there is some \i k lx C C∈ , and obviously 

( \ { }) { }l k i jC C x x⊆ ∪ , i.e. ( \ { }) { }k i jC x x∪ ∈ f . Because μ  

is 2-monotone on f , we have 
(( \ { }) { }) ( ) ( \ { }) ( { }).k j i k k j k iC x x C C x C xμ μ μ μ∪ + ≤ + ∪ Let 

us notice that in the last inequality (( \ { }) { }) 0k j iC x xμ ∪ >  

and ( \ { }) 0k jC xμ = , therefore,  the inequality (A1) is valid. 

Let us show next that this inequality is fulfilled for B  if 

kC B⊆ . For this purpose, consider the following chain of sets 

0 kB C= , 
1 11 { },..., { ,..., }

rk i r k i iB C x B C x x B= ∪ = ∪ = . 

Since μ  is 2-monotone on the filter f , the following 
inequalities are valid:  

0 0 1 1( { }) ( ) ( { }) ( ) ...j jB x B B x Bμ μ μ μ∪ − ≤ ∪ − ≤  

( { }) ( )r j rB x Bμ μ≤ ∪ − , 

i.e. ( { }) ( ) ( { }) ( )k i iC x C B x Bμ μ μ μ∪ − ≤ ∪ − .■ 

Proof of Theorem 1. Obviously, γρ ρΓ⊇  for any order γρ  

with γ ∈Γ . Let us show next that if γρ ρ′ Γ⊇ , then γ ′∈Γ . 

For this purpose, it is necessary to show that sets { }1 1B y= , 

{ }2 1 2,B y y= , ..., { }1 2, ,...,n nB y y y= , where ( )i iy xγ ′= , 

1,2,...,i n= , are in L . Let us show first that 1B ∈L . Let us put 

into correspondence to each permutation γ ∈Γ  the set 
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{ }1 (1) (2) ( )( ) , ,..., mB y x x xγ γ γ γ=  such that 1 ( )my xγ= . It is easy to 

see that conditions γ
γ

ρ ρΓ
∈Γ

=∩  and γρ ρ′ Γ⊇  imply 

{ }1 1( )B y yγ
γ∈Γ

=∩ , i.e. 1B ∈L . We then prove kB ∈L , 

2,...,k n= , by induction. Let us assume that 1 1,..., kB B − ∈L  

and show that kB ∈L . In this case the conditions γ
γ

ρ ρΓ
∈Γ

=∩  

and γρ ρ′ Γ⊇  imply { }1( )k k kB y B yγ
γ

−
∈Γ

⊆ ∪∩ . Therefore, 

1 ( )k k kB B y Bγ
γ

−
∈Γ

∪ =∩ , i.e. kB ∈L .■ 

Proof of Proposition 5. Necessity. Let us assume that μ  is not 

an extreme point in 2 monM − . Then it can be represented in the 

form 1 2(1 )a aμ μ μ= + − , where (0,1)a∈ , 1 2 2, monMμ μ −∈  and 

1μ μ≠ . Clearly, 1μ  obeys conditions on ν  1) and 2) in this 

proposition.  
Sufficiency. Let us assume to the contrary that there exists 

2 monMν −∈  with properties 1) and 2). We will show that in this 

case μ  is not an extreme point in 2 monM − . For this purpose, let 

us consider a set function ( ) ( ) ( )a A A a Aθ μ ν= − , 

parametrically depending on [0,1]a∈  and also  

{ }1 max [0,1] | ( ) 0 2X
aa A for all Aε θ= ∈ ≥ ∈ , 

{2 max [0,1] | ( ) ( )a aa A Bε θ θ= ∈ + ≤  

}( ) ( ) , 2X
a aA B A B for all A Bθ θ∩ + ∪ ∈ . 

It is easy to see that conditions 1) and 2) imply that 1 0ε >  and 

2 0ε > . Therefore, a set function bθ , where 1 2min{ , }b ε ε= , is 

nonnegative and 2-monotone. Thus, μ  is represented as 

2( ) (1 )b A bμ ν μ= + − , 

where 2 /(1 )b bμ θ= −  and, obviously, 2 2, monMν μ −∈ , i.e. μ  is 

not an extreme point in 2 monM − .■ 

Proof of Proposition 7. Clearly, ( )(1) ( )
1( ) ( ),..., ( )n

nμ ϕ μ μ=x x x�� � �  

for every binary vector x  and ( )(1) ( )
1( ),..., ( )n

nϕ μ μx x� � �  is a 

multilinear polynomial. Therefore, the proposition follows from 
the uniqueness of such a polynomial for the pseudo-Boolean 
function μ . ■ 

Proof of Lemma 2. Using the Taylor decomposition at the 
point 1 1( ,..., ,0)nx x −=x , we get  

1 1 1 1 1 1( ,..., , ,...., ) ( ,..., ,0)n n n m nx x x x x xϕ ϕ− + + −= +  

1 1 1
2 1

( ,..., ,0)
( ,..., )n

n n m
n

x x
x x

x

ϕ ϕ−
+ +

∂
∂

�
. 

Then we find that if 1 1 1( ,..., , ,...., )n n n m A Bx x x x− + + ∪= 1 , then 

1 1 1 1( ,..., ,0) ( )nx x Aϕ μ− = ,  

1 1 1
1 1

( ,..., ,0)
( { }) ( )n

n

x x
A n A

x

ϕ μ μ−∂ = ∪ −
∂

�
,  

2 1 2( ,..., ) ( )n n mx x Bϕ μ+ + = .■ 

Proof of Proposition 8. Let ( ) ( )AAμ ϕ= 1 , where 2ZA∈ . 

Then the multilinear extension of ϕ  can be represented as  

( ) ( ) (1 )k k
A Z k A k A

A x xϕ μ
⊆ ∈ ∉

= −∑ ∏ ∏x� . 

Taking partial derivative, we get 

( )
\{ }

( )
( { }) ( ) (1 )k k

A Z i k A k Ai

A i A x x
x

ϕ μ μ
⊆ ∈ ∉

∂ = ∪ − −
∂ ∑ ∏ ∏x�

. 

The proposition follows from the last formula. ■ 

Proof of Proposition 9. Let us show that ϕ  is defined 

uniquely. Let {0,1}n∈x  and 
1

n

i
i

A A
=

=∪ , where 2 iX
iA ∈ , is 

chosen such that i iA X=  if 1ix =  and iA =∅  if 0ix = . Then 

( )1 1( ),..., ( )n nA X A Xμ μ∩ ∩ = x , i.e. ( ) ( )Aμ ϕ= x . This 

means that ϕ  is defined uniquely by μ .  
Let us show that vector μ  is defined uniquely if each variable 

ix  is essential for ϕ . Let us assume that the variable ix  is 

essential for ϕ . Then by definition there are vectors 

( )1 1 1 1,..., ,0, ,...,i i nx x x x− +=x  and ( )2 1 1 1,..., ,1, ,...,i i nx x x x− +=x  in 

{0,1}n  such that 1 2) )ϕ ϕ≠(x (x . Let 
1

n

k
k

A A
=

=∪ , where 

2 kX
kA ∈ , such that k kA X=  if 1kx =  and k i≠ ; kA =∅  if 

0kx =  and k i≠ ; and iA  is chosen arbitrary in 2 iX . Then 

using the Taylor decomposition, we get 

( )1 1 1( ) ,..., , ( ), ,...,i i i i nA x x A x xμ ϕ μ− += =�  

1
1

( )
( ) ( )i i

i

A
x

ϕϕ μ ∂+
∂

x
x

�� . 

Therefore, we can calculate 

( ) 1
1

( )
( ) ( ) ( )i i

i

A A
x

ϕμ μ ϕ ∂= −
∂

x
x

�� , 

because 1( )
0

ix

ϕ∂ ≠
∂

x�
 according to Proposition 8. Thus, each set 

function iμ  is defined uniquely if every variable ix  is 

essential. Let us notice that if ϕ  contains a nonessential 

variable ix , then ϕ�  does not depend on ix . This implies that 

the representation μ ϕ= μ� D  is not defined uniquely, since any 

iμ  has no influence on the result of aggregation.■ 

Proof of Theorem 3. Necessity. Consider 2 possible cases.  
1) Let us assume to the contrary that ϕ  is not an extreme 2-
monotone measure, however, μ  is an extreme 2-monotone 

measure. Then 1 2(1 )a aϕ ϕ ϕ= + − , where (0,1)a∈  and 1 2,ϕ ϕ  

are different 2-monotone measures on 2Z . Therefore, 

1 2(1 )a aϕ ϕ ϕ= + −� � �  and μ ϕ= =μ� D  1 2(1 )a aϕ ϕ+ −μ μ� �D D , 

where 1 2,ϕ ϕμ μ� �D D  are different 2-monotone measures by 

Proposition 9. But this contradicts our assumption that μ  is an 
extreme 2-monotone measure. 
2) Let us assume to the contrary that iμ  is not an extreme 2-

monotone measure for some {1,..., }i n∈ , however, μ  is an 

extreme 2-monotone measure. Then iμ  can be represented as a 

convex sum of two different 2-monotone measures: 
(1) (2)(1 )i i ia aμ μ μ= + − , where (0,1)a∈ , therefore,  

( )(1) (2)
1 1 1,..., , (1 ) , ...,i i i i na aμ ϕ μ μ μ μ μ μ− += + − =� D  

( )(1)
1 1 1,..., , , ...,i i i naϕ μ μ μ μ μ− + +� D  

( )(2)
1 1 1(1 ) ,..., , , ...,i i i na ϕ μ μ μ μ μ− +− � D , 

where 

( ) ( )(1) (2)
1 1 1 1 1 1,..., , , ..., , ,..., , , ...,i i i n i i i nϕ μ μ μ μ μ ϕ μ μ μ μ μ− + − +� �D D ,   
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are different 2-monotone measures. But this contradicts the 
assumption that μ  is an extreme 2-monotone measure.  
Sufficiency. We will prove sufficiency by induction. According 
to Remark 3 any aggregation (5) can be represented as a 
composition of simple aggregations described in Lemma 2. 
Therefore, if we prove that any simple aggregation of a type 

1 1 1 1 1 1 2 1( ,..., , ,...., ) ( ,..., , ( ,...., )),n n n m n n n mx x x x x x x xϕ ϕ ϕ− + + − + += � whe

re the corresponding set functions 1μ  and 2μ  are extreme 2-

monotone measures (see notations from Lemma 2), generates 
the extreme 2-monotone measure μ . Then we can also say that 
the general aggregation produces the extreme 2-monotone 
measure if the conditions of the theorem are fulfilled. Let us 
assume to the contrary that μ  is not an extreme 2-monotone 

measure. Then there are 2 different 2-monotone measures (0)μ  

and (1)μ  such that  
(0) (1)(1 )a aμ μ μ= + − , where (0,1)a∈ . 

Let us consider 2-monotone measures, generated by a mapping 

, {1,..., 1},
( )

, { 1,..., },

i i n
i

n i n m
ψ

∈ −⎧
= ⎨ ∈ +⎩

 

Obviously, (0) (1)( ) (1 )( )a aψ ψ ψμ μ μ= + − 2, 1
ψμ μ= , and (0)μ , 

(1)μ  are 2-monotone measures. But according to our 

assumption 1μ  is an extreme 2-monotone measure. Therefore, 

this implies that (0)
1( )ψμ μ= . 

Our next step is to show that if 2μ  is also an extreme 2-

monotone measure, then (0) (1)μ μ μ= = . 
By Lemma 2, μ  can be represented as  

1 1 1 2( ) ( ) ( ( { }) ( )) ( )A B A A n A Bμ μ μ μ μ∪ = + ∪ − ,  (A2) 

where {1,..., 1}A n⊆ −  and { 1,..., }B n n m⊆ + + . Let us denote 

{ 1,..., }Y n n m= + + . Then, taking in account the 
correspondence between pseudo-Boolean and set functions, the 
formula (A2) can be rewritten as  

2( ) ( ) ( ( ) ( )) ( )A B A A Y A Bμ μ μ μ μ∪ = + ∪ − , 

and we can calculate  

2

( ) ( )
( )

( ) ( )

A B A
B

A Y A

μ μμ
μ μ

∪ −=
∪ −

, 

for any {1,..., 1}A n⊆ −  such that ( ) ( ) 0A Y Aμ μ∪ − > . Let us 
consider set functions: 

( ) ( )
( )
2 ( ) ( )

( ) ( )
( )

( ) ( )

i i
i

i i

A B A
B

A Y A

μ μμ
μ μ

∪ −=
∪ −

, 1,2i = , 

of B Y⊆  for any {1,..., 1}A n⊆ −  with ( ) ( ) 0A Y Aμ μ∪ − >  

and ( ) ( ) ( )i A Y A Yμ μ∪ = ∪ . It is easy to show that these set 
functions are 2-monotone. Let us notice that we have proved 
that ( ) ( ) ( )i A Y A Yμ μ∪ = ∪  and ( ) ( ) ( )i A Aμ μ= . After that we 
easily derive that 

(0) (1)
2 2 2( ) (1 ) ( ) ( )a B a B Bμ μ μ+ − = . 

By our assumption, 2μ  is an extreme 2-monotone measure. 

This implies that (0) (1)
2 2 2μ μ μ= = . Thus, we can write  

( )
2( ) ( ) ( ( ) ( )) ( ) ( )i A B A A Y A B A Bμ μ μ μ μ μ∪ = + ∪ − = ∪  

                                                 
2 ψμ  denotes a measure on {1,..., }2 n  such that ( )Aψμ =  

1( ( ))Aμ ψ − , where { }1( ) {1,..., } | ( )A i n m i Aψ ψ− = ∈ + ∈ . 

for any {1,..., 1}A n⊆ −  and { 1,..., }B n n m⊆ + + , i.e. 
(0) (1)μ μ μ= = , but this contradicts our assumption that 

measures (0)
2μ  and (1)

2μ  are different.■  

Proof of Lemma 3. Let us consider the sequence of sets  

0B C= , 
1 11 { },..., { ,..., }

mi m i iB C x B C x x A= ∪ = ∪ = . 

Since μ  is additive on the filter f , we can write  

1 1( { }) ( ) ( { }) ( ) ...j iC x C B x Bμ μ μ μ∪ − = ∪ − =  

( { }) ( )m i mB x Bμ μ= ∪ − , 

i.e. ( { }) ( ) ( { }) ( )i iC x C A x Aμ μ μ μ∪ − = ∪ − . Thus, the 

required equality is valid.■ 

Proof of Corollary 2. By Lemma 3 
( ) ( \ { }) ( { }) ( )i iX X x C x Cμ μ μ μ− = ∪ −  

for any C∈ f  with \ { }iC X x⊆ . This implies the result.■ 

Proof of Proposition 10. Let us check inequality (3), 
considering the following possible cases:   
a) if { }iA x∪ ∈ f  and { }jA x∪ ∈ f , then the inequality (3) 

follows from the additivity of μ  on  f ; 

b) if { }iA x∪ ∈ f  and { }jA x∪ ∉ f , then (3) is transformed to  

( { }) ( { , })i i jA x A x xμ μ∪ ≤ ∪ . 

The last inequality is valid, because according to our 
assumption ( ) 0jxν ≥ ; 

c) if { }iA x∪ ∉ f  and { }jA x∪ ∉ f , then inequality (3) is 

obviously true. ■ 

Proof of Proposition 11. It is sufficient to show that 
 ( { }) ( ) 0iA x Aμ μ∪ − ≥    (A3) 

for all A∈ f  and any ix X∈ . By the assumption { }1,..., kC C  is 

a covering of X , therefore, there is a set lC  such that i lx C∈ . 

Let us consider 2 possible cases. 

If 1lC = , i.e. { }l iC x= , then ix A∈  for all A∈ f . Obviously, 

in this case the inequality (A3) is valid. 

If 2lC ≥ , then there is j lx C∈  such that j ix x≠ . Since lC  is 

a maximal element in 2 \X f , then i lx C∪ ∈ f , j lx C∪ ∈ f , 

and additivity of  μ  on f  implies 

( ) ( { , }) ( { })i l i j l jx C x x C xν μ μ= ∪ − ∪ =  

( { }) ( ) ( { }) 0l i l l iC x C C xμ μ μ∪ − = ∪ ≥ , 

i.e. the inequality (A3) is valid for all A∈ f .■ 

Proof of Lemma 4. Clearly 0 ⊇f f . Let us show that 0B∈ f  

and B C⊆  implies 0C∈ f . It is sufficient to consider the case, 

when B∉ f  and C∉ f . Then there exist ,i jx x B∉  such that  

( { }) ( { })i jB B x B x= ∪ ∩ ∪ . 

By our assumption C∉ f , therefore ,i jx x C∉ . This implies 

that ( { }) ( { })i jC C x C x= ∪ ∩ ∪ , i.e. 0C∈ f . ■ 

Proof of Proposition 12. It is necessary to show that 
( { }) ( ) ( )i iA x A xμ μ ν∪ − =  for any 0A∈ f  and jx A∉ .  Let us 

show first that if 0A∈ f , then 

( ) ( ) ( )
i

i
x A

A x Xμ ν μ
∉

+ =∑ . 

Let us consider two possible cases. Let A∈ f  and 

{ }1 2\ , ,..., mX A y y y= . Then 
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1 1( { }) ( ) ( )A y A yμ μ ν∪ = + , 

1 2 1 2( { , }) ( { }) ( )A y y A y yμ μ ν∪ = ∪ +  

1 2( ) ( ) ( )A y yμ ν ν= + + , 

#  

1

( ) ( ) ( )
m

i
i

X A yμ μ ν
=

= +∑ , 

i.e. the required equality is valid for A∈ f . Let us consider the 
case, when 0 \A∈ f f . Then there exist ,i jx x A∉  such that 

{ }, { }i jA x A x∪ ∪ ∈ f  , and  

( { }) ( { }) ( { , }) ( )i j i jA x A x A x x Aμ μ μ μ∪ + ∪ = ∪ + , 

i.e. 
( { }) ( ) ( { , })j i jA x A A x xμ μ μ∪ − = ∪ −  

( { }) ( ).i jA x xμ ν∪ =  

After that we see that ( { }) ( ) ( )j jA x A xμ μ ν∪ = +  and  

{ }

( ) ( { }) ( ) ( ) ( )
i j i

j i i
x A x x A

X A x x A xμ μ ν μ ν
∉ ∪ ∉

= ∪ + = +∑ ∑ . 

Thus, we can write 

{ }

( { }) ( ) ( ) ( )
i j

j i
x A x

A x A X xμ μ μ ν
∉ ∪

∪ − = − −∑  

( ) ( ) ( )
i

i j
x A

X x xμ ν ν
∉

⎛ ⎞
− =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ .■ 

Proof of Corollary 4. 

\

( ) ( ) ( ) ( ) ( )
i

i
x A B

A B A B x A Bμ μ μ ν μ
∈

+ = ∩ + + ∩ +∑  

\

( )
i

i
x B A

xν
∈

=∑ ( ) ( )A B A Bμ μ∩ + ∩ +  

( ) \ ( )

( ) ( ) ( )
i

i
x A B A B

x A B A Bν μ μ
∈ ∪ ∩

= ∩ + ∪∑ . ■ 

Proof of Proposition 13. The first part of the proposition 
follows from the results considered above. Let us prove the 
second part. For this purpose, let us show that any set function 
μ , obeying (6) and (7) is additive on f , i.e.   

( { }) ( { }) ( ) ( { , })i j i jA x A x A A x xμ μ μ μ∪ + ∪ = + ∪ , 

for { }iA x∪ , { }jA x∪ ∈ f  and { , }i jA x x∩ =∅ . 

Let us consider 2 possible cases. Let A∈ f , then  
( { }) ( { }) ( )i jA x A x Xμ μ μ∪ + ∪ = −  

{ } { }

( ) ( ) ( )
k i k i

k k
x A x x A x

x X xν μ ν
∉ ∪ ∉ ∪

+ − =∑ ∑  

{ , }

( ) ( ) ( ) ( )
k k i j

k k
x A x A x x

X x X xμ ν μ ν
∉ ∉ ∪

− + − =∑ ∑  

( ) ( { , })i jA A x xμ μ+ ∪ . 

Let 0 \A∈ f f , then 

( { }) ( { }) ( )i jA x A x Xμ μ μ∪ + ∪ = −  

{ } { }

( ) ( ) ( )
k i k i

k k
x A x x A x

x X xν μ ν
∉ ∪ ∉ ∪

+ − =∑ ∑  

{ , }

( ) ( ) ( ) ( )
k k i j

k k
x A x A x x

X x X xμ ν μ ν
∉ ∉ ∪

− + −∑ ∑ . 

In the last expression ( ) ( )
k

k
x A

x Xν μ
∉

=∑ , in addition, ( ) 0Aμ = . 

This implies that  
( { }) ( { }) ( ) ( { , })i j i jA x A x A A x xμ μ μ μ∪ + ∪ = + ∪ . ■ 

Proof of Proposition 14. Let us assume to the contrary that μ  
is uniquely defined by the filter, but it is not extreme. Then 
there are 2 different 2-monotone measures 1μ  and 2μ  such that 

1 2(1 )a aμ μ μ= + − , where (0,1)a∈ . It easy to check that both 

measures 1μ  and 2μ  are additive on filter f  but this 

contradicts our assumption.■  

Proof Proposition 15. Let us assume to the contrary that μ  
obeys conditions of the proposition, however, there is another 

extreme 2-monotone measure ν  with { }2 | ( ) 0XA Aν= ∈ >f . 

Let us consider the set function ( ) ( ) ( )a A A a Aθ ν μ= − , 

parametrically depending on [0,1]a∈  and 

{ }max [0,1] | ( ) 0 2X
ab a A for all Aθ= ∈ ≥ ∈ . 

Clearly, 0b >  and the set function bθ  is 2-monotone on the 

filter f . According to Proposition 3 bθ  is 2-monotone on 2X . 

Therefore, we can represent ν  as  

2(1 )b bν μ μ= + − , 

where 2 /(1 )b bμ θ= −  is a 2-monotone measure, but this 

contradicts our assumption.■ 

Proof of Proposition 16. Let us assume to the contrary that μ  
obeys conditions of the proposition, however, there is another 
extreme 2-monotone measure ν , which is additive on 

{ }2 | ( ) 0XA Aν= ∈ >f . Let us consider the set function 

( ) ( ) ( )a A A a Aθ μ ν= − , parametrically depending on [0,1]a∈  

and 

{ }max [0,1] | ( ) 0 2X
ab a A for all Aθ= ∈ ≥ ∈ . 

Clearly, 0b >  and the set function bθ  is additive on the filter 

f . According to Proposition 11, bθ  is 2-monotone on 2X . 

Therefore, we can represent μ  as  

2(1 )b bμ ν μ= + − , 

where 2 /(1 )b bμ θ= −  is a 2-monotone measure, but this 

contradicts our assumption.■ 

Proof of Proposition 17. Let us notice that n Xμ η=  and for 

this case the proposition is obviously true. Let us check that 

kμ ,  where {2,..., 1}k n∈ − , is additive on the filter 

{ 2 | }XA A k= ∈ ≥f , i.e. the following equality holds  

( { }) ( { }) ( ) ( { , })i j i jA x A x A A x xμ μ μ μ∪ + ∪ = + ∪ , (A4) 

for { }iA x∪ , { }jA x∪ ∈ f  and { , }i jA x x∩ =∅ . Let 

1A m k= ≥ − , then the equality (A4) is transformed to  

2 2 1 3

1 1 1 1

m k m k m k m k

n k n k n k n k

− + − + − + − ++ = +
− + − + − + − +

, 

i.e. (A4) is valid for this case.  
Let us show that kμ  is an extreme 2-monotone measure. In this 

case 0 { 2 | 1}XA A k= ∈ ≥ −f  and by Proposition 13 all 

possible 2-monotone measures that are additive on f  can be 
found by solving the following linear system of equations: 

( ) 1
i

i
x A

xν
∉

=∑  for all 2XA∈  with 1A k= − . 

It is easy to check that the solution is uniquely defined by 
( ) 1/( 1)ix n kν = − + , 1,...,i n= . This implies that kμ  is an 

extreme 2-monotone measure. It is easy to check that kμ  is a 

perfect extreme 2-monotone measure by Proposition 15. ■ 
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Abstract

Imprecise probability methods are often claimed to be
robust, or more robust than conventional methods.
In particular, the higher robustness of the resulting
methods seems to be the principal argument support-
ing the imprecise probability approach to statistics
over the Bayesian one. The goal of the present paper
is to investigate the robustness of imprecise probabil-
ity methods, and in particular to clarify the termi-
nology used to describe this fundamental issue of the
imprecise probability approach.
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1 Introduction

The theories of imprecise probability replace prob-
ability measures by more general mathematical ob-
jects, which can often be identified with particular
sets of probability measures. Such sets appear natu-
rally also in Bayesian sensitivity analysis (also called
robust Bayesian analysis) [6, 27] and robust statis-
tics [4, 20]. Hence, there is a strong connection be-
tween imprecise probability and robustness. In fact,
methods resulting from the imprecise probability ap-
proaches to inference and decision making are often
claimed to be “robust” (or “more robust” than alter-
native methods) [1, 14, 36], usually without specifying
the meaning of “robust”. The goal of the present pa-
per is to investigate the robustness of imprecise prob-
ability methods. We will focus in particular on the
most developed theory of imprecise probability: the
theory of lower and upper previsions [33, 35].

The question of the robustness of imprecise proba-
bility methods is particularly important in statistics,
where the imprecise probability approach can be seen
as an alternative to the Bayesian approach. In fact,
when comparing these two approaches to statistics,

the latter has clear advantages in terms of technical
and conceptual simplicity [12, 13], also thanks to im-
portant invariances [3, 18, 21]. On the other hand, the
(higher) robustness of the resulting methods seems
to be one of the few general advantages claimed by
the proponents of the imprecise probability approach.
That is, the alleged (higher) robustness of the im-
precise probability methods seems to be the principal
argument for preferring the imprecise probability ap-
proach to statistics over the Bayesian one.

The present paper examines various aspects of the
question of the robustness of imprecise probability
methods, and in particular tries to clarify the ter-
minology used to describe this fundamental issue of
the imprecise probability approach. The paper is or-
ganized as follows. In the next section the concept of
robustness is introduced. The robustness of imprecise
probability methods is then investigated in Section 3,
which is the core of the paper. In particular, in Sub-
section 3.1 the higher credibility of imprecise prob-
ability analyses over Bayesian analyses is discussed.
These two kinds of analyses are then compared with
regard to decision making: Subsection 3.2 considers
the case when a decision has to be made, while the
case when indecision is allowed is studied in Subsec-
tion 3.3. The final section summarizes the results.

2 Robustness

Robustness means “insensitivity to small deviations
from the assumptions” [19, p. 2]. In the Bayesian
approach to inference and decision making it mainly
refers to “possible misspecification of the prior dis-
tribution” [7, p. 195]. Hence, the conclusions of a
Bayesian analysis are not robust if there are several
reasonable choices for the prior distribution and the
conclusions depend on which prior is actually chosen,
as in the following example.

Example 1 In the Bayesian framework, given an ex-
changeable sequence of Bernoulli random variables
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X1, X2, . . ., de Finetti’s theorem [16, § 11.4] implies
that they are independent and Ber(θ)-distributed con-
ditional on the success probability θ ∈ [0, 1]. That
is, to complete the Bayesian model we must choose a
(prior) probability distribution for θ. Suppose that we
have (almost) no prior information about θ: several
prior probability distributions have been suggested in
this situation. In particular, Bayes [5] and Jeffreys
[24] proposed the prior uniform distribution of θ on
[0, 1] and of arcsin

√
θ on [0, π/2], respectively. Using

Walley’s (s, t)-parametrization of the beta distribution
[33, 34], these two proposals correspond to the priors
θ ∼ Beta(2, 1/2) and θ ∼ Beta(1, 1/2), respectively.

Assume now that we observe X1 + · · · + X7 = 6.
That is, of the first seven Bernoulli trials, six were
successes and one was a failure. In general, on the
basis of these data, the conjugate prior distribution
Beta(s, t) is updated to the posterior distribution

Beta

(
s+ 7,

s t+ 6

s+ 7

)
. (1)

In particular, Bayes’ and Jeffreys’ priors are up-
dated to the posteriors θ ∼ Beta(9, 7/9) and θ ∼
Beta(8, 13/16), respectively.

Finally, suppose that we must choose between two
courses of action with uncertain payoffs A = 5X8− 4
and B = 4 − 5X8, respectively, expressed in a linear
utility scale. This can be interpreted as choosing the
side of a bet with odds of 4 to 1 on a success in the
next Bernoulli trial, where the total stake is a fixed
small amount of money. In general, the conjugate
prior distribution Beta(s, t) leads to the posterior ex-
pected utilities

E(A) =
s

s+ 7
(5 t− 4) +

7

s+ 7

(
5

6

7
− 4

)
(2)

and E(B) = −E(A). These are plotted in Figure 1 as
functions of s ∈ (0, 3], in the case t = 1/2 and in the
limit cases t → 1 and t → 0. In particular, Jeffreys’
prior would lead to the choice of the first course of ac-
tion (that is, betting on success), since E(A) > E(B)
when (s, t) = (1, 1/2), while Bayes’ prior would lead
to the choice of the second course of action (that
is, betting on failure), since E(B) > E(A) when
(s, t) = (2, 1/2).

Therefore, in this situation the decision resulting
from the Bayesian approach is not robust, if both
Bayes’ and Jeffreys’ priors are considered as reason-
able choices in the case of (almost) no prior infor-
mation about θ. The Bayesian answer to this non-
robustness issue would be to give more careful consid-
eration to the prior information about θ, in order to
be able to identify more precisely the prior probability
distribution for θ.

Exactly as for the Bayesian approach, the conclusions
resulting from the imprecise probability approach to
inference and decision making are robust if they are
not too sensitive to small deviations from the assump-
tions in general, and to possible misspecification of the
prior (imprecise) probability distribution in particu-
lar. More precise definitions of robustness would be
possible, but would have a high degree of arbitrari-
ness, while the above informal definition is sufficient
for the scope of the present paper.

3 Imprecise Probability Methods

The robustness of some kinds of conclusions result-
ing from an imprecise probability analysis has been
studied in [32], with comforting results. However,
this study did not consider the robustness of the con-
clusions when the imprecise probabilities have been
updated in the light of new data. In this situation,
which is obviously very important for the imprecise
probability approach to statistics, the conclusions re-
sulting from an imprecise probability analysis are in
general not robust (and not more robust that the ones
resulting from a Bayesian analysis), as shown in the
following example.

Example 2 Let X be a random variable taking value
in the set {1, 2, 3}. Assume that our prior imprecise
probabilities are determined by the unique assessment
P (X) = x, where x ∈ [1, 3] is a real number. Suppose
now that we learn that the value of X is not 2. That
is, we observe the event X ∈ {1, 3}. If we update our
prior imprecise probabilities by regular extension [33,
Appx. J], then the posterior lower prevision of X is

P (X) =

{
1 if x < 2,
x if x ≥ 2,

(3)

while if we update them by natural extension, then it
is

P (X) =

{
1 if x ≤ 2,
x if x > 2,

(4)

since the prior lower probability of the observed event
is 0 if and only if x ≤ 2. In both cases (3) and (4),
the posterior lower prevision of X, as a function of
x ∈ [1, 3], has a discontinuity at x = 2.

Therefore, the posterior lower prevision of X is not
robust, if for example both values x = 1.99 and x =
2.01 are considered as reasonable choices for the prior
lower prevision. By contrast, in a Bayesian analysis
of this situation, the posterior expectation of X would
be a continuous function of the prior probability val-
ues, although it would be very sensitive to these val-
ues if the prior probability of the observed event were
very small. Anyway, in this situation the posterior
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Figure 1: Expected utilities according to the posterior distribution (1), as functions of s ∈ (0, 3], in the case
t = 1/2 and in the limit cases t→ 1 and t→ 0.

distribution of the imprecise probability analysis is in
general not more robust than the one of a Bayesian
analysis.

However, the situation analyzed in Example 2 is artifi-
cial, and consequently its importance for the imprecise
probability methods suggested in the literature is not
clear. For this reason, in the remainder of the present
section we shall consider further the situation of Ex-
ample 1, focusing on the imprecise probability model
that seems to be by far the most studied and used:
the imprecise Dirichlet model [8, 34], in the special
case of Bernoulli random variables [33, § 5.3].

The imprecise Dirichlet model satisfies some impor-
tant invariance properties, and in particular the rep-
resentation invariance principle [34]. This principle
describes a particular kind of robustness with respect
to assumptions about the statistical model, and it
cannot be satisfied by objective Bayesian analyses.
However, it can be satisfied by subjective Bayesian
analyses, and its appropriateness is questionable any-
way [34, p. 52]. On the other hand, the imprecise
Dirichlet model is highly non-robust with respect to
other aspects of the statistical model [28, 29]. There-
fore, to keep things simple, in the remainder of this
section we shall consider only the robustness with re-
spect to the choice of the prior distribution.

3.1 Credibility

From the standpoint of the theory of lower and upper
previsions, a Bayesian analysis corresponds to the spe-
cial case of an imprecise probability analysis in which
we have so much prior information that the previ-
sions are linear. Hence, from this standpoint, a lower
prevision can be interpreted as being based on less
information (or assumptions) than a linear prevision
dominating it. In this case, the Bayesian analysis can
thus be considered as less credible than the imprecise
probability analysis, according to a “law of decreas-
ing credibility” [26, p. 1], stating that the credibility
of the conclusions decreases when additional assump-
tions are made.

Such a law seems reasonable when inferences such
as confidence or credible regions are considered as
conclusions, but it does not necessarily seem reason-
able when decisions or point estimates are considered.
Anyway, for the sake of argument, let’s agree that
imprecise probability analyses are more credible than
Bayesian analyses (when the linear previsions domi-
nate the lower previsions). Does this imply that they
are also more robust?

Example 3 In the imprecise probability framework,
given an exchangeable sequence of Bernoulli random
variables X1, X2, . . ., a generalization of de Finetti’s
theorem [15] implies that they are independent and
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Ber(θ)-distributed conditional on the success proba-
bility θ ∈ [0, 1]. That is, to complete the imprecise
probability model we must choose a (prior) imprecise
probability distribution for θ. The usual choice of the
prior imprecise probability distribution in the case of
(almost) no prior information about θ is the impre-
cise Dirichlet model, which corresponds to the set of
all Beta(s, t) distributions with t ∈ (0, 1). That is,
the parameter s must still be chosen: the most popu-
lar choices appear to be s = 2 and s = 1 [8, 34, 36].
In this context, it is important to note that the im-
precise previsions resulting from different choices of
s are nested, the more imprecise corresponding to the
larger values of s.

When observing X1 + · · · + X7 = 6, the imprecise
Dirichlet model is updated by regular extension to
the posterior imprecise probability distribution cor-
responding to the set of all distributions (1) with
t ∈ (0, 1). The posterior lower and upper previsions,
P (A) and P (A), of the utility of the first course of
action described in Example 1 are the limits of (2) as
t → 0 and as t → 1, respectively. By contrast, the
posterior lower and upper previsions, P (B) = −P (A)
and P (B) = −P (A), of the utility of the second course
of action are the limits of E(B) = −E(A) as t → 1
and as t → 0, respectively. These two pairs of poste-
rior lower and upper previsions are plotted in Figure 1
as functions of s ∈ (0, 3].

The posterior imprecise previsions with s = 1 are thus
more credible (in the sense considered above) than the
posterior expectations resulting from Jeffreys’ prior,
and the posterior imprecise previsions with s = 2 are
more credible than the posterior expectations resulting
from both Bayes’ and Jeffreys’ priors. However, it
is not clear why these posterior imprecise previsions
should be more robust than the posterior expectations
of Example 1, since they too depend strongly on the
choice of s.

The question of the alleged higher robustness of im-
precise probability analyses compared to Bayesian
analyses can perhaps be better clarified by consid-
ering the choice of a probability distribution as con-
sisting of two steps. First we choose a lower prevision
P , and then we select a linear prevision P dominat-
ing it. The second step can be seen as an additional
assumption, and therefore the imprecise probability
analysis based on P is more credible than the Bayes-
ian analysis based on P . Moreover, since there is
certainly some arbitrariness in the second step, the
imprecise probability analysis can appear to be more
robust than the Bayesian analysis. However, once P
has been selected, it does not depend on the choice of
P anymore. That is, the robustness of the imprecise
probability analysis is relative to the arbitrariness in

the choice of P , while the robustness of the Bayesian
analysis is relative to the arbitrariness in the choice
of P (and not in both choices of P and P ). So it is
not clear that in general the Bayesian analysis is less
robust that the imprecise probability analysis, even
when the latter is more credible (in the above sense).

Of course, the imprecise probability analysis would be
more robust than the Bayesian analysis, if there were
no arbitrariness in the choice of the lower prevision.
In this case, “conclusions drawn from the imprecise
model are automatically robust, because they do not
rely on arbitrary or doubtful assumptions” [33, p. 5].
Unfortunately, this is never the case, because there
is always some arbitrariness in the choice of a model,
even when we choose the vacuous model. In fact,
if the vacuous prevision is a reasonable choice, then
probably also a slightly more determined imprecise
prevision would be reasonable.

In particular, the choice of the prior distribution in
the imprecise probability analysis of Example 3 does
not seem to be less arbitrary than the choice of the
prior distribution in the Bayesian analysis of Exam-
ple 1. In fact, thanks to symmetry arguments, in the
Bayesian analysis the choice of t = 1/2 is less problem-
atic than the choice of s, which must be chosen also
in the imprecise probability analysis. In analogy to
the discussion above, we could see the choice of the
prior probability distribution in Example 1 as consist-
ing of two steps. First we choose to restrict attention
to the beta distributions and we select the value of s,
while in a second step we also choose the value of t.
With this description, it appears that the imprecise
Dirichlet model (corresponding to the choices in the
first step) has one assumption less than the Bayesian
beta prior (the assumption of a particular value for
t). However, this appearance is misleading, because
in the imprecise Dirichlet model we also make a choice
about t: we choose to let it vary in the whole interval
(0, 1). In fact, replacing this interval for instance with
the interval [ε, 1− ε], for some small positive ε, could
also be a reasonable choice [11].

An important difference between the choices of s in
Examples 1 and 3 is that in the latter case the impre-
cise previsions resulting from different values of s are
nested, and this could make the choice “less crucial”
than in the former case [34, p. 12]. The importance of
this property of the imprecise Dirichlet model for the
question of the robustness of the imprecise probabil-
ity analysis of Example 3 depends on how the impre-
cise previsions are used. Therefore, in the following
subsections we shall consider the decision problem of
Example 1 in the imprecise probability framework of
Example 3.
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3.2 Decision

Several decision criteria have been suggested in the lit-
erature on imprecise probabilities [2, 17, 31]. Some of
these criteria, like Γ-maximin, induce a total preorder
on the possible decisions, and usually identify a sin-
gle optimal decision. When such criteria are used in
an imprecise probability analysis, the resulting con-
clusions are in general not more robust than those
resulting from a Bayesian analysis, as shown in the
following example.

Example 4 Consider the decision problem of Exam-
ple 1 in the imprecise probability framework of Ex-
ample 3. In particular, Figure 1 shows that P (A) >
P (B) when s = 1, while P (B) > P (A) when s = 2.
Hence, the Γ-maximin decision would correspond to
the first course of action (that is, betting on success)
when s = 1, and to the second course of action (that
is, betting on failure) when s = 2. We would obtain
the same decisions if we used the Γ-maximax, Hurwicz
[2, 22], or interval bound dominance [17] criteria in-
stead of Γ-maximin.

Therefore, in this situation the decision resulting from
the imprecise probability approach is not robust, if one
of these criteria is used and both s = 1 and s = 2
are considered as reasonable choices for the parame-
ter s of the imprecise Dirichlet model in the case of
(almost) no prior information about θ. In complete
analogy with the Bayesian analysis of Example 1, an
answer to this non-robustness issue would be to give
more careful consideration to the prior information
about θ, in order to be able to identify more precisely
the prior imprecise probability distribution for θ.

Other decision criteria, like maximality, E-admissi-
bility, or interval dominance, often do not identify
a unique optimal decision, and are perhaps more
in keeping with the spirit of imprecise probabilities.
When such criteria are used, imprecise probability
analyses can be seen as descriptions of the robust-
ness or non-robustness of Bayesian analyses. In fact,
if one of these criteria identifies a single optimal de-
cision in an imprecise probability analysis based on a
lower prevision P , then this decision is the unique op-
timal one in each Bayesian analysis based on a linear
prevision P dominating P (assuming that in these
Bayesian analyses there are optimal decisions). By
contrast, the two approaches diverge when the Bayes-
ian analysis is not robust, in the sense that different
linear previsions P dominating P lead to different op-
timal decisions. In this case, all these decisions are
optimal in the imprecise probability analysis based
on P , when one of the above criteria is used. How-
ever, this situation has very different meanings for
the two approaches to decision making. In the Bayes-

ian approach the non-robustness issue can be tackled
by identifying more precisely the linear prevision P ,
while in the imprecise probability approach there is
not necessarily a more precise lower prevision P that
would still be a reasonable choice.

Therefore, since the goal of decision making is to select
one of the possible decisions, in the imprecise prob-
ability approach we often still have to choose one of
the optimal decisions, when one of the above criteria
is used. This choice can be based on a second decision
criterion selected among the ones usually identifying a
single optimal decision, like Γ-maximin [25]. However,
when such two-stage decision procedures are used in
an imprecise probability analysis, the resulting con-
clusions are in general not more robust than those
resulting from a Bayesian analysis, as shown in the
following example.

Example 5 Figure 1 shows that in the decision prob-
lem of Example 1, when s = 1 we have E(A) > E(B)
if t ∈ (0, 1) is sufficiently large, and E(B) > E(A) if
t ∈ (0, 1) is sufficiently small. That is, the decision
resulting from the Bayesian approach is not robust,
if all Beta(1, t) distributions with t ∈ (0, 1) are con-
sidered as reasonable choices for the prior probability
distribution. Therefore, in the imprecise probability
framework of Example 3, when s = 1 both courses
of action would correspond to optimal decisions ac-
cording to the criteria of maximality, E-admissibility,
or interval dominance. Exactly the same holds in the
case with s = 2. By contrast, when s = 1/3 these
criteria would lead to a single optimal decision, cor-
responding to the first course of action (that is, bet-
ting on success), since in this case P (A) > P (B), as
can be seen in Figure 1. That is, the decision result-
ing from the Bayesian approach is robust, if only the
Beta(1/3, t) distributions with t ∈ (0, 1) are considered
as reasonable choices for the prior probability distri-
bution.

However, if the goal of the imprecise probability analy-
sis is decision making (and not the study of the robust-
ness or non-robustness of Bayesian analyses), then
when s = 1 or s = 2 we still have to select one of
the two possible decisions. If we choose one of the
four criteria considered in Example 4 as the second
decision criterion in a two-stage decision procedure,
then we obviously obtain the same conclusions as in
Example 4.

Another possibility (besides a second criterion in a
two-stage procedure) for choosing a decision when
there are multiple optimal decisions, is to select it
arbitrarily. Of course, there is no real hope that the
resulting decisions can be robust, since arbitrariness is
antithetical to robustness. However, one could main-
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tain that such an arbitrary choice cannot be non-
robust, because from the point of view of the deci-
sion criterion all optimal decisions are in a certain
sense “equivalent”. But even from this point of view
the decisions resulting from the imprecise probability
approach are not robust in general, as shown in the
following example.

Example 6 Consider again the decision problem of
Example 1 in the imprecise probability framework of
Example 3, with as decision criterion maximality, E-
admissibility, or interval dominance. In Example 5
we have seen that in this case the first course of ac-
tion (that is, betting on success) would correspond to
the unique optimal decision when s = 1/3, while both
courses of action would correspond to optimal deci-
sions when s = 1. Hence, if we would choose one of
the two optimal decisions arbitrarily when s = 1, then
we could choose the second course of action (that is,
betting on failure), which does not correspond to the
single optimal decision when s = 1/3.

Therefore, in this situation the decision resulting from
the imprecise probability approach is not robust, if both
s = 1/3 and s = 1 are considered as reasonable choices
for the parameter s of the imprecise Dirichlet model.
Of course, s = 1/3 is not a usual choice for this param-
eter, but it would suffice to slightly modify the decision
problem, in order to obtain that the difference in the
decisions is between the cases s = 1 and s = 2 (instead
of s = 1/3 and s = 1). For instance, it would suffice to
consider the decision problem corresponding to choos-
ing the side of a bet with odds of 5 to 2 (instead of 4
to 1) on a success in the next Bernoulli trial, where
the total stake is a fixed small amount of money (in
this situation, the decision resulting from the Bayes-
ian approach would be the same for both Bayes’ and
Jeffreys’ priors: betting on success).

Hence, in this subsection we have seen that when a
decision has to be made, the imprecise probability ap-
proach is in general not more robust than the Bayes-
ian one. In particular, the choice of s in the imprecise
probability analyses of Examples 4, 5, and 6 does not
appear to be “less crucial” than in the Bayesian anal-
ysis of Example 1. In this context, it is important
to note that the results would remain substantially
unchanged if randomized decisions were allowed in
these examples. In this case, we would have infinitely
many possible decisions, but the (sets of) randomiza-
tion probabilities of the optimal decisions would still
change in a discontinuous way at either s = 4/3 or
s = 1/2 (depending on the example being considered).

3.3 Indecision

As discussed in Subsection 3.2, decision criteria like
maximality, E-admissibility, or interval dominance of-
ten do not identify a unique optimal decision, when
used in an imprecise probability analysis. Instead of
choosing a decision from the set of all optimal de-
cisions, the set itself is sometimes considered as the
conclusion resulting from the imprecise probability
approach [1, 14, 36]. That is, (partial) indecision is
sometimes allowed.

In this case, the set of all possible decisions of the
original decision problem is practically replaced by its
power set (without the empty set). The resulting new
decision problem is in a certain sense smoother than
the original one, because the indecision about two
(originally) possible decisions can be seen as a mid-
dle course between them. Therefore, non-robustness
issues regarding the new decision problem can be less
serious than those regarding the original one. How-
ever, the Bayesian approach too can be applied to
the new decision problem, as shown in the following
example.

Example 7 In Example 5 we have considered the de-
cision criteria of maximality, E-admissibility, and in-
terval dominance for the decision problem of Exam-
ple 1, in the imprecise probability framework of Ex-
ample 3. We have seen that the first course of ac-
tion (that is, betting on success) would correspond to
the unique optimal decision when s = 1/3, while both
courses of action would correspond to optimal deci-
sions when s = 1 or s = 2. Hence, if indecision is al-
lowed, then we would stick to the first course of action
when s = 1/3, but we would have indecision between
the two courses of action when s = 1 or s = 2.

In order to apply the Bayesian approach when indeci-
sion is allowed, we can define the utility C of the in-
decision between the two courses of action. Assuming
risk aversion, this utility must be larger than the util-
ity of choosing one of the two courses of action at ran-
dom (by tossing a fair coin) [37]: that is, C > 0. The
choice C = 1/10 is plotted in Figure 1: we can see that
in this case the decision resulting from the Bayesian
approach would still be the first course of action (that
is, betting on success) when (s, t) = (1/3, 1/2), and the
second course of action (that is, betting on failure)
when (s, t) = (2, 1/2), but it would be the indecision be-
tween the two courses of action when (s, t) = (1, 1/2).

The new decision problem in Example 7 can be con-
sidered as smoother than the original one in Exam-
ple 1, because in a certain sense there is a new possible
choice (the indecision) somewhere in between the two
courses of action. In particular, with the new decision
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problem the choice of s is perhaps “less crucial” than
with the original one, but this holds for the Bayes-
ian analysis as well as for the imprecise probability
analysis.

Apparently, the imprecise probability approach has
the advantage of not needing to define the utilities of
the cases of (partial) indecision. However, this ap-
pearance can be misleading. First, the definition of
these utilities can be avoided in the Bayesian approach
too, for instance by replacing the posterior expecta-
tions of the utilities of the original decisions with their
highest posterior density intervals (for a given proba-
bility level), and using interval dominance as a deci-
sion criterion. Second, and most important, the defi-
nition of the utilities for the cases of (partial) indeci-
sion is necessary anyway to evaluate and compare the
resulting imprecise probability methods: much work
has recently been done in this direction [37]. The
trouble is that the imprecise probability methods are
obtained on the basis of one decision problem (with-
out utilities for the cases of indecision), and are then
evaluated on the basis of another (with utilities for
the cases of indecision).

The difficulty in evaluating and comparing imprecise
probability methods is strictly related to a fundamen-
tal issue in the imprecise probability approach to in-
ference and decision making: the difficulty in com-
paring models with different degrees of imprecision
[30]. The discussion of this issue goes far beyond the
scope of the present paper, but it is important to note
the connection with the difficulty in the choice of the
parameter s of the imprecise Dirichlet model of Ex-
ample 3, since the degree of imprecision of this model
increases with s.

4 Conclusion

Imprecise probability methods are often claimed to be
robust, or more robust than Bayesian methods. Some-
times the expression “more robust” is simply used as
a synonym for “more imprecise” or “less determinate”
[23]. However, this use is misleading, if not wrong. In
fact, “more robust” has a positive connotation, which
“more imprecise” or “less determinate” do not have,
and which derives from its usual interpretation in sci-
ence and engineering as meaning something like “less
sensitive to small changes in the conditions or in the
assumptions”.

In particular, in the Bayesian approach to infer-
ence and decision making, robustness mainly refers
to changes in the choice of prior probability distri-
bution. A Bayesian sensitivity analysis (also called
robust Bayesian analysis) is the study of the robust-
ness of the conclusions of a Bayesian analysis. The

fact that Bayesian sensitivity analyses are often per-
formed by letting the prior vary in a set of proba-
bility distributions can suggest the idea that impre-
cise probability analyses are robust (since imprecise
probability measures can be identified with partic-
ular sets of probability measures). In fact, as dis-
cussed in Subsection 3.1, imprecise probability analy-
ses can perhaps be considered as more credible than
Bayesian ones, and as noted in Subsection 3.2, they
can be seen as descriptions of the robustness or non-
robustness of Bayesian analyses, when decision crite-
ria like maximality, E-admissibility, or interval domi-
nance are used. However, the robustness of imprecise
probability analyses does not refer to the variability of
a (precise) prior in a set of probability distributions,
but rather to the variability of the (imprecise) prior
in a set of imprecise probability distributions.

Another source of confusion about the robustness of
imprecise probability methods (besides the meaning
of “robust” in the expression “robust Bayesian analy-
sis”) seems to be the idea that they are allowed to be
inconclusive, while Bayesian methods are not. In fact,
the Bayesian approach to a particular decision prob-
lem is sometimes compared to the imprecise proba-
bility approach to a modified version of the decision
problem, in which (partial) indecision is allowed. As
discussed in Subsection 3.3, the new decision problem
is in a certain sense smoother than the original one,
and so robustness can be less of an issue. However,
both approaches can be applied to both decision prob-
lems, and a fair comparison is possible only if they are
applied to the same one.

In conclusion, imprecise probability methods are in
general not robust, and not more robust than Bayes-
ian methods. The robustness of the imprecise proba-
bility approach to inference and decision making can
be increased by introducing a second-order possibility
distribution, allowing a smoother and more efficient
updating rule [9, 10], but this goes beyond the scope
of the present paper, and will be the subject of future
work.
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Abstract 
 

In this paper a novel imprecise probability description is 
applied to vibro-acoustic problems in engineering. 
Frequently little data is available concerning the 
variability of the key input parameters required for a 
predictive analysis. This has led to widespread use of 
several uncertainty descriptions. The hybrid Finite 
Element/Statistical Energy Analysis (FE/SEA) approach 
to the analysis of vibro-acoustic systems is based on 
subdividing a system into: (i) SEA components which 
incorporate a non-parametric model of uncertainty and 
(ii) FE components with parametric uncertainty. This 
approach, combined with the Laplace asymptotic 
method, allows the evaluation of the failure probability. 
A novel strategy for establishing bounds on the failure 
probability when an imprecise probability model (based 
on expressing the probability density function of a 
random variable in the form of a maximum entropy 
distribution with bounded parameters) is employed is 
presented. The approach is illustrated by application to a 
built-up plate system.  
 
Keywords. Uncertainties in probabilistic assignments, 
hybrid FE/SEA method, reliability analysis, parametric 
and non-parametric uncertainty models, maximum 
entropy distribution, vibro-acoustic analysis. 
  
1   Introduction 
 
In engineering problems it is frequently the case that 
little data is available concerning the variability of the 
key input parameters (geometry, material properties, and 
boundary conditions) required for a predictive analysis, 
and yet an engineering assessment of a design must 
nonetheless be performed. This topic has been the subject 
of much recent research, and various analytical and 
computational approaches have been proposed (for 
example, [1-9]). Such methods require some description 

of the underlying uncertainties (for example, 
uncertainties in material properties, loading conditions, 
and fabrication details) which could be probabilistic 
(parametric [1-4], non-parametric [5-7] or a combination 
of both [8,9]) or non-probabilistic [1,4]. 
Reliability methods aim to estimate the probability that 
design targets will be met [10,11]; this probability is 
referred to as the reliability of the system. These methods 
are often based on a parametric probabilistic description 
of the uncertain parameters of the system and rely on the 
assumption that the statistical distributions (i.e. 
probability density function (pdf)) of these parameters 
are precisely known [12]. The parametric probabilistic 
description requires a large amount of empirical data if 
the pdf is constructed using a frequentist view. 
Alternatively the pdf may be interpreted as a statement of 
belief based on expert opinion, as in the subjective 
approach to probability theory [13].  The more common 
frequentist approach is concerned with the outcome of 
experiments performed (hypothetically or in reality) on 
large ensembles of systems; these ensembles may either 
be real (for example cars from a production line), or 
virtual but realizable in principle (such as an ensemble of 
manufactured satellites, when only one satellite may 
actually be built). In contrast, with the subjective 
approach, no ensemble is necessarily involved. The 
frequentist and subjective views can be roughly aligned 
to the notions of aleatory and epistemic uncertainty; 
aleatory uncertainty is an irreducible uncertainty 
associated with an inherent variability of the properties 
of the system, while epistemic uncertainty is reducible, 
being associated with a lack of knowledge of the analyst 
with respect to the system’s properties which are fixed 
[4]. Clearly, the interpretation employed for defining the 
pdf of the uncertain parameters will affect the 
interpretation of the results obtained with a predictive 
analysis.  
In practice, only a limited amount of data may be 
available and therefore it is often difficult to identify the 
form of the distribution of the random variable and/or the 
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parameters of the distribution. Moreover, the analyst may 
have uncertainties in belief, meaning that the specified 
pdf is itself subject to doubt. Using a pdf which differs 
from the actual one can significantly affect the prediction 
of the system performance with respect to safety, quality, 
design or cost constraints [12,14]. One way around this 
difficulty is to employ imprecise probability descriptions 
in the reliability assessment in order to establish bounds 
on the failure probability (that is the probability that the 
response exceeds a critical level). These bounds allow: 
(i) the evaluation of the sensitivity of the system response 
to the uncertainty of the system parameters; (ii) the 
identification of the worst case scenario (the highest 
failure probability expected). Many reliability 
approaches which includes imprecise probability 
descriptions have been developed in the past years, 
among which there are: (i) First Order Reliability 
Method (FORM) [10] approaches which employ pdfs 
with one [15] or two [16] bounded parameters (mean, 
variance or another distribution parameter), [15,16]; (ii) 
Dempster-Shafer theory (DST) [17,18] and P-box models 
of imprecise probabilities [19-21] applied to reliability 
analysis [22-25]; (iii) reliability analysis with random 
sets [26,27]; (iv) reliability assessment by means of 
Fuzzy Probabilities [4,28]; (v) Reliability models which 
account for the lack of information about the 
independence of the stress and strength, and about the 
parameters of each pdf [29]; (vi) reliability models based 
on imprecise Bayesian inference models [30]; (vii) 
Interval importance sampling methods combined with 
specified pdf with bounded parameters [31]. However, 
the application of these approaches is often limited to 
simple models, mainly because of the computational 
burden associated to the propagation of the imprecise 
probability description.  
In automotive and aerospace industries there are design 
requirements to ensure vibro-acoustic performance is 
met. Vibro-acoustic problems usually involve a very 
broad frequency range due to the broadband nature of the 
loadings acting on the system. Broadly speaking three 
frequency ranges can be identified: low-, mid- and high-
frequency ranges. In the low-frequency range the length 
scale of deformation of the system components is 
relatively long with respect to their overall dimension so 
that: (i) few degrees of freedom are required to model 
their dynamic behavior; (ii) the system response is 
insensitive to small changes in the system properties. The 
Finite Element method (FE) [32] is a well-established 
deterministic technique for acoustics and vibration 
analysis in the low-frequency range. In the high-
frequency range, instead, the length scale of deformation 
is comparable to small manufacturing imperfections 
producing high sensitivity to uncertainty and requiring a 
large number of degrees of freedom for capturing the 
components' dynamic behavior. An alternative to FE is to 
employ Statistical Energy Analysis (SEA) [6,33], a 
probabilistic technique which was developed specifically 
to deal with high frequency vibration. In SEA the system 

is modeled as an assembly of subsystems, whose 
response is described by their vibrational energy (defined 
as twice the time-averaged kinetic energy). The number 
of degrees of freedom employed is drastically reduced 
compared to the FE approach, since a single degree of 
freedom SEA subsystem might replace thousand of finite 
element nodes. The interaction between the SEA 
subsystems is described using the principle of 
conservation of energy flow, and this leads to a set of 
equations that can be solved to yield the subsystem 
energies. This method can predict both the ensemble 
average vibrational energy levels [33] (averaged across 
an ensemble of nominally identical structures) and the 
ensemble variance of the energy levels [6]. The 
application of this approach is limited to high frequency 
because of its underlying assumptions (i.e. each 
structural component is sufficiently random and that the 
coupling between subsystems is sufficiently weak [6]). 
Between the respective ranges of validity of FE and SEA 
there is a mid-frequency region and much research effort 
has been directed at the development of efficient 
analytical methods that can be applied in this range. One 
such method is the hybrid FE/SEA method [7,34]. This 
approach is based on subdividing a system into SEA 
components (which incorporate a non-parametric 
probabilistic model of uncertainty), and deterministic FE 
components. This partition leads to a large reduction of 
the number of degrees of freedom employed in the model 
and a large gain in numerical efficiency. Moreover the 
method enables the prediction of the mean and variance 
of the response (such as the energy response of a SEA 
subsystem or the mean squared amplitude of the finite 
element degrees of freedom) over a collection of systems 
with random SEA subsystems properties [7,34] without 
employing Monte Carlo simulations. The hybrid FE/SEA 
method has been recently generalized by introducing 
parametric uncertainty into the FE components [8] in 
order to provide an enhanced description of those 
components which may contain a degree of randomness, 
but cannot be appropriately modeled as SEA subsystems. 
The vibro-acoustic performance of a complex system in a 
broad frequency range can be established by applying the 
hybrid FE/SEA method in combination with the 
Laplace’s method (hybrid FE/SEA + Laplace) [35]. With 
this approach both parametric and non-parametric 
probabilistic uncertainty models are employed and the 
failure probability over the combined ensembles of 
uncertainty can be assessed. This approach is enhanced 
in this paper by considering a system with uncertain 
properties modeled with non-parametric, parametric and 
also imprecise parametric probabilistic descriptions in 
order to account for those input parameters of the FE 
components which are imprecisely known. In particular, 
the hybrid FE/SEA + Laplace is extended in this paper 
by employing a recently developed model of imprecise 
probability [36] in order to establish bounds on the 
failure probability. The imprecise model employed is 
based on expressing the probability density function of a 
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random variable in the form of a maximum entropy 
distribution with bounded parameters [36]. This 
parametric probabilistic uncertainty model will be 
described in more details in Section 2. The hybrid 
FE/SEA + Laplace approach will be summarized in 
Section 3. In Section 4 an efficient approach for 
establishing bounds on the failure probability is 
presented. The method is illustrated by application to a 
built-up plate system in Section 5. 
 
2   Probability Density Function with 
Bounded Parameters 
 
In this Section a recently developed parametric model of 
uncertainty which admits uncertainty in the probabilistic 
assignments is described [36]. This uncertainty model 
requires as input bounded statistical expectations of 
specified functions of the random variable and it can be 
used to describe both aleatory and epistemic 
uncertainties. The uncertainty model is briefly described 
in Subsection 2.1. In Subsection 2.2, a procedure for 
treating the bounded statistical expectations is 
summarised.  
 
2.1  Basic Concepts 
 
The model of uncertainty is based on considering that the 
pdf of a random variable x  itself is subject to doubt. The 
pdf is expressed as the exponential of a series expansion, 
but the parameters within this model, the so-called basic 
variables, are allowed to have bounded description [36]: 
 

( ) ( )
1

S exp .
n

j j
j

p x a f x
=

 
∈ =  

 
∑a    (1) 

 
Eq. (1) represents a family of distributions defined over 
the set of basic variables a  (which has entries ja  with 

2,3...,j n= ) that lie within an admissible region S . A 
“basic variable” is defined here as one which can have 
any possible pdf within certain bounds, including the 
extreme case of a delta function at any point between the 
bounds. If a parameter is not “basic”, then its pdf can be 
expressed in terms of the basic parameters, and thus only 
this type of parameter is considered in what follows. The 
admissible region S  can be an interval, a convex region, 
etc. The term ( )jf x  is a specified function of the 
uncertain variable, such that ( )1 1f x = . The coefficient 

1a  is dependent on the bounded basic variables ja  and it 
is chosen to satisfy the normalisation condition.  
Eq. (1) describes a single distribution when the basic 
variables have fixed values, and accounts for a more 
general description (a set of pdfs) when these parameters 
are bounded. In particular, for fixed basic variables, the 
pdf expression corresponds to the maximum entropy 
distribution [13] that arises from specifying the expected 
values ( )E jf x   , where the basic variables are replaced 

by the Lagrange multipliers (which are constant values). 
It can be therefore argued that Eq. (1) represents a family 
of maximum entropy continuous distributions. When the 
constraints are expressed in terms of statistical 
expectation inequality constraints, such as: 
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where ,minjv  and ,maxjv  are the lower and upper bound on 
the thj  statistical expectation jv , within a class of 
distribution (for example, polynomial distributions, 
maximum entropy distribution, etc.), there are many 
distributions which are consistent with the statistical 
expectation inequality constraints. The Principle of 
Maximum Entropy (MAXENT) selects, among the class 
of maximum entropy distributions, the distribution with 
the largest entropy [37]. The proposed approach, instead, 
constructs a family of maximum entropy distributions 
consistent with the statistical expectation inequality 
constraints and selects, among this family of pdfs, the pdf 
which maximises (or equivalently minimises) a specified 
engineering metric (for example, the probability of 
exceeding a specified limit value, the probability of being 
within a certain region). This pdf is potentially different 
from the pdf which maximises the entropy (which can be 
recovered as well); therefore the proposed approach is 
more useful from an engineering point of view. This 
aspect of the approach will be illustrated by a numerical 
application in Section 5 of this paper. 
The inequality constraints on the statistical expectation of 
the uncertain variable may arise by analysing a small 
data set or can be provided by an expert who may prefer 
to assign bounds rather than specifying a single value. If 

( )jf x x=  then the inequality constraints are specified 
on the mean value, alternatively if ( ) 2

jf x x= they are 
specified on the second moment. ( )jf x  can be also 
defined as an interval of possible values that the 
uncertain variable may take, i.e. ( ) [ ],jf x b c= ; in this 
case the constraints corresponds to the probability of 
finding the random variable within those bounds. 
The family of pdfs defined in Eq. (1) is constructed as 
follows: 

1. The form of the pdf which maximises the 
entropy is computed, as for the maximum 
entropy approach, by using the Lagrange 
multipliers method. 

2. The Lagrange multipliers are substituted by the 
basics variables a . 

3. The bounds on the statistical expectations of the 
uncertain variable are used to establish bounds 
on the basic variables. 

A procedure for obtaining an approximate mapping of 
the basic variables domain (a-domain) starting from a 
bounded description of the statistical expectations (m-
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domain) of the uncertain variable [36,38] is summarized 
in the next Subsection.  
 
2.2  Bounds Conversion 
 
Consider the case for which two statistical expectations 
of the uncertain variable x  lie within a rectangle, as 
described in Figure 1.  

The first step of the approach requires the evaluation of 
the maximum entropy distribution, which for the present 
case take the form 
 

( ) ( ) ( )[ ]1 2 2 3 3exp .p x a a f x a f x= + +a   (3) 

 
In principle, each point of the basic variables domain (a-
domain), which is depicted in Figure 2, can be evaluated 
by solving a set of two non-linear equations in terms of 
the statistical expectations of the random variable.  

For example, point 1 of the m-domain can be mapped in 
the corresponding point 1 of the a-domain by solving: 
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where 2a  and 3a  are the unknown coefficients, and 1a  is 
chosen to satisfy the normalisation condition.  
In practice, considering enough points along the edges of 
the m-domain would allow a good approximation of the 
shape of the a-domain to be obtained, reducing the 

number of sets of equations to be solved. The problem is 
that, even for a simple problem (like the 2D case 
depicted in Figure 1), the solution of each set of non-
linear equations can be time consuming and convergence 
problems may occur. 
An approximate mapping of the a-domain can be 
obtained by [36,38]: 

I. Evaluating the mid-points of the surfaces of the 
hypercube defining the m-domain 
( ( ) ( )* *

,max ,minE / 2j j j jf x v vν  = = −  ).  
II. Estimate the corresponding point *a  solving a set 

of non-linear equations for the mid-point of the m-
domain.  

III.  Each point of the a-domain is then calculated by 
using an approximate expression of the ths  
moment: 
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where: 
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This approach is expected to yield less accurate results 
when the variation of the ths  moment value with respect 
to the mid-point moment domain value becomes large.  
 
3   The Hybrid FE/SEA Method Combined 
with the Laplace Asymptotic Method 
 
In this Section the hybrid FE/SEA approach and its 
combination with the Laplace asymptotic method are 
briefly reviewed. 
 
3.1  Basic Concepts 
 
The hybrid Finite Element/Statistical Energy Analysis 
(FE/SEA) method [7,34] is a vibro-acoustic analysis 
technique which combines the strength of a well 
established low-frequency deterministic technique, the 
Finite Element method (FE) [32], with a high-frequency 
probabilistic method, the Statistical Energy Analysis 
method (SEA) [6,33], by means of the diffuse field 
reciprocity relation [39,40]. With this approach, within 
the frequency range of interest of the problem on hand, a 
complex system is considered as an assembly of (i) 
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components with very few local modes, collectively 
called the “master” system and modelled by using FE; 
and (ii) components with many local modes, called 
“subsystems”, which are modelled with SEA, and it is 
assumed that all the SEA subsystems are coupled 
exclusively through the master system. For example, a 
generic class of engineering systems characterised by 
thin panels coupled through stiff structural components is 
often encountered in aerospace structures, where a frame 
is coupled with a skin panel, or in automotive structures, 
where the frame of the car is coupled to the roof panel 
and window panel. Within the hybrid FE/SEA modelling 
strategy, the panels would be modelled as SEA 
subsystems, and the stiff components would be modelled 
using FE. The response of the master system is described 
by a set of nodal degrees of freedom q , and the response 

of the SEA subsystems is described by a set of 
vibrational energies E  (defined as twice the time-
averaged kinetic energy).  
The properties of the hybrid FE/SEA model components 
(such as density, Young’s modulus, geometry, etc.) are 
represented by two groups of parameters to distinguish 
different models of uncertainty [8]: the master system 
properties are represented by a set of parameters b , 
while the properties of the SEA subsystem are 
represented by a set of parameters s . The effect of the 
uncertain parameters s  is accounted for via a non-
parametric statistical approach based on the fact that at 
high frequency the statistics of the natural frequencies 
and mode shapes of the subsystems can approach certain 
universal distributions, regardless of the detailed nature 
of the underlying uncertainty [7,8,40]. The effect of the 
uncertain parameters b  is accounted for by a 
probabilistic parametric uncertainty model [8]. The 
system is therefore varying over two ensembles: a non-
parametric ensemble (a collection of systems with 
random subsystem properties) and a parametric ensemble 
(a collection of systems with random master system 
properties).  
For fixed master system properties, the hybrid FE/SEA 
method enables the calculation of the conditional non-
parametric ensemble average ( )jµ b  and ensemble 
variance ( )2

jσ b  of a response variable w  (which can be 
the vibrational energy of the SEA subsystem j , or the 
cross spectrum of the finite element degrees of freedom) 
[7,34]. The ensemble is non-parametric in the sense that 
the details of the parameters s  are never considered in 
the model, but rather the Gaussian Orthogonal Ensemble 
(GOE) is used to described the statistics of the subsystem 
natural frequencies and mode shapes [7,40]. This 
approach obviates the need for any detailed knowledge 
of the variability or uncertainty of the parameters s  and 
does not require Monte Carlo Simulations to be 
performed to propagate the uncertainty. The equations 
necessary for the evaluation of ( )jµ b  are reviewed in 
the following Subsection. 

3.2  The Hybrid FE/SEA Equations for Fixed FE 
Properties 
 
The hybrid FE/SEA equations for evaluating the 
ensemble average response (( )jµ b ) at the excitation 
frequency ω  are [34]: 

a) Subsystem energy balance equations 
 

, , ,( ) ( / / ) ,ext
j d j j jk j j j k k in j in j

k

E n E n E n P Pω η η ωη+ + − = +∑  (8) 

 
where jη  is the damping loss factor of the subsystem j , 

,d jη  is an additional loss factor on the subsystem j  due 
to the energy dissipated in the FE components, jkη  is the 
coupling loss factor between subsystem j  and 
subsystem k , jn  is the modal density of subsystem j  
(which is defined as the average number the average 
number of natural frequencies within a unit frequency 
band), jE  is the ensemble average vibrational energy of 
subsystem j , ,

ext
in jP  is the external power input to the 

subsystem arising from the loads acting on the master 
system and ,in jP  is the power input arising from external 
loads directly applied to the subsystem j .  
Eq. (8) states that the power dissipated through damping 
( ,( )j d j jEω η η+ ) plus the net power transmitted to other 
subsystems ( ( / / )jk j j j k kk

n E n E nωη −∑ ) is balanced 
by the power input to the subsystem (, ,

ext
in j in jP P+ ), and it 

is based on the assumption that the power transmitted is 
proportional to the difference of the average modal 
energies (defined as /j jE n ) of the coupled subsystems. 
Eq. (8) has the same form as the standard SEA equations 
[33], but also contains two additional terms relating to: 
(i) the contribution of the master system to the power 
input ,

ext
in jP , and (ii) the power dissipated in the master 

system, ,d j jEωη . These two terms can be expressed in 
terms of: (i) the total dynamic stiffness matrix 

( )k
tot dir dk

= +∑D D D , where dD  is the dynamic stiffness 
matrix associated with the FE model 
( 2

d iω ω= − + +D M C K , where , M C and K  are 
respectively the FE component mass, damping and 
stiffness matrices), and ( )k

dirD  is the so-called direct field 
dynamic stiffness matrix for subsystem k  which can be 
computed using various techniques [34]; (ii) the cross-
spectral matrix of the loading applied directly to the 
master system *T

ff  =  S ff , so that 
 

{ } { }( )1 ( ) 1*T
, ,

2 
Im Im ,jk

d j d rs tot dir tot
rs

rsj

D
n

αωη
π

− −
 

=   
 

∑ D D D (9) 

 

{ }( )( ) 1 1*T
, ,( / 2) Im ,ext j

in j dir rs tot ff tot rs
rs

P Dω − −= ∑ D S D   (10) 

 
where the superscript *  indicates the complex conjugate, 
the superscript T  denotes the transpose, Im represents 
the imaginary part of the matrix, and kα  is a factor 
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which takes into account the fact that the subsystem 
wave field may not be perfectly diffuse [7]. Generally 

kα  is equal to 1 when the subsystem wave field is 
diffuse, and close to 2 when the subsystem is excited 
predominantly by motion of the master system [7]. 
Three of the remaining terms in Eq. (8), specifically jη , 

jn , and ,in jP , are evaluated by using standard SEA 
procedures [33], while the coupling loss factors are 
expressed analytically as a function of the total dynamic 
stiffness matrix in the form [34] 
 

{ } { }( )( ) 1 ( ) 1*T
,

2 
Im Im .j kk

jk j dir rs tot dir tot
rs

rs

n D
αωη
π

− − =  
 

∑ D D D (11) 

 
Writing Eq. (8) for each subsystem leads to a set of 
equations that can be solved to yield the ensemble 
average vibrational energy jE  of each subsystem. This 
set of jE  is then used to calculate the average response 
of the master system. 

b) Master system response equation  
 

{ }1 ( ) 1*T4
Im ,kk k

qq tot ff dir tot
k k

E

n

α
ωπ

− −  
= +  

   
∑S D S D D  (12) 

 
here qqS  is the cross-spectrum of the response of the 
master system (averaged over the non-parametric 
ensemble), and the two terms on the right-hand side 
correspond to the forcing arising from external excitation 
(expressed in terms of the cross spectrum of the forces, 

ffS ) and the forcing arising from the subsystems, as 
yielded by the diffuse field reciprocity relation [39,40].  
By using the hybrid FE/SEA variance theory [7] it is also 
possible to estimate the covariance of the subsystem 
energies (Cov ,j kE E   , where /j j jE E n= ) and the 
variance of the cross-spectral matrix of the response of 
the master system (Var qqS   ) over the non-parametric 
ensemble, which are indicated in what follows as 

( )2
jσ b . These equations are required in the following 

developments of the theory for estimating the probability 
density of the general response variable, but for brevity 
they will not be included in this paper. The reader is 
referred to the paper by Langley and Cotoni [7] where 
their full derivations can also be found. 
 
3.3  Hybrid FE/SEA + Laplace 
 
The hybrid FE/SEA method has been recently combined 
with the Laplace’s method [35] (a technique used to 
approximate integrals expressed in the Laplace form 
[41]) in order to establish the failure probability of a 
complex built-up system with input parameters described 
by a combination of parametric and non-parametric 
probabilistic uncertainty models.  
The failure probability is defined as the probability that a 
deterministic limit value 0w  is reached and/or exceeded 

by the general response variable ( ),w w= b s  (which can 
be the vibrational energy of subsystem j , or the cross 
spectrum response of the master system). This condition 
can be expressed as: 
 

[ ] ( )
0

0P d .f w
P w w p w w

∞
= ≥ = ∫    (13) 

 
The application of the hybrid FE/SEA method for fixed 
b  yields the conditional non-parametric ensemble mean 
and variance of the response (( )jµ b and ( )2

jσ b , 
respectively), which can then be used to evaluate the 
probability density function of the general response 
variable conditional on b , ( )p w b ; for example, the pdf 
of the non-parametric ensemble vibrational energy is 
usually log-normal, and therefore the mean and variance 
yield the complete pdf [6,8,42]. Eq. (13) can be 
conveniently rewritten in terms of ( )p w b :  
 

( ) ( )
0

d d .f w
P p w p w

∞
= ∫ ∫b b b b    (14) 

 
The failure probability conditional on b  can be now 
defined as: 
 

( ) ( )
0

d ;f u
P p w w

∞
= ∫b b     (15) 

 
and therefore Eq. (13) can be written as an unbounded 
integral: 
 

( ) ( )d .f fP P p= ∫b b b b     (16) 

 
The integral in Eq. (16) can be evaluated numerically by 
considering a grid of integration points (direct 
integration), although this approach is unpractical when a 
large number of uncertain input parameters is considered 
[10]. Alternatively, an approximate evaluation of this 
integral can be obtained by applying the Laplace’s 
method to the integral expressed in the form 

( ) ( )exp ln dfP p    ∫b b b b . In particular, the failure 
probability can be approximated as [35]: 
 

( ) ( )( ) ( ) 1 2/2

1

2 det ,
d

f f j j j
j

P P p
ψ

π
−∗ ∗ ∗

=

 ≈  ∑ b b H b  (17) 

 
where ψ  stands for the number of local maxima of 

( ) ( )ln fP p  b b  at locations *
jb , d  is the dimension of 

the set of random variables b  involved in the problem, 
[ ]det  is the matrix determinant operator and ( )j

∗H b  is 
the Hessian matrix whose elements are given by 
 

( ) ( ) ( )( )
2

ln .ij f
i j

H P p
b b

∂
 = −  ∂ ∂

b b b   (18) 
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This approximation (Eq. (17)) corresponds to replacing 
the integrand function with an n-dimensional Gaussian 
distribution with mean equal to *

jb  and covariance 
matrix equal to the inverse of ( )j

∗H b . Conditions for the 
accuracy of Eq. (17) are discussed in references [41,43].   
 
4   Bounds on the Failure Probability 
 
4.1  Hybrid FE/SEA + Laplace Using Imprecise 
Probabilities 
 
The hybrid FE/SEA + Laplace approach can be 
generalised considering the case in which the uncertain 
input parameters b  of the FE components can be 
subdivided into two groups: (i) a set of parameters b̂  
described by a specified probability density function 

( )ˆp b ; and (ii) a set of parameters impb  imprecisely 
known  described in terms of bounded  statistical 
expectations (derived from small data set or specified by 
an analyst). The second set of parameters impb  can be 
modelled by using the imprecise probability uncertainty 
model presented in Section 2. With this approach, the 
joint pdf of the random variables ( )impp b a  is expressed 
in the form of a maximum entropy distribution (Eq. (1)), 
and the bounds on the statistical expectations are 
converted into bounds on the so-called basic variables a  
(as described in Section 2). If these basic variables are 
taken to have fixed values a , then a single pdf  

( )impp b a  is identified.  
According to Eq. (17), the failure probability conditional 
on the basic variables is then given by 
 

( ) ( )
( ) ( ) ( )

0
ˆP , ,

ˆ ˆ, d .

f imp

f imp imp

P w w

P p p

 = ≥
 

= ∫b

a b b a s

b b a b b a b
  (19) 

 
where ( )ˆ ,f impP b b a  is the failure probability conditional 
on  ( )ˆ , impb b a . 
 
The hybrid FE/SEA + Laplace approach [35] can be then 
employed to estimate the failure probability as: 
 

( ) ( ) ( ) ( )

( ) ( )
, ,

1

1 2
/ 2

,

ˆ ˆ,

ˆ2 det ,

f f j imp j j imp j
j

d

j imp j

P P p p
ψ

π

∗ ∗ ∗ ∗

=

−
∗ ∗

≈

 ×
 

∑a b b a b b a

H b b a

 (20) 

 
The evaluation of the failure probability requires: 

I. Evaluation of ( )( ),
ˆ ,j imp jp w b b a  by using the 

results yielded by the hybrid FE/SEA method. 
II. Calculation of ( ),

ˆ ,f j imp jP b b a  by using Eq. (15). 
III.  Evaluation of  ( ),

ˆ ,j imp j
∗ ∗b b a  by applying a 

standard unconstrained minimization algorithm to 

( ) ( ) ( ), ,
ˆ ˆln ,f j imp j j imp jP p p∗ ∗ ∗ ∗ −

 
b b a b b a . 

IV. Evaluation of the Hessian matrix. 

If the basic variables are allowed to vary, a family of 
response pdfs is obtained and the bounds on the failure 
probability can be established as 
 

( )( ) ( )( )
S S

min max .f f fP P P≤ ≤a a    (21) 

 
These bounds give an indication of the sensitivity of the 
system reliability with respect to the uncertainty on the 
pdf of the input parameters. If the bounds are wide, the 
uncertainty in the input parameter description is 
significantly affecting the system reliability. On the other 
hand, if the bounds are narrow then the system reliability 
is little affected by the uncertainty in the pdf of the 
uncertain parameters.  
 
4.2  Steps for Implementing the Proposed Approach 
 
The reliability analysis can be summarised as follows:  

I. The system is subdivided into: (i) FE components 
with uncertain properties b ; and (ii) SEA 
components with uncertain properties s . 

II. The effect of the uncertain parameters s  of the 
SEA components is accounted for by using non-
parametric statistical methods.   

III.  The uncertain parameters of the FE components b  
are partitioned into two sets of parameters: (i) b̂  
modelled by using a specified pdf ( )ˆp b ;  and (ii) 

impb  modelled via the imprecise probability model 

( )impp b a  where a  are the basic variables which 
define the family of pdfs (Eq. (1)). 

IV.  The admissible region of the basic variable a-
domain) associated to the random variables impb  
(obtained as described in Section 2 from the 
knowledge of the bounds on statistical 
expectations) is overlaid with a grid of points. 
This grid is chosen in order to capture enough 
sampled points within and along the a-domain. 

V. For each sampled point of this grid, the 
corresponding 1̀a  is calculated via normalization. 
The set of basic variables associated to each point 
of the domain identifies a single( )impp b a . 

VI.  For fixed basic variable a , ( )fP a  is calculated 
using Eq. (20). 

VII.  The bounds on the failure probability are then 
calculated by using Eq. (21). 

 
5   Numerical Application 
 
The example system is composed by two simply 
supported plates coupled via a spring/mass system in 
order to represent with the simplest possible dynamic 
model a generic class of systems in which thin panels are 
coupled to stiff structural components (such as the frame 
of a car coupled to the roof and the window panels). The 
coupling is realised using three springs attached in the 
interior of each plate (point connections) linked to the 
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second mass of the spring/mass system (Figure 3). The 
system is excited with a unit force applied to the first 
mass of the spring/mass system. The two plates are made 
of aluminium (Young’s modulus 9 271 10  /Y N m= × , 
density 32700 /Kg m  and Poisson’s ratio 0.3ν = ) and 
their properties are summarised in Table 1. 

 
Elements Thickness 

(mm) 
Size 

x yL L×  
( m m× ) 

Loss 
factor 

( ) %η   

Modal 
densityn 

(modes/Hz)  
Plate 1 1.25 1.4 1.2×  2 0.4286 

Plate 2 1.25 1.4 1.3×  2 0.4643 
 

Table 1: Properties of the plates. 
 
The spring connections in the interior of the first plate 
have stiffness ( )1 6ˆ 2 10 N/m,  1,2,3uk u= × = and 
attachment points ( ) ( ) ( )0.3,0.8 , 0.6,0.4 ,  and 0.8,0.6

 
measured in metres along the x  and y  directions and 
relative to point the 1o . The second plate is connected 
via springs of stiffness ( )2 4ˆ 2 10 N/m,  1,2,3lk l= × =  
attached at points ( ) ( ) ( )0.4,0.4 , 0.5,0.9 ,  and 0.9,0.7 
measured in metres along the x  and y  directions and 
relative to the point 2o . 
The hybrid FE/SEA model of the system comprises two 
SEA subsystems (the plates), which are highly random, 
and a mass/spring system (FE component) with two 
uncertain parameters, namely 1k  

and 2k . 1k  is described 
by a lognormal pdf with mean value 66 10 N/m×  and 
variance ( )21110 N/m . 2k  is imprecisely known and it is 
specified in terms of bounds on statistical expectations as 
summarised in Table 2 and depicted in Figure 4.  
 

1 2 3 4 

( )518 10 ,14.27×  ( )522 10 ,14.52×  ( )522 10 ,14.50×  ( )518 10 ,14.24×  

 
Table 2: Coordinates of the vertices of the m-domain. 

 
The system is forced by a unit force applied to the first 
mass of the mass/spring system (as shown in Figure 3). 
The design target is the energy level of plate 1 at 145 Hz, 
and a limiting value of 4

0 0.02 10E J−= ×  is considered. 

The initial step of the analysis consists of evaluating the 
probability density function of the uncertain parameter 

2k .  This is achieved by using the procedure described in 
Subsection 2.1. The pdf of 2k  has the form 
 

( ) ( )[ ]2 1 2 3exp ln ,p k a a x a x= − −a   (22) 
 
where 1a  is obtained by using the normalization 
condition as: 
 

( ) ( )( )3 1
1 2 3ln 1 ,aa a a−= − Γ −    (23) 

 
where ( )Γ i  is the gamma function.  
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Figure 4: Moment domain for 2k  

The a-domain is then calculated by using the strategy 
summarized in Subsection 2.2. In particular, the 
quadratic approximation of statistical expectations (Eq. 
(5)) was employed and 16 points along the m-domain (as 
shown in Figure 4) were mapped into the a-domain. The 
resulting approximate domain is shown in Figure 5. 
Each point of the a-domain defines a single pdf. Some of 
the pdfs corresponding to the a-domain are shown in 
Figure 6.  
The second step of the analysis consists of approximating 
the bounds on the failure probability as described in 
Subsection 4.2.  
The a-domain was overlaid with a grid of 50 50×  
equally-spaced points. The 16 points along the domain 
and 414 points internal to the domain were considered 
(for a total of 430 pdfs).  For each grid point ( )2 3,a a  the 
procedure illustrated in Subsection 4.1 was applied. In 
particular, for fixed ( ),

ˆ ,j imp jb b a  the hybrid FE/SEA 
method was applied to estimate the mean and variance of 
the response. These were used, under the assumption of a 
lognormal distribution of the vibrational energy of plate 
1, to evaluate ( )( ),

ˆ ,j imp jp w b b a . ( ),
ˆ ,f j imp jP b b a  was 

then calculated by using Eq. (15). The minimum point(s) 
of ( ) ( ) ( ), ,

ˆ ˆln ,f j imp j j imp jP p p∗ ∗ ∗ ∗ −
 

b b a b b a  was 
calculated by using the Matlab function fminunc. The 
Hessian matrix was approximated by using third order 
Lagrange polynomials. Finally, the failure probability 
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Figure 3: Built-up plate system under investigation. 
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conditional on the basic variables was computed by using 
Eq. (20).  

The results obtained for each grid point are shown in 
Figure 7.  

The bounds on the failure probability are (by using Eq. 
(21)): 0.02192 0.04245fP≤ ≤  (respectively, at point 1 
and 9 of the a-domain), meaning that the uncertainty in 
the input parameters significantly affects the failure 

probability estimates. The computational time required 
by the proposed approach was of about 3 minutes.  
The failure probability obtained for the MAXENT 
distribution (corresponding to the point 10 of the a-
domain in Figure 7) is 0.03976. The MAXENT 
distribution would therefore underestimate the maximum 
failure probability. 
The results obtained with the proposed approach were 
validated against direct numerical integration of Eq. (19), 
which took about 6 hours, showing differences less than 
1%. Full FE Monte Carlo simulations for the present 
system considering a single point (and therefore a single 
pdf) of the a-domain requires about 45 hours. Full FE 
Monte Carlo simulations are therefore unfeasible even 
for this example system. It can be concluded that the 
proposed approach provides a very efficient tool for the 
reliability analysis of system with uncertain properties.  
 
6   Summary and Conclusions 
 
An imprecise probability model based on expressing the 
pdf of a random variable in the form of a maximum 
entropy distribution with bounded parameters was used 
to describe the parametric uncertainty of the FE 
components of a hybrid FE/SEA model. The hybrid 
FE/SEA + Laplace method, which fully accounts for 
both parametric (FE components) and non-parametric 
(SEA components) uncertainties, was applied to establish 
bounds on the failure probability. These bounds give an 
indication of the sensitivity of the system reliability to 
the uncertain input parameters and allow establishing the 
highest failure probability expected. 
This approach provides a very useful tool for evaluating 
the reliability of complex engineering systems given that: 
- The partition of the system in SEA and FE 

components leads to a large reduction of the number 
of degrees of freedom employed in the model 
(potentially thousand of finite elements nodes are 
substituted with a single degree of freedom SEA 
subsytem) and a large gain in numerical efficiency. 

- The SEA subsystem ensemble is dealt with 
analytically (without using MCS) leading to a 
further reduction in computational costs. 

- The uncertainty in FE components is dealt with 
using the Laplace asymptotic method instead of 
MCS. 

- The bounds on the failure probability can be 
efficiently established when the imprecise 
probability model is employed. 

The method has been illustrated by application to built-
up plate systems, showing a large reduction of the 
computational cost when compared to a direct integration 
procedure and to Full FE Monte Carlo simulations. 
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Figure 7: Failure probability as a function of the basic 
variables. The lower and upper bounds of the failure 

probability are labeled as “min” and “max”. 

 
 

Figure 5: Approximate a-domain. 

 
 

Figure 6: Pdfs generated from the a-domain. 
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Abstract

In this paper we consider Bayesian-like inference pro-
cesses involving coherent T -conditional possibilities
assessed on infinite sets of conditional events. For
this, a characterization of coherent assessments of pos-
sibilistic prior and likelihood is carried on. Since we
are working in a finitely maxitive setting, the notions
of complete disintegrability and of complete conglom-
erability are also studied and their relevance in the
infinite version of the possibilistic Bayes formula is
highlighted.

Keywords. Complete disintegrability, complete con-
glomerability, finite maxitivity, T -conditional possi-
bility, possibilistic likelihood function, coherence.

1 Introduction

This paper deals with finitely maxitive T -conditional
possibilities (with T any continuous t-norm) and fo-
cuses the attention on problems related to the updat-
ing of possibility by Bayesian-like procedures.

In the first part of the paper we mainly deal with
the characterization of coherent T -conditional possi-
bility assessments, both for arbitrary families of con-
ditional events and for particular families of the type
{Hi, E|Hi}i∈I , with I infinite, where the Hi’s form
a partition of the sure event while E is an arbitrary
event. For these last assessments we also characterize
the set of coherent values for their extension to E, in
the case T is the minimum or a strict t-norm and E
is logically independent of the Hi’s.

In the second part we take into consideration two
concepts: complete disintegrability and complete con-
glomerability for events, defined in analogy to those
introduced in probability theory (originally given for
countable partitions [18, 29, 1]), considering infinite
partitions with arbitrary cardinality. As it is well-
known, in probability theory the two properties (see,
e.g., [17, 21, 29, 30, 31, 4]) are strictly related to σ-

additivity. In fact for finitely additive conditional
probabilities it is possible to have examples which,
contrary to intuition, show that a P needs not be con-
glomerative (and so disintegrable). In Bayesian lit-
erature, the phenomenon of nonconglomerability has
emerged in the so-called marginalization paradoxes
[7]. In this paper we show similarities and differ-
ences between the probabilistic and possibilistic con-
texts about complete disintegrability and complete
conglomerability, moreover we investigate their con-
nection with complete maxitivity. In particular, we
find that, for a fixed infinite partition L, complete
disintegrability w.r.t. L implies both complete max-
itivity w.r.t. L and complete conglomerability w.r.t.
L but the implications are not invertible. Further-
more, complete conglomerability w.r.t. L and com-
plete maxitivity w.r.t. L are independent.

2 Coherent T -conditional possibility

In this section we recall the definition of conditional
possibility given in [5, 6, 13, 14], that can be obtained
as a particular instance of the one introduced in [10].

An event E is singled out by a Boolean proposition,
that is a statement that can be either true or false.
Since in general it is not known whether E is true
or not, we are uncertain on E, which is said to be
possible. Two particular events are the certain event
Ω and the impossible event ∅, that coincide with, re-
spectively, the top and the bottom of every Boolean
algebra B of events, i.e., a set of events closed w.r.t.
the familiar Boolean operations of contrary c, con-
junction ∧ and disjunction ∨ and equipped with the
partial order ⊆. Recall that due to Stone’s theorem,
events can be represented as subsets of a universe set
that is identified with Ω: in this case we continue to
use c, ∧ and ∨ in place of set-theoretic operations.

A conditional event E|H is an ordered pair (E,H),
with H 6= ∅, where E and H are events of the same
“nature”, but with a different role (in fact H acts as
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a “possible hypothesis”). In particular any event E
can be seen as the conditional event E|Ω.

In what follows, B × H denotes a set of conditional
events with B a Boolean algebra andH an additive set
(i.e., closed with respect to finite disjunctions) such
that H ⊆ B0 = B \ {∅}. Moreover, given an arbitrary
set G = {Ej |Hj}j∈J , denote with 〈{Ej , Hj}j∈J〉 the
Boolean algebra generated by the events {Ej , Hj}j∈J .

We recall that a t-norm T is a commutative, asso-
ciative, increasing, binary operation on [0, 1], having
1 as neutral element. A t-norm is called continu-
ous (analogously, left-continuous or right-continuous)
if it is continuous as a function, in the usual interval
topology on [0, 1]2. Prototypical examples of continu-
ous t-norms are the minimum, the algebraic product
and the  Lukasiewicz t-norm, moreover, any continu-
ous t-norm is isomorphic to an ordinal sum of pre-
vious t-norms (see for instance [24]). A t-norm is
called strict if it is continuous and strictly monotone:
strict t-norms are isomorphic to the algebraic product
through an order automorphism of the unit interval.

Definition 1. Let T be any t-norm. A function Π :
B × H → [0, 1] is a T -conditional possibility if it
satisfies the following properties:

(i) Π(E|H) = Π(E ∧ H|H), for every E ∈ B and
H ∈ H;

(ii) Π(·|H) is a finitely maxitive possibility on B, for
any H ∈ H;

(iii) Π(E ∧F |H) = T (Π(E|H),Π(F |E ∧H)), for any
H,E ∧H ∈ H and E,F ∈ B.

Let us stress that condition (ii) requires that, for ev-
ery H ∈ H, Π(∅|H) = 0, Π(Ω|H) = 1 and for every
E1, . . . , En ∈ B, Π (

∨n
i=1Ei|H) = max

i=1,...,n
Π(Ei|H),

which is called finite maxitivity axiom [33]. More-
over conditions (i) and (ii) imply that Π(H|H) = 1
for every H ∈ H.

Notice that in this paper we do not postulate the
stronger condition of complete maxitivity, which re-
quires that for every {Ei}i∈I ⊆ B with

∨
i∈I Ei ∈ B

and arbitrary I, Π
(∨

i∈I Ei|H
)

= sup
i∈I

Π(Ei|H), thus

we always mean finitely maxitive T -conditional pos-
sibilities even when not explicitly stated.

Remark 1. Every finitely maxitive unconditional
possibility Π(·) on B can be seen as a T -conditional
possibility on B × {Ω}, where T is an arbitrary t-
norm. In particular, for a T -conditional possibility
Π on B×H, we will write Π(E) for Π(E|Ω), provided
that Ω ∈ H.

For every finite set of incompatible events
H1, . . . ,Hn ∈ H with H =

∨n
i=1Hi and for ev-

ery E ∈ B, axioms (ii) and (iii) imply a possibilistic
counterpart of the well-known disintegration formula

Π(E|H) = max
i=1,...,n

{T (Π(E|Hi),Π(Hi|H))}. (1)

Definition 1 does not require any particular property
for the t-norm T . The only constraint is the distribu-
tivity over the maximum operation used in condition
(ii), but this constraint is vacuous since every t-norm
is distributive over max.

Nevertheless, continuity of the t-norm T is fundamen-
tal [14, 27] in order to guarantee the extendability
(generally not in a unique way) of a T -conditional
possibility on B×H to a full T -conditional possibility
on B (i.e., with domain B × B0). For this, in the rest
of the paper we will always assume T is continuous
when not explicitly stated.

Differently from other common notions of condition-
ing in possibility theory [36, 23, 22, 15], a full T -
conditional possibility Π(·|·) is not singled out by a
single unconditional possibility measure Π(·), in gen-
eral, but one needs a class of finitely maxitive mea-
sures [33] defined on a family of ideals linearly ordered
by proper set inclusion.

Remark 2. We notice that in the particular case
where the t-norm T is the usual product, Ω ∈ H and
Π(H) = Π(H|Ω) > 0, for every H ∈ H, the definition
of T -conditional possibility coincides with Dempster’s
rule [20]:

ΠD(E|H) =
Π(E ∧H)

Π(H)
.

We recall that the conditional possibility ΠD is not
necessarily a coherent conditional upper probability
(see [16, 35]), vice versa a conditional possibility ob-
tained as upper envelope of a class of conditional prob-
abilities in general does not satisfy condition (iii) of
Definition 1.

Definition 2. Let B be a Boolean algebra and T a
continuous t-norm. A family {(Ii, πi) : i ∈ I} is a
T -nested class if:

(a) for every i ∈ I, Ii is a Boolean ideal of B and the
family {Ii : i ∈ I} is linearly ordered by proper
set inclusion;

(b) for every E ∈ B0, there exists i ∈ I such that
E ∈ Ii \

⋃{Ij : Ij ⊂ Ii};

(c) for every i ∈ I, πi is a (non-identically equal to 0)
finitely maxitive measure on Ii ranging in [0, 1],
such that for every E ∈ Ii, πi(E) < 1 if and only
if E ∈ ⋃{Ij : Ij ⊂ Ii};
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(d) for every i, j ∈ I such that Ii ⊂ Ij and every
E,F ∈ Ii, all the solutions of equation πi(E ∧
F ) = T (x, πi(F )) are solutions of the equation
πj(E ∧ F ) = T (x, πj(F ));

(e) for every i, j ∈ I such that Ii ⊂ Ij, πj |Ii ≤ πi.

Notice that, Definition 2 is equivalent in the finite case
to the notion of T -nested class introduced in [14]. In
particular, each finitely maxitive measure πi on Ii is
a restriction of a finitely maxitive possibility measure
on B.

The algebraic requirement on the domain of the func-
tion Π in Definition 1 cannot be relaxed, indeed ax-
ioms (i)–(iii) are no more sufficient to characterize
Π if it is defined on an arbitrary set of conditional
events G. Hence, in order to deal with this eventu-
ality, the axiomatic system must be reinforced going
back to the concept of coherence, originally introduced
by de Finetti [19] in the context of (finitely additive)
probabilities.

Definition 3. Let T be any continuous t-norm.
A function Π : G → [0, 1] is a coherent T -
conditional possibility (assessment) if there ex-
ists a T -conditional possibility Π′ : B×H → [0, 1] such
that Π′|G = Π, where B ×H ⊇ G with B a Boolean al-

gebra and H ⊆ B0 and additive class.

Remark 3. Previous definition can be equivalently
formulated by requiring that Π can be extended as a
full T -conditional possibility on B. In fact in [27] the
extendability of any T -conditional possibility on B ×
H to a full T -conditional possibility on B has been
proved.

Coherent T -conditional possibility assessments on fi-
nite domains have been characterized in [14]. Such
characterization has been extended to the infinite case
in [27], where the coherence of an assessment Π on G
is expressed in terms of coherence of Π|F on every fi-
nite F ⊆ G. The following Theorem 1 provides also a
characterization in terms of a T -nested class agreeing
with the assessment.

Theorem 1. Let T be a continuous t-norm, G =
{Ej |Hj}j∈J an arbitrary set of conditional events and
B the Boolean algebra generated by {Ej , Hj}j∈J . For
any F = {E1|H1, . . . , En|Hn} ⊆ G, let BF be the
Boolean algebra generated by {Ei, Hi} whose set of
atoms is CF , and HF ⊆ B0

F an additive set such that
{Hi} ⊆ HF . For a function Π : G → [0, 1], the fol-
lowing statements are equivalent:

(i) Π is a coherent T -conditional possibility on G;

(ii) for any F = {E1|H1, . . . , En|Hn} ⊆ G,
if CF 0 = {Cr ∈ CF : Cr ⊆ H0

0} and

H0
0 =

∨
H∈HF

H, there exists a sequence of

compatible systems SΠ
Fα, for α = 0, . . . , k, with

unknowns xαr ≥ 0 for Cr ∈ CFα,

SΠ
Fα :





max
Cr⊆Ei∧Hi

xαr = T

(
Π(Ei|Hi), max

Cr⊆Hi
xαr

)

[
for Ei|Hi ∈ F s.t. max

Cr⊆Hi
ξα−1
r < 1

]

xαr ≥ ξα−1
r , if Cr ∈ CFα

ξα−1
r = T

(
xαr , max

Cs∈CFα
ξα−1
s

)
, if Cr ∈ CFα

max
Cr∈CFα

xαr = 1

(2)

where ξ
α

(with r-th component ξαr ) is the so-
lution of the system SΠ

Fα and CFα is the set
of atoms {Cr ∈ CFα−1 : Cr ⊆ Hα

0 } with

Hα
0 =

∨{
H ∈ HF : max

Cr⊆H
ξβr < 1, β ≤ α− 1

}
,

moreover ξ−1
r = 0 for any Cr in CF 0;

(iii) there exists a T -nested class {(Ii, πi) : i ∈ I}
on B such that for every Ej |Hj ∈ G there exists
i ∈ I such that Hj ∈ Ii and πi(Hj) = 1 and
πi(Ej ∧Hj) = Π(Ej |Hj).

Proof. The equivalence between (i) and (ii) has been
proved in [27]. To prove the equivalence between (i)
and (iii) we follow the line of the construction in-
troduced by Krauss in [25] for full conditional prob-
abilities. Due to space limitations we give here just
a sketch of the proof. For this aim, consider that for
any full T -conditional possibility Π′ on B it is possible
to define a total preorder � on B0, setting E � F if
and only if Π′(F |E ∨ F ) = 1, for every E,F ∈ B0.
For every E ∈ B0, the relation � determines the
Boolean ideal IE = {F ∈ B0 : F � E} ∪ {∅}, and
the family {IE : E ∈ B0} results to be linearly or-
dered by set inclusion. For every E ∈ B0, define
πE(F ) = Π′(F |E ∨ F ) for every F ∈ IE , which re-
sults to be a finitely maxitive measure on the ideal
IE . The family {(IE , πE) : E ∈ B0} is such that if
IE = IF then πE = πF . Thus, up to equal ideals, we
can obtain a unique T -nested class {(Ii, πi) : i ∈ I}
which uniquely represents the full T -conditional pos-
sibility Π′ on B, since for every E|H ∈ B × B0, there
exists an index i ∈ I such that πi(H) = 1 and
πi(E ∧H) = Π′(E|H). Now, since by Remark 3 the
coherence of the assessment Π is equivalent to the ex-
istence of a full T -conditional possibility Π′ on B ex-
tending Π, this is equivalent, in turn, to the existence
of a T -nested class on B agreeing with the assessment
Π.

Remark 4. In condition (ii) of previous theorem, for
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any finite F ⊆ G, the sequence of solutions ξ
0
, . . . , ξ

k

gives rise to a class of possibilities PΠ = {Π0, . . . ,Πk}
on BF representing a T -conditional possibility on
BF × HF extending Π|F [27]. The choice of HF es-
sentially impacts on the number of systems to solve
[2, 3]. Let us notice that for the sake of convenience
one can always take for HF the minimal additive set
containing {Hi}, that is, the additive set generated by
the Hi’s. In the particular case HF is taken equal to

B0
F , then the solutions ξ

0
, . . . , ξ

k
correspond exactly

to a finite T -nested class {(I0, π0), . . . , (Ik, πk)} with
Iα ⊂ Iα−1, α = 1, . . . , k.

Remark 5. The characterization of coherence given
in Theorem 1 implies that if Π : G′ → [0, 1] is coher-
ent, then for any subset G ⊂ G′ also Π|G is coherent.

Now we focus on the main t-norms used for condi-
tioning in possibility theory, i.e., the minimum and
strict t-norms. Under this choice, the coherence of
an assessment is a sufficient (and necessary) condi-
tion for the extendability to any superset of condi-
tional events, as stated in next theorem [27], which is a
possibilistic counterpart of the celebrated de Finetti’s
fundamental theorem for conditional probabilities.

Theorem 2. Let T be the minimum or a strict t-
norm. Let G be an arbitrary set of conditional events
and Π : G → [0, 1] a coherent T -conditional pos-
sibility. Then Π can be extended as a coherent T -
conditional possibility Π′ to any superset G′ ⊃ G.
Moreover, if G′ = G ∪{E|H} then the coherent values
for Π′(E|H) lie in a closed interval [π∗, π∗].

Previous theorem, whose proof relies on Zorn’s
lemma, generalizes to the infinite case a result proved
in [14] for finite domains. In particular, the exten-
sion interval [π∗, π∗] is computed as the intersection
of all the intervals [πF∗, πF

∗] expressing the coherent
extensions of Π|F on E|H, for any finite subfamily
F ⊆ G.

Remark 6. Let Π : G′ → [0, 1] be a coherent T -
conditional possibility and G ⊂ G′. If we denote with
[π′∗, π′

∗
] the extension interval of Π on E|H and with

[π∗, π∗] the extension interval of Π|G on E|H, then it
holds [π′∗, π′

∗
] ⊆ [π∗, π∗].

Example 1. Take N as universe, let E = {Ei =
{i}}i∈N, and H = {H1 = {1}c,N}. Consider the
assessment Π defined for every Ei ∈ E and H ∈ H
as

Π(Ei|H) =

{
1
i if Ei ∧H 6= ∅,
0 otherwise.

The function Π is a coherent min-conditional possi-
bility as it can be extended as a min-conditional pos-
sibility on B×H, where B is the field of finite-cofinite
subsets of N. For example, a possible extension is the

function Π′ defined for H ∈ H putting Π′(E|H) = 1
if E is cofinite, while if E is finite we set

Π′(E|H) =

{ 1
min{i : i∈E∧H} if E ∧H 6= ∅,
0 otherwise.

Actually, Π′ turns out to be a T -conditional possibility
for every continuous t-norm T . Indeed, conditions
(i) and (ii) are easily verified, while condition (iii)
reduces to

Π′(E ∧H1) = T (Π′(E|H1),Π′(H1)),

for every E ∈ B, which trivially holds since Π′(H1) =
1 and Π′(E ∧H1) = Π′(E|H1) for every E ∈ B.

We want to determine the coherent extension interval
of the coherent min-conditional possibility Π to the
new event H1 = H1|N. By previous discussion we
know that 1 is the upper bound, thus we only need
to compute the lower bound. Recalling that E × H
is a countable set, for every {i1, . . . , in} ⊆ N we can
focus on the family F = {Eij , Eij |H1, : j = 1, . . . , n}.
Indeed, by virtue of Remark 6 every finite subset of F
gives rise to a larger extension interval, thus it can be
ignored.

Denote with Cij = Eij ∧ H1 and C ′ij = Eij ∧ Hc
1,

j = 1, . . . , n, and Cin+1
=
∧n
j=1E

c
ij
∧H1 and C ′in+1

=∧n
j=1E

c
ij
∧Hc

1, the atoms generated by {Eij , H1 : j =

1, . . . , n}, where only possible ones are considered.

The lower bound of the extension interval of Π|F
on H1 is computed solving the following optimization
problem under the system SΠ

F0
[27], which has un-

knowns x0
ij
, x0
ij

′ ≥ 0 for atoms Cij , C
′
ij

, j = 1, . . . , n+
1, and results to be

minimize

[
max

j=1,...,n+1
{x0

ij}
]

SΠ
F 0 :





max{x0
ij
, x0
ij

′} = 1
ij

[j = 1, . . . , n]

x0
ij

= min

{
1
ij
, max
j=1,...,n+1

{x0
ij
}
}

[j = 1, . . . , n]

max
j=1,...,n+1

{x0
ij
, x0
ij

′} = 1

where equations of the second kind in which Cij = ∅
are neglected as well as unknowns corresponding to
Cij = ∅ or C ′ij = ∅.
The lower bound can be written as m{i1,...,in} =

max
{

1
ij

: j = 1, . . . , n, ij 6= 1
}

.

Hence, the coherent min-conditional possibility values
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for H1 range in the closed interval

⋂

{i1,...,in}⊆N
[m{i1,...,in}, 1] =

[
1

2
, 1

]
.

3 Possibilistic likelihood functions
and possibilistic priors on infinite
partitions

Theorem 1 and 2 deal with coherence and extension
in their most general form. Nevertheless, there are
situations in which coherence is immediately implied
by some conditions and the extension on a new con-
ditional event is easily computed.

This is the case of Bayesian-like inference processes
in which one considers a prior possibility π(·) on a
partition {Hi}i∈I and a possibilistic likelihood f(E|·)
on the set {E|Hi}i∈I , where E is the evidence event.
The aim is to evaluate the posterior possibility of the
conditional events {Hi|E}i∈I .
To accomplish this task it is fundamental to establish
whether the two assessments π and f are coherent per
se and moreover whether the global assessment {f, π}
is coherent.

A complete characterization of the coherence of pre-
vious assessments has been given for a finite I =
{1, . . . , n} in [9]. In this case, the coherence of {f, π}
allows to regard the global assessment as a Π(·|·) on
the set G = {Hi, E|Hi}i∈I and to apply the following
possibilistic counterpart of the Bayes formula (where
we denote with Π also the posterior) for i = 1, . . . , n,

T

(
Π(Hi|E), max

j=1,...,n
{T (Π(E|Hj),Π(Hj))}

)
=

= T (Π(E|Hi),Π(Hi)). (3)

Notice that, differently from the probabilistic case,
depending on the particular t-norm T , the posterior
possibility Π(·|E) could be non-unique on some Hi

even requiring Π(E) > 0. In particular, if we consider
T = min or a strict t-norm, Theorem 2 implies that
each posterior Π(Hi|E) lies in a (possibly degenerate)
closed interval. Hence, in case of non-uniqueness, an
arbitrary value in each interval can be chosen: the
only constraint we have is that max

i=1,...,n
Π(Hi|E) = 1.

Example 2. Consider the finite partition L =
{H1, H2, H3} together with the event E such that
E∧H1 = ∅. The following global assessment Π(H1) =
1, Π(H2) = Π(H3) = 1

3 , Π(E|H1) = 0, Π(E|H2) = 1
2

and Π(E|H3) = 1
3 , is a coherent min-conditional pos-

sibility.

In order to get the posterior (that we still denote with

Π) we compute

max
j=1,2,3

{min{Π(E|Hj),Π(Hj)}} =
1

3
,

thus for i = 1, 2, 3 we need to solve

min

{
Π(Hi|E),

1

3

}
= min{Π(E|Hi),Π(Hi)},

that implies Π(H1|E) = 0, Π(H2|E),Π(H3|E) ∈[
1
3 , 1
]

such that max{Π(H2|E),Π(H3|E)} = 1.

Our goal in this section is to generalize previous
results to the case of an infinite index set I with
card I ≥ cardN.

Next theorem puts in evidence that every function de-
fined on an infinite partition L = {Hi}i∈I and ranging
in [0, 1] (in particular the null function) is a coherent
finitely maxitive possibility (i.e., it can be extended as
a finitely maxitive possibility on 〈L〉), and so, by Re-
mark 1, a coherent T -conditional possibility, for any
continuous t-norm T .

Theorem 3. Let L = {Hi}i∈I be a partition of Ω
with card I ≥ cardN. Then any function π : L →
[0, 1] is a coherent T -conditional possibility (for every
continuous t-norm T ).

Proof. We use condition (ii) of Theorem 1. Then for
every {i1, . . . , in} ⊆ I, take the set F = {Hij : j =
1, . . . , n} and denote Cij = Hij for j = 1, . . . , n, and
Cin+1

=
∧n
j=1H

c
ij

, the atoms generated by F .

Consider the sequence of systems SΠ
Fα with HF =

{Ω}. The first (and unique) system of the sequence
has unknowns x0

ij
≥ 0 for Cij , j = 1, . . . , n + 1, and

results to be

SΠ
F 0 :





x0
ij

= π(Hij ) j = 1, . . . , n

max
j=1,...,n+1

{x0
ij
} = 1.

System SΠ
F 0 admits the solution x0

ij
= π(Hij ), for

j = 1, . . . , n, and x0
in+1

= 1, and so π is coherent.

Let L = {Hi}i∈I be an arbitrary partition of Ω and E
an arbitrary event, in the following we call likelihood
function any function f : {E}×L → [0, 1] defined as:

f(E|Hi) =





0 when E ∧Hi = ∅,
1 when Hi ⊆ E,
a value γi ∈ [0, 1] otherwise.

(4)

We underline that for the values γi’s the only con-
straint is to be between 0 and 1.

Theorem 4. Let L = {Hi}i∈I be a partition of Ω
with card I ≥ cardN and E an arbitrary event. For
a likelihood function f : {E} × L → [0, 1], defined by
(4), the following statements hold:
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(i) f is a coherent conditional probability;

(ii) f is a coherent T -conditional possibility (for ev-
ery continuous t-norm T ).

Proof. In [9] this theorem has been proved for a finite
partition L, we prove it for the infinite case. Con-
dition (i) follows by Proposition 1 in [8] and The-
orem 4 in [11]. To prove (ii), by condition (ii) of
Theorem 1, for every {i1, . . . , in} ⊆ I, take the set
F = {E|Hij : j = 1, . . . , n} and denote Cij = E ∧Hij

and C ′ij = Ec ∧ Hij for j = 1, . . . , n, and Cin+1
=

E ∧∧nj=1H
c
ij

and C ′in+1
= Ec ∧∧nj=1H

c
ij

, the atoms

generated by {E,Hij : j = 1, . . . , n}, where only pos-
sible ones are considered.

Consider the sequence of systems SΠ
Fα with HF equal

to the additive set generated by the Hij ’s. The first
(and unique) system of the sequence has unknowns

x0
ij
, x0
ij

′ ≥ 0 for Cij , C
′
ij

, j = 1, . . . , n, and results to
be

SΠ
F 0 :





x0
ij

= T
(
f(E|Hij ),max{x0

ij
, x0
ij

′}
)

[j = 1, . . . , n]

max
j=1,...,n

{x0
ij
, x0
ij

′} = 1

where equations in which Cij = ∅ are neglected as well
as unknowns corresponding to Cij = ∅ or C ′ij = ∅. A

solution for SΠ
F 0 is x0

ij
= f(E|Hij ) and x0

ij

′
= 1 for

j = 1, . . . , n, implying that f is coherent.

Previous theorem highlights that no significant prop-
erty characterizes a likelihood function (defined by
(4)) regarded either as coherent conditional probabil-
ity or as coherent T -conditional possibility.

Remark 7. We notice that Theorem 4 is related to
a function defined only on a set of events {E} × L,
(the conditioned event E is only one). Obviously, if
we have a family of likelihood functions {fj : j ∈
J} each defined on {Ej} × L, where E = {Ej}j∈J is
an arbitrary set, the assessment could be non-globally
coherent. In particular if E is a finite partition we
must take into account additivity in the probabilistic
case and maxitivity in the possibilistic case, as the
following Theorem 5 shows.

Theorem 5. Let E = {Ej}j=1,...,m and L = {Hi}i∈I
be two partitions and let F be a (finite) class {fj :
j = 1, . . . ,m} of likelihood functions, where each fj is
defined by (4) on {Ej} × L, for j = 1, . . . ,m. Then
the following statements hold:

(i) the global assessment F is a coherent conditional

probability if and only if
m∑
j=1

fj(Ej |Hi) = 1 for

every Hi;

(ii) the global assessment F is a coherent T -
conditional possibility (for every continuous t-
norm T ) if and only if max

j=1,...,m
fj(Ej |Hi) = 1

for every Hi.

Proof. In [9] this theorem has been proved for a finite
partition L, we prove it for the infinite case. Condi-
tion (i) follows by Theorem 4 in [11]. Condition (ii)
follows by Theorem 1 on the same line of the proof of
Theorem 4.

Next theorem focuses on a likelihood function taking
into account also a probabilistic or possibilistic prior.

Theorem 6. Let L = {Hi}i∈I be a partition of Ω with
card I ≥ cardN and E an arbitrary event. Consider
a likelihood function f : {E} × L → [0, 1], defined by
(4), a coherent probability assessment p : L → [0, 1]
and a coherent possibility assessment π : L → [0, 1].
The following statements hold:

(i) the global assessment {f, p} is a coherent condi-
tional probability;

(ii) the global assessment {f, π} is a coherent T -
conditional possibility (for every continuous t-
norm T ).

Proof. In [9] this theorem has been proved for a finite
partition L, we prove it for the infinite case. Condi-
tion (i) follows by Proposition 2 in [8] and Theorem 4
in [11] (see also [28, 32]). Condition (ii) follows by
Theorem 1 in analogy to the proof of Theorem 4, and
taking into account Remark 5.

Example 3. Consider N as universe and take the
partition L = {Hi = {2i − 1, 2i}}i∈N, together with
E = {2i : i ∈ N}. Consider the assessments
f(E|Hi) = 1

i , p(Hi) = π(Hi) = 0 for i ∈ N. We have
that f(E|·) verifies condition (4), moreover p(·) and
π(·) are, respectively, a coherent probability and a co-
herent possibility. This implies {f, p} and {f, π} are,
respectively, a coherent conditional probability and a
coherent T -conditional possibility (for every continu-
ous T -norm).

4 Complete disintegrability and
complete conglomerability

In this section we consider a T -conditional possibility
Π on B × H, with H containing Ω and a partition
L = {Hi}i∈I , where I is arbitrary. Moreover, we say
that an event E ∈ B is logically independent of the
elements of L if ∅ 6= E ∧Hi 6= Hi, for i ∈ I.
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Definition 4. A T -conditional possibility Π on B×H
is completely maxitive on L if it holds

sup
i∈I

Π(Hi) = 1. (5)

Definition 5. Given an event E ∈ B, and a T -
conditional possibility Π on B × H, we say that Π is
completely L-disintegrable on E if it holds

Π(E) = sup
i∈I

T (Π(E|Hi),Π(Hi)). (6)

We introduce now a notion of conglomerability analo-
gous the one introduced by de Finetti [17, 18, 19] (see
also [29, 7, 30, 31, 1]), involving only events. We recall
that in probability theory a stronger notion of con-
glomerability involving linear spaces of bounded ran-
dom variables is present (see for instance [21, 28, 4]).

Definition 6. Given an event E ∈ B, and a T -
conditional possibility Π on B × H, we say that Π is
completely L-conglomerative on E if it holds

inf
i∈I

Π(E|Hi) ≤ Π(E) ≤ sup
i∈I

Π(E|Hi). (7)

Remark 8. Definitions 5 and 6 actually involve only
a family G = {E,Hi, E|Hi}i∈I contained in B×H, so
they can be given for a coherent T -conditional possibil-
ity assessment on G, if we are interested only on com-
plete L-conglomerability or complete L-disintegrability
on E (for instance in Bayesian-like updating). In
fact, these properties are satisfied (for the given E and
L) by all the possible extensions on B×H. Neverthe-
less, as discussed in the following, the above proper-
ties required only for one event E are not particularly
meaningful, so we use a Π on B × H to enforce the
properties to all the events of B.

In the case the partition L is finite, it is readily veri-
fied that complete maxitivity on L collapses into finite
maxitivity and complete L-disintegrability and com-
plete L-conglomerability always hold for every E ∈ B,
as simple implications of Definition 1. Nevertheless,
previous properties could not be verified when the
partition is infinite. In particular, in analogy with
finitely additive conditional probability [18, 29], there
can exist events E ∈ B on which Π is completely
L-disintegrable but not completely L-conglomerative
and vice versa, as shown in next example.

Example 4. Let T be a continuous t-norm and con-
sider the countable set G = {E,Hi, E|Hi}i∈N with E
logically independent of the elements of the partition
L = {Hi}i∈N. Recall that the coherence of an assess-
ment on G implies its extendability on B × H, where
B = 〈{E} ∪ L〉 and H is the additive set generated by
L.

The coherent T -conditional possibility assessment
Π(E) = 1

2 , Π(E|Hi) = 1
i and Π(Hi) = 0 for i ∈ N is

completely L-conglomerative on E, but not completely
L-disintegrable on E. In fact, we have Π(E) = 1

2 6=
0 = supi∈I T (Π(E|Hi),Π(Hi))

On the other hand, the coherent assessment Π(E) =
Π(Hi) = 0 and Π(E|Hi) = 1

2 for i ∈ N is com-
pletely L-disintegrable on E, but it is not completely
L-conglomerative on E, since we have Π(E) = 0 <
1
2 = infi∈I Π(E|Hi).

Previous claim suggests to give a definition
of complete L-disintegrability and complete L-
conglomerability which is not dependent on the event
E.

Definition 7. A T -conditional possibility Π on B×H
is completely L-disintegrable if it is completely L-
disintegrable on E, for every E ∈ B.

Definition 8. A T -conditional possibility Π on B×H
is completely L-conglomerative if it is completely
L-conglomerative on E, for every E ∈ B.

Let us note that the notion of conglomerability given
in previous definition differs from the ones proposed
for coherent lower and upper previsions (see for in-
stance [34, 16, 26]). The difference is essentially due
to the different concepts of conditioning adopted (see
Remark 2).

Remark 9. Suppose to have a possibilistic prior π
on a partition L and two likelihood functions fj on
{Ej} × L, with Ej ∈ B, (j = 1, 2), such that each
{fj , π} admits a completely L-conglomerative exten-
sion on B × H. Even in the case {f1, f2, π} is glob-
ally coherent there could not exist a completely L-
conglomerative extension on B×H (similarly for com-
plete L-disintegrability). Previous discussion general-
izes to a larger class of likelihood functions.

It is well-known that, in the probabilistic framework
(see for instance [18, 21, 29]), for a countable I,
L-disintegrability and σ-additivity on L are equiva-
lent. Nevertheless, since in the case of probability the
equivalence is implied by the subtractive property, the
same equivalence does not hold in the case of possi-
bility, as shown by next example.

Example 5. Let T be a continuous t-norm and I
an index set s.t. card I ≥ cardN. Consider the set
G = {E,Hi, E|Hi}i∈I , where the Hi’s form a partition
L of Ω and E is logically independent of the Hi’s.

The assessment Π(E) = Π(Hi) = 1 and Π(E|Hi) = 0
for i ∈ I, is a coherent T -conditional possibility.

We have that Π is completely maxitive on the parti-
tion L since supi∈I Π(Hi) = 1, while it is not com-
pletely L-disintegrable on E since Π(E) = 1 6= 0 =
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supi∈I T (Π(E|Hi),Π(Hi)).

In the possibilistic setting, complete maxitivity on
L is only a necessary condition for complete L-
disintegrability.

Proposition 1. If a coherent T -conditional possibil-
ity Π on B × H is completely L-disintegrable, then it
is completely maxitive on L.

Proof. It holds

1 = Π(Ω) = sup
i∈I

T (Π(Ω|Hi),Π(Hi)) = sup
i∈I

Π(Hi).

We notice that if Π is not completely maxitive on L
then, if there exists an E ∈ B such that Π is com-
pletely L-disintegrable on E then Π is not completely
L-disintegrable on Ec.

Next theorem shows that, analogously to the proba-
bilistic case [19], complete L-disintegrability implies
the complete L-conglomerative property.

Theorem 7. If a T -conditional possibility Π on B×H
is completely L-disintegrable, then it is completely L-
conglomerative.

Proof. For every E ∈ B, complete L-disintegrability
implies that

Π(E) = sup
i∈I

T (Π(E|Hi),Π(Hi)) ≤ sup
i∈I

Π(E|Hi),

moreover, setting κ = infi∈I Π(E|Hi) and recalling
Proposition 1 and that any left-continuous t-norm
commutes with the supremum, we get

Π(E) = sup
i∈I

T (Π(E|Hi),Π(Hi))

≥ sup
i∈I

T (κ,Π(Hi)) = T

(
κ, sup

i∈I
Π(Hi)

)
= κ.

Nevertheless, as it is shown in [29] for probability the-
ory in the case of a countable partition, complete L-
disintegrability and complete L-conglomerability are
not equivalent. The next example in fact shows that
complete L-disintegrability is just a sufficient condi-
tion for the complete L-conglomerative property.

Example 6. Take N as universe, let B be the field of
finite-cofinite subsets of N and L = {Hi = {i}}i∈N.
Consider on B × B0 the function Π defined for any
E|H ∈ B × B0 putting if H is cofinite

Π(E|H) =

{
0 if E ∧H is finite,
1 otherwise,

while if H is finite

Π(E|H) =

{
0 if E ∧H = ∅,
1 otherwise.

First we show that Π is a full T -conditional possibility
on B for any continuous t-norm T . For this, it is
sufficient to show that axiom (iii) of Definition 1 is
satisfied, since axioms (i) and (ii) are easily seen to
be verified. At this aim, for any H,E ∧H ∈ B0 and
E,F ∈ B we consider the following cases.

(Case 1). If E ∧H and H are cofinite then we have
Π(E|H) = 1, thus axiom (iii) is verified both when
E ∧ F ∧ H is cofinite (in this case we have Π(E ∧
F |H) = Π(F |E∧H) = 1) and when E∧F∧H is finite
(in this case we have Π(E∧F |H) = Π(F |E∧H) = 0).

(Case 2). If E ∧ H is finite and H is cofinite then
we have Π(E|H) = 0, thus axiom (iii) is verified for
every value of Π(F |E ∧H), since E ∧ F ∧H is finite
and so we have Π(E ∧ F |H) = 0.

(Case 3). If E ∧ H and H are finite then we have
Π(E|H) = 1, thus axiom (iii) is verified both when
E ∧ F ∧H 6= ∅ (in this case we have Π(E ∧ F |H) =
Π(F |E ∧H) = 1) and when E ∧ F ∧H = ∅ (in this
case we have Π(E ∧ F |H) = Π(F |E ∧H) = 0).

It is easily seen that Π is not completely maxitive on
L, since

Π(N) = 1 > 0 = sup
i∈N

Π(Hi),

thus by virtue of Proposition 1, Π is not completely
L-disintegrable. On the contrary, we have that Π
is completely L-conglomerative. Indeed, if E is cofi-
nite we have Π(E) = 1 ≥ infi∈N Π(E|Hi), and there
must exist j ∈ N such that E ∧ Hj 6= ∅, thus
supi∈N Π(E|Hi) = 1. Moreover, if E is finite we have
Π(E) = 0 ≤ supi∈N Π(E|Hi), and there must exist
j ∈ N such that E∧Hj = ∅, thus infi∈N Π(E|Hi) = 0.

Since complete L-disintegrability and complete L-
conglomerability refer to a partition L ⊂ H, it is
natural to ask if their validity w.r.t. an infinite L
implies the validity w.r.t. any other infinite partition
L′ ⊂ H. In next example, inspired to the well-known
Lévy’s paradox [19, 30, 31, 7], we show that it is not
the case.

Example 7. Take N2 as universe, let B be the power
set of N2 and take the two partitions L1 = {Hi =
{i} × N}i∈N and L2 = {Ki = N × {i}}i∈N. Consider
on B×(L1∪L2) the function Π defined for any E|H ∈
B × (L1 ∪ L2) putting

Π(E|H) =

{
0 if E ∧H is finite,
1 otherwise.
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It is possible to show that the assessment Π is a co-
herent T -conditional possibility for any continuous t-
norm T .

The coherence of Π implies its extendability to B×H,
where H is the additive set generated by L1 ∪ L2.
In particular, taking E = {(i, j) ∈ N2 : i ≥ j}
we have Π(E|Hi) = Π(Ec|Ki) = 0, for any i ∈ N,
which implies that no extension Π′ can be simulta-
neously completely L1-conglomerative and completely
L2-conglomerative.

Finally, by virtue of Theorem 7 it follows that no
extension Π′ can be simultaneously completely L1-
disintegrable and completely L2-disintegrable.

Complete L-disintegrability and complete L-
conglomerability are particularly relevant in the
context of Bayesian-like inference processes since
they constrain the set of coherent values for the
posterior possibility. Anyway, when they are not
satisfied, one needs to go back to the general enlarge-
ment procedure in which the posterior values are
determined by Theorem 2.

For this, we are interested in the coherent extensions
Π′ on G ∪ {E} of a coherent T -conditional possibility
Π assessed on a family G = {Hi, E|Hi}i∈I , card I ≥
cardN, where the set L = {Hi}i∈I is a partition of Ω
and E is an arbitrary event. Let us stress that Π is
nothing else than the global assessment corresponding
to a likelihood f and a possibilistic prior π (coherent
by Theorem 6).

Next theorem characterizes the set of coherent val-
ues for the possibility Π′(E) in the case E is logically
independent of the Hi’s and T is the minimum or a
strict t-norm. Notice that if Hi ⊆ E for every i ∈ I,
then it must be Π(E|Hi) = 1 for every i ∈ I and so
Π′(E) = 1; similarly, if Hi ∧ E = ∅ for every i ∈ I,
then it must be Π(E|Hi) = 0 for every i ∈ I and so
Π′(E) = 0. Thus in this two trivial situations com-
plete L-conglomerability on E holds compulsorily.

Theorem 8. Let Π be a coherent T -conditional pos-
sibility on G (with T = min or strict) such that for
i ∈ I it is ∅ 6= E ∧ Hi 6= Hi, Π(E|Hi) = πi and
Π(Hi) = π′i, with card I ≥ cardN. Then the set of
coherent values for Π′(E) is

⋂

{i1,...,in}⊆I

[
M{i1,...,in}, 1

]
, (8)

where M{i1,...,in} = max
j=1,...,n

T (πij , π
′
ij

).

Proof. By Theorem 2 the coherent values for Π′(E)
are a closed interval [π∗, π∗], that is obtained as the
intersection of all the intervals [πF∗, πF

∗] expressing

the coherent extensions of Π|F on E, for any finite
subfamily F ⊆ G.

Thus, for every {i1, . . . , in} ⊆ I take the set F =
{Hij , E|Hij : j = 1, . . . , n}. Notice that by Remark 6
every finite subset of F gives rise to a larger exten-
sion interval than the one induced by F and thus can
be ignored. Denote with Cij = E ∧ Hij and C ′ij =

Ec ∧ Hij , j = 1, . . . , n, and Cin+1 = E ∧ ∧nj=1H
c
ij

and C ′in+1
= Ec ∧∧nj=1H

c
ij

, the atoms generated by

{E,Hij : j = 1, . . . , n}.
The endpoints of the extension interval of Π|F on E
are computed solving the following two optimization
problems under the system SΠ

F0
, which has unknowns

x0
ij
, x0
ij

′ ≥ 0 for atoms Cij , C
′
ij

, j = 1, . . . , n + 1, and
result to be

minimize

/
maximize

[
max

j=1,...,n+1
{x0

ij}
]

SΠ
F 0 :





max{x0
ij
, x0
ij

′} = π′ij j = 1, . . . , n

x0
ij

= T
(
πij ,max{x0

ij
, x0
ij

′}
)

j = 1, . . . , n

max
j=1,...,n+1

{x0
ij
, x0
ij

′} = 1

for which any solution is such that x0
ij

= T (πij , π
′
ij

),
for j = 1, . . . , n, thus the possibility of E is de-
termined by the value assigned to x0

in+1
which is

only asked to belong to [0, 1]. This implies the ex-
tension of Π|F on E ranges in

[
M{i1,...,in}, 1

]
with

M{i1,...,in} = max
j=1,...,n

T (πij , π
′
ij

), and the conclusion

follows.

In particular, previous theorem implies that if
Π(E|Hi) = π for i ∈ I, then the extension Π′ on
G ∪ {E} of every coherent T -conditional possibility Π
on G is generally not completely L-conglomerative on
E if π < 1, since the value Π′(E) = 1 is always co-
herent. Theorem 8 also implies the coherence of the
posterior (that we still denote with Π) defined as:

Π(Hi|E) = T (Π(E|Hi),Π(Hi)) for i ∈ I. (9)

5 Conclusions

In probability theory, in particular in modern
Bayesian analysis, concepts of conglomerability and
disintegrability have been deeply studied, especially
with respect to finitely additive probability, where
many famous examples of nonconglomerative con-
ditional probability assessments are proposed. We
studied the analogous concepts in possibility theory,
starting from the definition of finitely maxitive T -
conditional possibility, with T any continuous t-norm.
We put in evidence analogies and differences between
the two frameworks.
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nali Triestini 19:29–81 and 20:3–20, 1949.

[19] B. de Finetti. Probability, Induction and Statistics:
The art of guessing. John Wiley & Sons, London, New
York, Sydney, Toronto, 1972.

[20] A.P. Dempster. Upper and lower probabilities in-
duced by a multivalued mapping. Annals of Mathe-
matical Statistics 38:325–339, 1967

[21] L.E. Dubins. Finitely additive conditional probabil-
ities, conglomerability and disintegrations. Annals of
Probability 3(1):89–99, 1970.

[22] D. Dubois and H. Prade. Possibility Theory: An
Approach to Computerized Processing of Uncertainty.
Plenum Press, New York and London, 1988.

[23] E. Hisdal. Conditional possibilities independence and
noninteraction. Fuzzy Sets and Systems, 1(4):283–297,
1978.

[24] E.P. Klement, R. Mesiar, and E. Pap. Triangualr
Norms. Vol. 8 of Trends in Logic, Kluwer Academic
Publishers, Dordrecht/Boston/London, 2000.

[25] P.H. Krauss. Representation of conditional probabil-
ity measures on Boolean algebras. Acta Mathematica
Academiae Scientiarum Hungaricae, 19(3-4):229–241,
1968.

[26] E. Miranda, M. Zaffalon, and G. de Cooman. Con-
glomerable natural extension. International Journal
of Approximate Reasoning, 53(8):1200–1227, 2012.

[27] D. Petturiti. Coherent Conditional Possibility The-
ory and Possibilistic Graphical Modeling in a Coherent
Setting. PhD thesis, Università degli Studi di Perugia,
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Abstract

Consistency of partial assessments with different
frameworks (probability, possibility, plausibility) is
studied. We are interested in inferential processes
like the Bayesian one, with particular attention when
a part of the information is expressed in natural lan-
guage and can be modeled by a possibilistic or a plau-
sibilistic likelihood.
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1 Introduction

Fuzzy set theory, introduced by Zadeh [42], has be-
come very popular and it provides a formalization
of some concepts expressed by means of natural lan-
guage. Different interpretations of fuzzy sets have
been given [35, 26, 38] in terms of (conditional) prob-
abilities, we refer to that given in [9, 10, 8], where the
membership function of a fuzzy subset is interpreted
in terms of a coherent conditional probability assess-
ment. This interpretation, as shown in [5, 14, 13], is
particularly useful when fuzzy and statistical informa-
tion is simultaneously available.

Nevertheless sometimes the statistical information is
related to a family of events different from that of in-
terest and in which the fuzzy information is available
(as a particular case we can have two partitions such
that the elements of one are finite conjunctions of the
element of the others): by extending the probabilistic
assessment a la de Finetti [20, 41] we obtain a fam-
ily of probabilities, whose upper envelope, which is in
general only an upper probability, could be a plausi-
bility [23, 31, 40, 11] or a possibility [28, 15, 22].

In this paper we consider the above problems by focus-
ing mainly on plausibility and possibility measures,
for which many proposals of conditioning are present.
We adopt the definition of T -conditional possibility,

with T any t-norm (introduced in [3] for minimum
and generalized in [17] for any t-norm): this class of
conditional measures includes as a particular case the
conditional possibilities obtained by using the Dubois
and Prade rule based on minimum specificity principle
[27]. For conditional plausibility we adopt a definition
generalizing Dempster rule, introduced in [6, 36], also
if, as it is well known, it cannot be obtained as the
lower envelope of a class of conditional probabilities.
Nevertheless it assures a “weak disintegration rule”
and admits as particular case T -conditional possibil-
ity, with T the usual product.

In the first part (Section 2 and 3) of the paper, in order
to consider a generalized Bayesian inferential proce-
dure, by using the concept of coherence (that is the
consistency of a partial assessment with a conditional
possibility or plausibility), we study the properties of
likelihood functions, both as point and set functions,
in the different frameworks. Moreover, we study the
coherence of a likelihood with a plausibility (or possi-
bility) measure having the role of “a prior”.

In Section 4 we give an interpretation of the member-
ship of fuzzy sets as a possibilistic or a plausibilistic
likelihood function and we study which properties of
fuzzy set theory are maintained. In both cases the se-
mantic of the interpretation seem to be very similar:
if ϕ is a property, related to a variable X, the mean-
ing associated to the membership µϕ(x) on x con-
sists into the possibility [plausibility] that You claim
that X is ϕ under the hypothesis that X assumes
the value x. We show that from a syntactical point of
view many differences and common features can oc-
cur. About the specific feature the most relevant is
that the membership µϕ∨ψ of the union of two fuzzy
sets, with memberships µϕ and µψ, is not linked to
µϕ∧ψ by the Frank equation ([30]), as in probability
theory. On the contrary, in the case of possibilistic
setting µϕ∨ψ is univocally determined by µϕ and µψ
independently of µϕ∧ψ. While in the case of plau-
sibilistic framework it is not univocally determined,

67



but µϕ∨ψ(x) must be between max{µϕ(x), µψ(x)} and
min{µϕ(x) + µψ(x)} − µϕ∧ψ(x), 1}.
In this interpretation the fuzzy membership µϕ coin-
cides with a likelihood and the fuzzy event Eϕ is the
Boolean event “You claim that X is ϕ”; moreover for
the measure of uncertainty of Eϕ when the prior on
X is a plausibility we get an upper bound, while when
the prior is a possibility we give an analytic formula
depending on the chosen t-norm.

2 Conditional measures

Usually in literature a conditional measure is pre-
sented as a derived notion of the unconditional one,
by introducing a law involving the joint measure and
its marginal. Nevertheless, this could be restrictive,
since for some pair of events the solution of the equa-
tion (the conditional measure) can either not exists
or to be not unique. So, in analogy with conditional
probability [21], it is preferable to define conditional
measures in an axiomatic way, directly as a function
defined on a suitable set of conditional events. We re-
call here the notion of T -conditional possibility (with
T any t-norm)[3, 17]

Definition 1. Let T be any t-norm. Given a Boolean
algebra B and an additive set (closed under finite dis-
junctions) H with H ⊆ B0 = (B \ {∅}), a function
Π : B × H → [0, 1] is a T -conditional possibility if it
satisfies the following properties:

(i) Π(E|H) = Π(E ∧ H|H), for every E ∈ B and
H ∈ H;

(ii) Π(·|H) is a (finitely maxitive) possibility on B,
for any H ∈ H;

(iii) Π(E ∧F |H) = T (Π(E|H),Π(F |E ∧H)), for any
H,E ∧H ∈ H and E,F ∈ B.

Condition (ii) of previous definition requires that
Π(Ω|H) = 1, Π(∅|H) = 0 and for every H ∈ H,
Π(
∨
i=1,...,nAi|H) = maxi=1,...,n Π(Ai|H), for every

A1, ..., An ∈ B [37]. Moreover from (i) and (ii)
Π(H|H) = 1 for every H ∈ H.
Actually, conditional possibility (according to Defi-
nition 1) cannot be in general induced by a unique
possibility, but by a class of possibilities (for more de-
tails, see [17]). Nevertheless, by using some principle,
conditional possibility could be defined by means of
a unique possibility measure. Obviously some prin-
ciples can give rise to assessments inconsistent with
axioms (i) – (iii), see [16, 17].

Taken the minimum t-norm, by considering the min-
imum specificity principle the following notion of

conditioning [27] arises (in the following called DP-
conditional possibility, where DP stands for Dubois
and Prade):

for any E|H in B×H0, Π(E|H) = 1, when Π(E∧H) =
Π(H) and E∧H 6= ∅, Π(E|H) = Π(E∧H) otherwise.

It is easy to see that a DP-conditional possibility is
a conditional possibility in the sense of Definition
1. More generally, for a continuous t-norm, the T -
conditional possibility Π(E|H) can be seen as the
residuum →T of the t-norm T

x→T y = sup{z ∈ [0, 1] : T (x, z) = y}
that means Π(H)→T Π(E ∧H) whenever E ∧H 6= ∅
(see [19]). In [2] a link between these kinds of con-
ditioning and Jeffrey’s rule is studied, while in [25]
connections between conditioning in possibility and
belief function context are studied.

In [17] we proved that if T is a continuous t-norm, a
conditional possibility can be extended on any other
set B′ ×H′ with B′ a Boolean algebra and H′ an ad-
ditive set (H′ ⊆ B0) with B×H ⊂ B′×H′. Moreover,
for any E|H in B′ ×H′ \ B ×H the admissible values
lay on a closed interval.

Analogously, conditional plausibility can be defined
axiomatically as follows (see [6, 11]):

Definition 2. Let B be a Boolean algebra and H ⊆ B0
an additive set. A function Pl defined on C = B ×H
is a conditional plausibility if it satisfies the following
conditions

i) Pl(E|H) = Pl(E ∧H|H);

ii) Pl(·|H) is a plausibility function ∀H ∈ H;

iii) For every E ∈ B and H,K ∈ H

Pl(E ∧H|K) = Pl(E|H ∧K) · Pl(H|K).

Moreover, given a conditional plausibility, a condi-
tional belief function Bel(·|·) is defined by duality as
follows: for every event E|H ∈ C

Bel(E|H) = 1− Pl(Ec|H).

Condition i) and ii) requires that Pl(Ω|H) =
Pl(H|H) = 1 and Pl(∅|H) = 0 and moreover, for
any n, Pl(·|H) is n-alternating [23]:

Pl(A|H) ≤
∑

(−1)|I|+1Pl(∧i∈IAi|H) (1)

for any A1, ..., An, A ∈ A with A = ∨ni=1Ai. Then,
Bel(·|H) is n-monotone for any n.

This axiomatization extends the Dempster’s rule, i.e.

Bel(F |H) = 1− Pl(F c ∧H)

Pl(H)
,
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for all conditioning events H such that Pl(H) > 0.
When all the conditioning events have positive plau-
sibility, i.e. Pl(H|H0) > 0 for any H ∈ H (with
H0 = ∨H∈HH), the above notions of conditional
plausibility and conditional belief coincide with that
given in [24]. In fact, if Pl(H) > 0 it follows

Bel(F |H) =
Bel(F ∨Hc)−Bel(Hc)

Pl(H)
. (2)

An easy consequence of Definition 2 is a weak form of
disintegration formula for the plausibility of an event
E|H with respect to a partition H1, ...,HN of H

Pl(E|H) ≤
N∑

k=1

Pl(Hk|H)Pl(E|Hk) (3)

Taking into the following definition of conditioning
(see [29, 33, 40, 41]):

Pl(F |H) =
Pl(F ∧H)

Pl(F ∧H) +Bel(F c ∧H)
(4)

the obtained conditional plausibility Pl does not sat-
isfy axiom iii) of Definition 2. Therefore conditional
plausibilities given trough equation (4) does not sat-
isfy equation (3).

Note that for T equal to the usual product every T -
conditional possibility is a conditional plausibility.

In the next result we show that every conditional plau-
sibility on B × H can be extended (not uniquely) to
a full conditional plausibility on B (i.e., a conditional
plausibility on B × B0).

Theorem 1. Let B be a finite algebra. If Pl on
B×H → [0, 1] is a conditional plausibility, then there
exists a conditional plausibility Pl′ : B × B0 → [0, 1]
such that Pl′|B×H = Pl.

Proof. Denote H0
0 =

∨
H∈HH. If H0

0 coincides
with the certain event Ω, Pl(·|Ω) defines univocally
Pl′(E|H) for Pl(H|Ω) > 0. Let H1

0 = {H ∈ B0 :
Pl(H|Ω) = 0}, H1

0 =
∨
H1

0
H belongs to B0 and

Pl′(H1
0 |Ω) = 0 since Pl(H1

0 |Ω) ≤ ∑H∈H1
0
Pl(H|Ω).

If H1
0 ∈ H again for Pl(H|H1

0 ) > 0 Pl′(·|H) is univo-
cally defined, so proceed as before.

While for H1
0 6∈ H check whether the set

K = {H ∈ H : Pl(H|H1
0 )} is not empty. If it is

not empty, consider the event K1 =
∨
H∈KH in H

and K1 ⊆ H1
0 . Define Pl′(E|H1

0 ) = Pl(E|K1) for any
E ∈ B. Note that Pl′(K|H1

0 ) = 1, Pl′(Kc|H1
0 ) = 0

and Pl′(·|H1
0 ) is a plausibility since Pl(·|K1) is. Oth-

erwise if K is empty define Pl′(E|H1
o ) = 1 for any

E ∈ B such that E ∧H1
0 6= ∅. It is easy to check that

even in this case Pl′(·|H1
0 ) is a plausibility.

Now, define H2
0 = {H ∈ B0 : Pl(H|H1

0 ) = 0} and
proceed as before.

It is easy to check that Pl′ satisfies the axioms iii) of
Definition 2 and so it is a conditional plausibility.

Now we show that every full conditional plausibility
on B can be extended as a full conditional plausibility
on every finite superalgebra B′ ⊇ B.

Theorem 2. Let B be a finite algebra and B′ ⊇ B a
finite superalgebra. If Pl : B × B0 → [0, 1] is a full
conditional plausibility, then there exists a full con-
ditional plausibility Pl′ : B′ × B′0 → [0, 1] such that
Pl′|B×B0 = Pl.

Proof. For any A′ ∈ B′ consider the smallest event
A ∈ B containing A′, A = ∨C∈B:C∧A′ 6=∅C and define
Pl′(A′) = Pl(A).
Since for any A′, B′ ∈ B′, Pl(A ∧ B) = Pl′(A′ ∧ B′)
the function Pl′ is a plausibility and induces a full
conditional plausibility on B′. By construction for
any A|B ∈ B × B0 it holds Pl′(A|B) = Pl(A|B).

Note that the full conditional plausibility on B′
extending the given conditional plausibility is not
unique, that one given in the proof of Theorem 2 is
just an example.

2.1 Coherent conditional plausibility

Analogously to probability theory, it is possible to in-
troduce a notion of coherence in the context of plausi-
bility functions, as done for conditional probabilities
[21] and also for T -conditional possibilities [17].

Definition 3. A function (or assessment) γ : C →
[0, 1], on a set of conditional events C, is a coherent
conditional plausibility (T -conditional possibility) iff
there exists a full conditional plausibility Pl (full T -
conditional possibility Π) on an algebra B such that
C ⊆ B × B0 and the restriction of Pl (Π) on C coin-
cides with γ.

For a characterization of (coherent) conditional pos-
sibility, with T -continuous t-norm, see [17, 1]. Theo-
rem 3 characterizes (coherent) conditional plausibility
functions in terms of a class of plausibilities.

Theorem 3. Let F = {E1|F1, E2|F2, . . . , Em|Fm}
and denote by B the algebra generated by
{E1, . . . , Em, F1, . . . , Fm}, H0

0 = ∨mj=1Fj. For
Pl : F → [0, 1] the following statements are
equivalent:

(a) Pl is a coherent conditional plausibility;

(b) there exists a class P = {Plα} of plausibility

functions such that Plα(Hα
0 ) = 1 and Hα

0 ⊂ Hβ
0
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for all β < α, where Hα
0 is the greatest (with

respect to the inclusion) element of K for which
Pl(α−1)(Hα

0 ) = 0.

Moreover, for every Ei|Fi, there exists a unique
index α such that Plβ(Fi) = 0 for all α > β,
Plα(Fi) > 0 and

Pl(Ei|Fi) =
Plα(Ei ∧ Fi)
Plα(Fi)

, (5)

(c) all the following systems (Sα), with α =
0, 1, 2, ..., k ≤ n, admit a solution Xα =
(xα1 , ...,x

α
jα

) with xαj = mα(Hj) (j = 1, ..., jα):

(Sα) =





∑
Hk∧Fi 6=∅

xαk · Pl(Ei|Fi) =
∑

Hk∧Ei∧Fi 6=∅
xαk , ∀Fi⊆Hα

0

∑
Hk∈Hα0

xαk = 1

xαk ≥ 0, ∀Hk⊆Hα
0

where Hα
0 is the greatest element of K such that∑

Hi∧Hα0 6=∅
m(α−1)(Hi) = 0.

In particular, conditions (b) and (c) stress that this
conditional measure can be written in terms of a suit-
able class of basic assignments, instead of just one as
in the classical case, where all the conditioning events
have positive plausibility.

Note that every class P (condition (b) of Theorem 3)
is said to be agreeing with conditional plausibility Pl.
Whenever there are events in K with zero plausibility
the class of unconditional plausibilities contains more
than one element and we can say that Pl1 gives a re-
finement of those events judged with zero plausibility
under Pl0.

For an example showing the construction of the class
P characterizing (in the sense of the above result) a
conditional plausibility see [36].

3 Likelihood functions

This section is devoted to a comparative analysis
of likelihood functions under different frameworks:
probability, possibility, plausibility.

Given an event E and a partition L, a likelihood func-
tion is an assessment on {E|Hi : Hi ∈ L} (that is a
function f : {E} × L → [0, 1]) satisfying only the
following trivial condition:

(L1) for every Hi such that E ∧ Hi = ∅ one has
f(E|Hi) = 0 and for every Hi such that Hi ⊆ E
one has f(E|Hi) = 1

Theorem 4. Let L = {H1, . . . ,Hn} be a finite parti-
tion of Ω and E an event. For every likelihood func-
tion f on {E} × L the following statements hold:

a) f is a coherent conditional probability;

b) f is a coherent T -conditional possibility (for ev-
ery continuous t-norm T );

c) f is a coherent conditional plausibility.

Proof. Condition a) and b) have been proved in [10]
and [7], respectively.

Condition c) derives from a) and the fact that any
coherent conditional probability is a coherent condi-
tional plausibility (or equivalently from condition b)
and the fact that any coherent T -conditional possibil-
ity, with T the usual product, is a coherent conditional
plausibility).

Theorem 5. Let L = {H1, . . . ,Hn} be a finite par-
tition of Ω and E an event. If the only coherent
conditional plausibility (possibility) f takes values in
{0, 1}, then it is Hi ∧ E = ∅ for every Hi such that
f(E|Hi) = 0 and it is Hi ⊆ E for every Hi such that
f(E|Hi) = 1.

Proof. It follows directly from Theorem 3 and the
characterization theorem for T -conditional possibili-
ties [17].

The above results put in evidence that (in all con-
texts) no significant property characterizes likelihood
as point function (i.e. an assessment on a partition).

This implies that since two likelihoods

fi : {Ei} × Li → [0, 1]

(i = 1, 2), related to events logically independent Ei
are coherent with a conditional probability, then they
should be coherent also with a conditional plausibility.

It is easy to show that {f1, f2} are coherent also with
a T -conditional possibility.

3.1 Likelihood and prior

The aim now is to make inference with a Bayesian-
like procedure, so we have to deal with an initial as-
sessment consisting of a “prior” ϕ on a partition L
and a “likelihood function” f related to the set of
conditional events E|Hi’s, with E an arbitrary event
and Hi ∈ L. This topic has been deeply discussed in
[40, 41] by considering several interesting examples.

First of all we need to test the consistency of the global
assessment

{f, ϕ} = {f(E|Hi), ϕ(A) : Hi ∈ L, A ∈ 〈L〉}

with respect to the framework of reference (〈L〉 de-
notes the algebra generated by L). The choice of the
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framework of reference is essentially decided by the
prior, since as shown in Theorem 4, a likelihood can
be re-read in any framework. This can happen also
when the prior comes from a previous inferential pro-
cess such as the enlargement of an uncertainty assess-
ment (see [15, 22, 28, 41]).

Theorem 6. Let L be a partition of Ω, consider a
likelihood f related to an event E on L and consider
a probability P , a plausibility Pl and a possibility Π
on the algebra 〈L〉. Then, the following conditions
hold:

a) the global assessment {f, P} is a coherent condi-
tional probability;

b) the global assessment {f, P l} is a coherent con-
ditional plausibility;

c) the global assessment {f,Π} is a coherent T -
conditional possibility (for every continuous t-
norm T );

Proof. Condition a) has been proved in [39], while
condition c) has been proved in [1].

Concerning condition b) note that Pl on 〈L〉 defines
a unique basic assignment function m0 on 〈L〉 that is
the unique solution of S0

Pl concerning the coherence
of Pl. Then, we need to establish whether the assess-
ment {f, P l} is coherent inside conditional plausibil-
ity, so we need to check whether the relevant system
S0
Pl,f has solution and so whether there is a class of

basic assignment {m′α} on 〈E,L〉. Notice if the sys-
tem S0

Pl,f has a solution then coherence with respect
to conditional plausibility follows from Theorem 5.

Actually, the atoms in 〈E,L〉 are all the events
E ∧Hi, E

c ∧Hi with Hi ∈ L. From [18] any plausi-
bility on 〈L〉 induces a unique function, called basic
plausibility assignment, ν (possibly taking also nega-
tive values) on 〈L〉 such that

∑
A∈〈L〉 ν(A) = 1 and∑

A∈〈L〉:A⊆B ν(A) = Pl(B).

Let µ be on 〈L〉 be the plausibility assignment induced
by Pl, consider µ′ defined on 〈E,L〉 as µ′(Hi) = 0,
µ′(E ∧Hi) = f(E|Hi)Pl(Hi), µ

′(Ec ∧Hi) = µ(Hi)−
µ′(E ∧Hi), and, for any A ∈ 〈L〉 \ L, µ(A) = µ′(A).
By construction

∑
A∈〈E,L〉 µ

′(A) = 1. For any B in

〈E,L〉, but not in (〈L〉 ∪ {E ∧Hi, E
c ∧Hi : Hi ∈ L})

one has µ′(B) = 0. Then, the function f on 〈E,L〉
defined as

∑
A∈〈E,L〉:A⊆B µ

′(A) = f(B) is such that

by construction, for any B ∈ 〈L〉,

f(B) =
∑

A∈〈E,L〉:A⊆B
µ′(A) =

∑

A∈〈L〉:A⊆B
µ′(E ∧A) + µ′(Ec ∧A) + µ′(A) =

∑

A∈〈L〉:A⊆B
µ(A) = Pl(B)

then f extends Pl.

We need to prove that f is a plausibility: the proof
can be made by induction, we prove here that is 2-
alternating, the proof that it is n-alternating under
the hyphothesis that is (n− 1)-alternating is similar.

For any event A ∈ 〈E,L〉 there is an event Ā ∈ 〈L〉
such that Ā ⊆ A and no event B ∈ 〈L〉 such that Ā ⊂
B ⊆ A, that is the maximal event of 〈L〉 contained
in A. Then, given any pair of events A,B ∈ 〈E,L〉
let Ā, B̄ ∈ 〈L〉 be the two maximal events contained,
respectively in A and B. Thus,

f(A∨B) =
∑

C∈〈E,L〉:C⊆A∨B
µ′(C) =

∑

E∧Hi⊆A∨B
µ′(E∧Hi)+

∑

Ec∧Hi⊆A∨B
µ′(Ec ∧Hi) +

∑

C∈〈L〉\L,C⊆A∨B
µ′(C) =

∑

Hi⊆A∨B
µ(Hi) +

∑

E∧Hi⊆A∨B,Ec∧Hi 6⊆A∨B
µ′(E ∧Hi)+

∑

Ec∧Hi⊆A∨B,E∧Hi 6⊆A∨B
µ′(Ec ∧Hi) +

∑

C∈〈L〉\L,C⊆A∨B
µ(C)

= Pl(A ∨B) +
∑

E∧Hi⊆A∨B,Ec∧Hi 6⊆A∨B
µ′(E ∧Hi)+

∑

Ec∧Hi⊆A∨B,E∧Hi 6⊆A∨B
µ′(Ec ∧Hi) =

Pl(Ā ∨ B̄) +
∑

Hi⊆A∨B,Hi 6⊆Ā∨B̄

µ(Hi)+

∑

E∧Hi⊆A∨B,Ec∧Hi 6⊆A∨B
µ′(E ∧Hi)+

∑

Ec∧Hi⊆A∨B,E∧Hi 6⊆A∨B
µ′(Ec ∧Hi).

Note that A = Ā∨∨Hi∈L:Hi 6⊆A((E∧Hi∧A)∨(Ec∧Hi∧A))

and analogously for B. Obviously, Ā ∨ B̄ ⊆ A ∨ B and
Ā∧ B̄ coincides with A ∧B. Moreover, Ā∨ B̄ is included
into A ∨B, but does not coincide with it, in fact Hi ∈ L
could be included in A∨B, but Hi is not included neither
in A nor in B (e.g. E∧Hi ⊆ A and Ec∧Hi ⊆ B). Hence,

f(A∨B) ≤ Pl(Ā)+Pl(B̄)−Pl(Ā∧B̄)+
∑

Hi⊆ ¯A∨B,Hi 6⊆Ā∨B̄
µ(Hi)+

∑

E∧Hi⊆A∨B,Ec∧Hi 6⊆A∨B
µ′(E ∧Hi)+

∑

Ec∧Hi⊆A∨B,E∧Hi 6⊆A∨B
µ′(Ec ∧Hi)

≤ Pl(Ā) + Pl(B̄)− Pl(Ā ∧ B̄)+
∑

Hi⊆A∨B,Hi 6⊆Ā∨B̄

(µ′(E ∧Hi) + µ′(Ec ∧Hi))+

∑

E∧Hi⊆A∨B,Ec∧Hi 6⊆A∨B
µ′(E ∧Hi)+
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∑

Ec∧Hi⊆A∨B,E∧Hi 6⊆A∨B
µ′(Ec ∧Hi)

= f(A) + f(B)− Pl(Ā ∧ B̄)

−
∑

E∧Hi⊆A∧B,Ec∧Hi 6⊆A∨B
µ′(E ∧Hi)

−
∑

Ec∧Hi⊆A∧B,E∧Hi 6⊆A∨B
µ′(Ec ∧Hi)

= f(A) + f(B)− f(A ∧B)

Finally, f induces a conditional plausibility, that we
continue to denote by f , on 〈E,L〉×H where H is the
additive set generated by Hi ∈ L such that f(Hi) > 0.
For any Hi ∈ L one has

f(E|Hi) = f(E∧Hi)
f(Hi)

= µ′(E∧Hi)
Pl(Hi)

= f(E|Hi).

This implies that the system S0
Pl,f admits a solution

and so for the above consideration the assessment
{Pl, f} is a coherent conditional plausibility.

3.2 Aggregated likelihoods

Now we study the properties of aggregated likelihood
functions, that is all the coherent extensions g of the
assessment {f(E|Hi) : Hi ∈ L} to the events E|K,
with K belonging to the additive set H = 〈L〉0 =
(〈L〉 \ {∅}).
The interest derives from inferential problems in
which the available information consists of a (prob-
abilistic or plausibilistic or possibilistic) “prior” on a
partition {Kj} and a likelihood related to the events
of another partition refining the previous one. So first
of all we need to aggregate the likelihood function pre-
serving coherence with the framework of reference.

In what follows g : {E}×H → [0, 1] denotes a function
such that its restriction to {E} × L coincides with f .

We recall a common feature of probabilistic and pos-
sibility framework: any aggregated likelihood g, re-
garded as a coherent conditional probability or a co-
herent T -conditional possibility, satisfies the following
condition for every K ∈ H:

min
Hi⊆K

f(E|Hi) ≤ g(E|K) ≤ max
Hi⊆K

f(E|Hi). (6)

Now the question is to investigate whether an aggre-
gated likelihood seen as a coherent conditional plau-
sibility must satisfy the same constraints.

In the following example we show that, for a coherent
conditional plausibility, the value max

Hi⊆K
f(E|Hi) is not

an upper bound.

Example 1. Let L = {H1, H2} be a partition and E
an event logically independent of the events Hi ∈ L.
Consider the following likelihood on L

f(E|H1) =
1

4
; f(E|H2) =

1

2

and let g be a function extending f on {E} ×H such
that g(E|H1 ∨H2) = 3

4 = f(E|H1) + f(E|H2).

From equation (6) it follows that g is not a coherent
T -conditional possibility or conditional probability;
we prove that it is indeed a coherent conditional
plausibility. For that let us consider the following
system with unknowns m0(C) , where C ∈ 〈E,L〉

(S0)=





1/4 · ∑
H1∧C 6=∅

m0(C) =
∑

H1∧E∧C 6=∅
m0(C),

1/2 · ∑
H2∧C 6=∅

m0(C) =
∑

H2∧E∧C 6=∅
m0(C),

3/4 · ∑
(H1∨H2)∧C 6=∅

m0(C) =
∑

(H1∨H2)∧E∧C 6=∅
m0(C),

∑
C⊆H1∨H2

m0(C) = 1

m0(C) ≥ 0, ∀C ∈ 〈E,L〉

It is easy to see that the basic assignment:

m0((E∧H1)∨(Ec∧H2)) = m0(H1∨(Ec∧H2)) =
1

8
,

m0((Ec ∧H1) ∨ (E ∧H2)) = m0((Ec ∧H1) ∨H2) =

m0(Ec ∧ (H1 ∨H2)) =
1

4
and m0(C) = 0 for any other event C ∈ 〈E,L〉, is a
solution of S0, giving positive plausibility to both the
events Hi.

The following example shows that also the lower
bound of condition (6) can be violated in the plau-
sibility framework.

Example 2. Let L = {H1, H2} be a partition and E
an event logically independent of all the events Hi.

Consider the following aggregated likelihood on H

f(E|H1) = f(E|H2) =
2

3
, f(E|H1 ∨H2) =

1

2
.

To prove that the assessment is coherent within a
conditional plausibility, we consider the following
system with unknowns m0(C) , where C ∈ 〈E,L〉

(S0)=





2/3 · ∑
H1∧C 6=∅

m0(C) =
∑

H1∧E∧C 6=∅
m0(C),

2/3 · ∑
H2∧C 6=∅

m0(C) =
∑

H2∧E∧C 6=∅
m0(C),

1/2 · ∑
(H1∨H2)∧C 6=∅

m0(C) =
∑

(H1∨H2)∧E∧C 6=∅
m0(C),

∑
C⊆H1∨H2

m0(C) = 1

m0(C) ≥ 0, ∀C ∈ 〈E,L〉

The following basic assignment on 〈E,L〉:

m0 = (Ec∧H1) = m0(Ec∧H2) = m0(E) = m0(Ω) =
1

4
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and m0(C) = 0 for any other event C ∈ 〈E,L〉, is a
solution of S0, giving positive plausibility to both the
events Hi.

The fact that the lower bound of coherent
values of Pl(E|Hi ∨ Hj) can be less than
inf{Pl(E|Hi), P l(E|Hj)} is an indirect proof that a
conditional plausibility (Definition 2) is not an upper
envelope of a set of conditional probabilities.

Theorem 7. Any coherent conditional plausibility
Pl, extending a likelihood f : E×L → [0, 1] on E×H,
satisfies the following inequality for every K ∈ H:

(L2) 0 ≤ Pl(E|K) ≤ min{ ∑
Hi⊆K

f(E|Hi), 1}.

Proof. Since f is a coherent conditional plausibility
assessment, then there is a coherent conditional plau-
sibility Pl on B × H with B = 〈H ∪ {E}〉, extending
f. The restriction of Pl to E × H is a coherent con-
ditional plausibility and for every K ∈ H, satisfies
(3) and Pl(E|K) ≥ 0. So we have 0 ≤ g(E|K) ≤∑
Hi⊆K

f(E|Hi)g(Hi|K), and then the thesis.

Theorem 7 shows that in plausibility framework there
is much more freedom than in both probabilistic and
possibilistic ones, where aggregated likelihood func-
tions are monotone, with respect to ⊆, only if the
extension is obtained, for every K, as max

Hi⊆K
f(E|Hi)

and they are anti-monotone if and only if their exten-
sions are obtained as min

Hi⊆K
f(E|Hi).

Since any likelihood (see Theorem 4) is also a coherent
conditional probability and in [10, 12] it is proved that
an aggregated likelihood coherent within conditional
probability can be obtained by taking the minimum
(maximum), this extension is obviously also a coher-
ent conditional plausibility.

In the following Proposition we prove that we could
take the sum of likelihoods.

Theorem 8. Let f be a likelihood on L related to
an event E and consider the function g on {E} × H
defined as follows: for all K1,K2 ∈ H with K1∧K2 =
∅

g(E|K1 ∨K2) = g(E|K1) + g(E|K2).

If
∑
Hi∈L f(E|Hi) ≤ 1, then g

is a coherent conditional plausibility extending f .

Proof. To prove the result it is enough to consider the
following basic assignment m on 〈E,L〉:

m((E ∧Hi) ∨
∨

j 6=i
(Ec ∧Hj))+

m(Hi ∨
∨

j 6=i
(Ec ∧Hj)) = f(E|Hi)

for Hi ∈ L and m(Ec) = 1−∑Hi∈L f(E|Hi).

It is easy to show that this basic assignment m is
agreeing with g (see Theorem 3) and the plausibility
of Hi is positive.

4 Fuzzy sets

The aim of this sections is to apply the results of the
previous section to an inferential problem, starting
from linguistic information (fuzzy sets) and statistical
information. We refer to the interpretation of fuzzy
sets in terms of coherent conditional probabilities [8,
9, 5]: the idea behind such interpretation is related to
that given in the seminal work [32], and we extend it
inside imprecise probabilities.

Let X be a (not necessarily numerical) variable, with
range CX , and, for any x ∈ CX , let us indicate by Ax
the event {X = x}. Let ϕ be any property related
to the variable X and let us refer to the state of in-
formation of a real (or fictitious) person that will be
denoted by “You”. A coherent conditional probabil-
ity (possibility) [plausibility] f(Eϕ|Ax) measures (in
different frameworks) the degree of belief of You in
Eϕ, when X assumes the different values x in CX .

Then f(Eϕ|·) comes out to be a natural interpretation
of the membership function µϕ(·), analogously to the
probabilistic case [9] (see also [8, 5]).

Definition 4. For any variable X with range CX and
a related property ϕ, the fuzzy subset E∗ϕ of CX is the
pair

E∗ϕ = {Eϕ , µEϕ},
with µEϕ(x) = f(Eϕ|Ax) for every x ∈ CX (f stands
for a coherent conditional probability or plausibility or
possibility).

Theorem 4 assures that any assessment
{f(E|Ax)}x∈CX is coherent within conditional
probability, plausibility and possibility: so we have
no syntactical restriction for f ; Theorem 5 assures
that in all the three frameworks the notion of fuzzy
subsets, defined by a likelihood, is a generalization of
crisp subsets.

Now denote by ϕ ∨ ψ , ϕ ∧ ψ, respectively, the prop-
erties “ϕ or ψ ” , “ϕ and ψ ”, and define

Eϕ∨ψ = Eϕ ∨ Eψ ,

Eϕ∧ψ = Eϕ ∧ Eψ .

Let us consider two fuzzy subsets E∗ϕ, E∗ψ, corre-
sponding to the same variable X, with the events
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Eϕ, Eψ logically independent with respect to X. As
proved in [9], for any given x in the range of X, the
assessment P (Eϕ ∧ Eψ|Ax) = v is coherent within a
conditional probability if and only if takes values in
the interval

max{P (Eϕ|Ax) + P (Eψ|Ax)− 1, 0} ≤ v ≤
≤ min{P (Eϕ|Ax), P (Eψ|Ax)}.

It is easy to see that the assessment f(Eϕ∧Eψ|Ax) =
v is coherent within a conditional plausibility or pos-
sibility if and only if takes values in the interval

0 ≤ v ≤ min{f(Eϕ|Ax), f(Eψ|Ax)}.

Then, the lower bound of conditional probability does
not continue to be valid.

While probability rules imply that given a value to
f(Eϕ∧Eψ|Ax), we get also the value of f(Eϕ∨Eψ|Ax),
in the case of possibility we have that the value of
f(Eϕ∨Eψ|Ax) is univocally determined by f(Eϕ|Ax)
and f(Eψ|Ax) without taking into account the value
of f(Eϕ ∧ Eψ|Ax).

In the case of plausibility we have that the value of
f(Eϕ ∨ Eψ|Ax) is not univocally determined but it
must be

max{f(Eϕ|Ax), f(Eψ|Ax)} ≤ f(Eϕ ∨ Eψ|Ax) ≤

min{f(Eϕ|Ax) + f(Eψ|Ax)− f(Eϕ ∧ Eψ|Ax), 1}

Then we can put

E∗ϕ ∪ E∗ψ = {Eϕ∨ψ , µϕ∨ψ} ,

E∗ϕ ∩ E∗ψ = {Eϕ∧ψ , µϕ∧ψ} ,
with

µϕ∨ψ(x) = f(Eϕ ∨ Eψ|Ax) ,

µϕ∧ψ(x) = f(Eϕ ∧ Eψ|Ax) .

Moreover, denoting by E∗¬ϕ the complementary fuzzy
set of E∗ϕ, the relation E¬ϕ 6= (Eϕ)c holds, since the
propositions “You claim ¬ϕ” and “You do not claim
ϕ” are logically independent. In fact, we can claim
both “X has the property ϕ” and “X has the property
¬ϕ′′, or only one of them or finally neither of them;
similarly are logical independent Eϕ and Eψ, where
ψ is the superlative of ϕ.

Then, while Eϕ ∨ (Eϕ)c = CX , we have instead Eϕ ∨
E¬ϕ ⊂ CX , and, if we consider the union of a fuzzy
subset and its complement

E∗ϕ ∪ (E∗ϕ)′ = {Eϕ∨¬ϕ , µϕ∨¬ϕ}
we obtain in general a fuzzy subset of CX .

The constraints on the function f depend, as shown
before, on the framework of reference.

The concept of fuzzy event, as introduced by Zadeh,
can be seen an ordinary event of the kind

Eϕ = “You claim that X is ϕ”.

and for any uncertainty measure (probability, possi-
bility and plausibility) on the events related to X the
assessment together µϕ is coherent with respect the
relative measure (see Theorem 6) and so coherently
extendible to Eϕ (Theorem 2 for plausibilities, [17]
for conditional possibilities).

In the case of probability and possibility it is easily to
see that the only coherent value for the probability or
possibility of Eϕ is

g(Eϕ) =
⊕

x∈CX
µϕi(x)

⊙
g(x) ,

where
⊕

and
⊙

are the sum and the product in the
case of probability, while they are the maximum and
minimum in the case of possibility.

Obviously, only in the case of probability it coincides
with Zadeh’s definition of the probability of a “fuzzy
event” [42].

5 Conclusion

The first part of the paper is devoted into studying
likelihood functions seen as assessment on a set of
conditional events E|Hi, with E the evidence and
Hi varying on a partition L. It is shown that like-
lihood functions are assessment coherent with respect
probability, possibility and plausibility. Then, infer-
ential processes, like Bayesian one, are studied in the
different setting taking a likelihood function and a
prior, that could be a probability or a possibility or a
plausibility. I particular we prove that any likelihood
function on E × L and any plausibility on L, with L
a partition, are globally coherent within conditional
plausibility. Then, a comparison of aggregated like-
lihoods, that are coherent extensions of a likelihood
function on E × L to E × 〈L〉0 is studied in the dif-
ferent setting by showing the common characteristic
and the specific features.

Finally, by using the above results we give an inter-
pretation of fuzzy sets in terms of likelihood function
in the different setting: by starting from the interpre-
tation in the probabilistic setting given in [9] we give a
similar interpretation in plausibility and possibilistic
settings.
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Abstract

We introduce the notion of mode-desirability of a
gamble, that generalizes the idea of non-negativeness
of the mode of a random variable. The lower and
upper previsions derived from this new definition co-
incide with the minimum and maximum values of the
set of modes of a gamble, when the credal set is a sin-
gleton, but they only bound them in the general case.
The reason why the minimum and the maximum of
the set of modes can not be written, in general, by
means of a pair of lower and upper previsions is dis-
cussed.

Keywords. Expectation, median, mode, desirability,
preference.

1 Introduction

In Decision Making Literature, several criteria of pref-
erence between random variables have been proposed
within the setting of classical Probability Theory, like
for instance stochastic dominance [10], dominance in
the sense of expected utility [13], or statistical prefer-
ence [7, 14], the last one being based on Condorcet’s
voting criterion ([2]). The above mentioned criteria
share a commonality: the joint probability distribu-
tion induced by the pair of variables is assumed to
be known in order to define each preference criterion,
which is expressed in terms of it. Some generalizations
of the aforementioned preference criteria have been
recently reviewed ([3]) to the case where the joint dis-
tribution is not completely determined. Some of those
generalizations had been previously introduced in the
literature: Denoeux ([8]) generalized first-stochastic
dominance to the case of belief-plausibility measures
and Destercke ([9]) and Troffaes ([15]), for instance,
consider several generalizations of Savage dominance
criterion. We have shown that many of those pref-
erence generalizations can be expressed in terms of a
general formulation that is related to the expectation
of a function of both random variables, increasing in

the first component and decreasing in the second one.

Differently, in Walley’s setting, first hand information
is expressed by means of a family of ordered pairs of
variables (or “gambles”), the first one in the pair being
preferred to the second one. This kind of knowledge
can be equivalently represented by means of a coher-
ent family of “desirable” gambles (those preferred to
the null one). The family of desirable gambles induces
a closed and convex set of linear previsions (also called
a “credal set”). Each of those linear previsions is de-
fined on the initial space and induces, for each pair of
gambles, a (finitely-additive) joint probability. Thus,
what is primary information in this framework is sec-
ondary information in the previous setting and vice
versa. Notwithstanding, from a purely formal point
of view, Walley’s almost preference can be seen as a
particular case of the general formula introduced in
[3], if we consider the function that assigns, to each
pair, the difference between both components. With
those ideas in mind, we proposed in [6] a generaliza-
tion of the notion of statistical preference from the
setting of classical Probability Theory to the frame-
work of Imprecise Probabilities. It leaded us naturally
to a new desirability criterion that we called “signed-
desirability”. We say that X is signed-desirable if its
sign (the gamble that takes the value 1 when X takes
a positive value and −1, when it is negative) is desir-
able, according to Walley’s framework. In [5], a set of
axioms characterizing the family of signed-desirable
gambles induced by a coherent set of desirable gam-
bles is provided. Furthermore, we have found an in-
teresting connection with the notion of median: the
infimum and supremum of the set of medians of a
gamble, when we range an arbitrary credal set, can
be respectively expressed as the lower and upper pre-
visions, according to this new desirability definition.

In this paper, we will propose a new desirability con-
dition very closely related to the notion of mode. The
minimum and maximum values of the family of modes
of a gamble associated to a single prevision do coin-
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cide with the lower and upper previsions of this new
desirability condition. However, when we consider an
arbitrary credal set, those lower and upper previsions
bound the set of modes, but do not necessarily coin-
cide with their minimum and maximum values. We
will explore in Section 4 the reasons why those pairs
of values do not coincide in general.

2 Preliminaries

The basics on Imprecise Probabilities are assumed to
be known by the reader. Notwithstanding we will
introduce here the formal notation used in the rest of
the paper, and specify the axioms that characterize
a coherent family of desirable gambles ([16]). Those
axioms have not been stable along the literature in
what concerns the inclusion of the null gamble (see
[4] for a detailed discussion). In this paper, we will
assume it to be non-desirable.

Let Ω denote the set of outcomes of an experiment. L
will denote the set of all gambles (bounded mappings
from Ω to R). For X,Y ∈ L let X ≥ Y mean that
X(ω) ≥ Y (ω), ∀ω ∈ Ω and let X > Y mean that
X ≥ Y and X(ω) > Y (ω) for some ω ∈ Ω. A subset
D of L is said to be a coherent set of desirable gambles
[16] when it satisfies the following four axioms:

D1. If X ≤ 0 then X 6∈ D. (Avoiding partial loss).

D2. If X > 0, then X ∈ D. (Accepting partial gain).

D3. If X ∈ D and c ∈ R+, then cX ∈ D. (Positive
homogeneity).

D4. If X ∈ D and Y ∈ D, then X + Y ∈ D. (Addi-
tion).

The lower prevision induced by a set of desirable gam-
bles D is the set function P : L → R defined as follows:

P (X) = sup{c : X − c ∈ D}.

The upper prevision induced by D is the set function
P : L → R defined as follows:

P (X) = inf{c : c−X ∈ D}.

The set of linear previsions induced by a coherent set
of gambles D is defined as:

PD = {P : P (X) ≥ 0 for all X ∈ D}.

PD is always a credal set (a closed and convex set
of linear previsions, whose restrictions to events are
finitely additive probability measures). P and P are
dual and they respectively coincide with the minimum

and the maximum of PD, which can be defined in
turn, as the set of linear previsions that dominate P .
On the other hand, a subset D− ⊂ L satisfying Ax-
ioms D2–D4 and

D1’. If supX < 0 then X 6∈ D−. (Avoiding sure loss).

D5. If X + δ ∈ D−, for all δ > 0 then X ∈ D−.
(Closure).

is called a coherent set of almost desirable gambles.
A set of almost desirable gambles D− determines a
pair of lower and upper previsions, and a credal set,
by means of expressions analogous to the case of de-
sirable gambles. Conversely, a credal set univocally
determines a coherent set of almost desirable gambles
via the formula:

D−P = {X ∈ L : P (X) ≥ 0, ∀P ∈ P}.

Finally, a set D+ ⊂ L is said to be a coherent set
of strict desirable gambles if it is a coherent set of
desirable gambles, and it satisfies, in addition, the
following axiom:

D6. If X ∈ D+, then either X > 0 or X − δ ∈ D+,
for some δ > 0. (Openness).

A coherent set of strict desirable gambles can be de-
rived from a credal set as follows:

D+
P = {X : X > 0 or P (X) > 0 ∀P ∈ P}.

Let the reader notice that D+
P can be alternatively

expressed in terms of the lower prevision P as follows:

D+
P = {X : X > 0 or P (X) > 0}. (1)

In Walley’s theory, the notion of preference between
two gambles is dual to the above notion of desirabil-
ity: X is said to be preferred to Y when their differ-
ence X − Y is desirable. Conversely, if our primary
information is described by means of a partial pref-
erence ordering, we will say that X is desirable when
it is preferred to the null gamble. Furthermore, there
exists a formal connection between preference crite-
ria in classical Probability literature and Walley’s no-
tion of preference: in the particular situation where
the credal set associated to a preference ordering (ac-
cording to Walley’s view) is a singleton, {P}, Wal-
ley’s almost preference of X over Y , P (X − Y ) ≥ 0,
is equivalent to dominance according to the expecta-
tion, i.e., X is almost preferred to Y if and only if
EP (X) ≥ EP (Y ). (In the last expression, P is con-
sidered as a probability defined on the set of events,
instead of a linear prevision defined in the set of gam-
bles.)
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In [3], some known notions of dominance in the (clas-
sical) probabilistic setting were reviewed, and it was
shown that all of these orderings can be expressed
by means of the formula EP [g(X,Y )] ≥ 0, where
g : R2 → R is increasing in the first component,
and decreasing in the second one. It was also clar-
ified that some generalizations of the above notions
considered in the recent literature (see, for instance,
[8, 9, 12, 15]) are very closely related to the formula
EP [g(X,Y )] ≥ 0. This idea made possible to con-
nect Walley’s framework, where the initial informa-
tion is expressed in terms of a partial ordering and
the alternative setting considered in those reviewed
papers, where the initial information is represented
by means of a lower prevision. Therefore, we can join
both frameworks and say that X is g-preferred to Y if
g(X,Y ) is desirable according to Walley’s framework.
With this idea in mind we introduced the notion of
sign-desirability in ([6]). X is said to be sign-preferred
to Y if sgn(X−Y) = 1X>Y−1Y>X is desirable, where
1A denotes the indicator function of A ⊆ Ω, and
X > Y and Y > X respectively denote the subsets of
Ω where X and Y satisfy each of those inequalities.
According to this new preference condition, X is said
to be sign-desirable when sgn(X) = 1X>0−1X<0 is de-
sirable. In words, X is said to be sign-desirable when
we are disposed to pay one probability currency unit
if X takes a negative value in return for the gamble
1X>0 (receiving 1 unit if X takes a -strictly- posi-
tive value.). In [5] an axiomatic characterization of
“coherent” sets of sign-desirable gambles is provided.
The associated pair of lower and upper previsions can
be defined as follows:

PS(X) = sup{c : X − c is strictly sign-desirable}

PS(X) = inf{c : c−X is strictly sign-desirable}.

We have checked in [6] that those lower and upper
previsions do coincide, in fact, with the infimum and
the supremum of the set of medians of X when we
range the credal set associated to the initial coherent
set of desirable gambles.

In this paper, we will explore the generalization of the
notion of mode, and its connections with Walley’s de-
sirability theory. We will introduce a new notion of
desirability, but it will not be expressed in terms of
the desirability of an increasing function of the con-
sidered gamble, as it happens with the notion of sign-
desirability. We will also consider the pair of lower
and upper previsions of a gamble, according to the
new desirability condition. The infimum of the set of
modes associated to a credal set will be bounded by
the lower prevision, but it will not coincide in general
with it.

3 The notion of mode-desirability

Let LF denote the family of “simple gambles” (those
with a finite number of different possible values). Let
us consider an arbitrary but fixed probability measure
P on Ω. According to the classical definition, the set
of modes of a gamble X ∈ LF with a finite image
Im(X) = {x1, . . . , xn} is defined as follows:

MoP (X) =
{xi ∈ Im(X) : P (X = xj) ≤ P (X = xi), ∀ j 6= i} =
{xi ∈ Im(X) : 6 ∃xj 6= xi with P (X = xj) > P (X = xi)} =
{xi ∈ Im(X) : 6 ∃j 6= i s.t. EP (1X=xj − 1X=xi) > 0}.

Let us now consider the credal set, PD, associated to
an arbitrary coherent set of desirable gambles D. Let
P denote the induced lower prevision. A natural way
to extend the classical notion of mode seems to be the
following one:

MoP (X) =
{xi ∈ Im(X) : P (1X=xj − 1X=xi) ≤ 0, ∀ j 6= i} =
{xi ∈ Im(X) 6 ∃j 6= i s.t. P (1X=xj − 1X=xi) > 0}.

We will prove the following result, in order to connect
this definition with Walley’s desirability framework.

Lemma 1 Let P be the lower prevision induced by a
coherent set of gambles D. Let D+

P be the set asso-
ciated set of strictly desirable gambles, according to
Equation 1. Let X ∈ LF . For every x ∈ Im(X) and
all y ∈ R:

P (1X=y − 1X=x) > 0 iff 1X=y − 1X=x ∈ D+.

Proof: By definition, the gamble 1X=y − 1X=x is
strictly desirable if and only if it is some of the fol-
lowing conditions are fulfilled:

P (1X=y − 1X=x) > 0 or 1X=y − 1X=x > 0.

But 1X=y − 1X=x > 0 implies that x does not belong
to the set of outcomes of X, what is a contradiction.
�

According to the above lemma, we can alternatively
express the set of modes as follows:

MoP (X) =
{xi ∈ Im(X) : 6 ∃j 6= i s.t. 1X=xj − 1X=xi ∈ D+} =
{xi ∈ Im(X) : 6 ∃j 6= i s.t. (1{xj} − 1{xi}) ◦X ∈ D+},

where the symbol “◦” stands for the composition of
functions.

Furthermore, we can skip our reference to the set of
outcomes of X by taking into account the following
result.
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Lemma 2 Let us consider a credal set P, and let D+

denote the set of strictly desirable gambles induced by
it. Let X ∈ L. Then:

1. If y 6∈ Im(X), and x ∈ R, 1X=y − 1X=x 6∈ D+.

2. A+
X = {x : 6 ∃y 6= x s.t. (1{y} − 1{x}) ◦X ∈ D+}

is included in Im(X).

Proof:

1. If y 6∈ Im(X), then (1X=y−1X=x) = −1X=x ≤ 0.
According to Axiom D1, this gamble does not
belong to D+.

2. The second part is also straightforward: if x 6∈
Im(X), then (1{y}−1{x})◦X > 0,∀ y ∈ Im(X),
and therefore, the gamble (1{y} − 1{x}) ◦ X be-
longs to D+ for every y ∈ Im(X) ⊆ R \ {x}.
�

According to the above lemma, the set of modes asso-
ciated to the credal set, MoP (X), can be alternatively
expressed as:

MoP (X) = A+
X =

{x : 6 ∃y 6= x s.t. (1{y} − 1{x}) ◦X ∈ D+}.
This new expression suggests us to consider the fol-
lowing new desirability condition. We will say that
X is mode-desirable when MoP (X) = A+

X does not
contain any negative number:

Definition 1 A gamble X ∈ LF is said to be mode-
desirable, if

[∀ x < 0, ∃y 6= x s.t. (1{y} − 1{x}) ◦X ∈ D+].

We will denote it X ∈ DMo.

Remark 3.1 There is an alternative equivalent def-
inition for the notion of mode-desirability of sim-
ple gambles. In fact we can check that X is mode-
desirable if and only if:

[∀ x < 0, ∃y > x s.t. (1{y} − 1{x}) ◦X ∈ D+].

One of the implications is straightforward, so we just
need to check the second one: Let us suppose that X ∈
DMo and let us consider an arbitrary but fixed value
x ≤ 0. According to the definition of DMo, there exists
y1 6= x such that (1{y1} − 1{x}) ◦ X. Furthermore,
we can assure that y1 belongs to Im(X). If y1 >
x, the proof is finished. Otherwise, there will exist
y2 6= y1, y2 ∈ Im(X) such that (1{y2} − 1{y1}) ◦X ∈
D+. According to the additivity of D+ (Axiom D4),
we can easily check that (1{y2} − 1{x}) ◦ X ∈ D+.
According to this procedure, after a finite number of

steps, k ≤ #Im(X), we will get yk+1 > x such that
(1yk+1

− 1yk) ◦X ∈ D+. Otherwise, we would need to
assume that yn is less than or equal to x, and it would
lead us to a contradiction, because, there would need
to exist y 6∈ Im(X) with (1y − 1yn) ◦X ∈ D+.

If X is mode-desirable, then, for every x < 0, there ex-
ists some y 6= x such that we are disposed to exchange
the gamble 1X=x in return for the gamble 1X=y. The
new desirability condition induces a pair of lower and
upper previsions as follows:

Definition 2 Let D be a coherent family of desir-
able gambles, and let DMo denote the family of mode-
desirable gambles induced by it. Let X ∈ LF . The
lower prevision of X is defined as follows:

PMo(X) = sup{c ∈ R : X − c ∈ DMo}

Analogously, the upper prevision is:

PMo(X) = inf{c ∈ R : c−X ∈ DMo}.

Now we will prove that the minimum and the maxi-
mum values of the set A+

X do coincide with the pair
of lower and upper previsions defined above. Let us
first prove the following supporting result:

Lemma 3

• The set C = {c : X − c ∈ DMo} can be alterna-
tively expressed as:

{c : [x < c⇒ ∃ y 6= x with (1{y}−1{x})◦X ∈ D+]} =

{c : [x < c⇒ x 6∈ A+
X ]} = (−∞,minA+

X ].

• The set D = {d : d−X ∈ DMo} can be alterna-
tively written as:

{d : [x > d⇒ ∃ y 6= x with (1{y}−1{x})◦X ∈ D+]} =

{d : [x > d⇒ x 6∈ A+
X ]} = [maxA+

X ,∞).

Proof: The proof is almost immediate, if we take
into account that 1{y} ◦ (X − c) = 1{y+c} ◦ X, and
1{y} ◦ (d−X) = 1{d−y} ◦X ∀ c, d, y ∈ R. �

The next result is straightforward, according to the
above lemma:

Proposition 4 The following equalities hold:
minA+

X = PMo(X) and maxA+
X = PMo(X).

Remark 3.2 According to the proof of Lemma 3, the
supremum of C and the infimum of D are, indeed,
maximum and minimum values, respectively, and they
do coincide with the minimum and the maximum of
A+
X , respectively.
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Let us now consider the set of mode values associated
to the credal set:

MoPD (X) = ∪P∈PD{MoP (X)}.

If it coincided with A+
X , the minimum and the maxi-

mum of the family of modes associated to the credal
set would coincide with the lower and upper previsions
of X, according to the notion of mode-desirability.
Nevertheless, those lower and upper previsions just
bound, but they do not coincide in general with the
minimum and maximum of the set of modes of X.
More specifically, we can check that:

Proposition 5 The set of mode values associated to
the credal set PD, MoPD (X) is included in A+

X . Fur-
thermore, if the credal set is a singleton, both sets of
values do coincide.

Proof: The set of modes can be expressed as follows:

MoPD (X) = ∪P∈PD{MoP (X)} =

∪P∈PD{x : ∀ y 6= x, P (1{y} − 1{x}) ◦X ≤ 0} =

{x : ∃P ∈ PD s.t. ∀ y 6= xP (1{y} − 1{x}) ◦X ≤ 0}.
On the other hand,

A+
X = {x : ∀ y 6= x, P (1{y} − 1{x}) ◦X) ≤ 0}.

According to the above expressions, and taking into
account that P is the minimum of the credal set, we
can easily derive the thesis of this proposition. �

According to the last results, A+
X is a finite set con-

taining the set of modes, MoPD (X), and included in
the set of images of X. Under some additional con-
straints (PD being a singleton or, contrarily, express-
ing vacuous information, or A+

X being included in the
set of images with maximum upper probability, etc.)
they do coincide. But they do not in general, as we
illustrate in the following example.

Example 1 Let Ω be a finite set with four elements,
Ω = {ω1, ω2, ω3, ω4} and let us consider the credal set
P = {( 3

8−α, 18− α
4 ,

1
8 + α

4 ,
3
8 +α) : α ∈ [− 3

8 ,
3
8 ]}. In the

above formula, each vector of the form (p1, p2, p3, p4)
represents the linear prevision P defined as:

P (X) =

4∑

i=1

piX(ωi), ∀X ∈ L.

Let D+
P denote the set of strictly desirable gambles as-

sociated to P: D+
P = {Y : Y > 0 or P (Y ) > 0}. Let

us now consider the gamble X defined as X(ωi) =
i, i = 1, 2, 3, 4. Let A+

X denote the collection of num-
bers:

A+
X = {x : 6 ∃y 6= x with (1{y} − 1{x}) ◦X ∈ D+} =

{i ∈ {1, . . . , 4} : ∀j 6= i, P (1{ωj} − 1{ωi}) ≤ 0}.

A+
X = {1, 2, 3, 4}, but MoP(X) = {1, 4}. In order to

check it, Tables 1 and 2 respectively display, for each
pair (j, i), the value that the linear prevision Pα ≡
( 3
8 − α, 18 − α

4 ,
1
8 + α

4 ,
3
8 + α) and the lower prevision

P = minα∈[− 3
8 ,

3
8 ]
Pα assign to the gamble (1{xj} −

1{xi}) ◦X = 1{ωj} − 1{ωi}.

j \ i 1 2 3 4

1 0 1
4 − 3α

4
1
4 − 5α

4 2α
2 3α

4 − 1
4 0 −α2 − 1

4 − 5α
4

3 5α
4 − 1

4
α
2 0 − 1

4 − 3α
4

4 −2α 1
4 − 5α

4
1
4 + 3α

4 0

Table 1: It displays Pα(1{ωj} − 1{ωi}), for each (j, i).

j \ i 1 2 3 4

1 0 − 1
32 − 7

32 − 3
4

2 − 17
32 0 − 3

16 − 3
8

3 − 23
32 − 3

16 0 − 1
32

4 − 3
4 − 7

32 − 1
32 0

Table 2: It displays P (1{ωj} − 1{ωi}), for each (j, i).

None of the values in Table 2 is strictly positive, and
this means that A+

X coincides with the set of possible
outcomes of the gamble X, {1, 2, 3, 4}. On the other
hand, there does not exist any α ∈ [− 3

8 ,
3
8 ] such that

the values 2 or 3 belong to the set of modes of X as-
sociated to the linear prevision Pα, MoPα(X). Thus,
the set of modes associated to the credal set, MoP(X),
is strictly included in A+

X .

We can ask ourselves what happens if we replace, D+

by D or D− in the construction of the set of values:

{x : 6 ∃y 6= x with (1{y} − 1{x}) ◦X ∈ D+}.

Let us consider the pair of sets:

AX = {x : 6 ∃y 6= x with (1{y} − 1{x}) ◦X ∈ D}

and

A−X = {x : 6 ∃y 6= x with (1{y} − 1{x}) ◦X ∈ D−} =

{x : P ((1{y} − 1{x}) ◦X) < 0, ∀ y 6= x},

and let us compare them with A+
X .

Lemma 6 A−X ⊆ AX ⊆ A+
X . Furthermore, if PD is a

singleton, PD = {P}, then A−X = ∅, unless the distri-
bution of X is unimodal. In that case, A−X = AX =
A+
X = MoP (X).
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Proof: The first part is easy to prove if we take into
account the chain of inclusions D+ ⊆ D ⊆ D−. Sec-
ondly, if PD = {P}, we can easily check that x belongs
to A−X if and only if P (1X=y) < P (1X=x), ∀ y 6= x.
This only happens when x is the only mode of X, with
respect to the linear prevision P. �

Remark 3.3 Using expressions analogous to those
considered in Lemma 3, we can easily prove that the
minimum and maximum of A−X do respectively coin-
cide with sup{c : X − c ∈ D−Mo} and inf{d : d−X ∈
D−Mo}, where D−Mo is defined as:

{X ∈ LF : ∀x < 0 ∃ y 6= x s.t. (1{y}−1{x})◦X ∈ D−}.
Furthermore, we have seen that A−X is included in A+

X ,
and that the last one coincides with the set of modes,
when the credal set is a singleton. We can ask our-
selves whether A−X is, in general a subset of MoP(X),
and therefore it approximates it from below. But we
can easily check that this does not happen. In Exam-
ple 1, we have shown that none of the lower previsions
displayed in Table 2 was strictly positive. Further-
more, we observe that all of them are negative (except
for those in the diagonal). This means that A−X also
coincides with the whole family of possible outcomes
of X, A−X = {1, 2, 3, 4} and therefore, it strictly in-
cludes the set of mode values associated to the credal
set.

4 What’s the problem with
mode-desirability?

In Walley’s framework ([16]), any coherent set of gam-
bles satisfies Axioms D2 and D4. The following prop-
erty can be easily derived from both axioms:

Y ∈ D, and X > Y ⇒ X ∈ D. (2)

On the other hand, the set of sign-desirable gambles
induced by a coherent set of gambles D satisfies Ax-
iom D2, but it does not necessarily satisfy Axiom D4.
However we can easily check that it fulfills the prop-
erty mentioned in Equation 2, since it is connected
to D+ through the function sgn : R → R, that is
increasing. More explicitly:

Definition 3 Let D be a coherent set of desirable
gambles, and let f : R → R be an increasing func-
tion. We will say that X is f -desirable if and only if
f(X) belongs to D. We will denote it X ∈ Df .

Lemma 7 Let D be a coherent set of desirable gam-
bles, and let f : R → R be an increasing function.
The set of f -desirable gambles satisfies the property:

X ∈ Df , Y > X ⇒ Y ∈ Df .

A “coherent” set of mode-desirable gambles does not
necessarily satisfy the property considered in Equa-
tion 2 as we illustrate in Example 2:

Example 2 Let Ω be the unit interval, and let P de-
note the uniform probability distribution defined on it.
Let Y denote the gamble defined as follows:

Y (ω) =





−1 if ω ∈ [0, 1/3)

1 if ω ∈ [1/3, 5/6)

2 if ω ∈ [5/6, 1]

Y takes the values −1, 1 and 2 with respective prob-
abilities 1/3, 1/2 and 1/6. Thus, we can easily check
that Y is mode-desirable, since P (1{1} − 1{x} ◦ Y ) >
0, ∀x < 0. Let us now consider the gamble:

X(ω) =





−1 if ω ∈ [0, 1/3)

1 if ω ∈ [1/3, 1/2)

2 if ω ∈ [1/2, 2/3)

3 if ω ∈ [2/3, 5/6)

4 if ω ∈ [5/6, 1]

We clearly see that Y ≥ X, but it is not mode-
desirable. In fact, for x = −1 there does not exist
any y > x such that P (1{y} − 1{x} ◦X) > 0.

From this example, and according to Lemma 7, a “co-
herent” sets of mode-desirable gambles can not be ex-
pressed, in general, as the family of f -desirable gam-
bles, according to some increasing function f : R→ R
and some coherent set of desirable gambles D. This
fact seems to be essential in relation with the proper-
ties of the lower and upper previsions derived from it,
as we show below.

Lemma 8 Let D be a coherent set of desirable gam-
bles, and let us consider an increasing function f :
R→ R. The set C = {c : f(X − c) ∈ D} satisfies the
following property: c ∈ C, c′ ≤ c⇒ c′ ∈ C.
Proof: Let us suppose that c ∈ C and c′ ≤ c. By
definition, f(X− c) ∈ D. According to the properties
of f , f(X − c′) ≥ f(X − c) and, therefore, according
to the coherence of D, f(X − c′) belongs to it. �

Proposition 9 Let D be a coherent set of desirable
gambles, and let us consider an increasing function
f : R → R. Let D+

f denote the set of f−desirable

gambles with respect to the coherent set D+, D+
f =

{X : f(X) ∈ D+}. Let us also consider, for every
P ∈ PD, the set of f -desirable gambles with respect to
D+
{P}, i.e.: D+

f,{P} = {X : f(X) > 0 or P (f(X)) >

0}. Then:

sup{c : X−c ∈ D+
f } = inf

P∈PD
sup{c : X−c ∈ D+

f,{P}}.
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Proof: First of all, let us take into account that D+ ⊆
D+
{P}, and therefore D+

f ⊆ D+
f,{P}, ∀P ∈ P. Thus,

the set {c : X − c ∈ D+
f } is included in {c : X − c ∈

D+
f,{P}}, ∀P ∈ P, and therefore

sup{c : X−c ∈ D+
f } ≤ inf

P∈PD
sup{c : X−c ∈ D+

f,{P}}.

Let us now prove the reverse inequality.Let cP denote
the supremum of the set {c : f(X − c) ∈ D+

f,{P}}
and let c = infP∈P cP . Let us consider an arbitrary
c′ < c. It will suffice to check that, c′ ∈ {c : X − c ∈
D+
f }. Let us consider the difference ε = c − c′ > 0.

According to the definition of supremum, for every
P ∈ P there exists c′P ∈ {c : X−c ∈ D+

f,{P} such that

cP−ε < c′P ≤ cP . Therefore, c′ ≤ infP∈P c′P and thus,
according to Lemma 8, f(X − c′) ∈ D+

{P}, ∀P ∈ P.

Having into account that D+ = ∩P∈PD+
{P}, we have

that c′ ∈ {c : X − c ∈ D+
f }, and the result is proved.

�

According to the last result, when we consider an
increasing function f : R → R, and the supremum
sup{c : f(X − c) ∈ D+

{P}} coincides with some well-

known parameter, θP (X) induced by the probability
distribution PX (like, for instance, the expectation for
f(·) = ·, or the infimum of the interval of medians, for
f = sgn, the supremum sup{c : f(X−c) ∈ D+} coin-
cides with the infimum of the values of the parameter,
when we range the credal set, infP∈PD θP (X).

The condition of mode-desirability cannot be ex-
pressed in terms of an increasing function. According
to Example 2, it is something inherent to the stan-
dard definition of mode, and it does not depend on
the particular definition we have introduced in or-
der to extend the idea of non-negativity of the mode
to the Imprecise Probabilities framework. Even for
the family of single-pointed credal sets, we cannot
find an increasing function f : R → R such that
sup{c : f(X − c) ∈ D+

{P}} = minMoP (X), for ev-

ery linear prevision, P .

5 Alternative definitions of mode
desirability

As we have mentioned in the introduction, [3] re-
views several classical stochastic preference criteria
and shows that many of them can be written accord-
ing to the general formulation:

X is preferred to Y iff EP (g(X,Y )) ≥ 0,

where g : R2 → R is increasing in the first com-
ponent and decreasing in the second one. Further-
more, in most cases, g can be expressed in terms of

an increasing point-to-point function f : R → R as
g(x, y) = f(x) − f(y), ∀ (x, y) ∈ R2. As we clarify
in [3], some extensions of those stochastic orderings
introduced in the recent literature ([6, 8, 9, 11, 15])
can be written in terms of the non-negativity of the
lower prevision of g(X,Y ). Some others, instead,
take into account the pairs of lower and upper pre-
visions of f(X) and f(Y ), (E(f(X)), E(f(X))) and
(E(f(Y )), E(f(Y ))). Based on both pairs, we can gen-
erate four different preference relations, that, for the
sake of shortness, will be called min-max, max-max,
max-min and min-min.

In Section 3, we considered the following generaliza-
tion of the notion of mode:

MoP (X) = {xi : P (1X=xj − 1X=xi) ≤ 0, ∀ j 6= i}.

Instead of the lower prevision of gambles of the form
(1{xj} − 1{xi}) ◦X, we can alternatively consider the
pairs of lower and upper previsions of the gambles
1{xj} ◦X and 1{xi} ◦X and compare them, according
to the four criteria mentioned in the last paragraph.
In this section we will briefly discuss these four alter-
native definitions.

Min-max criterion

Let P and P respectively denote the lower and upper
previsions induced by a credal set P. Let X ∈ LF
be an arbitrary simple gamble. We will define the
min-max-mode of X with respect to P as the set:

M
mMoP(X) = {xi : P (1X=xj ) ≤ P (1X=xi), ∀ j 6= i}.

According to the super-additivity of P , and the dual-
ity between P and P , the following inequality holds:

P (1X=xj )− P (1X=xi) ≥ P (1X=xj )− P (1X=xi),

and therefore, we can easily check that the max-min-
mode of X contains the set MoP (X), that is, in turn,
a superset of the family of modes of X, when we range
the credal set. Therefore, the max-min-mode is even
less precise than our initial generalization of the mode.

Max-max criterion

We will define the max-max-mode of X with respect
to P as follows:

M
MMoP(X) = {xi : P (1X=xj ) ≤ P (1X=xi), ∀ j 6= i}.

This set is included in the set of modes of X, when
we range the credal set. In fact, according to the
coherence of P , it is the maximum of the credal set,
P, and that means that there exists, for every i ∈
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M
MMoP(X), some Pi ∈ P that satisfies the equality
Pi(1X=xi) = P (1X=xi), that satisfies, by definition,
the inequalities P (1X=xi) ≥ P (1X=xj ), ∀ j. Thus, we
get the inequalities:

Pi(1X=xi) = P (1X=xi) ≥ P (1X=xj ) ≥ Pi(1X=xj ), ∀ j.

Therefore, the max-max-mode approximates the set
of modes from below.

Max-min criterion

We will define the max-min-mode of X with respect
to P as follows:

m
MMoP(X) = {xi : P (1X=xj ) ≤ P (1X=xi), ∀ j 6= i}.

This set of values is clearly included in the max-max-
mode, and therefore, it is a less precise approximation
of the family of modes MoP(X).

Min-min criterion

We will define the min-min-mode of X with respect
to P as the set:

m
mMoP(X) = {xi : P (1X=xj ) ≤ P (1X=xi), ∀ j 6= i}.

P ((1{xj} − 1{xi}) ◦ X) ≤ P ((1{xj} − 1{xi}) ◦ X) ≤
P (1{xj} ◦X)− P (1{xi} ◦X), ∀ i, j.
The above set does not necessarily include, nor is it
necessarily included in the family of modes, MoP(X).
Both sets may even be disjoint, as it happens in the
following example.

Example 3 Let us consider again the credal set of
Example 1, P = {( 3

8 − α, 18 − α
4 ,

1
8 + α

4 ,
3
8 + α) :

α ∈ [− 3
8 ,

3
8 ]}. The lower previsions of the gambles of

the form 1X=xi , i = 1, 2, 3, 4, are, respectively 0, 1
32 ,

1
32 and 0. Thus, the min-min-mode, m

mMoP(X) =
{2, 3} is the complementary of the set of modes of X,
MoP(X) = {1, 4}.

6 Concluding remarks and open
problems

We have introduced the notion of mode-desirability,
and connected the classical notion of mode to Wal-
ley’s desirability framework. The lower and upper
previsions of a gamble bound, but do not necessarily
coincide with the minimum and the maximum of the
set of modes, when we consider an arbitrary credal
set. In Section 4, we have discussed the reason why
there does not seem to exist a way to express the pair
of minimum and maximum values as the pair of lower

and upper previsions, according to some desirability
condition.

We have also studied four alternative generalizations
of the notion of mode. The “min-max” approach leads
to a pair of bounds that are even less precise than the
lower and upper previsions induced from the notion
of mode-desirability. Notwithstanding, the number of
comparisons needed to calculate the outer approxima-
tion A+

X is greater than the number needed in order
to calculate the min-max mode. It will be the expert
that uses those approximations in practical problems
who has to decide what is the most convenient proce-
dure in each specific situation. On the other hand, the
min-min mode does not seem to be related in general
with the set of modes. Finally, the max-min and the
max-max modes are included in the family of modes,
the last one being the most precise of the two. In a
specific problem, we can consider the outer and inner
approximations of MoP(X) respectively derived from
the notions of mode-desirability (or, alternatively, the
min-max mode, when the calculation of A+

X is non-
viable) and max-max mode. According to the notion
of upper prevision, the max-max mode can be alter-
natively expressed as:

{
xi : ∪n

j=1{d : d− 1X=xj 6∈ D} ⊆ {d : d− 1X=xi 6∈ D}
}
.

(3)

The max-max mode and the set A+
X approximate the

set of bounds, respectively from below and above. At
first sight, the problem of characterizing the set of
modes associated to a credal set seems to be more
complicated: the mode of a linear convex combination
is not between the modes of both extremes. There-
fore, the set of modes associated to a credal set does
not seem to be easily characterized by the modes of
the extremes, as it happens with other parameters,
like the entropy (see [1], for instance). At least, the
fact of departing from a pair of inner and outer ap-
proximations can simplify the process of characteriz-
ing the set of modes in some specific problems.

In the future, we plan to study the properties of the
desirability condition that matches with the gener-
alization of the notion of mode considered in Equa-
tion 3, as well as for the notion of mode-desirability.
According to the definition introduced in this pa-
per, a gamble is mode-desirable if and only if A+

X ∩
(−∞, 0) 6= ∅. The set of mode-desirable gambles does
not satisfy, in general, Axiom D1 (“avoiding partial
loss”). In order to overcome this inconvenient, we
could have alternatively considered X to be mode-
desirable if and only if A+

X ∩ (−∞, 0] = ∅. But this
would not entail a substantial improvement, since the
set of mode-desirable gambles would no longer sat-
isfy Axiom D2 (“accepting partial gain”). We plan to
study other alternatives in order to find a new defini-
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tion that simultaneously satisfies both axioms.

We also plan to study necessary and sufficient condi-
tions for a credal set P in order to satisfy the equality
MoP(X) = A+

X , so that the minimum and the max-
imum of the set of modes do coincide with the lower
and upper previsions induced by the set of mode-
desirable gambles.

In the paper, we have assumed that the outcomes of
the gambles were numbers, but we could easily ex-
tended this framework to a non-necessarily numeri-
cal setting. The definitions of mode-desirability and
lower and upper prevision would require, anyway, the
universe being an ordered set including a “neutral”
element that plays the role of the value 0 in the real
line.
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Abstract

In this paper we examine concepts of independence
for sets of full conditional probabilities; that is, for
sets of set-functions where conditional probability is
the primitive concept, and where conditioning can be
considered on events of probability zero. We also dis-
cuss the related issue of independence for (sets of)
lexicographic probabilities and for sets of desirable
gambles.

Keywords. Sets of probability measures, full
conditional probabilities, lexicographic probability,
sets of desirable gambles, independence concepts,
graphoids.

1 Introduction

This paper examines concepts of independence for sets
of full conditional probabilities and related models.
We study the behavior of several concepts of inde-
pendence in the literature, and propose a number of
possible additional concepts. The results should be of
interest to anyone concerned with representations of
uncertainty that allow indeterminacy and imprecision
in probability values, and that allow conditioning on
every nonempty event.

The motivation for this paper is the following.

The use of a single standard probability measure fails
to encode indeterminacy and imprecision about prob-
ability values. Belief functions, interval-valued prob-
ability, and sets of probability measures have been
proposed to handle such indeterminacy and impreci-
sion. It is not obvious how to generalize the concept
of stochastic independence when one deals with sets
of probability measures; accordingly, there have been
many proposed concepts of independence in the liter-
ature.

Another problem with standard probability measures
is that they do not handle conditioning on events of

probability zero; that is, if P (B) = 0, then P (A|B)
does not exist, regardless of the event A. Indeed, stan-
dard conditional probability is merely a derived, in-
completely specified concept, while one might argue
that conditional probability should be the primitive
object of interest. Full conditional probabilities offer
an account of conditional probability as primitive ob-
jects that can be specified even if conditioning events
have probability zero. As standard stochastic inde-
pendence is quite weak when applied to full condi-
tional probabilities, there have been several proposals
for concepts of independence that are appropriate for
a single full conditional probability.

However, there is still much to be understood about
concepts of independence for sets of full conditional
probabilities. This paper tries to partially fill this
gap, by examining a number of concepts of indepen-
dence and deriving their graphoid properties (these
properties are often taken as abstract properties that
any “sensible” concept of independence should sat-
isfy). We also discuss concepts of independence for
(sets of) lexicographic probabilities and sets of desir-
able gambles, as they share several features with full
conditional probabilities.

Section 2 describes existing and novel concepts of in-
dependence for credal sets and full conditional proba-
bilities. It does not seem that a similar analysis can be
found in the literature. Section 3 examines a number
of new concepts of independence for sets of full condi-
tional probabilities. Section 4 then examines concepts
of independence that resort to lexicographic probabil-
ities and to sets of desirable gambles.

2 Concepts of independence

We assume throughout that the possibility space Ω
is finite, so there are no issues of measurability.
Throughout the paper we use W , X, Y and Z to
denote random variables. Then w denotes a possible
value of W , x denotes a possible value of X, y denotes
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a possible value of Y , z denotes a possible value of Z.
And {x} denotes the event {ω ∈ Ω : X(ω) = x}; like-
wise for {w}, {y} and {z}. The letters A and C will
always denote nonempty events in the algebra gener-
ated by X. Likewise, the letters B and D will always
denote nonempty events in the algebra generated by
Y . The letter f will always denote a function of X,
and the letter g will always denote a function of Y .

The intersection of events G and H is written either
as GH or as G,H. When the event {x} appears in an
intersection, we remove braces whenever possible; for
instance, xG denotes the event {x} ∩ G. Sometimes
we add braces to enhance clarity; for instance, we may
write {y, z} instead of simply y, z.

Finally, when w, x, y, z appear in expressions,
they are universally quantified unless explicitly noted.
Likewise, when functions f and g appear in expres-
sions, they are universally quantified unless explicitly
noted.

Conditional stochastic independence of random vari-
ables X and Y given random variable Z obtains when
P (x, y|z) = P (x|z)P (y|z) whenever P (z) > 0.

Throughout, if Z is any constant function, we remove
the expression “given Z” and in that case we have
“unconditional” independence of X and Y (for any
concept of independence of interest). Often we just
write “independence” to mean both conditional and
unconditional independence.

Concepts of independence can be evaluated by their
graphoid properties [14, 34]. For any three-place rela-
tion (·⊥⊥·| ·), we are interested in the following prop-
erties, all of them satisfied by stochastic indepen-
dence:

Symmetry: (X⊥⊥Y |Z)⇒ (Y ⊥⊥X |Z)

Redundancy: (X⊥⊥Y |X)

Decomposition: (X⊥⊥(W,Y ) |Z)⇒ (X⊥⊥Y |Z)

Weak union: (X⊥⊥(W,Y ) |Z)⇒ (X⊥⊥Y |(W,Z))

Contraction:
(X⊥⊥Y |Z)∧ (X⊥⊥W |(Y, Z))⇒ (X⊥⊥(W,Y ) |Z).

2.1 Independence for sets of standard
probability measures

A set of standard (Kolmogorovian-style) probability
measures, not assumed to be closed and convex, is re-
ferred to as a credal set. Denote by K(X) the set
of probability distributions for variable X. Given
a function f(X), its lower and upper expectations
are, respectively E[f(X)] = infP∈K EP [f(X)] and
E[f(X)] = supP∈K EP [f(X)], where EP [f(X)] is

the expectation of f(X) with respect to P . Simi-
larly, given an event A, its lower and upper prob-
abilities are, respectively P (A) = infP∈K P (A) and
P (A) = supP∈K P (A).

Given a credal set K(X), we define the conditional
credal set

K(X|A) = {P (·|A) : P ∈ K(X)} if P (A) > 0;

otherwise, K(X|A) is left undefined [21]. Another
option is to define a conditional credal set that fo-
cuses on those probability measures that assign posi-
tive probability to A:

K>(X|A) = {P (·|A) : P ∈ K(X) and P (A) > 0}

if P (A) > 0; (1)

otherwise K>(X|A) is left undefined [44, 45]. Ob-
viously, if P (A) > 0, then K(X|A) = K>(X|A).
The set K>(X|A) is convex when K(X) is convex,
but it may be open even when K(X) is closed. We
define E>[f(X)|A] = infP(·|A)∈K>(X|A)EP [f(X)|A]

and E
>

[f(X)|A] = supP(·|A)∈K>(X|A)EP [f(X)|A].

For a moment, assume that all lower probabilities are
positive.

Following Levi [29], say that Y is confirmationally ir-
relevant to X given Z when

K(X|y, z) = K(X|z) . (2)

Walley has proposed a similar concept [41, 42]: Y is
epistemically irrelevant to X given Z when

E[f(X)|y, z] = E[f(X)|z] (3)

(recall our conventions: by implicit quantification,
this equality is required for all f , for all y, z).

Both confirmational and epistemic irrelevance fail
Symmetry. Walley’s clever solution, borrowed from
the work of Keynes, was to “symmetrize” irrelevance
to obtain epistemic independence: X and Y are epis-
temically independent given Z when X is epistemi-
cally irrelevant to Y given Z and Y is epistemically
irrelevant to X given Z [42]. Take confirmational in-
dependence to be a likewise symmetrized version of
confirmational irrelevance.

If all credal sets are closed and convex, then confir-
mational and epistemic independence are equivalent.
Now even if all lower probabilities are positive and
all credal sets are closed and convex, epistemic in-
dependence (and confirmational independence) fails
Contraction [7]. And if credal sets are not required to
be convex, then confirmational independence fails De-
composition, Weak Union and Contraction even when
all lower probabilities are positive [9].
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Matters become more complicated if lower proba-
bilites are allowed to be zero. Suppose first that Y
is taken to be confirmationally irrelevant to X if

K(X|y, z) = K(X|z) whenever P (y, z) > 0.

We are surely flirting with disaster here, because it is
not difficult to have a variable Z such that every value
of Z has zero lower probability, and yet K(Z) is not a
vacuous credal set (that is, it does not contain every
possible distribution for Z). Now given such a vari-
able Z, every two other variables are confirmationally
independent! This is not reasonable.

The other path to handle events of zero lower prob-
ability within confirmational independence is to say
that Y is confirmationally irrelevant to X given Z
when

K>(X|y, z) = K(X|z) whenever P (y, z) > 0. (4)

The symmetrized concept of independence fails De-
composition, Weak Union and Contraction (as noted
before, these properties fail even when all lower prob-
abilities are positive [9]).

Another possibility is to define epistemic irrelevance
of Y to X given Z by requiring:

E>[f(X)|y, z] = E[f(X)|z] whenever P (y, z) > 0.
(5)

The resulting symmetrized concept of independence
fails Contraction (as noted before, this property fails
even when all lower probabilities are positive [7]). It
is an open question whether Decomposition and Weak
Union hold when Expression (5) is used to define in-
dependence; Decomposition and Weak Union hold for
epistemic independence when all lower probabilities
are positive [12].

Note: Expressions (4) and (5) impose different con-
straints, as K>(X|A) may be open even when K(X)
is closed.

Yet another path has been followed by de Campos
and Moral [15]: they say Y is type-5 irrelevant to X
if

K>(X|B) = K(X) whenever P (B) > 0

(recall: B is an event in the algebra generated by Y ).
Accordingly, say that Y is type-5 irrelevant to X given
Z if

K>(X|B, z) = K(X|z) whenever P (B, z) > 0.

Now we might also modify epistemic irrelevance, and
say that Y is type-5 epistemically irrelevant toX given
Z if

E>[f(X)|B, z] = E[f(X)|z] whenever P (B, z) > 0.

And we can symmetrize type-5 irrelevance and type-
5 epistemic irrelevance to obtain corresponding con-
cepts of independence. Now, Contraction fails for
type-5 independence and for type-5 epistemic inde-
pendence (Contraction fails already when all lower
probabilities are positive [7]). It is an open question
whether Weak Union holds for these concepts of in-
dependence. As for Decomposition:

Proposition 1 Both type-5 independence and type-5
epistemic independence satisfy Decomposition.

Proof. Assume X and (W,Y ) are type-5 independent
given Z. Then K(Y |A, z) = K(Y |z) by marginal-
ization, and K(X|B, z) = K(X|z) because any B
belongs to the algebra generated by (W,Y ). Like-
wise, assume type-5 epistemic independence holds for
X and (W,Y ). Then E[g(Y )|A, z] = E[g(Y )|z] be-
cause any function of Y is a function of (W,Y ), and
E[f(X)|B, z] = E[f(X)|z]. �
Type-5 irrelevance may seem very attractive at first,
but the following example, due to de Campos and
Moral [15], displays rather weird behavior when lower
probabilities are zero. Take binary variables X and
Y , and K(X,Y ) with two distributions, one that as-
signs probability one to (x0, y0) and another that as-
signs probability one to (x1, y1) (if K(X,Y ) must be
convex, take the convex hull of these two distribu-
tions). Both distributions satisfy stochastic indepen-
dence, but X and Y fail to be type-5 independent! In
general, type-5 independence may fail even when all
elements of the credal set K(X,Y ) factorize.

This discussion suggests that concepts of indepen-
dence for credal sets must handle conditioning care-
fully. We now describe a few concepts of independence
that require no discussion about conditioning.

Strong independence was also proposed by Levi [29],
initially with the name strong confirmational irrel-
evance: X and Y are strongly independent when
K(X,Y ) is the convex hull of a set of probability mea-
sures that satisfy stochastic independence. Strong in-
dependence is an attempt to stay close to stochas-
tic independence while assuming convexity (given
that imposing stochastic independence over a set of
probability measures may generate a nonconvex set
of measures). Strong independence can be derived
from assumptions of infinite exchangeability [9] or fi-
nite exchangeability together with epistemic indepen-
dence [16]. Note that strong independence, and slight
variants of it, have received several names in the lit-
erature, such as type-1 product, type-2 product, type-2
independence, independence in the selection, repeti-
tion independence [9].

Complete independence abandons convexity and im-
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poses stochastic independence directly: X and Y are
completely independent when every joint distribu-
tion in K(X,Y ) satisfies stochastic independence [9].
Complete independence satisfies all graphoid proper-
ties previously mentioned.

The last notable concept of independence we mention
for credal sets is due to Kuznetsov [28]: X and Y are
Kuznetsov-independent if

E[f(X)g(Y )] = E[f(X)] � E[g(Y )]

for all functions f(X) and g(Y ), where E[·] de-
notes the interval from lower to upper expectations,
and � denotes interval multiplication. Kuznetsov-
independence satisfies Symmetry, Redundancy and
Decomposition; it fails Contraction even when all
probabilities are positive [8], and it is an open ques-
tion whether it satisfies Weak Union or not.

2.2 Independence for full conditional
probabilities

A full conditional probability [20] P : B × (B\∅) →
<, where B is a Boolean algebra, is a two-place set-
function such that for every event H 6= ∅:
(1) P (H|H) = 1;
(2) P (G|H) ≥ 0 for all G;
(3) P (G1 ∪G2|H) = P (G1|H) + P (G2|H)

whenever G1 ∩G2 = ∅;
(4) P (G1, G2|H) = P (G1|G2, H)× P (G2|H)

whenever G2H 6= ∅.
This fourth axiom is often stated as P (G1|H) =
P (G1|G2)P (G2|H) when G1 ⊆ G2 ⊆ H and G2 6= ∅
[13, Section 2].

Define the “unconditional” probability P (G) of an
event G to be P (G|Ω). That is, whenever the con-
ditioning event H is equal to Ω, we suppress it and
write the “unconditional” probability P (G).

There are other names for full conditional proba-
bilities in the literature, such as conditional proba-
bilities [27] and complete conditional probability sys-
tems [33]. We simplify to full probability whenever
possible. Full probabilities have found applications
in several fields, notably economy, philosophy, and
statistics [5, 19, 26, 30, 32, 35, 38].

We can partition Ω into events L0, . . . , LK as follows.
First, take L0 to be the set of elements of Ω that
have positive unconditional probability. Then take
L1 to be the set of elements of Ω that have positive
probability conditional on Ω\L0. And then take Li,
for i ∈ {2, . . . ,K}, to be the set of elements of Ω
that have positive probability conditional on Ω\∪i−1j=0

Lj . The events Li are called the layers of the full
probability. Note that some authors use a different

y0 y1
x0 b1c0 b1− αc1
x1 bαc1 b1c2

y0 y1
x0 b1c0 b1ci
x1 b1cj b1c3

Table 1: Joint full distributions for binary variables
X and Y . The right table stands for two full distri-
butions: one for i = 1, j = 2; another for i = 2, j = 1.

terminology, using instead the sequence ∪Kj=iLj rather
than Li [5, 27].

Any full probability can be represented by a sequence
of probability measures P0, . . . , PK , where Pi is posi-
tive over Li. This useful result that has been derived
by several authors [3, 5, 23, 27].

For nonempty G, denote by LG the first layer such
that P (G|LG) > 0, and refer to it as the layer of G.
We then have P (G|H) = P (G|H ∩ LH) [2, Lemma
2.1a].

We often write bαci to denote a probability value α
that belongs to the ith layer Li. Table 1 shows three
full distributions using this compact notation.

Given a full probability and a nonempty event H, the
two-place function P (·| · ∩H) is also a full probabil-
ity from which a partition of H consisting of layers
L0|H , L1|H , . . . , LK|H can be built. Given an event G
such that G ∩H 6= ∅, denote by LG|H the first layer

of P (·| · ∩H) such that P
(
G|LG|H

)
> 0.

For a nonempty event G, the index i of the first layer
Li of the full probability P such that P (G|Li) > 0
is the layer number of G. Layer numbers have been
studied by Coletti and Scozzafava [5], who refer to
them as zero-layers. The layer number of G is denoted
by ◦(G). Inspired by Coletti and Scozzafava [5], we
define the layer number of G given nonempty H as
◦(G|H) = ◦(G ∩H)−◦(H), and we adopt ◦(∅) =∞.

Now consider concepts of independence for full prob-
abilities.

Stochastic independence satisfies all graphoid prop-
erties we have mentioned previously, when applied
to full probabilities. Unfortunately, it may happen
that X and Y are stochastically independent and yet
P (A|B) 6= P (A) when P (B) = 0. Table 2 shows an
extreme example. To avoid this embarrassment, more
stringent notions of independence have been proposed
for full probabilities [3, 5, 23, 39].

Say that Y is epistemically irrelevant to X given Z
if P (A|y, z) = P (A|z) whenever {y, z} 6= ∅, and then
say that X and Y are epistemically independent given
Z if X is epistemically irrelevant to Y given Z and
vice-versa. Epistemic independence satisfies Sym-
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y0 y1
x0 b1c0 b1c3
x1 b1c1 b1c2

Table 2: Joint full distributions for stochastically in-
dependent binary variables, where P (x0) = 1 6= 0 =
P (x0|y1).

w0y0 w1y0 w0y1 w1y1
x0 bαc0 bβc2 b1− αc0 b1− βc2
x1 bαc1 bγc3 b1− αc1 b1− γc3

Table 3: Full distribution for W , X, Y , with distinct
α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 1).

metry, Redundancy, Decomposition and Contraction,
but it fails Weak Union [11, Proposition 4.2]. The full
distribution in Table 3 displays failure of Weak Union
for epistemic independence.

As proposed by Hammond [23], say that Y is h-
irrelevant to X given Z when

P (A|B,C, z) = P (A|C, z) whenever {B,C, z} 6= ∅,

and say that X and Y are h-independent given Z when
X is h-irrelevant to Y given Z and vice-versa (recall
our conventions: this equality must hold for every A
and C in the algebra generated by X, and for every
B in the algebra generated by Y ).

If X and Y are h-independent given Z, then

P (A,B|C,D, z) = P (A|C, z)P (B|D, z)
whenever {C,D, z} 6= ∅.

H-independence satisfies Symmetry, Redundancy, De-
composition and Weak Union, but it fails Contraction
[11, Theorem 5.4]. The full distribution in Table 3
displays failure of Contraction for h-independence.

Coletti and Scozzafava [5] have proposed conditions
on zero-layers to characterize independence. Say that
event H is cs-irrelevant to event G, where H 6= ∅ 6=
Hc, if P (G|H) = P (G|Hc), ◦(G|H) = ◦(G|Hc), and
◦(Gc|H) = ◦(Gc|Hc). To understand the motivation
for these conditions on layer numbers, suppose that
GH, GHc, GcH are nonempty, but GcHc = ∅. Hence
observation of Hc does provide information about G.
However, the indicator functions of G and H can be
epistemically/h-independent! Coletti and Scozzafava
eliminate such difficulties using their conditions on
layer numbers; other authors, such as Hammond [23]
and Battigalli [2], explicitly require the possibility
space to be the product of the possibility spaces for
each of the variables.

Vantaggi [39, 40] has extended Coletti and Scozzafava
conditions to independence of variables. Say that Y
is cs-irrelevant to X given Z when event {y} is cs-
irrelevant to event {x} given event {z}, whenever
{y, z} 6= ∅ 6= {{y}c, z} [39, Definition 7.3]. Call
the symmetrized concept cs-independence of X and
Y given Z. Besides Symmetry, cs-independence sat-
isfies Redundancy, Decomposition and Contraction,
and it fails Weak Union [39, Section 9].

The conditions on layer numbers imposed by cs-
independence can be written as [11, Corollary 4.11]:

◦(x, y|z) = ◦(x|z) + ◦(y|z) for {z} 6= ∅. (6)

Condition (6) can be used to generate additional con-
cepts of independence. For instance, say that Y is
fully irrelevant to X given Z if Y is h-irrelevant to
X given Z and if they satisfy Condition (6); say that
X and Y are fully independent given Z if they are
h-independent given Z and satisfy Condition (6) [11].

Full independence satisfies Symmetry, Redundancy,
Decomposition and Weak Union, but it fails Contrac-
tion [11, Theorem 5.7]. Table 3 displays failure of
Contraction for full independence.

A different concept of independence has been pro-
posed by Kohlberg and Reny [26], essentially as fol-
lows. Say that X and Y are kr-independent given Z
when both:

• if {x, z} 6= ∅ and {y, z} 6= ∅, then {x, y, z} 6= ∅;
• if, whenever conditioning events are nonempty,

P
(
x, y|Lx,y|z ∪ Lx′,y′|z

)

P
(
x′, y′|Lx,y|z ∪ Lx′,y′|z

) =

lim
n→∞

Pn(x|z)Pn(y|z)
Pn(x′|z)Pn(y′|z)

for some sequence of product probability mea-
sures Pn(·|z).

Relatively little is known about kr-independence; we
only note that it satisfies Symmetry, Redundancy, De-
composition and Weak Union, and it fails Contraction
as can be seen in Table 3 [10, Theorem 1].

We now introduce a new concept of independence for
full probabilities where we require factorization across
layers of the full probability [10]. Consider:

Definition 1 X and Y are layer independent given
Z if, for each layer Li of the underlying full probability
P , and each z such that {Li, z} 6= ∅, we have both

P (x, y|Li, z) = P (x|Li, z)P (y|Li, z) ,
◦(x, y|z) = ◦(x|z) + ◦(y|z) .
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This concept of independence satisfies Symmetry, Re-
dundancy, Decomposition, Weak Union and Contrac-
tion; in fact, this seems to be the only known concept
of independence for full probabilities that satisfies all
these five properties.

We conclude this section by commenting on an aspect
of full probabilities that has not received the deserved
attention so far; namely, failure of uniqueness (some
comments about it appear in the work of Battigalli
[1] and Kohlberg and Reny [26]). The issue is this.
Suppose one is given marginal probabilities P (x0) =
P (y0) = 1 for binary variables X and Y . Now every
full distribution in Table 1 (for every α ∈ (0, 1)) satis-
fies these marginal assessments and epistemic/h-/cs-
/full/kr-independence; moreover, the two full distri-
butions encoded by the right table satisfy layer inde-
pendence. In general, one cannot uniquely determine
a single full probability by specifying marginal assess-
ments and judgments of independence. Once assess-
ments are to be combined with existing concepts of
independence, one must be prepared to consider a set
of joint full probabilities that satisfies all constraints.

3 Full credal sets and independence

We now focus on sets of full probabilities, and inves-
tigate the graphoid properties of several concepts of
independence. We refer to such sets as full credal sets;
we do not assume the sets to be convex and closed.

As already noted, a concept of independence that
relies on product factorizations is too weak in the
context of full probabilities. Indeed we have that
Kuznetsov, strong, complete and type-5 independence
declare X and Y independent for the full credal set
containing only the full distribution in Table 2.

Complete independence can be adapted to full credal
sets as follows. Define elementwise epistemic/h-
/cs-/full/kr-/layer independence of X and Y given
Z to hold when every element of the full credal
set K(X,Y |z) satisfies respectively epistemic/h-/cs-
/full/kr-/layer independence whenever {z} 6= ∅. We
note that Coletti and Scozzafava’s concept of inde-
pendence for lower probabilities [4, Definition 6], ex-
tended to variables by Vantaggi [40, Definition 7], is
quite similar to elementwise cs-independence.

Given the results mentioned in the previous section:

Proposition 2 Elementwise epistemic/cs-indepen-
dence satisfy Symmetry, Redundancy, Decomposition
and Contraction (and fail Weak Union). Element-
wise h-/full/kr-independence satisfy Symmetry, Re-
dundancy, Decomposition and Weak Union (and fail
Contraction). Elementwise layer independence sat-

isfies Symmetry, Redundancy, Decomposition, Weak
Union and Contraction.

A challenge that merits future work is to justify these
concepts of independence from behavioral or decision-
theoretic arguments. Even though complete indepen-
dence has an intuitive justification using choice func-
tions [9, 37], the interaction between choice functions
and full probabilities is yet to be explored.

Consider now confirmational and epistemic indepen-
dence as defined in Section 2.1, but applied to full
credal sets. The resulting concepts were originally
proposed by Levi [29] and by Walley [42] within the-
ories that adopt full probabilities.

Confirmational independence fails Decomposition,
Weak Union and Contraction when applied to gen-
eral full credal sets (even when all lower probabilities
are positive [9]).

Epistemic independence fails Decomposition and
Weak Union when applied to full credal sets [12], as
can be seen in Example 1, and fails Contraction even
when all lower probabilities are positive [7].

Example 1 Consider a full credal set with the two
distributions depicted in Table 4, where α ∈ (0, 1/2).
We have P (w0) ∈ [α, 1−α] and P (w0|x, y) ∈ [α, 1−α]
for all possible x, y: (X,Y ) is epistemically irrelevant
to W . The reader can verify that both distributions
yield identical values of P (x, y|w) and P (x, y) such
that P (x, y|w) = P (x, y), for all possible (x, y, z).
Hence W is epistemically irrelevant to (X,Y ). Thus
we have epistemic independence of W and (X,Y ).
However, P (w0|x1) = 1/2; consequently, X is not
epistemically irrelevant to W (Decomposition fails),
and Y is not epistemically irrelevant to W given X
(Weak Union fails). �

So, at least from the point of view of graphoid proper-
ties, both confirmational and epistemic independence
fare rather poorly.

Note that the motivation behind confirma-
tional/epistemic irrelevance of Y to X is that
observation of Y does not change beliefs about X.
However, for a full probability the beliefs about X
are encoded not just by expectations E[f(X)] but
rather by conditional expectations E[f(X)|A] for
events A in the algebra generated by X. This is
indeed the rationale behind h-independence; for this
reason, the combination of h-independence and full
credal sets seems very attractive.

Consider then adapting h-independence to full credal
sets as follows:
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P1 w0y0 w0y1 w1y0 w1y1

x0
⌊
α
2

⌋
0

⌊
α
2

⌋
0

⌊
1−α
2

⌋
0

⌊
1−α
2

⌋
0

x1
⌊
α
2

⌋
1

⌊
1−α
2

⌋
1

⌊
1−α
2

⌋
1

⌊
α
2

⌋
1

P2 w0y0 w0y1 w1y0 w1y1

x0
⌊
1−α
2

⌋
0

⌊
1−α
2

⌋
0

⌊
α
2

⌋
0

⌊
α
2

⌋
0

x1
⌊
1−α
2

⌋
1

⌊
α
2

⌋
1

⌊
α
2

⌋
1

⌊
1−α
2

⌋
1

Table 4: Extreme points of the full credal set in Example 1.

y0 y1
x0 bαc0 b1− αc0
x1 bαc1 b1− αc1

Table 5: Marginal probabilities from Table 3.

Definition 2 Y is h-irrelevant to X given Z if

E[f(X)|A,B, z] = E[f(X)|A, z]
whenever {A,B, z} 6= ∅.

X and Y are h-independent given Z when X is h-
irrelevant to Y given Z and vice-versa.

We have:

Theorem 1 H-independence satisfies Symmetry, Re-
dundancy, Decomposition, and Weak Union.

Proof. Symmetry holds by definition; Redun-
dancy is trivial. From the assumed h-independence
of X and (W,Y ), we have: E[f(X)|A,B, z] =
E[f(X)|A, z], and E[g(Y )|A,B, z] = E[g(Y )|B, z]
(Decomposition). Weak Union follows from
E[g(Y )|A,B,w, z] = E[g(Y )|B,w, z], and then, using
Decomposition, E[f(X)|A,w, z] = E[f(X)|A, z] =
E[f(X)|A,B,w, z]. �
Note that h-independence fails Contraction (Table 3).

In the next section we examine two other representa-
tions that are closely related to full conditional mea-
sures and full credal sets.

4 Lexicographic probabilities and sets
of desirable gambles

Consider again Table 3. For this full distribution we
have X and Y epistemic/h-/cs-/full/kr-/layer inde-
pendent. One might argue that there is something
strange about this “independence”. For take a func-
tion g(Y ) such that g(y0) = −(1− α) and g(y1) = α.
This function has expected utility zero. But if β < α
one might argue that g is better than the zero func-
tion; after all, if {w1} happens to be observed, then
the expected value of g given {w1} is α − β, and g

y0 y1
x0 bαc0, bβc2 b1− αc0, b1− βc2
x1 bαc1, bγc3 b1− αc1, b1− γc3

Table 6: Lexicographic marginal probabilities from
Table 3.

should then be considered better than the zero func-
tion. And if γ > α, then conditional on {w1, x1}
the zero function should be considered better than g.
Hence conditioning on {x1} seems to change opinions
about a function of Y .

One way to understand this example is to look at the
marginal full probability for (X,Y ), shown in Table
5. Note that when the full probability in Table 3 is
marginalized over W , the content of layers L2 and L3

disappear: in Table 5 one sees neither β nor γ. Pref-
erences about g that might depend on deeper layers
can only be exposed by observing W . In a sense, the
direct marginalization of Table 3 loses important in-
formation about the joint full probability. It would
make more sense to say that the marginal probabil-
ities obtained from Table 3 should be given by the
overlapping layers in Table 6, so as to conclude that
X and Y are not independent.

We are then moving into lexicographic probabilities
that assign probability measures to various layers with
possibly overlapping support. Due to the lack of
space, we omit detailed background on lexicographic
probabilities, and refer the reader to the work of
Blume et al. [3] for all necessary definitions. We as-
sume their axiomatization of the non-Archimedean
preference relation �, and use the fact that this pref-
erence relation can be represented by a sequence of
probability measures over Ω; each one of these mea-
sures is a “layer” of the lexicographic probability. [3,
Corollary 3.1]. Two functions f1(X) and f2(X) are
compared with respect to a lexicographic rule in the
sense that f1 � f2 if and only if

[∑

x

f1(x)Pi(x)

]K

i=0

≥L

[∑

x

f2(x)Pi(x)

]K

i=0

,

(for a, b ∈ <K , a ≥L b iff whenever bj > aj , there
exists a k < j such that ak > bk). These probabili-
ties are unique only up to linear transformations, so
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there is some intrinsic non-uniqueness associated with
lexicographic probabilities:

Example 2 Suppose that a binary variable Y is asso-
ciated with two layers such that P0(y0) = 1−P0(y1) =
α and P1(y0) = 1 − P1(y1) = β. For fixed α, every
β ∈ [0, α) yields identical preferences; likewise, every
β ∈ (α, 1] yields identical preferences. So the spe-
cific value of β cannot be fixed by resorting to lexico-
graphic preferences. �

Conditional lexicographic probabilities given
nonempty event H are obtained by conditioning
every layer of the lexicographic probability on H,
after discarding those layers that do not intersect
H. These conditional probabilities encode the
preferences f1(X)IH � f2(X)IH [3, Theorem 4.3],
denoted by [f1(X) � f2(X)|H].

The close proximity between full probabilities and lex-
icographic probabilities is apparent. A full probabil-
ity can be represented by a lexicographic probability
with disjoint layers [22, 23]. And for any lexicographic
probability, the function P (A|B) = Pi(A|B), where
Pi the the first measure such that Pi(B) > 0, is a
full probability. However, as indicated by the dis-
cussion of marginalization concerning Tables 3, 5 and
6, full probabilities and lexicographic probabilities do
not behave identically.

Now consider defining a concept of independence for
lexicographic probabilities. We might try to define a
“product” for lexicographic probabilities. Here diffi-
culties abound due to non-uniqueness. First, prob-
abilities in various layers can be modified so as to
break factorization. Additionally, probability values
are not tied to specific layer numbers. For instance, if
we have a lexicographic probability with three over-
lapping layers, each with probability measures p0, p1
and p2, we can generate an equivalent representation
with four layers p0, p0, p1 and p2. Therefore a con-
dition such as layer factorization seems rather fragile
as we cannot control layer numbers just by looking at
marginal lexicographic probabilities.

Indeed the difficulties with product lexicographic
probabilities have already been discussed by several
authors [3, 23, 24]. Solutions based on factorization of
nonstandard measures have been advanced by these
authors; the interpretation and the manipulation of
such concepts do not seem easy, and we leave that to
future work.

Hence we are led, in our study of lexicographic proba-
bilities, to concepts of independence that rely on con-
ditioning. Blume et al. [3] say that X and Y are

w0y0 w1y0 w0y1 w1y1
x0 bαc0 bβc2 b1− αc0 b1− βc2
x1 bαc1

bβc3 ,
bγc4

b1− αc1
b1− βc3 ,
b1− γc4

Table 7: Lexicographic distribution forW , X, Y , with
distinct α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 1).

y0 y1

x0
bαc0 ,
bβc2

b1− αc0 ,
b1− βc2

x1
bαc1 ,
bβc3

b1− αc1 ,
b1− βc3

P (W,X|Y = y)
w0 w1

x0 b1c0 b1c2
x1 b1c1 b1c3

Table 8: Marginal (left) and conditional (right) lexi-
cographic probabilities from Table 7.

independent when we have both

[f1(X) � f2(X)|y1]⇔ [f1(X) � f2(X)|y2],

[g1(Y ) � g2(Y )|x1]⇔ [g1(Y ) � g2(Y )|x2]

whenever conditioning events are nonempty. Say that
X and Y are independent given Z when the expres-
sions above are satisfied conditional on any {z} such
that conditioning events are nonempty.

Even though Table 3 no longer fails Contraction if we
use this concept of independence (because X and Y
are no longer independent), consider Table 7. The
distributions for (X,Y ), for (X,W ) given {y0}, and
for (X,W ) given {y1} are shown in Table 8. Here X
and Y are independent and X and W are indepen-
dent given Y ; yet X and (W,Y ) are not independent.
Contraction fails. The fourth layer “vanishes” when
one marginalizes out W as preferences are decided al-
ready at the third layer. To understand this, consider
Example 2: once α and β are fixed, every preference
about Y is fixed, and there is no need to examine
further layers.

Now suppose we have a set of lexicographic probabil-
ities, where preference is given by unanimity amongst
lexicographic comparisons [36]. Example 1 shows that
Decomposition and Weak Union can fail for Blume et
al.’s concept of independence (just consider each full
probability a lexicographic probability, and take their
convex hull if a convex set is desired).

We suggest that a more promising concept of inde-
pendence for (sets of) lexicographic probabilities is
obtained by symmetrizing the following concept: Y is
irrelevant to X given Z when

[f1(X) � f2(X)|A,B, z]⇔ [f1(X) � f2(X)|A, z],

for all functions, whenever conditioning events are
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nonempty. And X and Y are independent given Z
when Y is irrelevant to X given Z and vice-versa.

This concept of independence satisfies Symmetry, Re-
dundancy, Decomposition and Weak Union; Contrac-
tion fails (Table 7). Redundancy obtains because

[f1(X) � f2(X)|A,B, x] ⇔ f1(x) ≥ f2(x)

⇔ [f1(X) � f2(X)|B, x].

Decomposition holds because any event B belongs to
the algebra generated by (W,Y ), and any function
g(Y ) is also a function of (W,Y ) (hence independence
of X and (W,Y ) given Z implies independence of X
and Y given Z). Weak Union holds because, assuming
X and (W,Y ) independent given Z, we have

[g1(Y ) � g2(Y )|A,B,w, z]⇔ [g1(Y ) � g2(Y )|B,w, z],
and, using Decomposition,

[f1(X) � f2(X)|A,w, z] ⇔ [f1(X) � f2(X)|A, z]
⇔ [f1(X) � f2(X)|A,B,w, z].

Sets of lexicographic probabilities are equivalent, from
the point of view of preference representations, to
sets of desirable gambles, a representation that has
received considerable attention [6, 17, 18, 31, 43]. In-
deed the derivation of lexicographic representations
for sets of desirable gambles appears already in the
work of Seidenfeld et al. [36], who show that a par-
tially ordered set of preferences (that encodes a set
of desirable gambles) can be represented by a set of
complete orderings, each one of which can be repre-
sented by a lexicographic probability (either using re-
sults by Kee [25] or the more direct results by Blume
et al. [3]). In recent work, Couso and Moral [6] have
studied the representation of sets of desirable gambles
through lexicographic probabilities.

A set of desirable gambles D is a set of variables not
containing the zero function and containing all non-
negative variables that are different from zero, and
such that λX ∈ D if X ∈ D and λ > 0, and X+Y ∈ D
if X,Y ∈ D [17, Definition 1]. The set of desirable
gambles conditional on event A, denoted by [D|A],
contains all desirable gambles X such that XIA = X,
where IA is the indicator function of A [18, Section
3.2]. Following notation by Moral [31], denote by D↓X
the set of desirable gambles that are functions of X
(that is, D↓X is the “marginal” set of gambles with
respect to X). A natural concept of independence for
sets of desirable gambles is [17, Definition 3]: Y is
irrelevant to X given Z if

[D|y, z]↓X = [D|z]↓X whenever {y, z} 6= ∅.
And then: X and Y are independent given Z if X
is irrelevant to Y given Z and vice-versa. (Note that

there are other concepts of independence for sets of
desirable gambles in the literature [31].)

Mimicking our proposal for (sets of) lexicographic
probabilities, consider the following definition of inde-
pendence for sets of desirable gambles: Y is irrelevant
to X if

[D|A,B, z]↓X = [D|A, z]↓X whenever {A,B, z} 6= ∅.

And then define independence of X and Y given Z by
symmetrizing this concept of irrelevance.

5 Conclusion

This paper has studied concepts of independence for
sets of full probabilities, and for their close relatives,
sets of lexicographic probabilities, and sets of desir-
able gambles. We have tried to offer a commented
and organized review of the literature in Section 2.
We have then analyzed a large number of concepts of
independence in Sections 3 and 4.

At this point the only concept of independence for full
credal sets that satisfy Symmetry, Redundancy, De-
composition, Weak Union and Contraction is elemen-
twise layer independence. The concepts of confirma-
tional and epistemic independence seem particularly
weak when applied to full credal sets. The concept
of h-independence fares considerably better but still
fails Contraction. The extent to which one can adopt
concepts that fail various graphoid properties is yet
to be fully analyzed.

Concerning lexicographic probabilities: they do add
flexibility, but they introduce significant complexity
in dealing with non-uniqueness and marginalization.
Sets of desirable gambles also require some care in
dealing with marginalization. The new concepts of
independence suggested here for sets of lexicographic
probabilities and sets of desirable gambles should be
helpful in future work.
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Abstract
We present a new approach to credal networks, which are
graphical models that generalise Bayesian nets to deal with
imprecise probabilities. Instead of applying the commonly
used notion of strong independence, we replace it by the
weaker notion of epistemic irrelevance. We show how as-
sessments of epistemic irrelevance allow us to construct a
global model out of given local uncertainty models, leading
to an intuitive expression for the so-called irrelevant nat-
ural extension of a network. In contrast with Cozman [2],
who introduced this notion in terms of credal sets, our main
results are presented using the language of sets of desirable
gambles. This has allowed us to derive a number of useful
properties of the irrelevant natural extension. It has power-
ful marginalisation properties and satisfies all graphoid
properties but symmetry, both in their direct and reverse
forms.

Keywords. Credal networks, epistemic irrelevance, sets of
desirable gambles, graphoid properties, irrelevant natural
extension, lower previsions, coherence.

1 Introduction

In his overview paper [2], Cozman discussed and compared
a number of different extensions for so-called credal net-
works, which generalise standard Bayesian networks to
allow for imprecise probability assessments.

One of these extensions is the so-called irrelevant nat-
ural extension, which captures that the non-parent non-
descendants of any variable in the network are epistemic-
ally irrelevant to that variable given the value of its parents.
Cozman argues that of all the possible extensions, this irrel-
evant natural extension is perhaps the most appealing one.
Nevertheless, it has thus far received little attention.

The present paper tries to remedy this situation by provid-
ing a firm theoretical foundation for the irrelevant natural
extension of a network, leading to, amongst other things, a
powerful marginalisation property and a proof that it satis-
fies all graphoid properties but symmetry.

The main results are stated using the theory of sets of desir-
able gambles, which we introduce in Section 2. We go on
to introduce and discuss important concepts such as direc-
ted acyclic graphs and epistemic irrelevance in Section 3,
and use these in Section 4 to show how assessments of epi-
stemic irrelevance can be combined with given local sets of
desirable gambles to construct a joint model. We call this
the irrelevant natural extension of the credal network and
prove that it is the most conservative coherent model that
extends the local models and expresses all conditional irrel-
evancies encoded in the network. In Section 5 we present
a powerful marginalisation property, and in Section 6, we
use an asymmetric version of D-separation to show that the
irrelevant natural extension satisfies all graphoid properties
except symmetry, both in their direct and reverse forms.
Finally, Section 7 establishes a connection between the sets
of desirable gambles approach to credal networks under
epistemic irrelevance that we presented in this paper, and a
similar approach using coherent lower previsions.

2 Sets of desirable gambles

Consider a variable X taking values in some non-empty and
finite set X. Beliefs about the possible values this variable
may assume can be modelled in various ways: probability
mass functions, credal sets and coherent lower previsions
are only a few of the many options. We choose to adopt a
different approach, using sets of desirable gambles. We will
model a subject’s beliefs regarding the value of a variable
X by means of his behaviour: which gambles (or bets) on
the unknown value of X would our subject strictly prefer to
the status quo (the zero gamble).

Although they are not as well known as other (imprecise)
probability models, sets of desirable gambles have definite
advantages. To begin with, they are more expressive than
both credal sets and lower previsions. For example, they
are easily able to deal with such things as conditioning on
events with probability zero, which tends to be much more
involved when using other imprecise probability models.
Secondly, they have the advantage of being operational,
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meaning that there is a practical way of constructing a
model that represents the subject’s beliefs. For sets of desir-
able gambles this can be done by offering the subject certain
gambles and asking him whether or not he strictly prefers
them to the status quo. And finally, our experience tells us
that it is usually easier to construct proofs in the language
of coherent sets of desirable gambles than in other, perhaps
more familiar languages. We give a brief survey of the ba-
sics of sets of desirable gambles and refer to Refs. [7, 1, 12]
for more details and further discussion.

2.1 Desirable gambles

A gamble f is a real-valued map on X that is interpreted as
an uncertain reward. If the value of the variable X turns out
to be x, the (possibly negative) reward is f (x). A non-zero
gamble is called desirable to a subject if he strictly prefers
to zero the transaction in which (i) the actual value x of the
variable is determined, and (ii) he receives the reward f (x).
The zero gamble is therefore not considered to be desirable.

We model a subject’s beliefs regarding the possible values
X that a variable X can assume by means of a set D of
desirable gambles—some subset of the set G (X ) of all
gambles on X. For any two gambles f and g in G (X ), we
say that f ≥ g if f (x)≥ g(x) for all x in X and f > g if
both f ≥ g and f 6= g. We use G (X )>0 to denote the set
of all gambles f ∈ G (X ) for which f > 0 and G (X )≤0 to
denote the set of all gambles f ∈ G (X ) for which f ≤ 0.
As a special kind of gambles we consider indicators IA of
events A⊆X. IA is equal to 1 if the event A occurs—the
variable X assumes a value in A—and zero otherwise.

2.2 Coherence

In order to represent a rational subject’s beliefs about the
values a variable can assume, a set D ⊆ G (X ) of desirable
gambles should satisfy some rationality requirements. If
these requirements are met, we call the set D coherent. We
require that for all f , f1, f2 ∈ G (X ) and all real λ > 0:

D1. if f ≤ 0 then f /∈D ;

D2. if f > 0 then f ∈D ;

D3. if f ∈D then λ f ∈D ; [scaling]

D4. if f1, f2 ∈D then f1 + f2 ∈D . [combination]

Requirements D3 and D4 turn D into a convex cone:
posi(D) = D , where we use the positive hull operator ‘posi’
that generates the set of finite strictly positive linear com-
binations of elements of its argument set:

posi(D) :=
{ n

∑
k=1

λk fk : fk ∈D ,λk ∈ R+
0 ,n ∈ N0

}
.

Here R+
0 is the set of all (strictly) positive real numbers,

and N0 the set of all natural numbers (zero not included).

3 Credal networks

3.1 Directed acyclic graphs

A directed acyclic graph (DAG) is a graphical model that is
well known for its use in Bayesian networks. It consists of
a finite set of nodes (vertices), joined into a network by a
set of directed edges, each edge connecting one node with
another. Since this directed graph is assumed to be acyclic,
it is not possible to follow a sequence of edges from node
to node and end up at the same node one started out from.

We will call G the set of nodes s associated with a given
DAG. For two nodes s and t, if there is a directed edge from
s to t, we denote this as s→ t and say that s is a parent
of t and t is a child of s. A single node can have multiple
parents and multiple children. For any node s, its set of
parents is denoted by P(s) and its set of children by C(s).
If a node s has no parents, P(s) = /0, and we call s a root
node. If C(s) = /0, then we call s a leaf, or terminal node.

Two nodes s and t are said to have a path between them if
one can start from s, follow the edges of the DAG regardless
of their direction and end up in t. In other words: one can
find a sequence of nodes s = s1, . . . ,sn = t, n≥ 1, such that
for all i ∈ {1, . . . ,n− 1} either si → si+1 or si ← si+1. If
this sequence is such that si→ si+1 for all i∈ {1, . . . ,n−1}
(all edges in the path point away from s), we say that there
is a directed path from s to t and write s v t. In that case
we also say that s precedes t. If s v t and s 6= t, we say
that s strictly precedes t and write s @ t. For any node s,
we denote its set of descendants by D(s) := {t ∈ G : s@ t}
and its set of non-parent non-descendants by
N(s) := G\ (P(s)∪{s}∪D(s)). We also use the shorthand
notation PN(s) := P(s)∪N(s) = G\ ({s}∪D(s)) to refer
to the so-called non-descendants of s.

We extend these notions to subsets of G in the following
way. For any K ⊆ G, P(K) := (

⋃
s∈K P(s))\K is its set of

parents and D(K) := (
⋃

s∈K D(s))\K is its set of descend-
ants. The non-parent non-descendants of K are given by
N(K) := G\ (P(K)∪K∪D(K)) =

⋂
s∈K N(s), and we also

define PN(K) := P(K)∪N(K). This last set cannot be re-
ferred to as the non-descendants of K since P(K) and D(K)
are not necessarily disjoint.

Special subsets of G that we will consider, are the
closed ones: we call a set K ⊆ G closed if for all
s, t ∈ K and any k ∈ G such that s v k v t, it holds that
k ∈ K. For closed K ⊆ G, P(K)∩D(K) = /0 and therefore
PN(K) = G\ (K∪D(K)), which means that for closed K,
PN(K) can rightfully be referred to as the non-descendants
of K.

With any subset K of G, we can associate a so-called sub-
DAG of the DAG that is associated with G. The nodes of
this sub-DAG are the elements of K and the directed edges
of this sub-DAG are those edges in the original DAG that
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s4
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s8
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s9

s10 s12
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G = {s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13}

Figure 1: Example of a directed acyclic graph (DAG)

s5 s7 s9 s12

Figure 2: Example of a sub-DAG

connect elements in K. For a sub-DAG that is associated
with some subset K of G, we will use similar definitions as
those for the original DAG, adding the subset K as an index.
As an example: for all k ∈ K, we denote by PK(k) the par-
ents of k in the sub-DAG that is associated with the nodes
in K. For all K ⊆ G and k ∈ K, we have PK(k) = P(k)∩K
and P(k)\PK(k) = P(k)∩P(K).

Example 1. Consider the DAG in Figure 1. For the node
s7 ∈G, we find that P(s7) = {s4,s5}, D(s7) = {s9,s10} and
N(s7) = {s1,s2,s3,s6,s8,s11,s12,s13}. For the closed sub-
set K = {s5,s7,s9,s12} ⊂ G, we have P(K) = {s3,s4,s11},
D(K) = {s8,s10,s13} and N(K) = {s1,s2,s6}. The sub-
DAG that corresponds to K is drawn in Figure 2. We find
that PK(s7) = {s5}, DK(s7) = {s9} and NK(s7) = {s12}. ♦

3.2 Variables and gambles on them

With each node s of the network, we associate a variable
Xs assuming values in some non-empty finite set Xs. We
denote by G (Xs) the set of all gambles on Xs. We extend
this notation to more complicated situations as follows.
If S is any subset of G, then we denote by XS the tuple
of variables whose components are the Xs for all s ∈ S.
This new joint variable assumes values in the finite set
XS := ×s∈SXs and the corresponding set of gambles is
denoted by G (XS). When S = /0, we let X /0 be a singleton.
The corresponding variable X/0 can then only assume this
single value, so there is no uncertainty about it. G (X /0) can
then be identified with the set R of real numbers. Generic
elements of Xs are denoted by xs or zs and similarly for
xS and zS in XS. Also, if we mention a tuple zS, then for
any t ∈ S, the corresponding element in the tuple will be
denoted by zt . We assume all variables in the network to

be logically independent, meaning that the variable XS may
assume all values in XS, for all /0⊆ S⊆ G.

We will use the simplifying device of identifying a
gamble fS on XS with its cylindrical extension to
XU , where S⊆U ⊆ G: the gamble fU on XU defined
by fU (xU ) := fS(xS) for all xU ∈ XU . For instance, if
K ⊆ G (XG), this allows us to consider K ∩G (XS) as
the set of those gambles in K that depend only on the
variable XS.

3.3 Modelling our beliefs about the network

Throughout, we consider sets of desirable gambles as mod-
els for a subject’s beliefs about the values that certain vari-
ables in the network may assume. One of the main con-
tributions of this paper, further on in Section 4, will be to
show how to construct a joint model for our network, being
a coherent set DG of desirable gambles on XG.

From such a joint model, one can derive both conditional
and marginal models [7, 6]. Let us start by explaining
how to condition the global model DG. Consider an event
AI ⊆XI , with I ⊆ G, and assume that we want to update
the model DG with the information that XI ∈ AI . This leads
to the following updated set of desirable gambles:

DGcAI :=
{

f ∈ G (XG\I) : IAI f ∈DG
}
,

which represents our subject’s beliefs about the value of
the variable XG\I , conditional on the observation that XI
assumes a value in AI . This definition is very intuitive,
since IAI f is the unique gamble that is called off (is equal
to zero) if XI /∈ AI and equal to f if XI ∈ AI . Since I{x /0} = 1,
the special case of conditioning on the certain variable X/0
yields no problems: it amounts to not conditioning at all.

Marginalisation too is very intuitive in the language of sets
of desirable gambles. Suppose we want to derive a marginal
model for our subject’s beliefs about the variable XO, where
O is some subset of G. This can be done by using the set
of desirable gambles that belong to DG but only depend on
the variable XO:

margO(DG) :=
{

f ∈ G (XO) : f ∈DG
}

= DG∩G (XO).

Now let I and O be disjoint subsets of G and let AI be
any subset of XI . By sequentially applying the process of
conditioning and marginalisation we can obtain conditional
marginal models for our subject’s beliefs about the value
of the variable XO, conditional on the observation that XI
assumes a value in AI :

margO(DGcAI) =
{

f ∈ G (XO) : IAI f ∈DG
}
. (1)

Conditioning and marginalisation are special cases of
Eq. (1); they can be obtained by letting O = G\ I or I = /0.
If AI is a singleton {xI}, with xI ∈XI , we will use the
shorthand notation margO(DGcxI) := margO(DGc{xI}).
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Since coherence is trivially preserved under both condition-
ing and marginalisation, we find that if the joint model DG
is coherent, all the derived models will also be coherent.

3.4 Epistemic irrelevance

We now have the necessary tools to introduce one of the
most important concepts for this paper, that of epistemic
irrelevance. We describe the case of conditional irrelevance,
as the unconditional version of epistemic irrelevance can
easily be recovered as a special case.

Consider three disjoint subsets C, I, and O of G. When
a subject judges XI to be epistemically irrelevant to XO
conditional on XC, denoted as IR(I,O|C), he assumes that
if he knew the value of XC, then learning in addition which
value XI assumes in XI would not affect his beliefs about
XO. More formally put, he assumes for all xC ∈XC and
xI ∈XI that:

margO(DGcxC∪I) = margO(DGcxC).

Alternatively, a subject can make the even stronger state-
ment that he judges XI to be epistemically subset-irrelevant
to XO conditional on XC, denoted as SIR(I,O|C). In that
case, he assumes that if he knew the value of XC, then re-
ceiving the additional information that XI is an element of
any non-empty subset AI of XI would not affect his beliefs
about XO. In other words, he assumes for all xC ∈XC and
all non-empty AI ⊆XI that:

margO(DGc{xC}×AI) = margO(DGcxC).

Making a subset-irrelevance statement SIR(I,O|C) implies
the corresponding irrelevance statement IR(I,O|C). Even
stronger, it implies for all I′ ⊆ I that IR(I′,O|C). The con-
verse does not hold in general. However, as we will show
further on, credal networks under epistemic irrelevance are
a useful exception: although we define the joint model by
imposing irrelevance, it will also satisfy subset-irrelevance.
For the unconditional irrelevance case it suffices, in the
discussion above, to let C = /0. This makes sure the variable
XC has only one possible value, so conditioning on that
variable amounts to not conditioning at all.

Irrelevance and subset-irrelevance can also be extended
to cases where I, O and C are not disjoint, but I \C and
O\C are. We then call XI epistemically (subset-)irrelevant
to XO conditional on XC provided that XI\C is epistemically
(subset-)irrelevant to XO\C conditional on XC. Although
these cases are admittedly artificial, they will help us state
and prove some of the graphoid properties further on.

3.5 Local uncertainty models

We now add local uncertainty models to each of the nodes
s in our network. These local models are assumed to be
given beforehand and will be used further on in Section 4

as basic building blocks for constructing a joint model for
a given network.

If s is not a root node of the network, i.e. has a non-empty
set of parents P(s), then we have a conditional local model
for every instantiation of its parents: for each xP(s) ∈XP(s),
we have a coherent set DscxP(s)

of desirable gambles on
Xs. It represents our subject’s beliefs about the variable Xs
conditional on its parents XP(s) assuming the value xP(s).

If s is a root node, i.e. has no parents, then our subject’s
local beliefs about the variable Xs are represented by an
unconditional local model. It should be a coherent set of
desirable gambles and will be denoted by Ds. As was ex-
plained in Section 3.3, we can also use the common generic
notation DscxP(s)

in this unconditional case, since for a root
node s, its set of parents P(s) is equal to the empty set /0.

3.6 The interpretation of the graphical model

In classical Bayesian nets, the graphical structure is taken
to represent the following assessments: for any node s,
conditional on its parent variables, the associated variable
is independent of its non-parent non-descendant variables

When generalising this interpretation to credal networks,
the classical notion of independence gets replaced by a
more general, imprecise-probabilistic notion of independ-
ence, which in the existing literature is usually chosen to
be strong independence; see Ref. [3] for an overview of
different approaches, including relevant references. Here,
we will not do so: we choose to use the weaker, asymmetric
notion of epistemic irrelevance, introduced in Section 3.4.
In the special case of precise uncertainty models, both epi-
stemic irrelevance and strong independence reduce to the
classical notion of independence and the corresponding in-
terpretations of the graphical network are equivalent to the
one used in classical Bayesian networks.

In the present context, we therefore assume that the graph-
ical structure of the network embodies the following condi-
tional irrelevance assessments, turning the network into a
credal network under epistemic irrelevance. Consider any
node s in the network, its set of parents P(s) and its set
of non-parent non-descendants N(s). Then conditional on
XP(s), XN(s) is assumed to be epistemically irrelevant to Xs:

IR(N(s),{s}|P(s)).

For a coherent set of desirable gambles DG that describes
our subject’s global beliefs about all the variables in the
network, this has the following consequences. For every
s ∈ G and all xPN(s) ∈XPN(s), DG must satisfy:

margs(DGcxPN(s)) = margs(DGcxP(s)). (2)
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4 Constructing a joint model

We now show how to construct a joint model for the vari-
ables in the network, and argue that it is the most conser-
vative coherent model that extends the local models and
expresses all conditional irrelevancies encoded in the net-
work. But before we do so, let us provide some motivation.
Suppose we have a global set of desirable gambles DG,
how do we express that such a model is compatible with
the assessments encoded in the network?

4.1 Defining properties of the joint model

We will require our joint model to satisfy the following four
properties. First of all, we require that our global model
should extend the local ones. This means that the local
models derived from the global one by marginalisation
should be equal to the given local models:

G1. The joint model DG marginalises to the given local
uncertainty models: margs(DGcxP(s)) = DscxP(s)

for all
s ∈ G and xP(s) ∈XP(s).

The second requirement is that our model should reflect all
epistemic irrelevancies encoded in the graphical structure
of the network:

G2. DG satisfies all equalities that are imposed by Eq. (2).
In these equalities, the right hand side can be replaced
by DscxP(s)

due to requirement G1.

The third requirement is that our model should be coherent:

G3. DG is coherent (satisfies requirements D1–D4).

Since requirements G1–G3 do not determine a unique
global model, we impose a final requirement to ensure that
all inferences we make on the basis of our global models are
as conservative as possible, and are therefore based on no
other considerations than what is encoded in the network:

G4. DG is the smallest set of desirable gambles on XG
satisfying requirements G1–G3: it is a subset of any
other set that satisfies them.

We will now show how to construct the unique global model
DG that satisfies all of the four requirements G1–G4.

4.2 An intuitive expression for the joint model

Let us start by looking at a single given marginal model
DsczP(s)

and investigate some of its implications for the joint
model DG. Consider any node s and fix values zP(s) and
zN(s) for its parents and non-parent non-descendants. Due

to requirements G1 and G2, any gamble f ∈DsczP(s)
should

also be an element of margs(DGczPN(s)), which by defini-
tion means that I{zPN(s)} f ∈ DG. Inspired by this observa-
tion, we introduce the following set of gambles on XG:

A irr
G :=

{
I{zPN(s)} f : s ∈G, zPN(s) ∈XPN(s), f ∈DsczP(s)

}
.

It should now be clear that A irr
G must be a subset of our

joint model DG.

Proposition 1. A irr
G is a subset of any joint model DG that

satisfies requirements G1 and G2.

Since our eventual joint model should also be coherent
(satisfy requirement G3), and thus in particular should be a
convex cone, we can derive the following corollary.

Corollary 2. posi(A irr
G ) is a subset of any joint model DG

that satisfies requirements G1–G3.

We now suggest the following expression for the joint
model describing our subject’s beliefs about the variables
in the network:

D irr
G := posi(A irr

G ). (3)

We will refer to D irr
G as the irrelevant natural extension of

the local models DscxP(s)
. Since we know from Corollary 2

that it is guaranteed to be a subset of the joint model we
are looking for, we propose it as a candidate for the joint
model itself. In the next section, we set out to prove that
D irr

G is indeed the unique joint model satisfying all four
requirements G1–G4.

We would like to point out that D irr
G is a generalisation of

the so-called independent natural extension of a number of
unconditional marginal models [6, Section 7]. This special
case corresponds to a DAG that has no edges, consisting
of a finite amount of disconnected nodes [6, Section 10].
Quite a few of the results obtained further on can therefore
be regarded as generalisations of those in Ref. [6].

4.3 Justifying our expression for the joint model

We start by proving a number of useful properties of D irr
G .

Proposition 3. A gamble f ∈ G (XG) is an element of D irr
G

if and only if it can be written as:

f = ∑
s∈G

∑
zPN(s)∈XPN(s)

I{zPN(s)} fs,zPN(s) ,

where fs,zPN(s) ∈ DsczP(s)
∪ {0} for every s ∈ G and all

zPN(s) ∈XPN(s), and at least one of them is non-zero.

Proposition 4. G (XG)>0 is a subset of D irr
G .

These two propositions serve as a first step towards the fol-
lowing coherence result, which states that our joint model
D irr

G satisfies requirement G3.
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Proposition 5. D irr
G satisfies requirement G3: it is a coher-

ent set of desirable gambles.

Our proof for this result has an interesting feature that
deserves to be borne out. The crucial step hinges on the
assumption that if the local models of our network were
precise probability mass functions, we would be able to
construct a joint probability mass function that satisfies all
irrelevancies (in that case independencies) that are encoded
in our network. Since the precise version of a credal net
under epistemic irrelevance is a classical Bayesian network,
this assumption is indeed true. What we believe is useful
about this approach, is that it can be extended to credal
networks with irrelevance assumptions that differ from the
ones we impose in the present article, as long as the as-
sumption above is satisfied. In this way, it enables us to
use existing coherence results for precise networks to prove
their counterparts for credal networks.

Next, we turn to an important factorisation result that is
essential in order to prove that our joint model extends the
local models and expresses all conditional irrelevancies
encoded in the network, and therefore satisfies G1 and G2.

Proposition 6. Fix arbitrary s ∈ G, xP(s) ∈ XP(s) and
g ∈ G (XN(s))>0. For every f ∈ G (Xs):

gI{xP(s)} f ∈D irr
G ⇔ f ∈DscxP(s)

.

Corollary 7. D irr
G satisfies requirements G1 and G2: it

holds for every s ∈ G and all xPN(s) ∈XPN(s) that

margs(D
irr
G cxPN(s)) = margs(D

irr
G cxP(s)) = DscxP(s)

.

We now have all tools necessary to formulate our first im-
portant result. It is one of the main contributions of this
paper and provides a justification for the joint model D irr

G
that was proposed in Eq. (3).

Theorem 8. The irrelevant natural extension D irr
G is the

unique set of desirable gambles on XG that satisfies all
four requirements G1–G4.

It is already apparent from Proposition 6 that the proper-
ties of the irrelevant natural extension D irr

G are not limited
to G1–G4. As a first example, Proposition 6 implies that
for any node s, conditional on its parent variables XP(s),
the non-parent non-descendant variables XN(s) are not only
epistemically irrelevant, but also subset-irrelevant to Xs.

Corollary 9. All nodes s∈G satisfy the subset-irrelevance
statement SIR(N(s),{s}|P(s)): for any xP(s) ∈XP(s) and
non-empty AN(s) ⊆XN(s), it holds that

margs(D
irr
G c{xP(s)}×AN(s)) = margs(D

irr
G cxP(s)).

In the next two sections, we establish a number of even
stronger properties of D irr

G .

5 Additional marginalisation properties

As explained in Section 3.1, a subset K of G can be associ-
ated with a so-called sub-DAG of the original DAG. Simil-
arly to what we have done for the original DAG, we can use
Eq. (3) to construct a joint model for this sub-DAG. All we
need to do is provide, for every s ∈ K and zPK(s) ∈XPK(s),
a local model DsczPK (s)

.

One particular way of providing these local models is to
derive them from the ones of the original DAG. The starting
point to do so is fixing a value xP(K) ∈XP(K) for the parent
variables of K. This provides us, for every s ∈ K, with a
value xP(s)\PK(s) ∈XP(s)\PK(s) because P(s)\PK(s)⊆ P(K).
For every s∈K and zPK(s) ∈XPK(s), we can then identify the
local model DsczPK (s)

of the sub-DAG with the local model
DsczP(s)

of the original DAG, where zP(s)\PK(s) = xP(s)\PK(s).
In other words, for every s ∈ K and zPK(s) ∈XPK(s)

DsczPK (s)
= Dsc(zPK (s),xP(s)\PK (s))

.

Example 2. Consider again the DAG in Figure 1 and the
sub-DAG in Figure 2 that corresponds to the closed subset
K = {s5,s7,s9,s12} ⊂ G. In order to provide this sub-DAG
with local models, we fix a value xP(K) ∈ XP(K). Using
Eq. (5), this provides us with unconditional local mod-
els Ds5 = Ds5cxs3

and Ds12 = Ds12cxs11
, for all zs5 ∈ Xs5 ,

a conditional local model Ds7czs5
= Ds7c(zs5 ,xs4 ) and, for all

zs7 ∈Xs7 , a conditional local model Ds9czs7
. ♦

For every K ⊆ G and all xP(K) ∈XP(K), the resulting joint
model for the sub-DAG that is associated with K is given
by

D irr
KcxP(K)

:= posi(A irr
KcxP(K)

),

where

A irr
KcxP(K)

:=
{
I{zPNK (s)} f : s ∈ K,zPNK(s) ∈XPNK(s),

f ∈Dsc(zPK (s),xP(s)\PK (s))

}
.

A question that now naturally arises is whether these joint
models for sub-DAGs can be related to the original joint
model D irr

G . It turns out that, for subsets K of G that are
closed, this is indeed the case.
Theorem 10. If K is a closed subset of G, then for any
xP(K) ∈XP(K), g ∈ G (XN(K))>0 and f ∈ G (XK):

gI{xP(K)} f ∈D irr
G ⇔ f ∈D irr

KcxP(K)
.

The proof, although complex and elaborate, is essen-
tially a simple separating hyperplane argument. We con-
sider this result to be the main technical achievement of
this paper. It is a significant generalisation of Proposi-
tion 6 [with K = {s}] and has a number of interesting con-
sequences. As a first example, it implies the following gen-
eralisations of Corollaries 7 and 9.
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Corollary 11. For all closed K ⊆ G, xP(K) ∈XP(K) and
non-empty AN(K) ⊆XN(K), we have that

margK(D irr
G c{xP(K)}×AN(K)) = D irr

KcxP(K)
.

Corollary 12. All closed sets K ⊆ G satisfy the
subset-irrelevance statement SIR(N(K),K|P(K)): for any
xP(K) ∈XP(K) and non-empty AN(K) ⊆XN(K), it holds that

margK(D irr
G c{xP(K)}×AN(K)) = margK(D irr

G cxP(K)).

In the next section, we will extend this subset-irrelevance
result to even more general cases.

6 AD-Separation and graphoid properties

In credal networks that are defined by means of a symmet-
rical independence concept, the notion of D-separation is a
very powerful tool [9]. For asymmetrical independence con-
cepts such as epistemic (subset-)irrelevance, D-separation
has been modified to take this asymmetry into account.
Moral [8] speaks of asymmetrical D-separation (AD-
separation) and Vantaggi [10] has introduced the very sim-
ilar L-separation criterion. Here, we choose not to use
one of these existing concepts, but to introduce a slightly
modified version of AD-separation. We do so because our
definition is weaker (more general) than both Moral’s AD-
separation and L-separation and yet has stronger properties.

Consider any path s1, . . . ,sn in G, with n≥ 1. We say that
this path is blocked by a set of nodes C ⊆ G whenever at
least one of the following four conditions holds:

B1. s1 ∈C;

B2. there is some 1< i< n such that si→ si+1 and si ∈C;

B3. there is some 1 < i < n such that si−1 → si ← si+1,
si /∈C and D(si)∩C = /0;

B4. sn ∈C.

Now consider (not necessarily disjoint) subsets I, O and C
of G. We say that O is AD-separated from I by C, denoted
as AD(I,O|C), if every path i = s1, . . . ,sn = o, n≥ 1, from
a node i ∈ I to a node o ∈ O, is blocked by C. Our version
of AD-separation satisfies a number of useful properties.

Theorem 13. For any subsets I, O, S and C of G, the fol-
lowing properties hold:

Direct redundancy: AD(I,O|I)

Reverse redundancy: AD(I,O|O)

Direct decomposition: AD(I,O∪S|C)⇒ AD(I,O|C)

Reverse decomposition: AD(I∪S,O|C)⇒ AD(I,O|C)

Direct weak union: AD(I,O∪S|C)⇒ AD(I,O|C∪S)

Reverse weak union: AD(I∪S,O|C)⇒ AD(I,O|C∪S)

Direct contraction:

AD(I,O|C) & AD(I,S|C∪O)⇒ AD(I,O∪S|C)

Reverse contraction:

AD(I,O|C) & AD(S,O|C∪ I)⇒ AD(I∪S,O|C)

Direct intersection: if O∩S = /0, then

AD(I,O|C∪S) & AD(I,S|C∪O)⇒ AD(I,O∪S|C)

Reverse intersection: if I∩S = /0, then

AD(I,O|C∪S) & AD(S,O|C∪ I)⇒ AD(I∪S,O|C)

This result (and our proof for it) is very similar to, and
heavily inspired by, the work of Vantaggi [10, Theorem 7.1].
The main difference is that Vantaggi does not include the
two redundancy properties, since L-separation is defined
only for disjoint subsets I, O and C of G. Moral’s version of
AD-separation [8] does not require I, O and C to be disjoint,
but it does not satisfy direct redundancy, and proofs for a
number of other properties are not given [8, Theorem 4].
We therefore prefer our version of AD-separation.

Example 3. Consider the sets of nodes I = {s2,s3,s4,s11},
O = {s5,s6,s9,s13}, C = {s4,s6,s12}, Sd = {s8,s10} and
Sr = {s1} in the DAG that is depicted in Figure 1. The
direct properties in Theorem 13 are illustrated by I, O, C
and Sd and the reverse ones by I, O, C and Sr. ♦

Theorem 10 implies a very general factorisation result.

Theorem 14. If I,O,C ⊆G are such that AD(I,O|C) then
for all xC ∈XC, g ∈ G (XI\C)>0 and f ∈ G (XO\C):

gI{xC} f ∈D irr
G ⇔ I{xC} f ∈D irr

G .

This result can be combined with Theorem 13 to derive a
collection of (subset-)irrelevance statements that are ful-
filled by the irrelevant natural extension D irr

G .

Corollary 15. For any I,O,C ⊆ G such that AD(I,O|C)
we have that SIR(I,O|C) (and thus also IR(I,O|C)): for
all xC ∈XC and non-empty AI\C ⊆XI\C it holds that

margO\C(D irr
G c{xC}×AI\C) = margO\C(D irr

G cxC).

This family of subset-irrelevance statements satisfies all
graphoid properties except symmetry: it satisfies redund-
ancy, decomposition, weak union, contraction and intersec-
tion, both in their direct and reverse form.

We leave it to the reader to show that Theorem 14 is a gen-
eralisation of Theorem 10 and that Corollary 15 generalises
the first part of Corollary 12. In other words: for any closed
subset K of G, it holds that AD(N(K),K|P(K)).

ISIPTA ’13: Credal networks under epistemic irrelevance using sets of desirable gambles 105



Readers who are familiar with the work in Ref. [8] might
have noticed the similarity between Ref. [8, Theorem 5] and
the first part of Corollary 15. The main difference between
our approach and Moral’s approach [8], besides the fact that
we use a slightly different separation criterion, is that he
enforces a more stringent version of epistemic irrelevance
than we do. He calls XI epistemically irrelevant to XO if
and only if the joint model DI∪O is the so-called irrelevant
natural extension of DI and DO and refers to our concept
of irrelevance as weak epistemic irrelevance. Consequently,
if we understand his work correctly, his results are not
applicable to all directed acyclic networks. As a simple
example: his concept of irrelevance does not seem to allow
for two variables to be mutually irrelevant, except in some
degenerated uninformative cases. Therefore, it appears to
us his results cannot be applied to a network consisting of
two unconnected nodes.

As far as the second part of Corollary 15 is concerned,
some clarification is perhaps in order. We do not claim
that epistemic irrelevance satisfies the graphoid axioms
that are stated in Theorem 13. As was proven in Ref. [4],
epistemic irrelevance can violate direct contraction and
both direct and reverse intersection. In fact, we believe that
this negative result might even be one of the main reasons
why a result such as Corollary 15 has thus far not appeared
in any literature.

Indeed, in Bayesian networks, proving the counterpart
to Corollary 15—with AD-separation replaced by D-
separation and epistemic irrelevance replaced by stochastic
independence—is usually done by using the fact that
stochastic independence satisfies the graphoid axioms [9].
By applying these axioms to the independence assesse-
ments that are used to define a Bayesian network, one can
infer new independencies, namely those that correspond to
D-separations in the DAG of that network.

If one tries to mimic this approach in our context, then
since epistemic irrelevance can fail some of the graphoid
axioms, one might suspect that Corollary 15 cannot be
proven. However, it is not necessary to use the axioms:
our proof for Theorem 14—of which the the first part of
Corollary 15 is a straightforward consequence—uses only
Theorem 10 and a number of properties of AD-separation.
At no point does it invoke graphoid properties of epistemic
irrelevance. The second part of Corollary 15 is then but
a mere consequence of the first part and Theorem 13. It
states that the family of irrelevance statements that are
proven to hold in the first part, are closed under the graphoid
properties in Theorem 13.

So in order to conclude this section: epistemic irrelevance
can fail a number of graphoid axioms, which implies that
the irrelevance statements that are proven in Corollary 15 do
not necessarily hold for every joint model DG that satisfies
requirements G1–G3. However for the unique one that

also satisfies G4, being the irrelevant natural extension D irr
G

of the network, this family of irrelevance statements does
hold, the reason being that for this specific model, one can
provide a direct proof that does not invoke any graphoid
axioms of epistemic irrelevance.

7 Credal nets under epistemic irrelevance
using coherent lower previsions

Credal networks under epistemic irrelevance can also be
defined using imprecise probability concepts other than
coherent sets of desirable gambles. In this section, we de-
scribe an approach that uses coherent lower previsions, and
we show how it is related to the desirable gambles approach
of the previous sections.

7.1 Coherent lower previsions

For any subset O of G, we define a coherent lower prevision
PO as a real-valued functional on G (XO) that satisfies the
following three conditions. For all f ,g ∈ G (XO) and all
real λ ≥ 0:

C1. PO( f )≥min f ;

C2. PO(λ f ) = λPO( f ); [non-negative homogeneity]

C3. PO( f + g)≥ PO( f )+ PO(g). [super-additivity]

Now consider two disjoint subsets O and I of G and sup-
pose that we have, for all xI ∈XI , a coherent lower pre-
vision PO(·|xI) on G (XO). The corresponding coherent
conditional lower prevision PO∪I(·|XI) is then a special
two-place function that is defined, for all f ∈ G (XO∪I) and
xI ∈XI , by PO∪I( f |xI) := PO( f (·,xI)|xI).

7.2 Defining a credal network

Suppose now that the local models of our credal network
under epistemic irrelevance are coherent lower previsions:
for all s ∈ G and xP(s) ∈XP(s), we have a coherent lower
prevision PscxP(s)

on G (Xs).

The irrelevance assessments that are encoded in the network
can then be expressed as follows. For all s ∈ G, I ⊆ N(s),
xP(s)∪I ∈XP(s)∪I and f ∈ G (Xs), we require that:

P{s}( f |xP(s)∪I) := PscxP(s)
( f ).

For all s ∈ G and I ⊆ N(s), the corresponding conditional
lower prevision P{s}∪P(s)∪I(·|XP(s)∪I) is then given, for all
f ∈ G (X{s}∪P(s)∪I) and xP(s)∪I ∈XP(s)∪I , by

P{s}∪P(s)∪I( f |xP(s)∪I) := PscxP(s)
( f (·,xP(s)∪I)).

We will denote the set consisting of all these conditional
lower previsions as I (PscxP(s)

,s ∈ G,xP(s) ∈XP(s)).
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The global model E irr
G is now defined as the smallest coher-

ent lower prevision on G (XG) that is (strongly) coherent
with this set of conditional lower previsions. We will refer
to it as the irrelevant natural extension of the local mod-
els PscxP(s)

. We will not get into the details of what strong
coherence means, but one can very roughly think of it as
requiring that the conditional lower previsions in the set
I (PscxP(s)

,s∈G,xP(s) ∈XP(s)) (i) are compatible with one
another and (ii) can be obtained by conditioning the global
model E irr

G ; see Ref. [5, Section 2.4] for more details on
strong coherence.

We know from Walley’s Finite Extension Theorem [11, The-
orem 8.1.9] that if E irr

G exists, then it is equal to the natural
extension of the collection I (PscxP(s)

,s ∈ G,xP(s) ∈XP(s))

to an unconditional lower prevision on G (XG). In that
case, by applying a derivation that is similar to the one for
[5, Eq.(10), Section 5.2], we find for all f ∈ G (XG) that

E irr
G ( f ) = sup

g{s}∪P(s)∪I
∈G (X{s}∪P(s)∪I)

{
min

zG∈XG

[
f (zG)

− ∑
s∈G,I⊆N(s)

[g{s}∪P(s)∪I(zs,zP(s)∪I)

−PsczP(s)
(g{s}∪P(s)∪I(·,zP(s)∪I))]

]}
. (4)

7.3 Connections with our approach

For every s ∈ G and xP(s) ∈XP(s), the local coherent set of
desirable gambles DscxP(s)

uniquely defines a corresponding
coherent lower prevision PscxP(s)

. For all f ∈ G (Xs)

PscxP(s)
( f ) := sup{µ ∈ R : f −µ ∈DscxP(s)

}. (5)

Conversely, every local coherent lower prevision PscxP(s)

has at least one coherent set of desirable gambles DscxP(s)

from which it can be derived by Eq. (5). These sets are how-
ever not unique since coherent sets of desirable gambles
are generally more expressive than coherent lower previ-
sions. Using any such family of corresponding local sets
of desirable gambles, we can then apply Eq. (3) to obtain
their irrelevant natural extension D irr

G . This joint set also
has a corresponding coherent lower prevision. It is denoted
as Pirr

G and given for all f ∈ G (XG) by

Pirr
G ( f ) := sup{µ ∈ R : f −µ ∈D irr

G }. (6)

The coherent lower prevision Pirr
G that is constructed in this

way from given local models PscxP(s)
might depend on the

particular choice for the sets DscxP(s)
in its construction. We

will show in Theorem 17 that such is not the case, however.

Proposition 16. Choose, for all s ∈ G and xP(s) ∈XP(s),
any coherent local set of desirable gambles DscxP(s)

on Xs

such that the given local coherent lower prevision PscxP(s)

satisfies Eq. (5). Construct the irrelevant natural exten-
sion D irr

G by applying Eq. (3) and let Pirr
G be the coherent

lower prevision on G (XG) as given by Eq. (6). Then Pirr
G is

strongly coherent with I (PscxP(s)
,s ∈ G,xP(s) ∈XP(s)).

Proposition 16 shows that it is possible to construct at least
one coherent lower prevision Pirr

G on G (XG) that is strongly
coherent with I (PscxP(s)

,s ∈ G,xP(s) ∈XP(s)), implying

that the irrelevant natural extension E irr
G is always well

defined and given by Eq. (4).

The following result now establishes the final connection
between the irrelevant natural extensions D irr

G and E irr
G that

were outlined in this paper. We show that Pirr
G is always

equal to the irrelevant natural extension E irr
G , regardless of

the local sets DscxP(s)
that are chosen to construct it.

Theorem 17. Let D irr
G be the irrelevant natural extension of

local coherent sets of desirable gambles DscxP(s)
, s ∈ G and

xP(s) ∈XP(s), as given by Eq. (3). Construct local coherent
lower previsions PscxP(s)

by applying Eq. (5) and let E irr
G be

their irrelevant natural extension, as given by Eq. (4). It
then holds for all f ∈ G (XG) that

E irr
G ( f ) = sup{µ ∈ R : f −µ ∈D irr

G }= Pirr
G ( f ).

We believe that this connection between the two approaches
can be used to translate at least some of our results for sets
of desirable gambles into the language of coherent lower
previsions. We intend to explore this further in future work.

8 Summary and conclusions

This paper has developed the notion of a credal network
under epistemic irrelevance using sets of desirable gambles.
We have proven that the resulting irrelevant natural exten-
sion of a network has a number of interesting properties. It
marginalises in an intuitive way and satisfies all graphoid
properties except symmetry. Finally, we have established
a connection with an approach to credal networks under
epistemic irrelevance that uses coherent lower previsions.

Future goals that we intend to pursue are to derive coun-
terparts to the marginalisation and graphoid properties in
this paper, expressed in terms of coherent lower previsions
rather than sets of desirable gambles. By exploiting these
properties, we would like to develop algorithms for credal
networks under epistemic irrelevance that are able to per-
form inferences in an efficient manner.
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Abstract
We generalise Cozman’s concept of a credal network under
epistemic irrelevance [2, Section 8.3] to the case where
lower (and upper) probabilities are allowed to be zero. Our
main definition is expressed in terms of coherent lower
previsions and imposes epistemic irrelevance by means of
strong coherence rather than element-wise Bayes’s rule. We
also present a number of alternative representations for the
resulting joint model, both in terms of lower previsions and
credal sets, a notable example being an intuitive character-
isation of the joint credal set by means of linear constraints.
We end by applying our method to a simple case: the in-
dependent natural extension for two binary variables. This
allows us to, for the first time, find analytical expressions
for the extreme points of this special type of independent
product.

Keywords. Credal networks, epistemic irrelevance, lower
previsions, credal sets, coherence, irrelevant natural exten-
sion, independent natural extension.

1 Introduction

Standard Bayesian networks can be generalised to allow
for imprecise probability assessments in a multitude of
ways; see Ref. [3, Section 3] for an overview. One way
to do so is by means of a credal network under epistemic
irrelevance. It differs from standard Bayesian networks in
two ways: beliefs are modelled by means of closed convex
sets of probability measures (so-called credal sets) rather
than single probability measures, and the non-parent non-
descendants of a variable are epistemically irrelevant to
that variable given its parents, rather than independent of it.

Credal networks under epistemic irrelevance were intro-
duced by Cozman in Ref. [2, Section 8.3]. In order to im-
pose the assessment of epistemic irrelevance, he assumed
that all conditioning events have strictly positive lower
probability. Under this assumption, a credal set can be con-
ditioned by applying Bayes’s rule to each of its probability
measures. However, we feel this assumption to be rather

restrictive since an event with zero lower probability may
have strictly positive upper probability. Therefore, in the
present paper, we get rid of this positivity assumption. We
do so by using coherent lower previsions as an alternat-
ive, equivalent representation for credal sets and using the
concept of (strong) coherence to impose epistemic irrelev-
ance assessments, even when the conditioning events have
lower or upper probability zero. See Ref. [8] for an earlier
successful application of this method to the special case of
credal trees.

The graphical structure of a credal network is a directed
acyclic graph, of which we recall some basic definitions
in Section 2. Section 3 goes on to introduce some basic
terminology regarding the variables in the network and we
explain in Section 4 how to model a subject’s beliefs re-
garding the values of these variables by means of coherent
lower previsions. Section 5 introduces the notion of a credal
network under epistemic irrelevance. We first recall how
it is defined under the positivity assumption, then provide
a definition that does not need that assumption, and prove
a number of useful properties and alternative characterisa-
tions. We explain how to describe the joint model by means
of a set of linear constraints in Section 6, and reformulate
this approach in Section 7 for the special case of the so-
called independent natural extension. Finally, in Section 8,
we apply our method to the independent natural extension
of two binary variables and use it to, for the first time, ob-
tain analytical expressions for the extreme points of this
extension.

2 Directed acyclic graphs

A directed acyclic graph (DAG) is a graphical model that is
well known for its use in Bayesian networks. It consists of a
finite set of nodes (vertices), which are joined together into
a network by a set of directed edges, each edge connecting
one node with another. Since this directed graph is assumed
to be acyclic, it is not possible to follow a sequence of
directed edges from node to node and end up back at the
same node you started out from.
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We denote the set of nodes associated with a given DAG
by G. For two nodes s and t in G, if there is a directed edge
from s to t, we denote this as s→ t and say that s is a parent
of t and t is a child of s. A single node can have multiple
parents and multiple children. For any node s, its set of
parents is denoted by P(s) and its set of children by C(s).
If a node s has no parents, P(s) = /0, and we call s a root
node. If C(s) = /0, then we call s a leaf, or terminal node.

Two nodes s and t, are said to have a directed path between
them if one can start from s, follow the edges of the DAG
taking their direction into account, and end up in t. In other
words: one can find a sequence of nodes s = s1, . . . ,sn = t,
n≥ 1, in G such that it holds for all i ∈ {1, . . . ,n−1} that
si → si+1. In that case we also say that s precedes t and
write sv t. If sv t and s 6= t, we say that s strictly precedes
t and write s @ t. For any node s, we denote its set of
descendants by D(s) :={t ∈G : s@ t} , its set of ascendants
by A(s) := {t ∈ G : t @ s} and its set of non-parent non-
descendants by N(s) := G\ (P(s)∪{s}∪D(s)).

3 Variables and gambles on them

With each node s in G, we associate a variable Xs taking
values in some non-empty finite set Xs. Generic elements
of this set are denoted by xs or zs. A real-valued function
on Xs is called a gamble and we use G (Xs) to denote the
set of all of them. Generic gambles are denoted by f , g or γ .
As a special kind of gambles we consider indicators IA of
events A ⊆Xs. IA is equal to 1 if the event A occurs (the
variable Xs assumes a value in A) and zero otherwise.

We extend this notation to more complicated situations as
follows. For any subset S of G, we denote by XS the tuple
of variables (with one component Xs for each s ∈ S) that
takes values in the Cartesian product XS :=×s∈SXs. We
assume logical independence, meaning that XS may assume
all values in XS. Generic elements of the finite set XS are
denoted by xS or zS. Also, if we mention a tuple xS, then
for any s ∈ S, the corresponding element in the tuple will
be denoted by xs. The set G (XS) contains all gambles on
XS and IA is again used to denote the indicator of an event
A⊆XS.

We will frequently use the simplifying device of identifying
a gamble fS on XS with its cylindrical extension to XU ,
where S ⊆U ⊆ G. This is the gamble fU on XU defined
by fU (xU ) := fS(xS) for all xU ∈XU . To give an example,
this device allows us to identify the gambles I{xS} on XS
and I{xS}×XU\S on XU , and therefore also the events {xS}
and {xS}×XU\S.

When S = /0, we let X /0 := {x /0} be a singleton. The cor-
responding variable X/0 can only take this single value x /0,
so there is no uncertainty about it. G (X /0) can then be
identified with the set R of real numbers.

4 Modelling beliefs about the network

For two disjoint subsets O and I of G and any xI ∈XI we
consider two equivalent methods of modelling a subject’s
beliefs about the value that XO will assume in XO, given
the observation that XI = xI .

The first approach is to use a credal set K(XO|xI), defined
as a closed and convex subset of the so-called XO-
simplex ΣXO , which is the set containing all probability
mass functions on XO. A generic element of K(XO|xI) is
denoted by p(XO|xI). It is a probability mass function on
XO conditional on the observation that XI = xI

The second approach is to use a coherent lower pre-
vision PO(·|xI), defined as a real-valued functional on
G (XO) that satisfies the following three conditions: for
all f ,g ∈ G (XO) and all real λ ≥ 0

C1. PO( f |xI)≥min f ,

C2. PO(λ f |xI) = λPO( f |xI),

C3. PO( f + g|xI)≥ PO( f |xI)+ PO(g|xI).

The conjugate of PO(·|xI) is called a coherent upper
prevision. It is denoted by PO(·|xI) and defined for all
f ∈ G (XO) by PO( f |xI) :=−PO(− f |xI). We will focus on
coherent lower previsions, but it is useful to keep in mind
that all our results can be reformulated in terms of coherent
upper previsions by applying this conjugacy property.

Both approaches are equivalent because there is a one-to-
one correspondence between them [12, Section 3.3.3]. If we
denote by PO(·|xI) the expectation operator on G (XO) that
corresponds to a probability mass function p(XO|xI), then
a credal set K(XO|xI) defines a unique coherent lower pre-
vision PO(·|xI) in the following way. For all f ∈ G (XO):

PO( f |xI) := min{PO( f |xI) : p(XO|xI) ∈ K(XO|xI)}.

Its conjugate coherent upper prevision PO(·|xI) is given for
all f ∈ G (XO) by

PO( f |xI) := max{PO( f |xI) : p(XO|xI) ∈ K(XO|xI)}.

Conversely, the unique credal set K(XO|xI) that corresponds
to a coherent lower prevision PO(·|xI) is given by

K(XO|xI) :={p(XO|xI) ∈ ΣXO :
(∀ f ∈ G (XO))PO( f |xI)≥ PO( f |xI)}. (1)

If I = /0, then XI = X/0 assumes its only possible value x /0
with certainty, so conditioning on X/0 = x /0 amounts to not
conditioning at all. We reflect this in our notation by us-
ing K(XO) and PO as alternative notations for K(XO|x /0)
and PO(·|x /0) respectively. A notable example is I = /0 and
O = G, for which we obtain a credal set K(XG) and coher-
ent lower prevision PG that can be used to model a subject’s
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beliefs about the value that the joint variable XG will assume
in XG.

When given for all xI ∈ XI , a coherent lower prevision
PO(·|xI) on G (XO), this defines a unique corresponding
coherent conditional lower prevision PO∪I(·|XI). It is a spe-
cial two-place function that is defined, for all f ∈ G (XO∪I)
and all xI ∈XI , by PO∪I( f |xI) := PO( f (·,xI)|xI).

5 Irrelevant natural extension

We will now show how to construct a joint model for the
variables in the network in the form of a credal set K(XG),
or equivalently, a coherent lower prevision PG.

5.1 Local uncertainty models

We start by adding local uncertainty models to each of the
nodes s ∈ G. These local models are assumed to be given
beforehand and will be used as basic building blocks to
construct the joint model.

If s is not a root node of the network, i.e. has a non-empty set
of parents P(s), then we have a conditional local model for
every instantiation of its parents: for each xP(s) ∈XP(s), we
have a credal set K(Xs|xP(s)) and a corresponding coherent
lower prevision Ps(·|xP(s)). They represent our subject’s
beliefs about the variable Xs conditional on the information
that its parent variables XP(s) assume the value xP(s).

If s is a root node, i.e. has no parents, then our subject’s
local beliefs about the variable Xs are represented by an
unconditional local model. We are given a credal set K(Xs)
and a corresponding coherent lower prevision Ps. As ex-
plained in Section 4, we can also use the common generic
notations K(Xs|xP(s)) and Ps(·|xP(s)) in this unconditional
case, since for a root node s, its set of parents P(s) is empty.

In order to turn these local uncertainty models into a joint
model, we introduce the important concept of epistemic
irrelevance.

5.2 Epistemic irrelevance

We discuss conditional epistemic irrelevance, as the un-
conditional version can easily be recovered as a special
case.

Consider three disjoint subsets C, I, and O of G. When
a subject judges XI to be epistemically irrelevant to XO
conditional on XC, he assumes that if he knew the value of
XC, then learning in addition which value XI assumes in XI
would not affect his beliefs about XO. More formally put,
he assumes for all xC ∈XC and xI ∈XI that

K(XO|xC∪I) = K(XO|xC) and PO(·|xC∪I) = PO(·|xC).

It should be clear that it suffices for the unconditional case,
in the discussion above, to let C = /0. This makes sure the

variable XC has only one possible value, so conditioning on
that variable amounts to not conditioning at all.

Using this concept of epistemic irrelevance, we can provide
the graphical structure of the network with an interpretation.

5.3 Interpretation of the graphical model

In Bayesian networks, the graphical structure is taken to
represent the following assessments: for any node s, the
associated variable is independent of its non-parent non-
descendant variables, given its parent variables.

When generalising this interpretation to imprecise graph-
ical networks, the classical notion of independence gets
replaced by a more general, imprecise-probabilistic notion
of independence. In this paper, we choose to use epistemic
irrelevance. We provide the graphical structure of the net-
work with the following interpretation: for any node s and
all subsets I of its non-parent non-descendants N(s), the
variable XI is judged to be epistemically irrelevant to Xs
conditional on XP(s).

More formally put, we assume for all s ∈ G, I ⊆ N(s) and
xP(s)∪I ∈XP(s)∪I that

K(Xs|xP(s)∪I):=K(Xs|xP(s)) and Ps(·|xP(s)∪I):=Ps(·|xP(s)).

5.4 Non-zero lower probabilities

Together with the local uncertainty models, the irrelevance
assessments that are encoded in the network provide us
with a number of belief models about the variables in the
network: for all s ∈ G, I ⊆ N(s) and xP(s)∪I ∈XP(s)∪I , we
are given a credal set K(Xs|xP(s)∪I), or equivalently, a co-
herent lower prevision Ps(·|xP(s)∪I). In order to arrive at a
joint model, we need to provide a method of translating
these belief models into constraints on the joint.

An approach that is often used when dealing with assess-
ments of epistemic irrelevance [6, 2], is to assume that all
lower probabilities are strictly positive, or equivalently, that
for every probability mass function p(XG) in the joint credal
set K(XG), all events have strictly positive probability. For
all s ∈ G, I ⊆ N(s) and xP(s)∪I ∈XP(s)∪I , this assumption
allows us to apply Bayes’s rule to every p(XG) in K(XG),
resulting in a set of conditional probability mass functions
p(Xs|xP(s)∪I). This procedure is called applying element-
wise Bayes’s rule. One can now impose that, for all s ∈ G,
I ⊆ N(s) and xP(s)∪I ∈XP(s)∪I , the set of conditional prob-
ability mass functions that is obtained in this way must be
equal to the given model K(Xs|xP(s)∪I). Any joint credal set
K(XG) that satisfies these constraints is called an irrelevant
product of the local models.

One particular credal set that was proven to be an irrelev-
ant product in Ref. [2]—under the positivity assumption
mentioned above—is the so-called strong extension of the
network. Its credal set Kstr(XG) is the convex hull of the
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set P , which contains all joint probability mass functions
p(XG) that, for all xG ∈XG, satisfy

p(xG) = ∏
s∈G

p(xs|xP(s)),

where each p(Xs|xP(s)) is selected from the local credal set
K(Xs|xP(s)). The corresponding coherent lower prevision
Pstr

G is given for all f ∈ G (XG) by

Pstr
G ( f ) = min{PG( f ) : p(XG) ∈P}.

The strong extension is not the only irrelevant product of
the local models. Although it has the advantage of having
an intuitive similarity to standard Bayesian networks, it
is somewhat arbitrary in that it satisfies more constraints
than those needed to be called an irrelevant product. We
prefer to use a least committal strategy: to only satisfy those
constraints that are imposed by the network, and no others.
The resulting model is the largest of all credal sets that
are an irrelevant product. We call it the irrelevant natural
extension of the network an denote it by Kirr(XG).

This irrelevant natural extension was introduced by Cozman
in Ref. [2], but only under the assumption that all lower
probabilities are strictly positive. We feel this assumption to
be rather restrictive since an event with zero lower probabil-
ity may occur with a strictly positive upper probability. The
first contribution of this paper will therefore be to extend
Cozman’s definition of the irrelevant natural extension such
that it allows for lower (and upper) probabilities to be zero.

5.5 Getting rid of the positivity assumption

If the conditioning event has lower probability zero, the
credal set K(Xs|xP(s)∪I) can no longer be uniquely related to
the joint model K(XG) through element-wise Bayes’s rule.
Therefore, we have to impose our assessments of epistemic
irrelevance in some other way. Here, we choose to do so by
means of strong coherence, defining the irrelevant natural
extension in terms conditional lower previsions, rather than
their corresponding credal sets.

As mentioned in the beginning of Section 5.4, the irrelev-
ance assessments, together with the local uncertainty mod-
els, provide us with a number of coherent lower previsions:
for all s ∈ G, I ⊆ N(s) and xP(s)∪I ∈XP(s)∪I we are given
a coherent lower prevision Ps(·|xP(s)∪I) := Ps(·|xP(s)) on
G (Xs). As was explained in Section 4, this provides us
with a number of coherent conditional lower previsions:
for all s ∈ G and I ⊆ N(s), we have a coherent condi-
tional lower prevision P{s}∪P(s)∪I(·|XP(s)∪I), defined for all
f ∈ G (X{s}∪P(s)∪I) and xP(s)∪I ∈XP(s)∪I by

P{s}∪P(s)∪I( f |xP(s)∪I) := Ps( f (·,xP(s)∪I)|xP(s)).

We will denote the set consisting of all these conditional
lower previsions as I (P{s}∪P(s)(·|XP(s)),s ∈ G).

In order to turn these coherent conditional lower pre-
visions into constraints on a joint model, given in the
form of a coherent lower prevision PG on G (XG), we
use the concept of (strong) coherence [12, Section 7.1.4]:
we require PG to be strongly coherent with the family
I (P{s}∪P(s)(·|XP(s)),s ∈ G) of coherent conditional lower
previsions. Any PG that satisfies this property, is called
an irrelevant product. The least committal—pointwise
smallest— irrelevant product is called the irrelevant natural
extension of the network and will be denoted by Pirr

G .

As strong coherence is a rather involved requirement, we
will not get into the details of what it means. For our present
purposes, it suffices to think of it as a generalisation of the
element-wise Bayes’s rule approach that was explained in
Section 5.4. For the interested reader: Ref. [12, Section
7.1.4] provides a general definition and a behavioural in-
terpretation in terms of supremum buying prices, turning
strong coherence into a rationality requirement.

We would like to stress that strong coherence is a consist-
ency criterion, rather than a conditioning rule.1 In fact, it is
compatible with a number of fundamentally different condi-
tioning rules, all of which reduce to element-wise Bayes’s
rule if the conditioning event has positive lower probability.
Also, strong coherence regards conditional models as funda-
mental, rather than deriving them from unconditional ones.
In that respect, it shares fundamental ideas with the well-
known concept of full conditional measures. See Ref. [1]
for a similar, coherence-based approach to stochastic inde-
pendence, which has been applied to credal networks in
Ref. [11].

When it comes to strong coherence, the so-called Reduc-
tion Theorem [12, Theorem 7.1.5] is a very useful result;
see also Ref. [9, Theorem 2]. It implies that the uncon-
ditional coherent lower prevision PG is strongly coherent
with the family I (P{s}∪P(s)(·|XP(s)),s ∈ G) of conditional
ones—is an irrelevant product—, if and only if (i) the fam-
ily I (P{s}∪P(s)(·|XP(s)),s ∈ G) is strongly coherent on its
own and (ii) PG is weakly coherent [12, Section 7.1.4] with
I (P{s}∪P(s)(·|XP(s)),s ∈ G).

Using an approach that uses so-called sets of desirable
gambles rather than coherent lower previsions, it is relat-
ively easy to show that requirement (i) is always satisfied
[5, Proposition 16].

Proposition 1. Consider arbitrary coherent lower previ-
sions Ps(·|xP(s)) on G (Xs), s ∈ G and xP(s) ∈XP(s). Then
the family I (P{s}∪P(s)(·|XP(s)),s ∈G) is strongly coherent.

It follows that PG is an irrelevant product if and only if it

1Refs. [7, Definition 12] and [4, Section 3.2.4] provide definitions for
epistemic irrelevance that are based on a conditioning rule that is similar
to Walley’s notion of regular extension [12, Appendix J]. These definitions
are applicable in the presence of zero lower probabilities as well. It is
not clear to us whether they can be used to construct a joint model from
conditional ones, as is done in the current paper.
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is weakly coherent with I (P{s}∪P(s)(·|XP(s)),s ∈G). In its
original form [12, Section 7.1.4], weak coherence is still
rather involved, but due to Ref. [9, Theorem 1], it can be
reformulated in a very elegant manner that leads directly to
the following characterisation of an irrelevant product.

Corollary 2. A coherent lower prevision PG on G (XG) is
strongly coherent with I (P{s}∪P(s)(·|XP(s)),s ∈ G)—is an
irrelevant product—if and only if for all s ∈ G, I ⊆ N(s),
xP(s)∪I ∈XP(s)∪I and g ∈ G (Xs):

PG(IxP(s)∪I [g−Ps(g|xP(s))]) = 0.

The condition imposed in this result is called the Gener-
alised Bayes’s Rule (GBR), and reduces to element-wise
Bayes’s rule when all conditioning events have strictly
positive lower probabilities [12, Theorem 6.4.2]. It should
therefore be clear that the definition of an irrelevant product,
as it was given in Section 5.4 under the assumption of
strictly positive lower probabilities, is a special case of the
definition given in the current section.

Proposition 3. The strong extension is an irrelevant
product: the coherent lower prevision Pstr

G is strongly coher-
ent with I (P{s}∪P(s)(·|XP(s)),s ∈ G).

This result guarantees the existence of at least one irrelev-
ant product, making the irrelevant natural extension well
defined: since strong coherence is preserved under taking
lower envelopes [12, Section 7.1.6], the irrelevant natural
extension is the lower envelope of all irrelevant products,
implying that it is indeed pointwise dominated by all other
irrelevant products. It should be clear that Corollary 2
provides us with an immediate characterisation for this
irrelevant natural extension.

Corollary 4. The irrelevant natural extension of a network
is the pointwise smallest coherent lower prevision Pirr

G on
G (XG) such that for all s ∈G, I ⊆ N(s), xP(s)∪I ∈XP(s)∪I
and g ∈ G (Xs):

PG(IxP(s)∪I [g−Ps(g|xP(s))]) = 0.

Similar to what has been shown in Ref. [2, Lemma 13]—
under the positivity assumption—most of the constraints in
Corollary 4 turn out to be redundant. We find that we only
need to impose those constraints for which I = N(s).

Theorem 5. The irrelevant natural extension of a network
is the pointwise smallest coherent lower prevision Pirr

G on
G (XG) such that for all s ∈G, xP(s)∪N(s) ∈XP(s)∪N(s) and
g ∈ G (Xs):

PG(IxP(s)∪N(s) [g−Ps(g|xP(s))]) = 0.

Although we have defined the irrelevant natural extension
in terms of coherent (conditional) lower previsions—since
strong coherence is not particularly well-suited for a formu-
lation in terms of credal sets—, it is valid for credal sets as

well. Due to the correspondence between credal sets and
coherent lower previsions, it suffices to consider the credal
set that corresponds to the irrelevant natural extension Pirr

G .
We denote it by Kirr(XG) and will also refer to it as the
irrelevant natural extension of the network. Using Eq. (1),
we find that

Kirr(XG) = {p(XG) ∈ ΣXG :

(∀ f ∈ G (XG))PG( f )≥ Pirr
G ( f )}.

The following result provides an intuitive characterisation.

Theorem 6. A probability mass function p(XG) ∈ ΣXG be-
longs to Kirr(XG) if and only if for all s∈G and xP(s)∪N(s) ∈
XP(s)∪N(s) there are a real number λ ≥ 0 and a probability
mass function p(Xs|xP(s)) ∈ K(Xs|xP(s)) such that

∑
zD(s)∈XD(s)

p(xP(s)∪N(s),Xs,zD(s)) = λ p(Xs|xP(s)).

5.6 Marginalisation properties

Given a credal network with nodes G and local models
K(Xs|xP(s)), s ∈ G and xP(s) ∈XP(s), a top sub-network is
a network formed by a subset of nodes S ⊆ G such that
for all s ∈ S, its ascendants A(s) also belong to S. The
underlying graphical structure consists of those edges in
the original network that connect nodes in S and the local
models K(Xs|xP(s)), s ∈ S and xP(s) ∈XP(s), are taken to
be identical to those of the original model. We denote the
irrelevant natural extension of such a top sub-network as
Kirr(XS). It turns out to be closely related to the irrelevant
natural extension of the original network, a result that was
already present in Ref. [2, Theorem 15] under the assump-
tion that all lower probabilities are strictly positive.

Proposition 7. Consider a credal network with nodes G
and a top sub-network with nodes S. Let Kirr(XG) and
Kirr(XS) be their respective irrelevant natural extensions.
Denote by margS(Kirr(XG)) the credal set obtained by
element-wise marginalisation to XS of the probability mass
functions in Kirr(XG), then

Kirr(XS) = margS(Kirr(XG)).

We believe that the irrelevant natural extension also satisfies
marginalisation properties for sub-networks other than the
very specific subclass of top sub-networks, but we defer
any formal result to future work. See Ref. [5] to get an idea
of what might be possible.

6 A linear programming approach

The goal of the current section is to construct a set of linear
constraints that is able to fully characterise the joint credal
set Kirr(XG) of the irrelevant natural extension of a given
network.
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In order to derive such a representation for the joint model,
we start from similar representations for the local models.
For all s ∈ G and xP(s) ∈XP(s), we characterise the local
credal set K(Xs|xP(s)) as the set of all real-valued functions
p(zs|xP(s)) ∈ RXs that satisfy the unitary constraint

∑
zs∈Xs

p(zs|xP(s)) = 1 (2)

and a (possibly infinite) set of linear homogeneous inequal-
ities

∑
zs∈Xs

p(zs|xP(s))γ(zs)≥ 0, (3)

where γ takes values in a (possibly infinite) set Γ(s,xP(s))
of gambles on Xs.

Such a description for K(Xs|xP(s)) always exists, as it can
be derived from the corresponding coherent lower prevision
Ps(·|xP(s)) by letting

Γ(s,xP(s)) = { f −Ps( f |xP(s)) : f ∈ G (Xs)}. (4)

Indeed, for this particular choice of Γ(s,xP(s)), the combin-
ation of Eqs. (2) and (3) will always be equivalent with
the constraints imposed by Eq. (1), thereby fully charac-
terising K(Xs|xP(s)). To understand why this equivalence
holds, start by noticing that if γ = f − Ps( f |xP(s)), with
f ∈ G (Xs), then due to Eq. (2), Eq. (3) becomes equival-
ent to

∑
zs∈Xs

p(zs|xP(s)) f (zs)≥ Ps( f |xP(s)). (5)

Coherence of Ps(·|xP(s)) now implies, for all zs ∈ Xs,
that Ps(I{zs}|xP(s)) ≥ 0 and therefore, due to Eq. (5), that
p(zs|xP(s)) ≥ 0. By combining this with Eq. (2), we find
that p(Xs|xP(s)) ∈ ΣXs . This allows us to rewrite the left-
hand side of Eq. (5) as Ps( f |xP(s)), thereby establishing the
equivalence with the constraints imposed by Eq. (1).

Eq. (4) produces an infinite set of constraints that is guar-
anteed to characterise K(Xs|xP(s)), but in practice, most
of these constraints will often be redundant. This is espe-
cially the case for so-called finitely generated local mod-
els, for which the corresponding coherent lower prevision
Ps(·|xP(s)) is fully determined by its value in only a finite
number of gambles. For such local models, one can easily
construct a set Γ(s,xP(s)) that contains only a finite number
of constraints and yet fully characterises K(Xs|xP(s)). The
credal set of such a finitely generated local model will al-
ways be the convex hull of a finite number of probability
mass functions. The reason for this equivalence being that a
compact convex set can be specified as the intersection of a
finite number of closed half spaces if and only if it is the con-
vex hull of a finite number of vertices [10, Theorem 3.1.3].

The importance of these local representations in terms of
linear constraints—regardless of whether Γ(s,xP(s)) is finite
or not—is that we can use the local constraints to derive
global ones, thereby obtaining the following representation
for the irrelevant natural extension of a network.

Proposition 8. Consider a credal network for which each
of the local credal sets K(Xs|xP(s)), s∈G and xP(s) ∈XP(s),
is fully characterised by means of Eqs. (2) and (3). Then
Kirr(XG) consists of those p(XG) ∈ ΣXG for which for all
s ∈ G, xP(s)∪N(s) ∈XP(s)∪N(s) and γ ∈ Γ(s,xP(s)):

∑
zs∈Xs

∑
zD(s)∈XD(s)

p(xP(s)∪N(s),zs,zD(s))γ(zs)≥ 0.

When all lower probabilities are strictly positive, this result
is fairly straightforward. The global inequalities can then
be obtained by imposing all irrelevancies through element-
wise Bayes’s rule and clearing the denominators, as is done
in Ref. [2, Section 8.3]. The importance of our result is that
it shows that these inequalities remain valid if lower (and
upper) probabilities are allowed to be zero.

Ref. [2] does not explicitly impose p(XG) ∈ ΣXG as a con-
straint. It seems to assume that it suffices to impose only the
unitary constraint ∑zG∈XG

p(zG) = 1, making the require-
ment that p(zG) ≥ 0, zG ∈XG, redundant. Although we
agree with this statement, we do not believe it to be trivial
and therefore choose to provide it with a proof.
Theorem 9. Consider a credal network for which each of
the local credal sets K(Xs|xP(s)), s ∈ G and xP(s) ∈XP(s),
is fully characterised by means of Eqs. (2) and (3).
Then Kirr(XG) consists of those real-valued functions
p(XG) ∈ RXG for which ∑zG∈XG

p(zG) = 1 and for all
s ∈ G, xP(s)∪N(s) ∈XP(s)∪N(s) and γ ∈ Γ(s,xP(s)):

∑
zs∈Xs

∑
zD(s)∈XD(s)

p(xP(s)∪N(s),zs,zD(s))γ(zs)≥ 0.

Proposition 8 and Theorem 9 are valid for both finite and
infinite sets Γ(s,xP(s)), but in the infinite case, their value
is mainly of a theoretical nature. They can only be used in
practice—at least in an exact way—if L(s,xP(s)) is finite
for all s ∈ G and xP(s) ∈XP(s), or equivalently, if all local
credal sets are finitely generated.2 Indeed, in that case, Pro-
position 8 and Theorem 9 will provide linear programs with
a finite number of constraints. Although the size of these
programs is still exponential in the number of variables
that define the network, it allows for inference problems
in small networks to be solved in an exact manner. Initial
ideas on how to reduce this exponential complexity are
provided in our conclusions.

7 Independent natural extension

An important special case is obtained when all nodes in the
network are unconnected. Every node s ∈ G is then both

2If we allow for non-linear constraints, then local credal sets that are
not finitely generated could be practical as well, as they can often be
described by means of a finite set of non-linear constraints. We believe
that Proposition 8 and Theorem 9 could be adapted easily to allow for such
non-linear (homogeneous) constraints, thereby expanding their practical
use when combined with non-linear solvers.
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a root and a leaf of the network—meaning that P(s) and
C(s) are empty—, its non-parent non-descendants are given
by N(s) = G\{s} and the local model is an unconditional
credal set K(Xs), or equivalently, a coherent lower prevision
Ps on G (Xs).

For such a network, the irrelevancies that are encoded by
the network are the following. For every s ∈ G and all
I ⊆G\{s}, the variable XI is epistemically irrelevant to Xs,
implying that for any two nodes s, t ∈ G, Xs and Xt are mu-
tually epistemically irrelevant and therefore by definition
epistemically independent. The resulting irrelevant natural
extension is called the many-to-one independent natural
extension and has been treated in full detail in Ref. [9]. That
same reference also introduces the so-called many-to-many
independent natural extension, which requires that for all
disjoint subsets O and I of G, XI is epistemically irrelevant
to XO. The many-to-one and many-to-many independent
natural extensions are shown to be equivalent [9, Theorem
23] and we can therefore simply call it the independent nat-
ural extension. Its coherent lower prevision is denoted by
⊗s∈GPs and its credal set by ⊗s∈GK(Xs). For this special
case, Theorem 9 can be reformulated in the following way.

Corollary 10. Consider a finite number of local credal
sets K(Xs), s ∈ G, each of which is fully characterised
means of Eqs. (2) and (3). Then ⊗s∈GK(Xs) consists
of those real-valued functions p(XG) ∈ RXG for which
∑zG∈XG

p(zG) = 1 and for all s ∈ G, xG\{s} ∈XG\{s} and
γ ∈ Γ(s):

∑
zs∈Xs

p(xG\{s},zs)γ(zs)≥ 0.

We leave it to the reader to reformulate some of the other
results that were obtained in the two previous sections,
taking the simplifications that correspond to the special
case of the independent natural extension into account. In
fact, Ref. [9, Proposition 14, Corollary 16 and Theorem 20]
already provides results that could be regarded as special
cases of Proposition 3, Corollary 2 and Proposition 7.

8 Case study of two binary variables

As an example, we apply our results to the very simple
case of two unconnected binary variables X1 and X2. For
all i ∈ {1,2}, the variable Xi assumes values in its binary
state space Xi = {hi, ti} and has a given local uncertainty
model in the form of a credal set K(Xi). We set out to con-
struct the independent natural extension K(X1)⊗K(X2) of
these two local models. In order to do so, we will describe
it by means of linear constraints and then use this charac-
terisation to find analytical expressions for the so-called
extreme points of K(X1)⊗K(X2), which are those elements
of K(X1)⊗K(X2) that cannot be written as a convex com-
bination of the other elements. K(X1)⊗K(X2) is then equal
to the convex hull of these extreme points.

For a binary variable Xi, i ∈ {1,2}, the credal set K(Xi) is
uniquely characterised by the lower and upper probability
of hi, respectively denoted as p(hi) and p(hi). Each of these
two probabilities defines a mass function on Xi and

K(Xi) =
{

p ∈ ΣXi : p(hi) ∈ [ p(hi), p(hi)]
}

is obtained by taking their convex hull. The corres-
ponding lower and upper probability of ti is given by
p(ti) := 1− p(hi) and p(ti) := 1− p(hi).

In order to apply the method described in Section 6, we
first need to characterise K(Xi) by means of the unitary
constraint and a finite number of linear homogeneous in-
equalities. In this particular binary case, the following two
inequalities suffice:

p(ti)p(hi)− p(hi)p(ti)≥ 0

−p(ti)p(hi)+ p(hi)p(ti)≥ 0.

By applying Corollary 10, these local inequalities can be
used to obtain eight global inequalities.

p(t1)p(h1,h2)− p(h1)p(t1,h2)≥ 0 (I1)

−p(t1)p(h1,h2)+ p(h1)p(t1,h2)≥ 0 (I2)

p(t1)p(h1, t2)− p(h1)p(t1, t2)≥ 0 (I3)

−p(t1)p(h1, t2)+ p(h1)p(t1, t2)≥ 0 (I4)

p(t2)p(h1,h2)− p(h2)p(h1, t2)≥ 0 (I5)

−p(t2)p(h1,h2)+ p(h2)p(h1, t2)≥ 0 (I6)

p(t2)p(t1,h2)− p(h2)p(t1, t2)≥ 0 (I7)

−p(t2)p(t1,h2)+ p(h2)p(t1, t2)≥ 0 (I8)

Together with the global unitary constraint

p(h1,h2)+ p(h1, t2)+ p(t1,h2)+ p(t1, t2) = 1,

they fully characterise the credal set K(X1)⊗K(X2). If the
inequalities in equations (I1)–(I8) are replaced by equalit-
ies, we refer to them as (E1)–(E8).

Lemma 11. Every extreme point of K(X1)⊗K(X2) is the
unique solution to the unitary constraint and three of the
equations (E1)–(E8).

The extreme points of the independent natural extension
K(X1)⊗K(X2) can therefore be found in the following
way. We need to consider every possible subset of three
equalities out of (E1)–(E8). For every such combination of
three equalities, we need to combine them with the unit-
ary constraint and check whether this results in a unique
solution, and if so, whether this unique solution satisfies
the inequalities in (I1)–(I8). If so, that unique solution is an
extreme point of K(X1)⊗K(X2).

As there are 56 possible ways of choosing three equalities
out of eight, one might suspect that this problem cannot be
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p(h1,h2)∑ p(h1, t2)∑ p(t1,h2)∑ p(t1, t2)∑ ∑

pS1 p(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2) 1

pS2 p(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2) 1

pS3 p(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2) 1

pS4 p(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2) 1

pA1 p(h1)p(h1)p(h2) p(h1)p(h1)p(t2) p(t1)p(h1)p(h2) p(h1)p(t1)p(t2) p(h1)p(t2)+ p(h1)p(h2)

pA2 p(h1)p(h1)p(h2) p(h1)p(h1)p(t2) p(h1)p(t1)p(h2) p(t1)p(h1)p(t2) p(h1)p(h2)+ p(h1)p(t2)

pA3 p(h1)p(t1)p(h2) p(t1)p(h1)p(t2) p(t1)p(t1)p(h2) p(t1)p(t1)p(t2) p(t1)p(t2)+ p(t1)p(h2)

pA4 p(t1)p(h1)p(h2) p(h1)p(t1)p(t2) p(t1)p(t1)p(h2) p(t1)p(t1)p(t2) p(t1)p(h2)+ p(t1)p(t2)

pB1 p(h2)p(h2)p(h1) p(t2)p(h2)p(h1) p(h2)p(h2)p(t1) p(h2)p(t2)p(t1) p(h2)p(t1)+ p(h2)p(h1)

pB2 p(h2)p(t2)p(h1) p(t2)p(t2)p(h1) p(t2)p(h2)p(t1) p(t2)p(t2)p(t1) p(t2)p(t1)+ p(t2)p(h1)

pB3 p(h2)p(h2)p(h1) p(h2)p(t2)p(h1) p(h2)p(h2)p(t1) p(t2)p(h2)p(t1) p(h2)p(h1)+ p(h2)p(t1)

pB4 p(t2)p(h2)p(h1) p(t2)p(t2)p(h1) p(h2)p(t2)p(t1) p(t2)p(t2)p(t1) p(t2)p(h1)+ p(t2)p(t1)

Table 1: Candidates for the extreme points of the independent natural extension of two binary variables

solved manually. However, due to the extreme symmetry—
switching X1 and X2, h1 and t1 or h2 and t2 yields an equi-
valent set of inequalities—, only 7 of those 56 cases need
to be considered, as the others can be related to these 7
by an argument of symmetry. In this way, we managed
to obtain analytical expressions for the extreme points of
K(X1)⊗K(X2).

Theorem 12. Analytical expressions for the extreme points
of K(X1)⊗K(X2) can be found by means of Table 1 and
Figure 1. Table 1 contains expressions for 12 probability
mass functions, which can be obtained by dividing the num-
bers in columns 2–5 by the denominator in column 6. The
diagram in Figure 1 shows, depending on the particular
values of p(h1), p(h1), p(t1), p(t1), p(h2), p(h2), p(t2) and
p(t2), which of these 12 probability mass functions are ex-
treme points of K(X1)⊗K(X2). In this diagram, we use the
shorthand notation pS1=S2 to denote that pS1 and pS2 are
two coinciding extreme points.

Although the diagram in Figure 1 considers quite a number
of special or degenerate cases, the main result can be sum-
marised quite easily. If one of the local models is precise
or vacuous, then the independent natural extension has the
same extreme points as—and therefore coincides with—the
strong extension. In all other cases, the independent natural
extension has up to four additional extreme points.

9 Summary and Conclusions

In this paper, we have developed a definition for credal net-
works under epistemic irrelevance that allows for zero lower

(and upper) probabilities, generalising Cozman’s defini-
tion [2, Section 8.3], which requires the lower probabilit-
ies of conditioning events to be strictly positive. For the
resulting joint model, we have derived a number of proper-
ties and alternative characterisations. Some of these results
were already mentioned by Cozman, but are now proved
to remain valid when his positivity requirement is dropped.
One particular result is that the joint credal set that cor-
responds to a credal network under epistemic irrelevance
can be described by means of linear constraints. As a first
toy example, we have used this approach to obtain analyt-
ical expressions for the extreme points of the independent
natural extension of two binary variables.

The main future goal that we intend to pursue is to develop
algorithms for credal networks under epistemic irrelevance
that are able to perform inference in an efficient manner.
This problem has been tackled before by Cozman [2, Sec-
tion 8.4], but we suspect that a more efficient solution can
be obtained. The idea would be to derive counterparts to
the marginalisation and graphoid properties that are proven
in Ref. [5] and combine these with a linear programming
approach that builds upon Theorem 9.
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Is (at least) one of the local models K(Xi), i ∈ {1,2},
precise? (p(hi) = p(hi) and p(ti) = p(ti))

Is (at least) one of the local models K(Xi), i ∈ {1,2},
vacuous? (p(hi) = p(ti) = 0 and p(hi) = p(ti) = 1)

pS1=S3,
pS2=S4

pS1=S2=S3=S4
pS1=S2,
pS3=S4

K(X1)
K(X1)
and

K(X2)
K(X2)

pS1, pS2,
pS3, pS4

p(h1)p(t1)p(h2)p(t2) ? p(h1)p(t1)p(h2)p(t2)

no

yes no

p(h2) = 0 or p(t2) = 0?
>

pS1, pS2,
pS3, pS4,
pA2, pA4

p(h2) pS1, pS2,
pS3, pS4,
pA1, pA3

p(t2)

pS1, pS2, pS3, pS4,
pA1, pA2, pA3, pA4

no

p(h1) = 0 or p(t1) = 0?
<

pS1, pS2,
pS3, pS4,
pB3, pB4

p(h1) pS1, pS2,
pS3, pS4,
pB1, pB2

p(t1)

pS1, pS2, pS3, pS4,
pB1, pB2, pB3, pB4

no

p(h1) = 0 or p(t1) = 0?

=

p(h2) = 0 or p(t2) = 0?
p(h1)

pS1, pS2,
pS3, pS4,
pA4=B4

p(h2) pS1, pS2,
pS3, pS4,
pA3=B3

p(t2)

p(h2) = 0 or p(t2) = 0?
p(t1)

pS1, pS2,
pS3, pS4,
pA2=B2

p(h2) pS1, pS2,
pS3, pS4,
pA1=B1

p(t2)

K(X1) = K(X2)?

no

pS1, pS2, pS3, pS4,
pA1=A4=B1=B4,
pA2=A3=B2=B3

yes pS1, pS2, pS3, pS4,
pA1=A4, pB1=B4,
pA2=A3, pB2=B3

no

Figure 1: Diagram to obtain the extreme points of the independent natural extension of two binary variables
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Abstract

We consider multi-attribute utility functions, particu-
larly applied to the choice of a design and sample sizes
for an experiment. We extend earlier work, which al-
lowed imprecision in the trade-offs between attributes,
to allow imprecision also in the shape of marginal util-
ity functions. The method is illustrated with a sim-
ple example involving a two-group binomial experi-
ment.

Keywords. Design of experiments, imprecise utility,
risk aversion, sample size.

1 Introduction

In earlier work [8, 9, 10] a method for decision analysis
with multiattribute utilities has been developed which
does not require the specification of precise trade-offs
between different risks. The original motivation for
this work was the design of experiments [7, 8]. Multi-
attribute utilities may be imprecisely specified, due to
an unwillingness or inability on the part of the client
to specify fixed trade-offs or precise marginal utility
functions or because of disagreement within a group
with responsibility for the decision. In particular this
may be so when the decision is the choice of a de-
sign or sample size for an experiment. For example,
in the design of a medical experiment, participants in
the decision-making process may have different view-
points, may put different weights on such attributes
as the information gain and the risks to trial subjects
and may be more or less risk averse in terms of these
attributes.

An approach to constructing imprecise multi-
attribute utility hierarchies and finding the Pareto op-
timal rules was introduced in [8]. The structure used
was based on a utility hierarchy with utility indepen-
dence at each node and used the notion of impre-
cise utility trade-offs within such a hierarchy, based
on limited collections of stated preferences between

outcomes. Pareto optimality, over the set of possible
trade-off specifications, was used to reduce the set of
alternatives.

Many real decision problems, for example in exper-
imental design, have very large spaces of possible
choices. Relaxing the requirement for precise utility
specification reduces our ability to eliminate choices
by dominance and can leave us with a large class
of choices, none of which is dominated by any other
over the whole range of possible utility functions al-
lowed by the imprecise specification. Methods were
described in [9] to reduce the class of alternatives that
must be considered, by eliminating choices which are
“ε-dominated” and combining choices which are “ε-
equivalent.” The effects of different values of ε and of
different parts of the hierarchy were explored to see
when and why choices were eliminated.

To choose a single alternative d∗ from our reduced
list, we can use the boundary linear utility approach
described in [8], or select the choice which is the last
to be eliminated as we increase the value of our ε
criterion as described in [9]. We can then find the
set D∗ of choices which are “almost equivalent” to d∗

and perhaps use secondary considerations to choose
among them. In [10] methods based on the boundary
linear utility for exploring the sensitivity of possible
choices to variation in the utility trade-offs were de-
scribed. This helps us to find a decision which, as far
as possible, is a good choice over the whole range of
possible trade-offs.

For some other approaches to imprecise utility, see, for
example, [12, 2, 13, 16, 17, 5]. A particular feature of
the approach used in [8, 9, 10] and this paper is the
generality of the form of the utility hierarchy and of
the shape of the feasible region.

The purpose of this paper is twofold. Firstly we show
how the imprecise utility structure can be extended
in a simple way to include imprecision in the shape
of the marginal utility functions for attributes, and
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therefore in the degree of risk aversion, and that this
extension preserves all of the results derived for the
structure in previous work. Secondly, we return to
the original motivation of the work by applying the
methods to the choice of design and determination of
sample size for experiments.

In Section 2 we briefly outline the Bayesian approach
to experimental design, viewing it as a multi-attribute
decision problem. In Section 3 we review the earlier
work on decisions with imprecise utility trade-offs. In
Section 4 we introduce the extension to include impre-
cision in the shape of the marginal utility functions.
Finally, in Section 5, we apply the ideas to sample-size
determination for a simple two-group experiment.

2 Bayesian Experimental Design

2.1 Introduction

The problem of experimental design is essentially that
of choosing a design for an experiment from a, pos-
sibly infinite, set of possibilities. In simple cases this
might just be a matter of choosing a sample size. In
more complicated cases it may involve choosing sev-
eral sample sizes, for observations of different types,
or even of selecting types of observations to make, for
example determining the values of covariates to use.
In any case, this is clearly a decision and, usually, the
values of various attributes, typically more than one,
which are relevant to us, are unknown before the ex-
periment and our distributions for them depend on
the choice of design. We therefore formulate exper-
imental design as a multi-attribute decision problem
and choose the design which maximises our expecta-
tion of a multi-attribute utility function.

A recent, brief, introduction to this view of experi-
mental design is given by [6]. For a more technical
introduction to the field of Bayesian experimental de-
sign see, for example, [3]. A discussion of sample-size
determination in clinical trials is given in Chapter 6
of [19]. See also, for example, [15, 20].

In much published work on Bayesian experimental de-
sign, a fixed total number of observations N is as-
sumed. The problem is then to allocate these ob-
servations to design points (ie types of observation)
while keeping the total fixed (sometimes allowing non-
integer allocations on the grounds that it is the pro-
portions of the total sample size which are being de-
termined). Often some measure of information gain
is used to provide a utility function and costs are as-
sumed to depend only on the total sample size and
therefore need not be considered. This is described as
the “design problem” (although, perhaps, “allocation
problem” might be a better name).

In contrast, in the “ sample size problem”, the trade-
off between costs and benefits is explicitly considered
so a utility function is required which involves both, eg
[20]. Usually, relatively simple designs are considered.

In many real practical problems we need both to de-
termine a total sample size and how the observations
should be allocated to different design points. In this
paper we do not distinguish between these two types
of problem.

Typically, in experimental design we require a multi-
attribute utility function where the attributes include
costs and benefits. Each of these may be of more than
one kind.

In some cases we might represent the “benefit” from
an experiment in terms of some measure of informa-
tion. For example we might use the posterior preci-
sion for some quantity of interest. We may, of course,
be interested in several different unknown quatities
so each would have its respective marginal utility and
these utilities need to be combined. In other cases we
might base our benefit utility directly on the pay-off
from some terminal decision, in which our choice is
informed by the result of the experiment. In fact the
information-measure approach is (usually, at least)
a special case of the terminal-decision approach, in
which the terminal decision is to declare a value for
some unknown (vector) quantity. The benefit utility
is then based on the difference between our declared
value and the true value.

Figure 1 shows an influence diagram for a typical
problem in experimental design. For example this
could refer to the design of a clinical trial in which
we wish to compare two or more treatments. There
could also be several groups of patients, for example
divided by age-group, severity-group, sex etc. The ini-
tial decision DX consists of the choice of design dX .
Often the set of possible choices will include the op-
tion of no experiment at all. In the experiment, we
observe data X. The distribution of X depends on dX
and on unknown quantities (parameters) θ. A vector
of pay-offs CX refers to various attributes, for example
financial costs or effects on subjects. The distribution
of these depends on dX and X. Having seen the data
X we make a terminal decision DY . This may well be
the choice of treatment for future patients. We choose
dY . The outcomes Y of this terminal decision may be,
for example, the clinical outcomes for some future pa-
tients but may also include other attributes such as
costs of future treatments. The distribution of these
depends on dY and on the unknown θ . These out-
comes lead to rewards (pay-offs) CY which depend on
dY and Y. (More generally, they may also depend on
θ). There may, of course, be a potentially unbounded
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Figure 1: Influence diagram for a typical problem in
experimental design.

number of future patients. However, in our utility
function, we might discount outcomes as we look fur-
ther into the future. This might be justified on the
grounds that, further into the future, it becomes less
likely that our choice of treatment will still be dic-
tated by this experiment. Finally, our overall utility
U = U(CX , CY ) depends on CX and on CY .

To determine our choice of design d(X) we work our
way backwards through the influence diagram. Af-
ter observing the data X = x in our experiment, we
choose

dY = arg max
dY ∈DY

[EdY {U(CX , CY ) | x}]

= arg max
dY ∈DY

[U(dY ;CX , CY | x)].

Our expected utility at this stage is

max
dY ∈DY

[U(dY ;CX , CY ) | x].

Before observing the data, we choose the design

dX = arg max
dX∈DX

EdX{ max
dY ∈DY

[U(dY ;CX , CY ) | X]}.

A useful variation on this is to use two different prior
distributions, an inference or fitting or terminal prior,
which is used for choosing dY , and a design or sam-
pling prior which is used for choosing dX . This ap-
proach was suggested by [21]. Similarly we can have
different utility functions for the two decisions.

2.2 Risks in Experimental Design

Since we are concerned in this paper with degrees of
risk aversion, let us briefly consider some of the many
risks associated with experimental design.

We have already mentioned the financial cost of the
experiment, which may not be known in advance with
certainty, and the effects on experimental subjects.

Particularly in the cases of human and animal sub-
jects we are likely to be concerned about the possi-
bility of adverse reactions but, even in other exper-
iments, there might be other costs concerned with
effects on valuable material or equipment. We may
come to a conclusion, based on our experiment, which
is far from the truth. This could lead to a bad choice
in a terminal decision and therefore to a bad pay-off.
A type of risk which seems to have had little formal
consideration is that something may go wrong with
the experiment and that this leads to less useful in-
formation than expected or perhaps to none at all. In
particular we may suffer from missing observations.
Some designs, for example those for microarray ex-
periments, could be very sensitive to missingness. See
eg [1].

In choosing an experimental design we will be seeking
to optimise our expectation of a utility function which
involves some or all of these risks. Our choice will
therefore depend on how we are willing to trade these
risks against each other and this, in turn, depends
on our attitudes to these risks, including the shapes
of our marginal utility functions since these shapes
describe our degrees of risk aversion with respect to
the various attributes.

2.3 Utility Hierarchy

A hierarchical structure for utilities in a multi-
attribute problem was suggested by [14] and [8]
adopted such a structure. In [8], an example was used
in which there were financial costs of the experiment
and also “ethical costs” which related to possible ef-
fects on the experimental subjects. The marginal util-
ities of these are combined into a Cost utility. In an
experiment we potentially learn about a number of
quantities and, in their example, [8] represented this
collection in four groups, each of which had a marginal
utility based on the distance of our posterior expec-
tation from the true value. These were combined into
a Benefit utility. Finally the Cost and Benefit utili-
ties were combined in an overall utility for the chosen
design.

3 Imprecision in utility trade-offs

3.1 Mutually utility independent hierarchies

In order to introduce imprecision into the trade-offs
between attributes, [8] proposed a general class of
multi-attribute utility functions which uses the con-
cept of mutual utility independence among sets of at-
tributes in order to impose a structure on the utility
function. Attributes Y = (Y1, ..., Yk) are utility in-
dependent of the attributes Z = (Z1, ..., Zr) if condi-
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tional preferences over lotteries with differing values
of Y but fixed values, z, of Z, do not depend on the
particular choice of z. Attributes X = (X1, ..., Xs)
are mutually utility independent if every subset of X
is utility independent of its complement. If attributes
X are mutually utility independent, then [14] showed
that the utility function for X must be given by the
multiplicative form

U(X) = B−1

{
s∏

i=1

[1 + kaiUi(Xi)] − 1

}
, (1)

where B does not depend on U1(X1), . . . , Us(Xs), or
the additive form

U(X) =
s∑

i=1

aiUi(Xi), (2)

where Ui(Xi) is a conditional utility function for at-
tribute Xi, namely an evaluation of the utility of Xi

for fixed values of the other attributes. The coef-
ficients in (1) and (2) are the trade-off parameters;
the ai reflect the relative importance of the attributes
and k reflects the degree to which rewards may be re-
garded as complementary, if k > 0, or as substitutes,
if k < 0.

The assumption of mutual utility independence is
enough in itself to reduce the problem to one of con-
sidering a finite number of parameters.

The next step is to form a hierarchical structure, in
which, at each node, several utilities are merged into
a combined utility. This combined utility is merged
with others at a node in the next level until, finally,
one overall utility function is formed. If, at each node,
we have mutual utility independence for the utilities
combined at that node, then we term such a util-
ity function a Mutually Utility Independent Hierar-
chic (MUIH) utility. Thus, in a MUIH utility, at each
node we combine utilities using either (1) or (2).

This hierarchical structure allows us to relax the re-
quirement for overall mutual utility independence by
allowing the user to specify utility independence just
at the nodes of the hierarchy and, of course, the user
can choose this structure.

Nodes in the hierarchy, other than the marginal nodes,
are termed child nodes and classified by [8] into the
following three types:

1. an additive node, where utilities are combined
as in (2) with

∑s
i=1 ai ≡ 1 and ai > 0 for

i = 1, . . . , s;

2. a binary node, where precisely two utilities are
combined, where we rescale the combined utility

as

U = a1U1 + a2U2 + hU1U2 (3)

where 0 < ai < 1 and −ai ≤ h ≤ 1 − ai, for
i = 1, 2, and a1 + a2 + h ≡ 1. Note that (3) is
derived by setting s = 2 and h = ka1a2 in (1).

3. a multiplicative node, where more than two utili-
ties are combined and the parameter k in (1) may
be nonzero. We scale the utility using

B =
s∏

i=1

(1 + kai) − 1 (4)

with a1 ≡ 1, k > −1 and, for i = 1, . . . , s, we have
ai > 0 and kai > −1. When k = 0 we obtain (2).

At each child node n, we have a collection φ
n

=
(φn,1, . . . , φn,rn) of trade-off parameters which deter-
mine how the parent utilities at node n are combined
to give the value at the child node. If there are N
child nodes, then we denote by θ = (φ

1
, . . . , φ

N
) the

collection of all the trade-off parameters in the hier-
archy. A hierarchy in which imprecision is allowed in
some of the elements of θ is called an imprecise in-
dependence hierarchy (IIH). If the hierarchy contains
only additive and binary nodes, then the specification
is a simple imprecise independence hierarchy (SIIH)

So that the interpretation of utility values does not de-
pend on the choice of trade-off parameters, we place
all utilities in the hierarchy on a standard scale. Each
marginal utility is normed to lie between 0, the worst
outcome that we shall consider for the problem, and
1, the best outcome. The relative weights of the
marginal utilities are governed by the trade-off pa-
rameters at the nodes of the hierarchy and these are
chosen to reflect this norming. Consider a child node
n. Let Cn be an outcome such that all marginal pre-
decessor nodes have utility 1, and cn be an outcome
such that all marginal predecessor nodes have utility
0. The scalings described above for additive, binary
and multiplicative nodes ensure that, at n, the utili-
ties of Cn and cn are 1 and 0 respectively. Therefore, a
utility value of u at node n may always be interpreted
as the utility of a gamble giving Cn with probability
u and cn with probability 1 − u, irrespective of the
chain of trade-off parameters in the hierarchy.

3.2 Specification of imprecise utility
trade-offs

In standard utility theory, the decision maker must
make statements which define the preferences between
all combinations of outcomes. In the case of impre-
cise utility, the decision maker may state preferences
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just for some, but not all, choices of outcome com-
binations. Imprecise utility is defined by obeying all
of the constraints implied by the stated preferences.
In [8, 9, 10] it was supposed that the decision maker
could make preference statements over all outcomes
of each individual attribute, and so could specify pre-
cise marginal utilities, but could only make preference
statements for some, but not all, combinations of the
various attributes. Each such preference statement
imposed constraints on the tradeoff parameters which
are used to combine the individual attributes into an
imprecise multi-attribute utility. These constraints
together specify a feasible region R for θ. Comments
on the process of elicitation are made in [8, 9, 10].

In Section 4 below we will drop the assumption that
the decision maker has to specify precise marginal
utilities.

3.3 Analysis with imprecise utility trade-offs

In earlier work [8, 9, 10], methods have been devel-
oped which exploit the IIH structure to reduce the
number of choices to be considered and select choices
and to explore the sensitivity of choices. Our aim in
Section 4 below will be to extend the structure to al-
low imprecision in the marginal utility functions while
preserving the various results derived and retaining
our ability to carry out these analyses. In this section
we briefly summarise these results and methods.

Having obtained our imprecise specification for the
parameters of our multi-attribute utility function we
can reduce the number of possible choices, that is de-
signs, by retaining only choices which are Pareto op-
timal (non-dominated) with respect to the range R of
the parameters θ.

We have to choose from a set D of choices. We de-
note the utility of a particular choice A ∈ D, evaluated
with trade-off parameters θ as UAθ. This is evaluated
as the expected value of Uθ, with respect to the prob-
ability distribution, induced by the choice A, over the
marginal attributes involved in U. For two alterna-
tives, A, B, let dAB(θ) = UAθ − UBθ.

We write A � B, if UAθ ≥ UBθ ∀θ ∈ R. We say that A
is preferred to B over R, written A � B, if A � B and
UAθ > UBθ for some θ ∈ R, and that A is equivalent
to B, written A ' B, if UAθ = UBθ ∀θ ∈ R. We call
alternative A Pareto optimal for R if there is no other
allowable alternative B for which B � A over R. We
restrict attention to Pareto optimal alternatives. Fur-
thermore, if we form equivalence classes of equivalent
decisions A1 ' A2 ' ... ' Ar, then it is reasonable to
restrict attention to only one representative member
of each equivalence class.

To reduce the number of choices further, [9] intro-
duced the concept of ε-preference as follows. Let
ε ≥ 0 be a value chosen to indicate a practical indif-
ference between utility values. For two alternatives A
and B, we say that A is almost-preferable with toler-
ance ε, or, more concisely, “ε-preferable” to B, written
A �ε B, over the set R of parameter specifications if
infR(dAB(θ)) ≥ −ε. Two alternatives A,B are said to
be almost-equivalent with tolerance ε, or, more con-
cisely, “ε-equivalent”, written A 'ε B, if both A �ε B
and B �ε A. Note that ε-preference does not define
a complete ordering of the alternatives and nor does
ε-equivalence define an equivalence relation. Alter-
native A is said to ε-dominate alternative B, written
A �ε B, if A �ε B but B 6�ε A, where the negation of
the relationship is indicated in the usual way. Setting
ε = 0, an alternative which is not 0-dominated by any
other is Pareto optimal. The notation is extended to
collections of alternatives as follows. The collection
A is ε-preferable to the collection B of alternatives,
written A �ε B if, for each B ∈ B, there is at least
one A ∈ A for which A �ε B.

In [9] a number of results are derived concerning the
properties and uses of ε-preference in IIH utilities.
In particular, an algorithm is presented for gradually
reducing the number of choices by increasing ε from
zero and eliminating choices while our retained list
remains an ε-Pareto set. Eventually we are left with
a single choice d∗. Notice that this choice is made
without having to specify a value for ε in advance.

In [10] methods for exploring the sensitivity of choices
are presented. In particular the boundary linear util-
ity, which had been introduced in [8], is described and
results concerning its properties and uses with IIH
utilities are given. Let P be the set of vertices of R.
In [8] it is shown that, for a SIIH utility, Pareto opti-
mal alternatives for R are the same as Pareto optimal
alternatives for P. This forms part of the motivation
for the boundary linear utility

Ūλ =
s∑

i=1

λiUi

where Ui is the utility function determined by the
choice of trade-offs θi ∈ P = {θ1, . . . , θs} and
λ1, . . . , λs are nonnegative constants with

∑s
i=1 λi =

1.

The results and methods which are developed, some
of which may be extended to the case of general IIH
utilities, allow us to exploit the idea that, by varying
the λ weights, we can change the emphasis which is
placed on different parts of the feasible region.
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4 Imprecise risk aversion

4.1 Use of basis functions

Now we consider dropping the assumption that the
decision maker can give a precise specification of each
marginal utility function. Recall that two utility
functions, UA and UB , are strategically equivalent if
UB = c+dUA where c and d are constants with d > 0.
Therefore, without loss of generality we can rescale a
marginal utility function to be on the standard scale,
as in [8, 9, 10]. Without loss of generality we can also
rescale a scalar attribute Z so that the “worst value”
is z = 0 and the “best value” is z = 1. All that is left
is to determine the shape of the utility curve between
the points (0, 0) and (1, 1). The shape will typically re-
flect the degree of risk aversion, with a concave curve
representing a risk-averse utility function and a con-
vex curve representing a risk-seeking utility function,
with respect to the (rescaled) attribute Z. See, for
example, Section 4.4.1 of [14].

We could introduce imprecision into the shape of a
marginal utility function U(z) by introducing a collec-
tion of basis functions U1(z), . . . , Us(z) so that U(z) =∑s
i=1 biUi(z) with bi ≥ 0 for all i and

∑s
i=1 bi = 1.

We would then elicit a feasible region for the weights
b1, . . . , bs. An important feature of this approach is
that, in effect, we are simply adding an extra layer to
the utility hierarchy by making each marginal utility
an additive node and introducing the basis functions
as new marginal quantities which are parents to the
previously marginal nodes. Therefore all of the theory
and methods developed previously for the case where
imprecision applied only to the trade-offs extends to
cover imprecision in the marginal utility functions as
well.

A simple example of basis functions is given by
quadratic functions. Consider Ui(z) = c0+c1z+c2z

2.
The constraints U(0) = 0 and U(1) = 1 simplify this
to U(z) = cz+(1−c)z2. The constraints U ′(0) ≥ 0 and
U ′(1) ≥ 0, where U ′(z) = dU(z)/dz, imply 0 ≤ c ≤ 2.
With c = 0, we obtain U1(z) = z2 and, with c = 2,
we obtain U2(z) = 2z − z2. Let b = c/2. Then

U(z) = (1 − b)U1(z) + bU2(z)

with 0 ≤ b ≤ 1. If b > 1/2 we have a risk averse
utility function, with b = 1/2 it is risk neutral and
with b < 1/2 it is risk seeking. Curves with b =
0, 0.25, 0.5, 0.75, 1 are shown in Figure 2.

Note that we can rewrite the basis functions as
U1(z) = z − h(z) and U2(z) = z + h(z) with, in
this case, h(z) = z − z2. It can be seen from Fig-
ure 2 that this offers a rather limited range of shapes.
While restricting ourselves to monotonic functions,
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Figure 2: Quadratic utility curves with b =
0.0, 0.25, 0.5, 0.75, 1.

the greatest range that we can obtain in this form
is with h(z) = z (0 ≤ z ≤ 1/2) and h(z) = 1 − z
(1/2 < z ≤ 1). Even this is somewhat restricted in
range and certainly in shape. We can obtain greater
flexibility with a more direct approach to eliciting the
utility function.

While an elicitation procedure for use in practice
might involve more refined questions, in principle we
can use the probability-equivalent method. In its sim-
plest form, to determine a range for U(z∗) where
0 < z∗ < 1, we offer the decision maker a choice
between dA : the attribute value corresponding to
z = z∗, with certainty, and dB : with probability α,
the attribute value corresponding to z = 1 and, with
probability 1 − α, the attribute value corresponding
to z = 0. For large α the decision maker will choose
dB , for small α the decision maker will choose dA but
for an intermediate range the decision maker may ex-
press no clear preference. The lower utility for z∗,
U1(z∗) is the largest value of α at which the decision
maker would choose dA and the upper utility for z∗,
U2(z∗) is the smallest value of α at which the decision
maker would choose dB . By repeating this process at
a range of values z∗ and using suitable interpolation,
we obtain lower and upper utility functions, U1(z) and
U2(z). These can then be our two basis functions. Lin-
ear interpolation may well be adequate.

With two basis functions, all allowable utility func-
tions are weighted averages of these two. We could ob-
tain more degrees of flexibility in the shape by adding
additional basis functions, for example one which is
closer to U1(z) for some of the range of z and oth-
erwise closer to U2(z). This would, of course, require
more sophisticated elicitation procedures.
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4.2 Effect on trade-offs

While the standard scale ensures that all utilities are
in [0, 1], where in that range they are likely to be will
be different for the lower and upper utility functions.
In itself this does not cause a problem. Of more con-
cern is the fact that U ′(z) may be different between
the lower and upper marginal utility functions. This
could affect our consideration of the trade-off at the
immediate successor node in the hierarchy. For ex-
ample, suppose that our marginal utility is Uz and,
at the child node, this is combined with another util-
ity Ux to give Un = anUz + (1 − an)Ux. Then, if
Uz = (1− b)U1(z)+ bU2(z), the effect on Un of a fixed
change in z may depend on the choice of b. This may
be acceptable. After all, the average gradient, given
a uniform distribution for Z, will remain 1. However
the decision maker, with the help of the analyst, needs
to consider this consequence of allowing imprecision
in the shape of Uz(z). A possible solution would be to
elicit a joint feasible region for a and b (or, more gener-
ally, for all of the parameters involved at the marginal
and child nodes) so that the range of a can depend on
the choice of b. If the child node is an additive node it
can be extended straightforwardly to include all the
basis functions at its parent (marginal) nodes as sepa-
rate parents. If the child node is a binary node then it
can similarly be extended although its new form will
not imply mutual utility independence between all of
its new parents.

5 Sample size example

To illustrate the method we consider a simple exam-
ple. Suppose we wish to design a trial, for example
a clinical trial, with two treatments and binary out-
comes (eg cure/not cure). For g = 1, 2, we will give
treatment g to ng subjects and observe the number
Xg of successes. Using these data, a choice will be
made between these treatments for use with future
cases.

Suppose that the unknown success rate with treat-
ment g is θg. For simplicity assume that our ter-
minal prior gives a Beta(at,g, bt,g) distribution to θg
with θ1 and θ2 independent and that our terminal
utility is such that we will choose whichever treat-
ment has the greater posterior probability of success.
That is we choose treatment g if the posterior ex-
pectation of θg is greater than that of θg′ . We set
at,1 = at,2 = bt,1 = bt,2 = 1.5.

In our design prior, θ1 and θ2 are not independent. A
number of methods are available for constructing this
joint distribution. For example we could use a bivari-
ate normal distribution for the logits or probits of θ1

Component Probability Parameters
c ac,1 bc,1 ac,2 bc,2
1 0.25 7.5 3.0 4.5 4.5
2 0.50 4.5 3.0 3.0 4.5
3 0.25 4.5 6.0 3.0 6.0

Table 1: Parameters of design prior mixture distribu-
tion. Within each component θg ∼ Beta(ag, bg).
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Figure 3: Lower and upper benefit utility functions.

and θ2 or we could link beta marginal distributions
using a copula. However, in this example, the prior
is constructed using a mixture distribution. In each
component, c, we give θ1 and θ2 independent beta dis-
tributions, Beta(ac,g, bc,g), g = 1, 2. The effect of the
mixture is to induce correlation between θ1 and θ2. A
three component mixture is used, with parameters as
given in Table 1. The advantage of this form of prior
distribution is that prior predictive distributions for
the observations can be calculated analytically within
each component leading to simple calculations of ex-
pected utilities. The results can then be averaged over
components.

For simplicity in this example we use a simple (pre-
cise) form for the marginal cost design utility. Let
nmax,1 and nmax,2 be the largest sample sizes which
we would consider. Let

ZC,g =

{
1 (ng = 0)

1 − h0,g+h1,gng

h0,g+h1,gnmax,g
(ng > 0)

. (5)

Then the marginal cost utility is UC = ac,1ZC,1 +
ac,2ZC,2. We use ac,1 = ac,2 = 0.5, h0,1 = h0,2 =
10, h1,1 = h1,2 = 1, nmax,1 = 100 and nmax,2 = 60.

The overall design utility is U = bCUC + bBUB . We
use 0.03 ≤ bC ≤ 0.07 and bB = 1 − bC .
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Order n1 n2 ε Order n1 n2 ε Order n1 n2 ε
17 13 25 19 15 0.000084 12 20 15 0.000022

37 0 0 0.004334 24 16 12 0.000067 11 25 19 0.000018
36 19 16 0.000724 23 16 10 0.000048 10 25 16 0.000018
35 14 12 0.000571 22 15 11 0.000048 9 22 19 0.000013
34 18 15 0.000295 21 22 18 0.000048 8 21 17 0.000010
33 21 18 0.000271 20 18 14 0.000044 7 23 17 0.000009
32 13 10 0.000220 19 16 15 0.000043 6 16 16 0.000008
31 15 12 0.000134 18 18 16 0.000043 5 23 19 0.000008
30 21 16 0.000126 17 17 15 0.000040 4 13 13 0.000007
29 17 14 0.000114 16 16 11 0.000037 3 19 17 0.000002
28 13 11 0.000095 15 15 15 0.000033 2 24 18 0.000001
27 24 19 0.000092 14 15 13 0.000023 1 20 16 0.000001
26 16 13 0.000088 13 12 12 0.000022

Table 2: Results of selection by ε-preference. The order of dropping is shown. The last-retained design is
n1 = 17, n2 = 13.

The benefit utility depends on the outcomes for fu-
ture patients. For a future patient i, let Zi be 1 or
0 depending on the success or failure of the treat-
ment. This suggests an attribute of the form ZB =∑∞
i=1 kiZi with

∑∞
i=1 ki = 1. For example, we could

use ki = (1 − λ)λi−1 with 0 < λ < 1. Another pos-
sibility is ki = m−1 for i = 1, . . . ,m and ki = 0 for
i > n. For simplicity in this example we adopt the sec-
ond form and furthermore let m → ∞ so that, given
a value of θ, ZB → θ.

Using the probability-equivalent method we elicit a
lower and an upper utility function UB,L(θ) and
UB,U (θ) with evaluations at a range of values of θ
and linear interpolation. At θ = 0, 0.25, 0.5, 0.75, 1,
the lower values are chosen to be UB,L(θ) = θ, giv-
ing risk neutrality. The upper values are UB,L(θ) =
0.00, 0.45, 0.85, 0.95, 1.00, giving risk aversion. These
two functions are shown in Figure 3.

Let θ = (θ1, θ2)T and x = (x1, x2)T . We can write the
joint probability density of component c, parameters
θ1, θ2, observations X1, X2, and the benefit utility UB ,
given sample sizes n1, n2, as

P = Pr(c)fc,θ,X(θ, x | c)fU (UB | x, θ, c) (6)

where

fc,θ,X(θ, x | c) =
2∏

g=1

fc,g(θg | c)fX|θ,n1
(xg | θg)

=
2∏

g=1

fX|ng
(xg | c)fc,g|x(θg | xg, c)

where fX|ng
(xg | c) is the prior predictive probability

function of Xg, given c, and fc,g|x(θg | xg, c) is the
conditional posterior density, using the design prior,

given c, of θg after observing the data Xg = xg. The
density of UB depends on x1 and x2 both because we
use the posterior density of θ1 and θ2 and because the
choice of treatment (and hence θ1 or θ2) for future
cases depends on the posterior distributions, given x1
and x2, using the terminal prior. From (6) we can see
that we can evaluate conditional expectations within
each component of the mixture straightforwardly and
then average over the mixture components. The con-
ditional posteriors are beta distributions and the con-
ditional prior predictive distributions for Xg can be
evaluated analytically.

With 0 ≤ n1 ≤ 100 and 0 ≤ n2 ≤ 60, there are 6161
potential designs. Of these, 38 are non-dominated.
With the exception of (0, 0), all of the non-dominated
designs have 12 ≤ n1 ≤ 25, all have 0.6n1 < n2 ≤ n1
and all but three have 0.7n1 < n2 ≤ n1. Applying the
ε-preference algorithm described in Section 5.2 of [9],
we obtain the results shown in Table 2. Designs are
eliminated one by one as we increase the value of the
tolerance ε. Finally one design, n1 = 17, n2 = 13,
is left. Interestingly, the last eliminated design is the
null experiment, reflecting the fixed cost of any non-
null experiment given in (5).

6 Concluding comments

Imprecision in the shape of the marginal utility func-
tions is a natural extension of the earlier work on im-
precision in utility trade-offs. In this paper this ex-
tension has been made in a way which preserves the
results from the earlier work.

The remaining extension to give a fully imprecise
analysis would be to allow imprecision in the probabil-
ity distributions for outcomes given choices. In fact,
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if our utility hierarchy is fully additive then we can
work directly in terms of previsions of marginal util-
ities and thus deal with this imprecision in the same
way as we have done in this paper. When our mul-
tiattribute utility involves products of marginal util-
ities then incorporation of imprecision in our beliefs
in this way would still be possible if we were prepared
to regard all of the marginal utilities as uncorrelated.
The generalisation to the case without this assump-
tion awaits further work. See, for example, [4] for a
different approach.

The simple example in this paper presented no serious
computational difficulty. However more complicated
experimental design problems will often present com-
putational challenges, both because of the number of
potential designs to be compared and, particularly in
cases where computationally intensive methods would
normally be used to evaluate posterior distributions,
the difficulty of evaluating the expected utility for any
proposed design. These difficulties apply even with-
out the introduction of imprecision. One possible
approach in such cases is to use a simulation-based
method, as in [18]. Another possibility is to use a
method which does not require such intensive com-
putation, such as Bayes linear methods [8] or Bayes
linear kinematics [11, 22] and such an approach, using
Bayes linear kinematics is under investigation.
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Abstract 
 

Traditional confidence intervals are useful in engineering 

because they offer a guarantee of statistical performance 

through repeated use. However, it is difficult to employ 

them consistently in analyses and assessments because it 

is not clear how to propagate them through mathematical 

calculations. Confidence structures (c-boxes) generalize 

confidence distributions and provide an interpretation by 

which confidence intervals at any confidence level can 

be specified for a parameter of interest. C-boxes can be 

used in calculations using the standard methods of 

probability bounds analysis and yield results that also 

admit the confidence interpretation. Thus analysts using 

them can now literally compute with confidence. We 

illustrate the calculation and use of c-boxes for some 

elementary inference problems and describe R functions 

to compute them and some Monte Carlo simulations 

demonstrating the coverage performance of the c-boxes 

and calculations based on them. 

 

Keywords. confidence intervals, confidence structures, 

c-boxes, p-boxes, probability bounds analysis, binomial 

probability, imprecise beta model, t-distribution 

 

1   Introduction 
 

When frequentist confidence intervals are constructed 

across many separate data analyses based on different 

experiments, the proportion of such intervals that contain 

the true value of the parameter will match
1
 the 

confidence level, which can be specified in advance to 

produce any statistical performance that may be desired. 

                                                 
1
That is, the average frequency of coverage will be at least the specified 

confidence level. 

Such a guarantee is very attractive to engineers because it 

allows them to ensure that their conclusions based on 

confidence intervals will perform according to a 

specified standard.  Bayesian methods in general lack 

such guarantees that could ensure statistical performance 

over the long run, and this fact may explain much of the 

reticence among engineers about adopting the Bayesian 

framework (Mayo 1996; cf. Vick 2002).  On the other 

hand, Bayesian methodology allows convenient use of its 

posterior estimates in subsequent calculations, which is 

usually quite difficult with confidence intervals because 

it is not clear how knowledge of confidence intervals for 

parameters can be translated into a confidence interval 

for an arbitrary function of those parameters using 

traditional methods. 

 

This paper introduces the notion of confidence structures, 

or c-boxes.  These structures are defined by a traditional 

confidence interpretation yet admit computations that 

produce results that also have the confidence 

interpretation. The next section briefly reviews 

confidence distributions, which c-boxes generalize.  The 

following sections informally describe c-boxes, give 

some numerical examples, and compare one of these 

examples with Walley’s imprecise beta model. The paper 

includes a discussion of the prospects of using c-boxes to 

compute with confidence, both literally and figuratively, 

including how to project c-boxes characterizing 

parameters to estimate the distributions of observable 

random variates from distributions that depend on those 

parameters.  We provide software functions to compute 

c-boxes for several important cases and simulate their 

coverage properties by Monte Carlo methods.  Such 

simulations are useful to determine whether and how 

conservative the c-boxes are, and thus how useful they 

are likely to be in practice. 
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2   Confidence and Confidence Distributions 
 

The notion of a confidence interval was introduced by 

Neyman (1937). A confidence interval for parameter  

with coverage  has the property that, among all 

confidence intervals computed by the same method, at 

least a proportion  will contain the true value of . A 

confidence interval can serve as an estimate of the 

parameter that is more sophisticated than any point 

estimate could be because it encodes not only the 

available data but also the sampling uncertainty they 

imply. Valid confidence intervals are more than merely 

subjective characterizations of uncertainty; they represent 

rigorous claims and their use establishes a standard of 

statistical performance that in principle can be checked 

empirically with Monte Carlo simulations. Credible 

intervals (sometimes called Bayesian confidence 

intervals in a usurpation of language) are often 

considered to be the Bayesian analogs of confidence 

intervals (Lee 1997), but credible intervals have no 

general accompanying guarantee like that of the 

frequentist notion. 

 

Confidence distributions were introduced by Cox
2
 

(1958), but received little attention in the literature until a 

recent spike of interest (Efron 1998; Schweder and Hjort 

2002; Singh et al. 2005; Xie et al. 2011; Xie and Singh 

2012; inter alia). A confidence distribution is a 

distributional estimate for a parameter, in contrast with a 

point estimate like a sample mean or an interval estimate 

such as a confidence interval.  It has the form of a 

distribution function on the space of possible parameter 

values that depends on a statistical sample in a way that 

encodes confidence intervals at all possible confidence 

levels.  A confidence distribution for a parameter θ  is 

a function C:   (0,1) such that, for every α in (0,1), 

(∞, C
1

()]  is an exact lower-sided 100α% confidence 

interval for θ , where the inverse function C
1

() = 

Cn
1

(x1,…,xn, ) is increasing in α.  This definition 

obviously also implies [C
1

(), C
1

()] is a 100()% 

confidence for the parameter . Although related to many 

other ideas in statistical inference (Singh et al. 2005; Xie 

et al. 2011), a confidence distribution can be considered a 

purely frequentist concept (Schweder and Hjort 2002; 

Singh et al. 2005). 

 

An important example of a confidence distribution is for 

the parametric mean of a normal distribution based on 

random sample data xi, i = 1, 2, …, n. The confidence 

distribution in this case is 
 

Cn() = FTn1(( x )n/s) 
 

wherex is the sample mean, s is the sample standard 

deviation, and FTn1 denotes the cumulative distribution 

                                                 
2
Fraser (2011) argues that confidence distributions can be found in the 

work of Fisher (1930; 1935) under the name ‘fiducial’, and even in that 

of Bayes (1763) namelessly. 

function of Student’s t-distribution with n1 degrees of 

freedom. Confidence intervals for the normal’s mean can 

be constructed directly from this confidence distribution 

as the inverse image of any subset of the confidence 

distribution’s range that has measure equal to the 

intended confidence level.  In particular, 
 

[Cn
1

(), Cn
1

()] =x + s [FTn1
1

(), FTn1
1

()] / n  
 

is a 100()% confidence interval on the mean. For the 

sake of clarity and convenience for readers, these 

formulas can be rendered as code for the R statistical 

computing language (R Development Core Team 2011): 
 

pcnorm.mu = function(mu, x)  
   pt(sqrt(length(x))*(mu-mean(x))/sd(x),length(x)-1) 
 

cinorm.mu = function(x, c=0.95, alpha=(1-c)/2, beta=1-(1-c)/2)  
   mean(x)+qt(c(alpha,beta),df=length(x)-1)*sd(x)/sqrt(length(x)) 
 

The function pxnorm.mu accepts random normal sample 

values in the x array and returns the value of the 

confidence distribution for every value in the mu array.  

The cinorm.mu function also takes the random samples 

in the x array, and returns a confidence interval for the 

mean of the normal distribution that generated those 

sample values at a confidence level set by the argument 

c, which defaults to 95%, or by alpha and beta if they are 

specified. 

 

A Monte Carlo simulation can be implemented using the 

following R function to check that the confidence 

distribution indeed allows valid confidence intervals at 

any level to be constructed from it: 
 

covnorm.mu = function(n,mu,sigma,many=1e4,lots=1e3, ... ) { 
  ab = alphabeta(...) 
  m = seq((mu-5*sigma),(mu+5*sigma),length.out=many) 
  cov = 0 
  for (i in 1:lots) { 
    x = rnorm(n, mu, sigma) 
    h = pcnorm.mu(m, x) 
    ci = range(m[(ab[1]<=h) & (h<=ab[2])]) 
    if ((ci[1]<=mu)&(mu<=ci[2])) cov=cov+1 } 
  cat(' Intended',diff(ab)*100,'%\n','Observed',100*cov/lots,'%\n') 
  cov/lots } 
alphabeta = function(c=0.95,a=(1-c)/2,b=1-(1-c)/2) sort(c(a, b)) 
 

This function can be exercised with a call like 

covnorm.mu(n, , ), specifying just a positive integer n 

and the true mean and standard deviation to use in the 

simulation, which will return a value around 0.95, or a 

call like covnorm.mu(n, , , a=, b=) may also specify 

particular  and  levels. 

 

Although a confidence distribution has the form of a 

probability distribution, it is usually not considered to be 

a probability distribution.  It corresponds to no randomly 

varying quantity; the parameter it describes is presumed 

to be fixed and nonrandom.  Some also emphasize that 

the value of the function C is not probability of , but 
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rather confidence
3
 about  (Cox 2006; cf. Lindley 1958).  

A confidence distribution is merely a ciphering device 

that encodes confidence intervals for each possible 

confidence level. Nevertheless, it might be reasonable 

and convenient to adopt a notation that only implicitly 

denotes the confidence distribution, so that, for instance, 

in the case of the normal mean, we can write  
 

 ~x + s Tn1/n 
 

where Tn1 denotes a random variable from Student’s t-

distribution (Student 1908) with n1 degrees of freedom.  

This notation avoids the need to name the confidence 

distribution function.  Note that this use of the tilde ~ 

extends conventional uses in statistics.  We suggest that 

it can still be read as “has the distribution”, or perhaps 

“has uncertainty like”, but it obviously does not suggest 

that the left-hand side is a random variable.  The left-

hand side after all is a value that is fixed, though 

unknown.  Instead, it says that the inferential uncertainty 

about the fixed parameter  is characterized by the 

transformed t-distribution. 

 
Despite their intimate connection with t-distributions, 

confidence distributions are not widely known in 

statistics, at least not under that name. Efron (1998) 

characterized bootstrap distributions as (approximate) 

confidence distributions, and so confidence distributions 

are widely used in modern statistics, albeit under the 

guise of bootstrap distributions.  

 

The notion of confidence distributions is not without 

critics. Early association with fiducial inference has led 

to some confusion. Some readers seem to have difficulty 

accepting confidence distributions on their own terms. 

The arguments of Robert (2012) are paraphrased a bit 

more bluntly in his blog (http://xianblog.wordpress. 

com/2012/06/11/confidence-distributions/): “Either the 

confidence distribution corresponds to a genuine 

posterior distribution, in which case I think the only 

possible interpretation is a Bayesian one. Or the 

confidence distribution does not correspond to a genuine 

posterior distribution, because no prior can lead to this 

distribution, in which case there is a probabilistic 

impossibility in using this distribution.” Of course 

confidence distributions are not trying to be Bayesian 

posterior distributions, so it should hardly be disquieting 

if they fail to be. The requisite interpretation of 

confidence distributions is of course Neyman confidence, 

which Bayesian posteriors do not generally have. 

 

One potential practical disadvantage of confidence 

distributions is that they are not unique.  Multiple 

functions may fill the bill, and there seems to be no 

                                                 
3
Of course, confidence is a probability in a different domain;  

confidence is the probability realized by frequency that those defined 

intervals (, C1()] actually enclose the parameter over some in 

some future, perhaps hypothetical series of experiments.   

general way to pick the best confidence distribution from 

among them.  Of course, confidence intervals themselves 

are not unique either.  There are usually lots of 

reasonable ways to construct a confidence interval for 

any parameter, even for fixed data and model.  Neither 

form of non-uniqueness seems to impede the purpose of 

guaranteeing long-term statistical performance. 

 

Another significant limitation on the use of confidence 

distributions is that not every important inferential 

problem has a solution.  Confidence distributions are 

often constructed by inverting the upper limits of lower 

one-sided confidence intervals of all levels, but this is not 

possible for all important inferential problems.  Notably, 

in particular, there is no confidence distribution for the 

binomial probability. 

 

3   Confidence Structures (C-boxes) 
 

Confidence distributions are special cases of more 

general confidence structures (Balch 2012), which we 

call ‘confidence boxes’ or ‘c-boxes’ because they may 

often be characterized by two bounding distributions like 

probability boxes (Ferson et al. 2003). A c-box 

represents inferential uncertainty about a parameter that 

characterizes some distribution from which limited or 

poor or discrete data have been randomly sampled.  Like 

a confidence distribution, a c-box is defined by the 

property that it can be used to construct Neyman 

confidence intervals at any confidence level for that 

parameter.  C-boxes generalize confidence distributions 

because both are estimators of unobservable parameters, 

but c-boxes can be applied to problems with discrete 

observations, interval-censored data, and even inference 

problems in which no assumption about the distribution 

shape can be made.  

 

Methods for deriving c-boxes are varied (Balch 2012).  

Generally, wherever a meaningful and valid confidence 

interval can be defined, a c-box can also be defined.  If a 

confidence interval is based on a pivot, that pivot can be 

used to directly define a c-box. Any defined confidence 

distribution can be generalized to a c-box when its data 

are encoded not as point values but as intervals to 

account for mensurational uncertainty from the inability 

to measure individual quantities with perfect precision 

(Nguyen et al. 2012; Ferson et al. 2007).  When a 

confidence interval is based on a significance function, 

i.e., a function (of parameters and data) that produces p-

values in a significance test, the significance function can 

be used to construct a consonant confidence structure, 

encoded as a DempsterShafer structure which can then 

be transformed, with some loss of information (Ferson et 

al. 2003), into a p-box (Balch 2012).  

 

The formula and R function for this c-box of the normal 

mean can be generalized for the case of interval-censored 

data using a straightforward but non-trivial algorithm that 
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extremizes Cn() over possible configurations of point x-

values within their respective interval ranges (Nguyen et 

al. 2012; Ferson et al. 2007). In case the intervals all 

overlap any value of , the result is vacuous (i.e., the 

interval [0,1]) for that value. For example, if interval-

censored random samples from a normal distribution are 

{[8,11], [5.5,6.9], [1.3,0.3], [3.5,7.5], [0.8,1], [2.8,4.2], 

[1.8,5.2], [2.2,5.2], [3.5,5.7], [5.3,6.1]}, a c-box for the 

normal mean is shown in Figure 1. 
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Figure 1: C-box for the normal mean from interval data. 

 

To extract a confidence interval from a c-box, select 

values of  and  that imply a desired confidence level 

100()%, and map these values from the confidence 

axis to the x-axis. The larger value  is mapped through 

the right bound, and the smaller value  is mapped 

through the left bound. 

 

4   Computing with Confidence 
 

Many authors (e.g., Grosof 1986) have suggested using 

ordinary confidence procedures to obtain interval inputs 

for use with interval analysis (Moore 1966) for bounding 

numerical results that depend on sample data. For 

example, EPA (2002) guidance instructs risk analysts to 

use the upper bound from the 95% confidence interval 

for a pollutant’s mean concentration rather than the 

actual sample mean of observed concentration values in 

order to be protective of the public health in the face of 

sampling uncertainty arising from sometimes very small 

sample sizes.  Although this may be a reasonable strategy 

when there is only a single variable for which sampling 

uncertainty is a major concern, it is not statistically 

defensible when such uncertainties for several variables 

must be combined together.  Statistical confidence 

intervals are not rigorous intervals guaranteed to enclose 

the value they estimate, and therefore confidence 

intervals do not formally admit interval calculation in the 

sense of Moore (1966).  

 

Some limited statements are possible using ad hoc 

application of Bonferroni or Šidák corrections or Boole 

or Fréchet inequalities (e.g., Ferson 1996). For example, 

if we combine, say by addition, two 95% confidence 

intervals using simple interval arithmetic, we might 

expect the result to be a ~90% confidence interval for the 

sum because the conjunction of the two probability 

statements would imply multiplying the two probability 

levels, at least assuming independence between them.  If 

seven such confidence intervals were combined in some 

mathematical function, the implied probability level 

under independence would be less than 70%.  Without 

the independence assumption, the level could fall as low 

as 65%.  To achieve 95% confidence for the result, one 

would presumably have to use input confidence intervals 

with confidence level equal to the seventh root of 95%, 

which is greater than 99%.  Because confidence intervals 

often get substantially wider as the confidence level rises, 

this approach is rarely workable in practice. 

 

The alternative approach of computing with confidence 

distributions is also not practical just because (precise) 

confidence distributions often do not exist for important 

problems. This limitation may be alleviated by c-boxes 

because they generalize confidence distributions and 

more easily provide solutions. Although Cox (2006) 

counseled that analysts should not try to use confidence 

distributions in calculations as though they were true 

probability distributions, Balch (2012) proved that two or 

more independent c-boxes can be propagated through a 

function to yield a valid c-box.  This is much more 

efficient than propagating individual confidence intervals 

because the combinations do not require application of 

the Bonferroni or Šidák corrections and they deliver 

results at all confidence levels all at once.   

 

For example, suppose one were interested in computing a 

95% confidence interval on the mean difference between 

two normal populations with both unknown mean µ and 

unknown standard deviation σ. Suppose we collect four 

random samples from each population, say, {2.71, 5.46, 

5.45, 5.50}, and {1.88, 1.54, 1.15, 0.46}. One approach 

to obtaining the desired interval would be to take the 

interval-difference of the 97.468% confidence intervals 

on the two population means.  The resulting estimate 

would be µ2  µ1 = [0.37, 6.67] with 95% confidence. 

Alternatively, one could take the stochastic difference of 

the two c-boxes on the uncertain means which are 

(shifted and scaled) t-distributions. This yields a much 

tighter 95% central confidence interval on the difference, 

[1.10, 5.94], although it is somewhat more difficult to 

compute because it involves a subtractive convolution 

rather than merely an interval difference. Still, it can be 

calculated via Monte Carlo simulation in R using only 

three lines: 
 

rcnorm.mu = function(m, z) 
     mean(z)+sd(z)*rt(m, length(z)-1)/sqrt(length(z)) 
d = sort(rcnorm.mu(m, x) - rcnorm.mu(m, y)) 
range(d[round(c(0.025*m, (1-0.025)*m))]) 
 

where x and y are the vectors of sample values, m is the 

number of Monte Carlo simulations. In fact, this result is 

the same as the 95% credible interval that would be 

obtained using Bayesian inference with a Jeffreys prior. 

The convolution of the confidence distributions yields 

confidence intervals by a purely frequentist analysis that 

supports a traditional confidence interpretation in this 
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and other cases generally. The following R function can 

be used to implement straightforward Monte Carlo 

simulations that demonstrate the confidence intervals 

produced by this approach have the prescribed coverage: 
 

covnorm.mudiff=function(n,mu,sigma,many=1e4,lots=1e3,...){ 
  ab = alphabeta(...) 
  truediff = mu[1] - mu[2] 
  cov = 0 
  for (i in 1:lots) { 
    x = rnorm(n[1], mu[1], sigma[1]) 
    y = rnorm(n[2], mu[2], sigma[2]) 
    ci=range(sort(rcnorm.mu(many,x)- 
                        rcnorm.mu(many,y))[round(many*ab)]) 
    if ((ci[1] <= truediff) & (truediff <= ci[2])) cov = cov + 1 } 
  cat(' Intended',diff(ab)*100,'%\n','Observed',100*cov/lots,'%\n') 
  cov/lots } 
 

This function can be called like covnorm.mudiff(n, , ), 

where n,  and  are now each pairs describing the 

sample sizes and parameters for the two populations. For 

instance, covnorm.mudiff(c(10,20),c(5,1),c(2,3)) will return a 

value around 0.95. 

 

5   C-box for the Binomial Probability 
 

A Bernoulli random variable has only two possible 

values, perhaps designated {failure, success}, or more 

conveniently {0, 1}. A binomial random variable is a 

random variable whose value is a count of Bernoulli 

successes observed over n > 0 independent identical 

trials, each of which has the same probability p of 

success, which produces k successes from those n trials 

(where 0 ≤ k ≤ n). A fundamental problem in risk 

analysis and statistics generally is to characterize what 

can be inferred about p from observing k successes out of 

n trials, under the assumption that the trials are 

independent and the binomial probability p is fixed 

across the trials.  

 

In fact, the original problem in the famous paper of 

Bayes (1763) was about the estimation of the binomial 

probability.  The paper begins “Given the number of 

times in which an unknown event has happened and 

failed: Required the chance that the probability of its 

happening in a single trial lies somewhere between any 

two degrees of probability that can be named” (Bayes 

1763, page 376). The same page also says “By chance I 

mean the same as probability.” We take this to be asking, 

given k successes and n  k failures out of n trials where 

k ~ binomial(n, p), what is Pr(p  [p1, p2]), for any values 

p1 and p2? 

 

Balch (2012) offers a c-box solution to this problem: 
 

p ~ [beta(k, n k + 1), beta(k + 1, n  k)], 
 

where p is the binomial parameter (which is a fixed but 

unknown value), and the two beta distributions are the 

left and right edges of the c-box that characterizes the 

inferential uncertainty about p. Note that we continue to 

use the ~ symbol even though the right-hand side has the 

form of a p-box.  The ~ can be read as “has uncertainty 

like”.  We understand this to entail that the parameter on 

the left-hand side has inferential uncertainty 

characterized by a confidence distribution consistent with 

or inside the c-box, that is, a distribution that is bounded 

in the cumulative by the two edge distributions of the c-

box. 

 

Figure 2 depicts an example using k = 2 and n = 10 in a 

graph whose abscissa consists of the possible values of 

the parameter p and whose ordinate is confidence 

(probability). 
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Figure 2: C-box and a 100()% confidence interval 

for probability from 2 successes in 10 trials. 

 

The c-box in Figure 2 has a confidence interpretation, 

which means that one can generate from it true 

confidence intervals for the binomial probability p at any 

desired level of confidence.  For example, the depicted 

interval is the symmetric 90% confidence interval [0.037, 

0.507]. The confidence intervals obtained in this way are 

identical to the classical ClopperPearson (1934) 

confidence intervals on the binomial probability. One-

sided confidence intervals can be obtained by setting  to 

zero or  to one. The c-box approach readily provides 

results for cases involving k = 0 and k = n, and even the 

no-data case where n = 0, without the overthinking 

required by a Bayesian analysis constrained to a single 

precise distribution (Winkler et al. 2002).  

Of course the Bayesian and frequentist approaches are 

trying to do different things.  In the c-box approach, p1 

and p2 are sought to be functions of the data and 

probabilities are conditional on some hypothetical (but 

unknown) value of p. In contrast, Bayes explicitly 

conditions on the data, and asks about the probability of 

p as a latent variable. These approaches are asking a very 

different questions: c-boxes ask about coverage for a 
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fixed value of p, whereas Bayes is asking about the 

probability of p as a latent random variable. 

The c-box and arbitrary confidence intervals for the 

binomial probability given k successes out of n trials can 

be computed in R with the functions: 
 

pcbinom.p = function(p, k, n)  
   list(left=pbeta(p, k, n-k+1), right=pbeta(p, k+1,n-k)) 
 

cibinom.p = function(k, n, c=0.95, alpha=(1-c)/2, beta=1-(1-c)/2)  
   qbeta(c(alpha,beta), c(k,k+1), c(n-k+1,n-k)) 
 

Straightforward Monte Carlo simulation can demonstrate 

the confidence intervals perform statistically. 

 
Note that the c-box also answers Bayes’ question about 

the chance p is in some range, but it gives an interval 

rather than a single precise probability. The c-box says 

Pr(p  [p1, p2])  [min(0, BR(p2)  BL(p1)), BL(p2) BR(p1)], 

where BL denotes the cumulative beta distribution with 

parameters k and nk+1, and BR is the cumulative beta 

with parameters k+1 and nk. The lower bound can be 

called confidence, and the upper bound plausibility, and 

together they characterize the chance sought by Bayes. 
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Figure 3: C-boxes for the binomial probability implied 

by k/n successes out of trials. 

 

Figure 3 shows the first few c-boxes for sample sizes 

between zero and three. Notice that the c-box for the null 

case when n = 0 corresponds to the entire unit square. 

Thereafter, the possible c-boxes for any given sample 

size partition the unit square. As sample size increases, of 

course the c-box approaches a precisely specified beta 

distribution which becomes steeper and steeper and 

centered on the observed frequency k/n. 

 

What determines whether the solution to an inference 

problem is a precise confidence distribution or a non-

degenerate, imprecise c-box? For the normal mean the 

solution is precise unless the data are themselves 

imprecise from interval-censoring (as in Figure 1). For 

binomial probability, however, the solution is imprecise 

even for well identified data. The reason is what 

ecologists call “demographic” uncertainty (Akçakaya 

1991), which is the variation that arises simply because 

of the constraint that data must come as integers. The 

discrete nature of binomial sampling means that evidence 

cannot reflect patterns as well as continuous data can. 

Demographic uncertainty is only important for small 

sample sizes, but it cannot be neglected in such cases. 

 

5.1  Comparison with the Imprecise Beta Model 
 

The c-box solution to the binomial probability estimation 

problem can be compared to the imprecise beta model 

(IBM) first suggested by Dempster (1966) but elaborated 

and championed by Walley (1991; 1996; Walley et al. 

1996; Bernard 2005). The IBM employs a class of prior 

distributions beta(st, s(1t)), t  [0,1], defined by a 

single, fixed value s > 0 that measures resistance (maybe 

stubbornness) of the model to new data. After observing 

k successes in n trials, the posterior is the class beta(st+k, 

s(1t)+nk). Extremizing t from 0 to 1 yields the 

posterior p-box [beta(k, s+nk), beta(s+k, nk)] whose 

expectation is the interval [k/(s+n), (s+k)/(s+n)]. As data 

become available and the model is updated, the left and 

right beta distributions incrementally converge in 

accordance with a rate defined by the parameter s. 

Figure 4 illustrates, for three different values of s, how 

the vacuous prior (top row) contracts to a posterior with 

the addition of each binary datum in the sequence {0, 0, 

1, 0}. Each graph shows eleven beta distributions evenly 

distributed across the posterior class. 

 

The IBM is an example of Bayesian sensitivity analysis 

or robust Bayes analysis (Berger 1985).  It may be 

thought of as many simultaneous Bayesian analyses with 

many priors ranging between the limiting distributions 

beta(0,1) and beta(1,0), in which at least one posterior 

may be improper if k is equal to n or zero.  Walley 

(1991) has demonstrated that robust Bayes analysis is 

part of a more general theory based on imprecise 

probabilities of very broad scope and flexibility, for 

which there is a firm theoretical foundation based on 

respecting consistency and coherence requirements but 

which avoids making unwarranted assumptions to obtain 

134 Scott Ferson & Michael Balch & Kari Sentz & Jack Siegrist



quantitative answers. The most important feature of the 

IBM is that it does not require the analyst to select some 

precise probability distribution as prior. The IBM instead 

intends to specify a reasonable class of priors. The idea is 

that no single distribution could be reasonable as a model 

of prior ignorance, but considered as a whole, the class of 

beta distributions with all possible means specified by 

IBM is arguably a reasonable model for ignorance. 
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Figure 4: IBMs and their beta distributions for different 

values of s as data accumulates. 

 

In the degenerate initial case, when the sample size is 

zero before any data are collected, the posterior is the 

same as the prior, and the IBM yields a vacuous posterior 

that effectively says the probability could be anywhere in 

the interval [0,1], which is arguably the only sensible 

inference when there are no data at all. When the sample 

size is very large, the posterior is a tight p-box that tends 

to the observed frequency, as all Bayesian analyses do. In 

the practical intermediate cases of small sample sizes, the 

posterior from the IBM is a credal set containing a range 

of beta distributions whose breadth reflects the 

uncertainty about the prior that a traditional Bayesian 

analysis ignores.  Importantly, this breadth is not too 

wide to be useful, but yields answers whose imprecision 

is roughly what one might expect to see across a 

community of competent Bayesians (Walley 1991).   

 

A user of the IBM must chose a value for the parameter 

s. This value determines the speed of convergence with 

which data cause the initially vacuous state of 

uncertainty to condense into the precise posterior 

approaching the observed frequency k/n.  High values of 

s cause the IBM to converge slowly. For a given value of 

t, larger values of s cause the variance of the distribution 

beta(st, s(1t)) to be smaller, so when the distribution is 

considered as an estimate of , larger s means there is 

more precision about the parameter. Walley (1996; 

Walley et al. 1996) recommended using s = 1 or s = 2, 

with preference for the larger value. 

 

The c-box approach described in the previous section 

conforms with an IBM using s = 1, although the IBM and 

c-box have rather different interpretations. Walley (1996) 

noted the IBM’s frequentist coverage characteristics, 

though he did not mention these coverage characteristics 

could be propagated through mathematical calculations 

based on the IBM. The most immediate difference 

between the IBM and the c-box approach might be that 

IBM users must select a value for s. Users of the c-box 

approach do not need to choose such a value, as the 

parameter is not used in the derivation of the approach. 

 

There are also fundamental differences. The prior and 

posterior structures of the IBM are credal sets, but they 

are rather delicate credal sets in that they consist only of 

beta distributions with particular, constant values of s (as 

depicted in Figure 4). A c-box is a much coarser and 

fuller structure. It effectively includes all the beta 

distributions that are in the IBM plus infinitely many 

other distributions that might also be considered 

reasonable. The choice of the beta family is of course a 

result of the happenstance of mathematical conjugacy 

between the beta distribution and binomial sampling. 

One notable difference and possible conceptual 

advantage of the c-box approach is that it does not 

depend on the fiction that the appropriate prior actually 

or necessarily has some beta shape. Thus, in contrast 

with the imprecise beta model, one might consider the c-

box solution to be an imprecise model for the binomial 

probability, or even the imprecise model for the binomial 

probability. Such presumptuousness in doing so might 

eventually be forgivable if it turns out that the c-box 

provides a slightly tidier solution to Bayes’ original 

problem of estimating the binomial probability. 

 

Perhaps more important than any tidiness or even the 

ability to propagate the confidence interpretation through 

mathematical functions is the fact that the solution 

strategy for the inference about binomial probability can 

now be contextualized as an instance of a general 

approach based on confidence that can be applied in 

many other inference problems. In contrast with the 

IBM, which seems to be a sui generis solution for one 

parameter of one particular sampling model, the c-box 

solution clearly generalizes to other problems. Balch 

(2012) discusses these prospects. 

 

6   Predictive Distributions and P-boxes 
 

If the first estimation problem given a sample of 

observable values Xi ~ F() is to characterize the 
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sampling or inferential uncertainty associated with a 

putatively fixed but unknown parameter  governing the 

stochastic process that created those observable values, 

the second estimation problem, which is discussed in this 

section, is to characterize what can be inferred about a 

future observable value Xn+1 that might be collected. In 

addition to the sampling uncertainty associated with the 

inference step that arises from not having measured 

every possible sample value, this characterization also 

has a component of pure aleatory uncertainty associated 

with the underlying stochastic process F.  

 

The characterization is a predictive distribution, or more 

generally a predictive p-box. This output is analogous to 

a Bayesian posterior predictive distribution and related to 

prediction intervals common in frequentist analyses. 

Note that the output is a proper p-box because it is a 

collection of probability distributions constrained by a 

pair of bounding distributions. But this p-box is special 

in that it also inherits the confidence interpretation. 

 

The predictive distribution or p-box can be understood to 

be, and evaluated as, the composition F(C()) of the 

distribution function F and the c-box C estimating the 

parameter . For example, the Bernoulli distribution can 

be composed with the c-box for the binomial probability 

to create the predictive p-box for the next randomly 

sampled Bernoulli deviate. For this case, the composition 

can be done analytically: Given a Bernoulli process 

generating zeros and ones where the probability of one is 

p which has a constant but unknown value, and n random 

observations of which k values are ones and n k values 

are zeros, the predictive p-box, i.e., the p-box estimate of 

the distribution for the next binary observation, is 

[B(k / (n + 1)), B((k + 1)/(n + 1))], where B denotes a 

Bernoulli distribution. Likewise, the predictive p-box for 

the next binomial deviate, that is, the number of ones in 

N Bernoulli trials, is [BB(k, n k +1, N), BB(k +1, n k, 

N)] where BB denotes a beta-binomial distribution. 

 

Straightforward Monte Carlo simulations can 

demonstrate that the interval [BB1
1

(), BB2
1

()] will 

contain the next binomial deviate with coverage 

probability   , where BB1
1

 and BB2
1

 are the quantile 

functions of the beta-binomial distributions BB(k, n k 

+1, N) and BB(k +1, n k, N) respectively. 

 

When the c-box is described numerically rather than 

analytically, probability bounds analysis provides for 

numerical composition.  For one-parameter distribution 

families, this involves discretizing the parameter’s c-box 

C = [C1(), C2()] into to m+1 equal-confidence intervals 

[C1
1

(i/(m+1)), C2
1

((i+1)/(m+1))], i = 0, 1, ..., m, where 

the superscripts denote appropriate inverse or quasi-

inverse functions. Each of these intervals in turn define a 

p-box. Each of these p-boxes is the distribution function 

F with that interval for the parameter . All of the p-

boxes are then aggregated using stochastic mixture which 

reverses the dissolution into many intervals. Equal 

weights are used for the mixture so long as the original 

discretization of the c-box was into intervals with equal 

partitions of confidence. (For details about this operation, 

see sections 2.3 and 3.2.1.6 of Ferson et al. 2003.) 

 

7   Summary and Conclusions 
 

This paper gives a brief introduction to a new class of 

estimators for a broad variety of inference problems 

called confidence boxes (c-boxes) that both embody a 

traditional confidence interpretation yet also support 

propagation of inferential uncertainty through 

mathematical operations.  C-boxes can be thought of as 

the confluence of classical notions of confidence 

(Neyman 1937) embodied in confidence distributions 

(Cox 1958) with more recent ideas about imprecise 

probabilities (Walley 1991) expressed as probability 

boxes (Ferson et al. 2003). The paper omits the 

derivations of the c-box solutions described by Balch 

(2012), but emphasizes that their statistical performance 

can be checked via Monte Carlo simulations and 

provides R functions for this purpose. 

 

C-boxes capture much of the flexibility of Bayesian 

posteriors. However, by consistently supporting a 

Neyman confidence interpretation, c-boxes also establish 

a clear connection to the underlying empirical reality, a 

connection which both Walley (1991) and Mayo (1998) 

have called for. This means that engineering and 

statistical calculations can be constructed using c-boxes 

that ensure a particular standard of performance. This 

approach should be useful for many applications in 

medical statistics, engineering in novel environments, 

market research, survey sampling, etc., whenever 

statistical performance is desired but sample data are in 

short supply. 

 

In the inference for the binomial probability, the c-box is 

very similar to the imprecise beta model (IBM, Walley 

1996).  However, the c-box arises in a purely frequentist 

framework, and it does not refer to or depend on any 

priors. Its results include more than beta distributions. 

Unlike the IBM, the c-box approach for the binomial 

probability has clear connections to other inference 

problems such as those involving normal sampling 

models, and the pathway for extending these solutions to 

other problems is much more straightforward. 

 

Because confidence boxes can be used in subsequent 

calculations involving compositions and convolutions 

using standard methods of probability bounds analysis, 

and the resulting structures also have the same Neyman 

confidence interpretation, analysts using c-boxes will be 

able, both figuratively and literally, to compute with 

confidence. For instance, a c-box for a parameter can be 

composed with the distribution function of a sample 

model to create a p-box that characterizes the distribution 
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of the next sample. The result is a new type of p-box that 

also has the confidence interpretation. Convolutions of c-

boxes yielding sums, differences or other mathematical 

results likewise preserve the confidence interpretation. 

Point estimators ignore uncertainties altogether.  Interval 

estimators such as confidence intervals can be unwieldy 

for several reasons. Even detail-rich distributional 

estimators like confidence distributions or Bayesian 

posteriors may give an incomplete characterization under 

demographic uncertainty when continuous parameters 

must be estimated from discrete data.  C-boxes are more 

general than distributional, interval or point estimators.  

C-boxes can express inferential uncertainty arising from 

demographic uncertainty, as well as both sampling 

uncertainty from small sample sizes and mensurational 

uncertainty arising from the inability to measure 

quantities with infinite precision.  The new estimators 

have the form of p-boxes, so that they may rightly be 

described as p-box estimators of parameters. C-boxes 

provide inferential tools to complement and support the 

theory of p-boxes and probability bounds analysis. 
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Abstract

One method for building classification trees is to
choose split variables by maximising expected en-
tropy. This can be extended through the application
of imprecise probability by replacing instances of ex-
pected entropy with the maximum possible expected
entropy over credal sets of probability distributions.
Such methods may not take full advantage of the op-
portunities offered by imprecise probability theory. In
this paper, we change focus from maximum possible
expected entropy to the full range of expected entropy.
We present an entropy minimisation algorithm using
the non–parametric inference approach to multino-
mial data. We also present an interval comparison
method based on two user–chosen parameters, which
includes previously presented splitting criteria (maxi-
mum entropy and entropy interval dominance) as spe-
cial cases. This method is then applied to 13 datasets,
and the various possible values of the two user–chosen
criteria are compared with regard to each other, and
to the entropy maximisation criteria which our ap-
proach generalises.

Keywords. Imprecise probability, classification
trees, nonparametric predictive inference

1 Introduction

The process of classification involves the splitting of a
heterogeneous data space into homogeneous disjoint
subspaces with respect to the nominal class(ification)
variable C, with the aim of predicting future values of
C. This is achieved by determining the splits through
the values of feature/attribute variables (X1, . . . , Xn).
Let C take values/categories in C = {c1, . . . , cK} and
each Xi take values in the corresponding set Xi, where
for reasons of simplicity the feature variables are as-
sumed to be on a nominal scale. The key consider-
ation is how the homogeneous subspaces are to be
constructed.

One method is a classification tree, which partitions
the data space into orthotope shaped subspaces. The
tree is grown from the root node, which corresponds
to the complete data set, and ends in disjoint subsets
known as leaves; this is done by recursively applying
a splitting procedure. In this paper we consider only
k–array splitting as in [4] which is based on Quinlan’s
ID3 [12] algorithm. In each step an optimal split vari-
able with respect to an impurity criterion is evaluated,
which is then assigned to the node; the data contained
in the node are then split according to the values of
this split variable. If no such optimal split variable
may be found the node is declared as a leaf. A value
of C is assigned to each leaf, this value is the most
frequent category in its corresponding data subset (in
the case of a tie, the most frequent category in the
data subset of its parent node is used, and so on).

The optimality of a split candidate within a node
is measured by the gain in a pre–specified informa-
tion measure IM . Let N be the data relevant to the
node. The information criterion for the node, IM(N),
and for each of the unassigned attribute variables Xi,
IM(N |Xi) (the information criterion evaluated fol-
lowing a split in Xi of N according to the values
of Xi), are then calculated. A split is performed if
IM(N) < IM(N |Xi) for some Xi.

A reasonable measure is the Information Gain, based
on Shannon’s entropy [13]. Define nN = |N | and nNj
the number of instances within N of class cj , and
furthermore denote the relative frequencies

pNj =
nNj
nN

, px̂i
j =

nx̂i
j

nx̂i
, (1.1)

with x̂i = {d ∈ N |Xi = xi}, then the information of
N following a split in Xi is defined as

I(N,Xi) =
∑

xi∈Xi

p(Xi = xi)H(px̂i), (1.2)

where p(Xi = xi) is also estimated by relative fre-
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quencies and H(·) is the Shannon–Entropy defined as

H(p) = −
K∑

j=1

pj ln(pj), (1.3)

for probability distribution p. H(p) attains its mini-
mum (0) for some pj = 1 and its maximum (ln(K)) for
the uniform distribution. While the probability dis-
tribution attaining the maximum is unique for fixed
K, this does obviously not hold for the one attaining
the minimum.

Finally, the Information Gain is defined as

IM(N,Xi) = H(pN )− I(N,Xi). (1.4)

In determining the split variable only I(N,Xi) in
(1.4) is relevant. Maximising (1.4) implies minimising
I(N,Xi) which requires minimising entropy.

Up to this point the probabilities p·j = P (C = cj |·)
were estimated by classical relative frequencies and
thus too is the associated probability distribution. In
[4] this single distribution is replaced by a credal set of
probability distributions estimated by the Imprecise
Dirichlet Model (IDM), giving intervals for p·j of

px̂i
j ∈

[
nx̂i
j

nx̂i + s
,
nx̂i
j + s

nx̂i + s

]
. (1.5)

Note that s influences the degree of imprecision; this
parameter is commonly set to s = 1 or s = 2.

There are alternatives to the IDM; the Non-
Parametric Predictive Inference (NPI) approach [6] is
one. This is applied in [5] and [8] to replace the IDM
with the multinomial NPI and ordinal NPI, respec-
tively. A short introduction to this method follows.

The NPI approach is is designed to assume as little
as is possible about a distribution from which obser-
vations are taken. Assume n observations x1, . . . , xn
have been made. In the ordinal case, these are re-
labelled so that x1 < x2 < . . . xn. It is then assumed
that observation xn+1 has probability 1

n+1 of being
smaller than x1, the same probability of being larger
than xn, and the same probability of lying in any
given data interval Ij+1 = [xj , xj+1] for 1 ≤ j ≤ n−1
(we set I1 = (−∞, x1] and In+1 = [xn,∞)). This is
known as Hill’s assumption, A(n) [11].

By using a latent variable approach, a category cj in
C can be considered as equivalent to some interval
ICj overlapping the data intervals. The interval ICj
itself is unknown (though IC1 and ICK have known
bounds at negative and positive infinity, respectively),
but its bounds must lie within data intervals which
have an observation cj as exactly one bound. There-
fore each interval Ik can be said to be either entirely

within ICj , partially within it, or wholly outside it.
The lower probability that xn+1 ∈ cj is then simply
calculated by summing the probability mass of all in-
tervals Ik which lie entirely within ICj . The upper
probability that xn+1 ∈ cj is calculated by summing
the probability mass of all intervals Ik with a non-zero
intersection with ICj .

In the case of multinomial data, these intervals are
represented as slices on a probability “wheel”, with
the observations that forming the interval boundaries
representing the lines separating those slices. Obser-
vation xn+1 has equal chance 1

n of falling within any
given slice on the wheel. This is referred to as the
circular Hill assumption, or circular-A(n).

All observations of the same category are adjacent on
the wheel, and any slices between those observations
must be assigned to that category. Slices between
two different observations can be assigned to either or
both those observations, and/or to a previously unob-
served condition (since slices for a given category are
adjacent, a given unobserved category can be assigned
to at most one such slice).

Therefore the lower probability of category j is equal
to the probability mass of those slices with category j
observations on either side. An exception is the case
in which all observations come from a single category,
one slice is left unassigned, resulting in a lower prob-
ability of n−1

n .

The upper probability is equal to the probability mass
of of all those slices with category j observations on
at least one side. An exception is the case in which
cj in unobserved; in this case the upper probability
is equal to 1

n , as only one slice can be assigned that
category.

In the multinomial NPI case, then, the interval in
(1.5) is replaced with

[
max

(
0,
nx̂i
j − 1

nx̂i

)
,min

(
nx̂i
j + 1

nx̂i
, 1

)]
. (1.6)

In this paper trees are generated by the IDM and the
multinomial NPI. The splitting criterion is based on
an entropy interval comparison as in [8]. For the IDM,
algorithms to obtain the minimum and maximum en-
tropy already exist, as in [1] and [4]. For the multino-
mial NPI, a maximum entropy algorithm is given in
[2], and we present a minimum algorithm in section 2.
This algorithm will be employed in section 3 to define
our splitting criterion. In section 4 the performance
of our proposed splitting criterion is evaluated in a
simulation study.
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2 Minimum and maximum entropy
distribution algorithm for
multinomial NPI

The maximum entropy algorithm for the multinomial
NPI model was already developed and discussed in
[2]. Actually two versions to compute the maximum
entropy are presented there. One algorithm computes
the approximate maximum entropy, which is in struc-
ture and proof similar to its IDM counterpart as it
assumes the obtained probabilities form a closed and
convex set, whereas the other is an exact one, enforc-
ing the restrictions of the probability wheel when as-
signing probability mass to unobserved categories. In
the following only the exact algorithm will be applied.

We now describe an algorithm to calculate the min-
imum entropy distribution for the f–probability in-
tervals, in the sense of Weichselberger [15]. The in-
tervals for the multinomial NPI were proved to be
f–probability intervals in [7].

We begin with a series of lemmas which demonstrate
the algorithm’s validity, and follow with a schematic
outline of the algorithm itself. This algorithm has
been adapted from the minimum entropy algorithm
for ordinal NPI given in [8].

In what follows L is the vector of lower probabilities
and U the vector of the upper probabilities for each
category, and we choose elements of L to add mass
to until we reach a probability distribution, p′. The
following four lemmas are required to prove our algo-
rithm minimises entropy. In everything that follows
in this section it is assumed that more than one cat-
egory has been observed; minimising entropy in the
case of only one observed category is trivial.

Lemma 1. Let nj denote the number of observations
of category cj. For two categories i and j such that ni
and nj are strictly positive, Uj − Lj = Ui − Li = 2

n .

Proof. Follows directly from the definition of the
multinomial NPI model.

Lemma 2. Consider elements Li and Lj, and mass
0 ≤ m ≤ 2

n . When assigning mass m to either or both
of these elements, entropy is minimised by assigning
m to ci if and only if Li ≥ Lj, where i and j are
interchangeable if Li = Lj.

Proof. The contributions of p′i and p′j to the entropy
are −p′i ln(p′i) and −p′j ln(p′j). Note that H1(x, y) :=
−(x ln(x) + y ln(y)) is a concave function in the do-
main (x, y) ∈ [0, 1]2 . Therefore, for any 0 ≤ c ≤ m

H1(p1 +m− c, p2 + c) ≥ H1(p1, p2 +m),

H1(p1 +m− c, p2 + c) ≥ H1(p1 +m, p2),

and hence to minimise H1, all mass m should be fully
assigned to either Li or Lj . The fact that it should
go to the larger of these values also follows from the
concave nature of the function. When Li = Lj , the
mass must be fully assigned to either, but it makes no
difference which is chosen.

Lemma 3. The probability distribution p′ that min-
imises entropy is such that Li < p′i < Ui holds for at
most one i.

Proof. Assume the contrary, that Li+εi = p′i = Ui−δi
and Lj + εj = p′j = Uj − δj both hold, where all
constants in S := {εi, εj , δi, δj} are strictly positive.
Further assume p′i ≤ p′j . By the nature of the concave
function H1

H1(p′i, p
′
j) > H1(p′i −min{S}, p′j + min{S})

hence minimum entropy has not been achieved. This
holds true of any i 6= j, meaning at most only one p′i
can have this property.

Lemma 4. No mass is assigned to unobserved cate-
gories when minimising entropy.

Proof. By the definition of the multinomial NPI
model, ni = 0⇔ Ui − Li = 1

n . We first prove that it
is possible to avoid assigning mass to any unobserved
category; this follows immediately in the non–trivial
case (i.e. n > 0) from the definition of the multino-
mial NPI probability wheel.

It therefore follows that to assign mass to an unob-
served category ck, mass is being “denied” to two ob-
served categories ci and cj (again, this follows from
the probability wheel). Let p′k = m1 +m2, p′i = Ui −
m1, and p′j = Uj−m2, where 0 < m1+m2 ≤ 1

n = Uk.
It immediately follows from Lemma 2 that entropy is
minimised when m1 = 0 and when m2 = 0.

Theorem 1. Entropy is minimised in a structure de-
fined by the multinomial NPI model by assigning the
maximum possible mass to the largest element in L,
then the next largest, and so on until all mass is as-
signed. When two elements are equally large, choose
one of those elements at random.

Proof. From Lemmas 1 and 4 we will only assign mass
to intervals of length 2

n . Therefore we have that p′i 6=
Li ⇒ p′i ∈ {Ui− 1

n , Ui}, where by Lemma 3 p′i = Ui− 1
n

holds for at most one i.

If no such i exists, then using Lemma 2 the minimi-
sation algorithm works as follows: assign all 2m

n mass
(with m an integer) to the m largest elements of Li,
choosing at random between equally large elements.
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If one such i, denoted i∗, does exist, we assign 2m−1
n

mass as above. It is immediately clear that i∗ is
such that Li∗ = maxj∈M{Lj} where M is the set of
categories with no mass currently assigned to them.
All that remains is to demonstrate that the entropy
cannot be lowered further by swapping the mass as-
signment for category ci∗ with that of any category
ck ∈ M c. However, this follows automatically by
Lemma 2 for all ck for which Lk > Lj . For any
Lk = Li∗ , swapping as above does not change the
entropy.

Note that this algorithm does not produce the mini-
mum entropy for a general structure. The algorithm
can fail when Li > Lj > 0 and Uj > Ui both hold, as
it is no longer the case that the stepwise assignment of
mass to the largest lower bounds automatically pro-
duces the lowest entropy. It might instead be better to
assign mass to smaller lower bounds in order to reach
larger upper bounds than would otherwise be possi-
ble. The NPI multinomial model avoids this problem,
as in that model Lj ≥ Li ⇒ Uj ≥ Ui. It is worth not-
ing that the distribution given by this algorithm is not
necessarily a unique minimiser. However, the distri-
bution will be unique up to rearranging the elements
in ascending order.

Example 1. Consider the case of K = 5 classes with
six observations (1, 0, 2, 3, 0). From [5] we obtain that
the minimum and maximum entropy distribution is
contained within the set

1

6
([0, 2], [0, 1], [1, 3], [2, 4], [0, 1]) .

Applying the exact maximum entropy algorithm as in
[2] we obtain the distribution with maximum entropy
already in the first step as 1

6 (1, 1, 1, 2, 1).
The minimum entropy algorithm as described above
obtains the following working distributions in each it-
eration step:

1. 1
6 (0, 0, 1, 2, 0), 2. 1

6 (0, 0, 1, 4, 0),

3. 1
6 (0, 0, 2, 4, 0).

The entropy interval is then [0.6365, 1.5607]. Note
that for a distribution over five classes the entropy
must lie in the interval [0, 1.6094].

3 Imprecise decision approach to
classification trees

We begin by highlighting the differences between the
approach in [8] and our approach here. In the for-
mer, an imprecise classification tree was defined as a
set of classification trees. A decision in each node of
the tree was made by comparing the obtained entropy
intervals using interval dominance. A tree was then

generated for each undominated split variable, hence
creating an ensemble of classification trees. There-
fore, the work in [8] can be seen as a generalisation
of that in [3], which compares only the upper bounds
of the entropy intervals, and also allows the genera-
tion of multiple trees, though only when considering
potential root nodes.

Interval dominance is a strong condition, which means
the method in [8] leads in general to a large ensemble
of very small trees, as oppose to the smaller ensem-
ble of larger trees created in general by the method
in [3]. In particular, this means generating a sin-
gle tree (and therefore generalising to Abellán and
Moral’s one–step classification tree algorithm [4]) will
in general lead to an overly conservative classification
model. In contrast, the Abellán and Moral method
can allow splits based on very slight evidence, or even
on contradictory evidence which the method ignores.
It is not obvious, for example, that a variable with en-
tropy range [0.39, 0.4] should be considered a better
choice to split upon than a variable with entropy range
[0, 0.41], but the splitting decision in the Abellán and
Moral will do so, based just on the difference of 0.01
in the maximum entropy and ignoring the intervals’
widths entirely.

Therefore, in this paper we explore whether, when
constructing a single tree, there can be found an in-
terval comparison method which is neither so strong
as interval dominance, nor so weak as determining the
lowest upper bound, and which generates an optimal
tree. Our choice to limit consideration to single trees
is for the sake of simplicity of comparison; the meth-
ods used here can easily be generalised to allow the
construction of multiple trees. We refer to the trees
generated for this paper as imprecise, as the splitting
criterion compares entropy ranges derived from credal
sets; note this is a different definition of imprecision
to that given in [8]. The split criterion used in this
paper is now described.

We note first that any simple comparison of intervals
without additional properties is likely to involve one
or more of three direct comparisons: comparing the
upper bounds, comparing the lower bounds, and com-
paring the interval lengths. To some extent this third
consideration is bound up in the first and second,
since of course an interval’s length is completely de-
termined by its upper and lower bounds. It is possible
that length cannot be completely dealt with by com-
parison of corresponding bounds, however, otherwise
it would be equally easy to choose between intervals
[0.01, 0.95] and [0, 1] as to choose between intervals
[0.11, 0.15] and [0.1, 0.2], and this is not clearly true.
On the other hand, comparing the lengths explicitly
would lead to three separate comparisons, which is
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arguably overkill, and would require the use of three
comparison functions where, for the sake of simplic-
ity, we wish to only use two. We therefore implicitly
compare interval length in the comparison of lower
bounds shown below. This is done in the comparison
of lower bounds rather than that of upper bounds in
order to ensure our method is a generalisation of the
one found in [2].

Our method of comparing entropy intervals requires
two parameters set by the user, that of γ and T0. We
define

T = (1− γ)AL + γAU , (3.1)

where AL and AU reflect comparisons of the lower and
upper bounds respectively (as in Definition 1 below),
and 0 ≤ γ ≤ 1. For each comparison, we choose to
split only if T < T0. Therefore the larger the value
of T0 chosen by the user, the less conservative the
splitting criterion. Moreover, the greater the value
of γ, the more weighting we place upon the compar-
ison of the upper bounds. Therefore γ = 1 in the
Abellán and Moral method, which considers only up-
per bounds. While in the methods in [8] and [3] the
stopping rule is implicitly built-in, in our method we
need one explicitly as T is a continuous function of
the compared intervals. We now define AL and AU .

Definition 1. For the entropy interval I = [a, b] over
a data set, and an expected entropy interval Ii =
[ai, bi] following splitting on attribute variable Xi, we
define

AL =
ai − a

bi + |a− ai|
, (3.2)

and further

AU =
ln(K)− b
ln(K)− bi

. (3.3)

Note that AL is 0 when the lower bounds are equal,
and grows larger (smaller) as the lower bound for Ii
gets larger (smaller) in comparison to the lower bound
for I. Hence a larger value of AL represents a less
desirable split, with respect to the lower bounds. Note
also that AU is equal to 1 when the upper bounds
are equal, and gets smaller as the upper bound for Ii
gets smaller in comparison to the upper bound for I.
Hence a larger value of AU represents a less desirable
split, with respect to the upper bounds. Without any
further restriction on when considering upper bound
comparison AU may take values larger than 1 for bi >
b, which is covered in what follows.

As noted, in Abellán and Moral’s method the split-
ting is entirely based on the upper bounds compari-
son. This has the advantage that if there is a split, the
maximum entropy is reduced. This property guaran-
tees at least some subgroups which will be more homo-
geneous. Therefore we also only consider an attribute
variable Xi as a split candidate if bi < b.

As T , defined by (3.1), does not satisfy this prop-
erty of a decreasing expected maximum entropy in
the split, we need to enforce more restrictions on our
splitting criterion. Therefore we define T ∗ as follows,
dealing with the above mentioned case and interval
dominance.

Definition 2. For the entropy interval I = [a, b] over
a data set, and an expected entropy interval Ii =
[ai, bi] following splitting on attribute variable Xi, we
define the combined splitting criterion

T ∗i =





1 if bi ≥ b
T if b > bi ≥ a
T − 3 if a > bi

. (3.4)

This ensures that T and therefore AU is only calcu-
lated in situation when AU < 1. Thus in situations
when T is actually evaluated it holds that T ∈ [−1, 2).
In the case a > bi we have Ii interval dominating
I. Without the above definition, we would lack the
ability to compare among interval dominating split
candidates. As T ∈ [−1, 2) for b > bi by subtract-
ing three we obtain an always smaller value of T ∗ for
interval dominating split candidates than for those
situations where interval dominance does not occur,
which allows us to consider both dominated intervals
and undominated intervals via the same measure.

The fact that AL and AU , along with T , increase
as the corresponding bound comparisons become less
supportive of a split justifies the choice to split only
when T ∗ < T0. The variable Xi∗ is chosen to split
upon if it is the variable amongst the split candidates
with the smallest value of T ∗. With T0 we are able to
enforce a specific degree of support for a split. Note
that for the Abellán and Moral method, AL is ig-
nored and AU is required to be less than one, so the
Abellán and Moral method is a special case of our
method, with (γ, T0) = (1, 1). A splitting method re-
quiring interval domination may be obtained by set-
ting T0 = −1. With our approach we are able to flex-
ibly adapt the splitting criterion to situations where
splits only in case of interval dominance or according
to the Abellán and Moral method are favourable.

Although T0 and γ were said to be chosen by the user
in advance, when it is uncertain which actual split-
ting method to favour, they may be set data-driven,
essentially functioning as so called tuning parameters.

4 Simulation

In order to evaluate the performances of the splitting
criterion proposed in this paper, simulations were car-
ried out on real–world data sets. The simulation was
performed with two major questions in mind: Firstly,
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what is the general performance of the proposed split-
ting criterion and secondly, how does varying the tun-
ing parameters T0 and γ affect it.

For that purpose 13 different databases from the UCI
repository of machine learning [10] were analysed. For
each database one classification variable was predicted
with the exception of the Pittsburgh Bridges database,
where five classification variables were independently
predicted1. Table 1 outlines the number of instances
(N), number of continuous and nominal attribute vari-
ables (Num and Nom) and total missing values (NA),
along with the ranges of the different states of the
classification variable (K) and the predicting variables
(R).

Database N Num Nom NA K R

abalone 4177 7 1 0 28 3-5
anneal 798 6 32 0 5 1-8
cmc 1473 2 7 0 3 2-5
credit 690 6 9 67 2 2-14
ecoli 336 7 0 0 8 2-5
hepatitis 155 6 13 167 2 2-5
lenses 24 0 4 0 3 2-3
monks1 432 0 6 0 2 2-4
bridges (deck type) 108 1 7 52 2 2-5
bridges (material) 108 1 7 48 3 2-5
bridges (span) 108 1 7 62 3 2-5
bridges (rel. span) 108 1 7 51 3 2-5
bridges (type) 108 1 7 48 7 2-5
po 90 0 8 3 4 2-4
soybean 683 1 34 2337 19 2-5
spect 267 0 22 0 2 2-2
zoo 101 0 16 0 7 2-6

Table 1: Database Overview

In a data pre–processing step any missing values were
replaced by the mean or mode for continuous and
nominal attributes respectively 2. Discretisation was
applied to the continuous variables by splitting them
into five ideally equal frequency intervals, according
to the quantiles 3. Any variables with less than five
unique values were not further discretised. Despite
being commonly used in such situations, Fayyad and
Irani’s popular discretisation method [9] was rejected,
as for some databases it returned for a notable propor-
tion of predicting variables just one class, essentially
removing those variables from the scope of predicting
variables. In contrast to previously mentioned deci-
sion in the leaves, when there were ties in the most

1This means effectively splitting the database into 5 new
databases.

2Following the data set description of the annealing
database, the missing values were considered to be a category
in themselves.

3Ideally in the sense that no overlapping of categories was
permitted and so some categories attained larger/smaller fre-
quencies.

frequent categories, all of those most frequent cate-
gories were returned, thus allowing the classification
tree to be imprecise in the prediction as well. The
simulation was completely performed with the open–
source statistical programming language R [14].

For each database different configurations of the split-
ting criterion were analysed: γ was varied over the
range [0, 1] and T0 over [−1, 1]. As the configuration
(1, 1) corresponds to the maximum frequency crite-
rion of Abellán and Moral, our criterion is implicitly
compared to it. Furthermore the case of interval dom-
ination is included as T0 is set to −1 in some config-
urations. For each setting 50 bootstrap samples were
generated and the achieved accuracy on each was re-
ported. On the training data two imprecise classifi-
cation trees were grown. Both trees employ our pro-
posed splitting criterion, but the underlying models
to obtain the set of probability distributions differ:
one employs the multinomial NPI and the other a
local IDM. The accuracy of the trees was measured
in terms of correct classification rate on the deter-
minately predicted instances on the test set 4. The
correct classification rate was evaluated for each tree
type on their determinate test data’s observations.

To assess the first motivation of the simulation, for
each database the optimal configuration of (γ, T0) is
chosen according to the average correct classification
rate over the bootstrap sample. However, configura-
tion (1, 1) was not taken into account when evaluating
the optimal configuration, because it serves as refer-
ence. According to the Wilcoxon signed rank there
was a significant difference on a significance level of
α = 0.05 in the achieved accuracy in favour of our
proposed splitting method when comparing it to the
Abellán and Moral tress for both the NPI and the
IDM approach.

As for the second aspect, there are differences present
between the databases, even for the underlying esti-
mation model. For all databases it was found that
varying γ resulted in notable variation; only the
dataset po demonstrated results independent of γ. In
general, varying T0 resulted in very little variation.
Overall, the observed behaviour seems reasonable as
a change in the weighting may change our splitting
criterion drastically, while a change in T0 only defines
the cut point of the splitting criterion when we have
non–interval dominating split candidates in a node.
Overall, with our method we are not able to advocate
a globally optimal γ as it appears database depen-
dent. For the Pittsburgh bridges (material) database

4Whenever an observation leads to a prediction of a single
class, this observation is said to be determinate, in all other
cases, whether two or more classes, it is said to be indetermi-
nate.
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low values in γ led to higher accuracy, whereas for an-
neal and hepatitis the accuracy was greater for larger
values of γ; these comparisons are with respect to the
correct classification rate on the IDM–based trees, but
similar examples may be found for those based on the
NPI method.

Interestingly, there is also a substantial difference be-
tween the two tree types: for instance for the ecoli
data set a high valued γ performs better for the IDM–
based trees, but the opposite is true for the NPI–based
trees. Moreover on this database for the IDM–based
trees the accuracy is higher for T0 < 0 as in compar-
ison to T0 > 0, but for the method based upon NPI
the opposite holds.

To further outline the difference between the splitting
methods, the performance of each configuration was
compared to the one achieved by using the Abellán
and Moral splitting. Therefore a Wilcoxon signed
rank test was carried out. For most databases there
was no significant difference between them for most
configurations. However, on the anneal and Pitts-
burgh Bridges (T or D) datasets, most configurations
achieve a significantly lower accuracy, whereas for the
cmc and Pittsburgh Bridges (material) datasets, with
some configurations we are able to significantly im-
prove the accuracy with our splitting criterion.

Furthermore, if there were any significant differences
present for a database those were all in the same di-
rection, in the sense that accuracy was either non–
increasing or non–decreasing with respect to γ and
T0, with the exception of just three occurrences (two
in soybean and one in hepatitis).

As the previously mentioned difference between the
tree–types with respect to changes in γ and T0 may
suggest, substantial differences also exist when com-
paring variations in those values with the fixed values
used in the Abellán and Moral method. However, a
significant difference in a certain configuration for the
IDM–based tree does not necessarily imply one for
the NPI–based and vice versa. On the other hand,
for most databases, if there are significant differences
present, they are in the same direction, i.e both are
greater/less. Exceptions are the spect and zoo where
on some configurations the accuracy is significantly
improved using the IDM, but for the NPI on some
(other) configurations we are predicting significantly
worse.

In general, taking all databases into account, there is
only a small difference between our splitting criterion
and the Abellán and Moral one. On some databases
we are able to improve the achieved accuracy with a
certain database specific configuration of γ and T0,
while on others we are losing some accuracy for some

settings. However, in most cases there is a signifi-
cant difference between the Abellán and Moral split-
ting approach and our more general (and also more
complicated) approach. The choice of the underlying
probability model naturally influences the obtained
results. Our results concur with [2] in that we find
no significant difference between the NPI– and IDM–
based trees when comparing them according to their
best performance on each database. However, the
NPI approach has a slightly poorer performance with
our method in comparison to the Abellán and Moral
splitting criterion. Generally, we are not able to iden-
tify an overall optimal configuration of (γ, T0). This
difficulty in predicting the effects of a change in pa-
rameter casts doubt on the ability of users to sensibly
choose parameter values for the current model.

In our simulation we did not consider a comparison
of our method to the underlying ID3 splitting mech-
anism. As [4] pointed out in their simulations, their
splitting method has the ability to successfully com-
pete against the even more advanced splitting algo-
rithm C4.5.

5 Conclusions and further aspects

In this paper an approach to building classification
trees using entropy range comparisons was outlined
and tested. This process required the creation of
an entropy minimisation algorithm, which was pre-
sented here for the multinomial NPI method. This
algorithm was then used to compare trees built us-
ing the splitting criterion suggested in [4], which con-
siders only the upper bounds of the entropy inter-
val, and our method, which compares both upper and
lower bounds of the entropy interval, with a user–
defined weighting on these two comparisons determin-
ing which is the more important. A second user–
defined criterion determines the amount of dissimi-
larity between entropy intervals necessary to justify
a split; the ranges of these two user–defined criteria
means our model includes both that described in [2]
(which applies the model in [4] to the NPI case) and
that described in [8] (in which interval dominance is
required to allow splitting). These methods were com-
pared over 13 datasets, and the resulting simulation
bore interesting results. Whilst it is not the case that
there exists a specific combination of user–defined cri-
teria that improves upon consideration of the upper
bounds alone, it is possible in many cases to find a
combination that does improve upon that method for
the specific dataset. Moreover, our results support
the hypothesis that in situations in which compari-
son of upper bounds strongly support splitting it can
make a noticeable difference to accuracy whether or
not splits are allowed for variables with associated in-
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tervals which have higher lower bounds than the in-
terval for the dataset.

Therefore it can be stated that our method has the
potential to improve accuracy, but more work is re-
quired in determining under what circumstances this
is the case. Related to this, further work is required
in justifying this method or one similar to it through
a decision theoretical foundation.

It also remains to be explored how our method per-
forms in comparison with [3] when the former is used
to generate ensemble trees. As mentioned in the
text, reducing to the case of a single tree allows for
quicker and more easily interpreted comparisons, but
our method was created with ensemble trees in mind,
and this should be considered further.

To allow for a comparison with precise classifiers fu-
ture simulations will also include a precise classifier.
Furthermore an investigation about the tree’s actual
length for the optimal configuration is worth carry-
ing out. Larger trees, especially with ensembles in
mind, induce a higher computational cost, even if it
decreases in the future with more powerful hardware
architecture.

Appendix

Algorithm 1 gives an outline of the minimum entropy
algorithm as proposed in section 2.

When considering its computational complexity, it
mainly depends on the ordering of the [li, ui]

n
1 . The

proposed algorithm requires generally the least steps,
when [li, ui]

n
1 is sorted according to decreasing li. Any

of the popular sorting algorithms may be applied to
obtain such a sorting, with complexity ranging from
O(n) to O(n2). The initialisation step means just
copying l to p and generation of and index set. Due
to the special ordering of l, getMaxIndex in the
while () do -loop finds the return value immediately
as it is j when in the jth loop. Furthermore, be-
cause of the special representation of the multinomial
NPI on a probability wheel, it is immediately clear
that the while () do -loop has at maximum dn2 e iter-
ations. Therefore the algorithm without the sorting
runs in linear time. Hence the computational most
time intensive part is the chosen sorting algorithm.5.

In the following the splitting procedure is outlined,
considering the splitting process within a node N . Let
LN be the set of the attribute variables which are not
used splitting variables on the path from the root node
to N . Finding the optimal split requires three steps:

5In the simulation the Shell-Sort algorithm was applied as
it is implemented in R [14]

Algorithm 1 Minimum Entropy Algorithm for NPI

Input: F-probability intervals [li, ui]
n
1

as generated by the NPI
Output: A probability distribution

p̂ = (p̂1, p̂2, . . . , p̂n)

Helping functions:
Sum(x): returns the sum of

the elements of array x
getMaxIndex(x, S): returns the first index

of the maximum value
of the array x considering
only indices in S

Initialization: S ← 1, . . . , n

minEntropyNPI(l, u, p̂){
for (i = 1 ton) do {p̂i ← li}
mass← 1− Sum(p̂)
while (mass > 0) do {

index← getMaxIndex(p̂, S)
d← uindex − p̂index
if (d ≤ mass) then {

p̂index ← uindex
S ← S − {index}
mass← mass− d

} else {
p̂index ← p̂index +mass
mass← 0

}
}

}

1. T ∗i is calculated for each Xi ∈ LN 6;

2. Xi∗ is chosen as reasonable splitting candidate
among the Xi in LN , where T ∗i∗ = mini (T ∗i );

3. A comparison of T ∗i∗ and T0 is made. Only if
T ∗i∗ < T0 is Xi∗ chosen as the split variable, oth-
erwise the node N is declared terminal.

Acknowledgement

We are grateful for the remarks of three anonymous
reviewers and feel that some remarks need to be sepa-
rately considered in further research. The work of R.
Crossman has been partly supported by the Spanish
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Václav Kratochv́ıl
Inst. of Inform. Theory and Automation

Acad. of Sciences, Prague, Czech Republic
v.kratochvil@gmail.com

Abstract

In probability theory, Iterative Proportional Fitting
Procedure can be used for construction of a joint prob-
ability measure from a system of its marginals. The
present paper studies a possibility of application of an
analogous procedure for belief functions, which was
made possible by the fact that there exist operators
of composition for belief functions.

In fact, two different procedures based on two different
composition operators are introduced. The procedure
based on the composition derived from the Demp-
ster’s rule of combination is of very high computa-
tional complexity and, from the theoretical point of
view, practically nothing is known about its behav-
ior. The other one, which uses the composition de-
rived from the notion of factorization, is much more
computationally efficient, and its convergence is guar-
anteed by a theorem proved in this paper.

Keywords. Marginal problem, belief functions, al-
gorithm, multidimensional model, convergence.

1 Introduction

In probability theory, by a marginal problem we un-
derstand a task to find out whether there exists a
joint probability measure having a given system of
low-dimensional measures for its marginals, and/or
the problem how to find such a joint probability mea-
sure. In statistics this problem appears, for example,
as a subtask of multidimensional contingency tables
analysis. In 1980s, the problem was often solved in
connection with a design of probabilistic knowledge-
based systems [1, 10, 13]. In these expert systems,
marginal measures represent pieces of local knowledge
and the looked for multidimensional measure repre-
sents a knowledge base.

For a solution of a discrete marginal problem famous
Iterative Proportional Fitting Procedure (IPFP) was
suggested by Deming and Stephan in 1940 [3].

Though this iterative procedure was applied to prac-
tical problems since that time, it was only in 1975
when Csiszár proved its convergence [2].

The goal of this paper is to show that an analogous
iterative procedure can be, in principle, applied also
for construction of a multidimensional belief function.
However, as the title of the paper suggests, this ap-
plication is connected with several open questions.

1.1 Notation

In this paper we use the notation from the ISIPTA
2011 paper [4]: XN = X1 × X2 × . . . × Xn, denotes a
finite multidimensional space, and its subspaces (for
all K ⊆ N) are denoted by

XK = ×i∈KXi.

For a point x = (x1, x2, . . . , xn) ∈ XN its projection
into subspace XK is denoted x↓K = (xi)i∈K , and for
A ⊆ XN

A↓K = {y ∈ XK : ∃x ∈ A, x↓K = y}.

By a join of two sets A ⊆ XK and B ⊆ XL we under-
stand a set

A ◃▹ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that if K and L are disjoint, then A ◃▹
B = A × B, if K = L then A ◃▹ B = A ∩ B, and,
generally, for C ⊆ XK∪L, C is a subset of C↓K ◃▹ C↓L,
which may be proper.

A basic assignment m on XK (K ⊆ N) is a real valued
function on P(XK), for which

∑

∅≠A⊆XK

m(A) = 1.

Notice that in agreement with Shenoy’s papers (see
e.g., [12]) we admit also negative values of a basic
assignment. This is why we will call a basic assign-
ment to be proper if all its values are nonnegative. If
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m(A) ̸= 0, then A is said to be a focal element of m.
Considering two proper basic assignments m1,m2 on
the same space XK , we say that m1 is dominated by
m2, if for all A ⊆ XK : m1(A) > 0 =⇒ m2(A) > 0.

Having a basic assignment m on XK one can consider
its marginal assignments. On XL (for L ⊆ K) it is
defined (for each ∅ ≠ B ⊆ XL):

m↓L(B) =
∑

A⊆XK :A↓L=B

m(A).

Each basic assignment m on XK can uniquely be rep-
resented by its commonality function, which is a set
function Q : P(XK) −→ [0, +∞) defined for each
A ⊆ XK

Q(A) =
∑

A⊆B⊆XK

m(B).

Recall the formula from [11] yielding for each com-
monality function the respective basic assignment:

m(A) =
∑

A⊆B⊆XK

(−1)|B\A|Q(B)

for each A ⊆ XK .

1.2 Operators of composition

In this paper we will take advantage of the fact that
the probabilistic IPFP can easily (and elegantly) be
expressed with the help of the so called operator of
composition [5] that was defined in ISIPTA paper
[8] also for belief functions. In [6] (see also an ex-
tended version of this conference contribution, which
is to appear in IJAR [7]) it was shown that the op-
erator of composition can also be defined within the
Shenoy’s valuation based systems (VBS) [12] that, as
a generic uncertainty calculus, covers not only prob-
ability theory but also some other uncertainty calculi
like Spohns epistemic belief theory, Dempster-Shafer
belief function theory, and others.

In VBS’s the operator of composition is derived from
the operation of combination ⊕ and its inverse opera-
tion called removal ⊖. For two basic assignments m1,
m2 on XK , XL, respectively, the operator of compo-
sition is defined as

m1 ◃ m2 = m1 ⊕ m2 ⊖ m↓K∩L
2 , (1)

from which one immediately sees its semantics: we
combine knowledge contained in m1 and m2, and to
prevent double counting of knowledge when double
counting matters, we remove the knowledge contained
in m↓K∩L

2 .

In Dempster-Shafer theory, the role of this general
operator of composition ⊕ is played quite naturally

by the Dempster’s rule of combination ⊕D. Thus, for
m1, m2 on XK , XL, respectively, for each nonempty
A ⊆ XK∪L

(m1 ⊕D m2)(A)

= Γ−1
∑

B⊆XK ,C⊆XL:B◃▹C=A

m1(B) · m2(C),

where Γ is the normalization factor

Γ =
∑

B⊆XK ,C⊆XL:B◃▹C ̸=∅
m1(B) · m2(C).

It is not an easy task to specify in terms of basic
assignments the removal operator that should be an
inverse to the Dempster’s rule of combination. There-
fore we take advantage of the fact famous from [11]
saying that the commonality function (Q1⊕DQ2) cor-
responding to the basic assignment (m1 ⊕D m2) can
easily be got as the pointwise product of commonality
functions Q1 and Q2 corresponding to basic assign-
ments m1 and m2, respectively. More precisely

(Q1 ⊕D Q2)(A) = Γ−1Q1(A
↓K) · Q2(A

↓L),

where Γ is again a normalization constant, which is
now computed

Γ =
∑

A⊆XK∪L

(−1)|A|+1Q1(A
↓K) · Q2(A

↓L).

From the definition of the combination operator for
commonality functions, one can immediately see that
the inverse removal operator must be defined for all
A ⊆ XK∪L

(Q1 ⊖D Q2)(A) =

{
Γ−1 Q1(A

↓K)
Q2(A↓L)

if Q2(A
↓L) > 0,

0 otherwise,

with

Γ =
∑

A⊆XK∪L:Q2(A↓L)>0

(−1)|A|+1 Q1(A
↓K)

Q2(A↓L)
.

So, following the results from [7], within D-S theory
the proper operator of composition is defined

m1 ◃D m2 = m1 ⊕D m2 ⊖D m↓K∩L
2 .

Its main disadvantage is its great computational com-
plexity following, among others, from the fact that we
do not know other way how to compute the compo-
sition ◃D of basic assignments than first transform-
ing basic assignments m1,m2,m

↓K∩L
2 into the corre-

sponding commonality functions, computing Q1 ◃D
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Q2 = Q1 ⊕D Q2 ⊖D Q↓K∩L
2 , and afterwards trans-

forming the resulting composed commonality function
back into the corresponding basic assignment.

One of the results from [7] says that the operator of
composition ◃D is different from the one defined in
[8], which we are going to introduce now. In what
follows, the operator from [8] will be denoted ◃F .

Consider two arbitrary basic assignments m1 on XK

and m2 on XL (K ̸= ∅ ̸= L) a composition m1 ◃F m2

is defined for each C ⊆ XK∪L by one of the following
expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ◃▹ C↓L then

(m1 ◃F m2)(C) =
m1(C

↓K) · m2(C
↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K × XL\K

then
(m1 ◃F m2)(C) = m1(C

↓K);

[c] in all other cases (m1 ◃F m2)(C) = 0.

Let us note that similarly to ◃D, also the operator ◃F

can be expressed in the form of formula (1) but, nat-
urally, with a different operator of combination. We
will not need it in this paper, nevertheless let us men-
tion for the interested reader that the corresponding
operator ⊕F for m1,m2 on XK , XL, respectively, is
defined by the following formula (for each A ∈ XK∪L)

(m1 ⊕F m2)(A)

=

{
Γ−1m1(A

↓K)m2(A
↓L) if A = A↓K ◃▹ A↓L,

0 otherwise,

where

Γ =
∑

A⊆XK∪L:A=A↓K◃▹A↓L

m1(A
↓K) · m2(A

↓L).

Returning back to the main topic of this paper, let
us summarize that in this section we have introduced
two operators of composition ◃D and ◃F . Though
they differ from each other, as expressed in the follow-
ing Proposition (for proofs see [8, 7]), both of them
meet the basic properties required from an operator
of composition.

Proposition 1 Let m1 and m2 be basic assignments
defined on XK , XL, respectively. Then both operators
of composition ◃D and ◃F meet the following proper-
ties:

1. m1 ◃ m2 is a basic assignment on XK∪L;

2. (m1 ◃ m2)
↓K = m1;

3. m1 ◃ m2 = m2 ◃ m1 ⇐⇒ m↓K∩L
1 = m↓K∩L

2 ;

4. For M ⊆ K, m1 = m↓M
1 ◃ m1.

The reader probably noticed that Property 2 guaran-
tees that if L ⊆ K then m1 ◃D m2 = m1 ◃F m2. It
is really an easy task to show that the same equality
holds true also when K∩L = ∅. Nevertheless, not too
much is known about other situations. It is clear that
the above conditions are not necessary. Namely, the
same equality holds true when one composes Bayesian
basic assignments (i.e. basic assignments whose all
focal elements are singletons). This is why we can
formulate the first open problem.

Open Problem 1 Is it possible to specify necessary
and sufficient conditions under which m1 ◃D m2 =
m1 ◃F m2?

2 IPFP

In this section we will describe the Iterative Propor-
tional Fitting Procedure with the help of the operator
of composition. It can be applied to a system of basic
assignments using any of the two operators of compo-
sition introduced in the previous section. This is why
we use just the symbol ◃. It is important to realize,
that for this computational process we need an oper-
ator possessing all the properties from Proposition 1,
and we do not know any other operator meeting these
properties.

Assume there is a system of n low-dimensional
basic assignments m1,m2, . . . , mn defined on
XK1 , XK2 , . . . , XKn , respectively. During the com-
putational process, an infinite sequence of basic
assignments µ0, µ1, µ2, µ3, . . . is computed, each of
them defined on XK1∪...∪Kn . In case this sequence is
convergent, its limit is the result of this process.

Algorithm IPFP Define the starting basic assign-
ment µ0 on XK1∪K2∪...∪Kn .
Then compute

µ1 = m1 ◃ µ0

µ2 = m2 ◃ µ1

µ3 = m3 ◃ µ2

...

µn = mn ◃ µn−1

µn+1 = m1 ◃ µn

...
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focal elements m
{a1ā2a3, ā1a2a3} 0.2
{a1a2ā3, a1ā2a3} 0.3

{a1a2ā3, a1ā2ā3, ā1a2ā3, ā1ā2a3} 0.5

Table 1: Three-dimensional assignment m

µ2n = mn ◃ µ2n−1

µ2n+1 = m1 ◃ µ2n

...

As said in Introduction, when this algorithm is ap-
plied to probability measures, it has some nice and
useful properties, most of which were proved by
Csiszár in his famous paper [2]. So it is not sur-
prising that the general properties formulated and
proved here for belief functions (including the pre-
sented proofs) are based on the Csiszár’s results.

Theorem 1 If the sequence µ0, µ1, µ2, µ3, . . . com-
puted by the Algorithm IPFP converges then the basic
assignment

µ∗ = lim
i→+∞

µi

is a common extension of all m1,m2, . . . , mn, i.e.,

(µ∗)↓Kj = mj

for all j = 1, . . . , n.

Proof. Consider any j ∈ {1, 2, . . . , n}. From Prop-
erty 2. of Proposition we get that mj is marginal
of all the assignments µj , µn+j , µ2n+j , µ3n+j , . . ., and
therefore mj is marginal also to the limit of this sub-
sequence

( lim
k→+∞

µkn+j)
↓Kj = mj .

From the basic course on mathematical analysis we
know that if a sequence converges, then all their sub-
sequences converge, too, and the limits are the same.
Therefore, (µ∗)↓Kj = mj . �

2.1 IPFP with ◃F

Example 1 Let us first illustrate and comment the
process on a simple example. Consider a three-
dimensional space X{1,2,3}, with Xi = {ai, āi}. To be
sure that the considered system of two-dimensional
basic assignments is consistent, i.e., that there ex-
ists their common extension, consider the three-
dimensional assignment on X{1,2,3} with three focal
elements from Table 1. Its two-dimensional marginal

focal elements values
m1 {a1ā2, ā1a2} 0.2

{a1a2, a1ā2} 0.3
{a1a2, a1ā2, ā1a2, ā1ā2} 0.5

m2 {a2a3} 0.2
{a2ā3, ā2a3} 0.3

{a2a3, a2ā3, ā2a3, ā2ā3} 0.5
m3 {a1a3, ā1a3} 0.2

{a1a3, a1ā3} 0.3
{a1ā3, ā1, a3, ā2ā3} 0.5

Table 2: Consistent assignments m1, m2,m3

assignments m1 = m↓{1,2},m2 = m↓{2,3} and m3 =
m↓{1,3} are in Table 2.

The computational process starting with µ0(A) =
1/255 for all nonempty A ⊆ X{1,2,3} is depicted in
Table 3. We do not present here assignments µ1 and
µ2, because they have 99, and 15 focal elements, re-
spectively. Starting with µ3 all the remaining compu-
tations concern only six focal elements represented by
six rows of Table 3. Looking at this table the reader
perhaps believes that the process converges, and that
the limit assignment has eventually only four focal
elements.

The convergence of the procedure in the previous ex-
ample is not surprising because for ◃F we can use the
ideas from the Csiszár’s proof [2] to get the following
theorem.

Theorem 2 Consider a system of proper ba-
sic assignments m1, m2, . . . , mn defined on
XK1 , XK2 , . . . , XKn and a proper basic assign-
ment µ0 on XK1∪...∪Kn . If there exists a proper
basic assignment ν on XK1∪...∪Kn such that ν is
dominated by µ0, and ν is a common extension of all
m1,m2, . . . , mn, then the sequence µ0, µ1, µ2, µ3, . . .
computed by the Algorithm IPFP with ◃F converges.

The proof is based on the following auxiliary asser-
tion.

Lemma 1 Consider two basic proper assignments µ, ν
on XL, and let K ⊆ L. Denote

D(ν∥µ) =
∑

A⊆XL:µ(A)>0

µ(A) log
µ(A)

ν(A)
.

If ν dominates µ (i.e., ν(A) = 0 ⇒ µ(A) = 0) then

D(ν∥µ) = D(ν∥µ↓K ◃F ν) + D(µ↓K ◃F ν∥µ).
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focal elements µ3 µ4 µ5 µ6 µ7 µ8 µ100 µ1000

{a1ā2a3, ā1a2a3} 0.156 0.200 0.166 0.166 0.200 0.172 0.195 0.199
{a1a2a3, a1ā2a3, ā1a2a3, ā1ā2a3} 0.043 0.040 0.033 0.033 0.031 0.027 0.004 4 · 10−4

{a1a2ā3, a1ā2a3} 0.146 0.146 0.300 0.211 0.211 0.300 0.293 0.299
{a1a2ā3, a1ā2a3, a1ā2ā3} 0.153 0.153 0.124 0.088 0.085 0.079 0.006 7 · 10−4

{a1a2ā3, a1ā2ā3, ā1a2ā3, ā1ā2a3} 0.250 0.230 0.187 0.250 0.234 0.210 0.250 0.250
{a1a2ā3, a1ā2ā3, ā1a2ā3, ā1ā2a3, ā1ā2ā3} 0.250 0.230 0.187 0.250 0.234 0.210 0.250 0.250

Table 3: m1 ◃F µ0

Proof.

D(ν∥µ)

=
∑

A⊆XL:µ(A)>0

µ(A) log

(
µ(A)

ν(A)
· (µ↓K ◃F ν)(A)

(µ↓K ◃F ν)(A)

)

=
∑

A⊆XL:µ(A)>0

µ(A) log
µ(A)

(µ↓K ◃F ν)(A)

+
∑

A⊆XL:µ(A)>0

µ(A) log
(µ↓K ◃F ν)(A)

ν(A)

= D(µ↓K ◃F ν∥µ)

+
∑

A⊆XL:µ(A)>0

µ(A) log
(µ↓K ◃F ν)(A)

(ν↓K ◃F ν)(A)
.

The last modification is based on Property 4 of Propo-
sition.

Realize, now, that the last summation is performed
over those A ⊆ XL for which µ(A) > 0, and there-
fore, due to the assumed dominance, ν(A) > 0, too.
Therefore, both (µ↓K ◃F ν)(A) and (ν↓K ◃F ν)(A) are
computed according to case [a] of the respective defi-
nition getting

(µ↓K ◃F ν)(A)

(ν↓K ◃F ν)(A)
=

µ↓K(A↓K)·ν(A)
ν↓K(A↓K)

ν↓K(A↓K)·ν(A)
ν↓K(A↓K)

=
µ↓K(A↓K)

ν↓K(A↓K)
.

So, we can proceed further in computation of D(ν∥µ):

D(ν∥µ)

= D(µ↓K ◃F ν∥µ)

+
∑

A⊆XL:ν(A)>0

µ(A) log
µ↓K(A↓K)

ν↓K(A↓K)

= D(µ↓K ◃F ν∥µ)

+
∑

B ⊆ XK

ν(B) > 0

∑

A ⊆ XL : ν(A) > 0

A↓K = B

µ(A) log
µ↓K(A↓K)

ν↓K(A↓K)

= D(µ↓K ◃F ν∥µ)

+
∑

B ⊆ XK

ν(B) > 0

log
µ↓K(B)

ν↓K(B)

∑

A ⊆ XL : ν(A) > 0

A↓K = B

µ(A)

= D(µ↓K ◃F ν∥µ)

+
∑

B⊆XK :ν(B)>0

µ(B) log
µ↓K(B)

ν↓K(B)
,

where the last modification is based on the formula
for marginalization.

Regarding the fact that using analogous computations

D(ν∥µ↓K ◃F ν)

=
∑

A⊆XL

(µ↓K◃F ν)(A)>0

(µ↓K ◃F ν)(A) log
(µ↓K ◃F ν)(A)

(ν↓K ◃F ν)(A)

=
∑

A⊆XL

(µ↓K◃F ν)(A)>0

(µ↓K ◃F ν)(A) log
µ↓K(A↓K)

ν↓K(A↓K)

=
∑

B⊆XK :ν(B)>0

µ(B) log
µ↓K(B)

ν↓K(B)
,

we have finished the proof. �

Proof of Theorem 2. First notice that the function
D(ν∥µ) introduced in the previous Lemma is in fact
the famous Kullback-Leibler divergence between two
probability measures (let us stress that we assume
that all the involved basic assignments are proper,
because ◃F composition of two proper assignments is
obviously also proper) defined on 2XL , which is known
to be nonnegative, equals 0 if and only if ν = µ, and is
finite if ν dominates µ. Moreover, since ν is assumed
to be a common extension of all m1, m2, . . . , mn, it
means that ν↓Kj = mj for all j = 1, 2, . . . , n.

So, following the idea of Csiszár, we can apply
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Lemma 1 getting

D(µ0∥ν) = D(µ0∥m1 ◃F µ0) + D(m1 ◃F µ0∥ν),

where m1 ◃F µ0 = µ1 computed by Algorithm IPFP.
Analogously,

D(µ1∥ν) = D(µ1∥µ2) + D(µ2∥ν),

D(µ2∥ν) = D(µ2∥µ3) + D(µ3∥ν),

...

and therefore

D(µ0∥ν) ≥
∞∑

j=1

D(µj−1∥µj).

Since we assume that µ0 dominates ν, D(µ0∥ν) is fi-
nite, and therefore

lim
j→∞

D(µj−1∥µj) = 0.

The required convergence of µ0, µ1, µ2, µ3, . . . follows
directly from the fact that the last equality guarantees
also that (for more details see [2])

lim
j→∞

∑

A⊆XK1∪...∪Kn

|µj−1(A) − µj(A)| = 0.
�

Example 2 Let us conclude this section with an ex-
ample illustrating behavior of the Algorithm IPFP in
case of an inconsistent system of basic assignments. It
is clear that IPFP does not converge in this case, be-
cause, due to Theorem 1, otherwise it would have con-
verged to a joint extension of the given assignments,
which does not exist. However, based on our experi-
ments, there exist converging subsequences. This phe-
nomenon is known also from the probabilistic IPFP
[14].

Let us consider three basic assignments m1, m2, and
m3 defined on X{1,2}, X{2,3}, X{1,3}, respectively,
where, again, Xi = {ai, āi}. The focal elements of
these assignments as well as the respective values are
in Table 4.

Now, let us perform the IPFP process with µ0 that
is the same as in Example 1: µ0(A) = 1/255 for all
nonempty A ⊆ X{1,2,3}. A part of the computational
process is depicted in Table 5.

In this situation, the beginning of the process is not
interesting. But after a several cycles, we can see that
the iteration process goes through cyclical changes.
From this example we can see that there are three
convergent subsequences, namely

µ1, µ4, µ7, . . . , µ3k+1, . . .
µ2, µ5, µ8, . . . , µ3k+2, . . .
µ3, µ6, µ9, . . . , µ3k, . . .

focal elements values
m1 {ā1a2} 0.55

{a1ā2, ā1a2} 0.40
{a1a2, ā1a2, ā1ā2} 0.05

m2 {a2a3} 0.63
{a2a3, a2ā3, ā2a3} 0.22
{a2a3, a2ā3, ā2ā3} 0.15

m3 {ā1a3} 0.65
{a1a3, ā1a3, ā1ā3} 0.35

Table 4: Inconsistent assignments m1,m2,m3

In all our computational experiments it appeared that
the length of the cycle which the process goes through
corresponds to the number of basic assignments enter-
ing the computational process, and that the respective
subsequences converged.

2.2 IPFP with ◃D

Let us say at the very beginning of this section that
considering the operator ◃D leads to many open prob-
lems. One of the reasons is connected with the compu-
tational complexity of this operator. Namely, compu-
tational complexity of composition operators is, nat-
urally, closely connected with the number of focal el-
ements to be enumerated. As a rule, D-operator pro-
duces a higher number of focal elements in comparison
with F-operator. Moreover, in case of F-operator the
enumeration of a value of a basic assignment for each
focal element is got as a product of the respective pro-
jections of the focal element (i.e. a product of only
two numbers), for D-operator one needs to process
all the supersets of the respective projections. Thus,
we can apply the IPFP Algorithm with D-operator
only to very simple examples and even for them we
cannot compute too long sequences µ0, µ1, µ2, µ3, . . ..
Other difficulties connected with application of this
operator of composition will be formulated as open
problems. The first one is connected with the fact,
that in contrast to ◃F , composition ◃D of two proper
basic assignments need not be proper - it can achieve
negative values.

Open Problem 2 What are the necessary and suffi-
cient conditions guaranteeing that ◃D composition of
two proper assignments is also proper?

Example 3 Consider first the same system of three
consistent basic assignments as in Example 1, and
start the computational process again with µ0(A) =
1/255 for all nonempty A ⊆ X{1,2,3}. Assignments
µ1 and µ2 have now 99, and 70 focal elements, re-
spectively. Starting with µ3 all the remaining com-
putations concern 44 focal elements, and nearly half
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focal elements µ13 µ14 µ15 µ16 µ17 µ18 µ43 µ44 µ45{
a1a2a3, ā1a2a3,
ā1a2ā3, ā1ā2ā3

}
0.049 0.150 0.142 0.049 0.150 0.142 0.050 0.150 0.142

{
a1a2a3, ā1a2ā3,

ā1ā2a3

}
0.001 2 · 10−4 2 · 10−4 7 · 10−5 5 · 10−5 5 · 10−5 10−10 10−10 10−10

{
a1a2a3, ā1a2a3,
ā1a2ā3, ā1ā2a3

}
0.001 2 · 10−4 2 · 10−4 7 · 10−5 5 · 10−5 5 · 10−5 10−10 10−10 10−10

{
a1ā2a3, ā1a2a3,

ā1a2ā3

}
0.400 0.219 0.208 0.400 0.219 0.208 0.400 0.220 0.208

{ā1a2a3} 0.550 0.630 0.650 0.550 0.630 0.650 0.550 0.630 0.650

Table 5: IPFP ◃F : inconsistent marginals

focal elements µ3 µ4 µ5 µ6 µ7 µ100 µ1000

{a1ā2a3, ā1a2a3} 0.020 0.030 0.033 0.031 0.039 0.085 0.095
{a1a2a3, a1ā2a3, ā1a2a3, ā1ā2a3} 0.017 0.042 0.046 0.042 0.047 0.031 0.010

{a1a2ā3, a1ā2a3} 0.141 0.208 0.233 0.168 0.203 0.294 0.299
{a1a2ā3, a1ā2a3, a1ā2ā3} 0.103 0.152 0.140 0.101 0.122 0.014 10−4

{a1a2ā3, a1ā2ā3, ā1a2ā3, ā1ā2a3} 0.097 0.226 0.208 0.232 0.260 0.413 0.476
{a1a2ā3, a1ā2ā3, ā1a2ā3, ā1ā2a3, ā1ā2ā3} 0.097 0.226 0.208 0.232 0.260 0.413 0.476

{a1a2ā3, a1ā2ā3, ā1a2ā3} −0.047 −0.034 −0.045 −0.090 −0.051 −0.190 −0.228
{ā1a2ā3, ā1ā2ā3} −0.021 −0.020 −0.015 −0.001 0.004 0.012 0.001

Table 6: IPFP ◃D: converging sequence for consistent marginals

of them have negative values. After a thousand
of iterative steps the changes are so small that we
can take µ1000 as a limit of the computational pro-
cess. In agreement with Theorem 1 we can see that

m1
.
= m

↓{1,2}
1000 ,m2

.
= m

↓{2,3}
1000 and m3

.
= m

↓{1,3}
1000 .

A part of the computational process is depicted in
Table 6. We selected 8 focal elements, the first 6 of
them correspond to those from Table 3, the other 2
are chosen to present examples of focal elements with
negative values. Observe that the last focal element
switched its value from a negative one to a positive
one during the IPFP.

Example 4 It shows up that in contrast to the ap-
plication of ◃F , the Algorithm IPFP with ◃D need not
converge for a consistent system of marginal basic as-
signments. As an example consider the 3-dimensional
assignment m from Table 7 and its marginals m1 =
m↓{1,2},m2 = m↓{2,3}, m3 = m↓{1,3}. With µ0 as in
the previous examples, the sequence µ0, µ1, µ2, µ3, . . .
computed by the Algorithm IPFP does not converge
- it stabilizes in a loop of length 6 after approximately
560 iterations (i.e. µ601 = µ607, µ602 = µ608, . . .). The
strange behavior of this process is visible from Table 8,
where a selected part of focal elements are presented.
There are two phenomena that are in a way surpris-
ing. First, it is the length of the cycle (6), and the
fact that even focal elements may variate during the

focal elements m
{ā1ā2ā3} 0.225

{a1ā2ā3, ā1a2a3} 0.126
{ā1a2ā3, ā1ā2ā3} 0.594
{ā1ā2a3, ā1ā2ā3} 0.024

{a1ā2a3, a1ā2ā3, ā1ā2a3, ā1ā2ā3} 0.031

Table 7: Three-dimensional assignment m

cycle.

Open Problem 3 Under what conditions does the
sequence µ0, µ1, µ2, µ3, . . . computed by the Algorithm
IPFP with ◃D converge? When is the limit assign-
ment proper?

3 Summary and Conclusions

Using two different operators of composition for be-
lief functions that were studied in [6, 7], we designed
two versions of the iterative procedure presented as
Algorithm IPFP. If they converge, both of these al-
gorithms yield basic assignments that have the input
low-dimensional assignments for their marginals. But
this is perhaps the only property common to both of
them. Even in case that both the algorithms con-
verge, the results may be different. In fact, we con-
jecture that these algorithms yield the same results
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focal elements µ601 µ602 µ603 µ604 µ605 µ606 µ607 µ608 µ609

{ā1a2a3} −0.008 0 −0.047 0.036 0 −0.052 −0.008 0 −0.047
{a1ā2a3} −0.023 0.008 0.047 0.008 −0.007 0.052 −0.023 0.008 0.047
{a1ā2ā3} 0.008 −0.003 −0.123 −0.036 0.006 0.033 0.008 −0.003 −0.123
{ā1ā2a3} −0.076 0.012 0.348 −0.038 −0.051 0.279 −0.076 0.012 0.348
{ā1ā2ā3} 0.227 0.205 0 0.232 0.242 0 0.227 0.205 0

{a1ā2ā3, ā1a2a3} 0.110 0.082 0.157 0.066 0.071 0.157 0.110 0.082 0.157
{ā1a2a3, ā1ā2ā3} 0 0.043 0 0 0.054 0 0 0.043 0
{a1ā2a3, ā1ā2a3} 0.058 −0.004 0.055 0.050 0.001 0.055 0.058 −0.004 0.055
{a1ā2a3, a1ā2ā3} 0.076 0.034 0 0.038 0.046 0 0.076 0.034 0
{a1ā2ā3, ā1ā2a3} 0.044 0.020 −0.031 0.007 0.008 −0.031 0.044 0.020 −0.031
{ā1ā2a3, ā1ā2ā3} 0.044 0.020 −0.031 0.007 0.008 −0.031 0.044 0.020 −0.031
{a1ā2ā3, ā1a2ā3} 0.015 0.016 0.140 0.059 0.058 0.022 0.015 0.016 0.140
{ā1a2ā3, ā1ā2ā3} 0.535 0.576 0.593 0.542 0.535 0.505 0.535 0.576 0.593
{a1ā2ā3, ā1ā2ā3} 0.031 0.007 −0.140 0.031 0.033 −0.022 0.031 0.007 −0.140{
a1ā2a3, a1ā2ā3,
ā1ā2a3, ā1ā2ā3

}
−0.044 −0.020 0.031 −0.007 −0.008 0.031 −0.044 −0.020 0.031

Table 8: IPFP ◃D: non-converging sequence for consistent marginals

only in degenerate situations. As a rule, application
of ◃D yields basic assignments with greater number of
focal elements (compare Examples 1 and 3).

The algorithm employing ◃F manifests some of the
nice properties of the probabilistic IPFP: its conver-
gence is guaranteed for consistent systems of low-
dimensional assignments. Moreover, its significantly
lower computational complexity predestinates this
version of the algorithm to practical applications. An-
other its advantage follows from the fact that if the
input assignments are proper then the resulting ba-
sic assignment is also proper, which is not true for
the Algorithm based on ◃D. For example, when we
randomly generated three-dimensional basic assign-
ments, and applied the Algorithm IPFP with ◃D to
their two-dimensional marginals, only about every fif-
teens solution was proper.

As it was highlighted in one of the referee reports, the
application of the IPFP procedure may be extended
beyond probability theory to other topics as, for ex-
ample, that described in [9]. In fact, as the title of
the paper suggests, the authors see several ways how
to prolong the research in the field.
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Abstract

Dynamic Bayesian networks (DBN) are handy
tools to model complex dynamical systems
learned from collected data and expert knowl-
edge. However, expert knowledge may be in-
complete, and data may be scarce (this is typ-
ically the case in Life Sciences). In such cases,
using precise parameters to describe the network
does not faithfully account for our lack of in-
formation. This is why we propose, in this pa-
per, to extend the notion of DBN to convex sets
of probabilities, introducing the notion of dy-
namic credal networks (DCN). We propose dif-
ferent extensions relying on different indepen-
dence concepts, briefly discussing the difficulty
of extending classical algorithms for each con-
cept. We then apply DCN to perform a robust-
ness analysis of DBN in a real-case study con-
cerning the microbial population growth during
a French cheese ripening process.

1 Introduction

Dynamic Bayesian networks (DBNs) [36] extend
Bayesian networks (BNs) [37, 38] and form a convenient
formalism to describe complex dynamical systems. They
also extend the well-known Hidden Markov Models
(HMMs) [40] by representing the hidden state and the
observation in terms of several random variables. The
probabilistic and graphical natures of DBNs make them
attractive tools to integrate both expert knowledge and

1 Laboratoire d’Informatique de Paris VI (UPMC, CNRS UMR7606)
75004 Paris, France
2 UMR782 Génie et Microbiologie des Procédés Alimentaires.
INRA/AgroParisTech, 78850 Thiverval-Grignon, France
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Heudiasyc Centre de recherches de Royallieu F-60205 Compiegne Cedex
FRANCE

data in a single representation. The concept of DBNs
makes possible to (i) combine different sources of knowl-
edge; (ii) easily modify the model thanks to its modular
nature and (iii) integrate uncertainties. However, one
limitation of DBNs lies in the specification of parameters
that requires a substantial knowledge that is seldom
available. This is particularly the case when experimental
data are costly, such as in Life Sciences.

One way to overcome this difficulty is to use credal
sets [35, 44], i.e., convex sets of probabilities to model
the lack of knowledge about the parameters. Applied to
Bayesian networks, this idea corresponds to the concept of
credal networks (CN) [17, 19], in which each node of the
network is associated to a convex set of conditional prob-
abilities (possibly degenerated to a single element). Other
approaches such as possibilistic [3] or evidential networks
[45] follow the same objective but cannot be interpreted as
a proper extension of classical Bayesian Networks.

While the notion of credal network has received much at-
tention in the past years, it is not the case for its dynamic
extension. Indeed, the only works dealing with such ex-
tension consider specific models related to Markov Pro-
cesses [22, 26], in which computations on the full dynamic
network can be done separately for each time-step. Al-
though such cases are of high interest and can benefit from
efficient algorithms, there are many other cases where one
will need to perform inferences on a complete network not
reducible to a Markov model. This is especially the case
in Life and Food Sciences [1, 39], where the modelling
of non-linear, multi-scale dynamic processes (maturation
processes, evolution of interacting physicochemical phe-
nomena, . . . ) is often based on qualitative expert knowl-
edge and on limited experimental data. The use of Dy-
namic Credal networks (DCNs) extending DBNs seems
a good way to integrate such heterogeneous and scarce
knowledge.

The goal of this paper is two-fold: first to provide in Sec-
tion 3 a first theoretical and practical discussion of the
DBNs extension into DCNs, second to apply in Section 4
the DCNs framework to achieve a robustness analysis of
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DBNs in a real-world case study involving the growth of
yeast population during the Camembert-type cheese ripen-
ing. Preliminary notions are briefly recalled in Section 2.

2 Preliminary notions : DBN and CN

2.1 Dynamic Bayesian Networks

DBNs are classical Bayesian networks in which nodes
{Xi(t), i = 1 . . . n}, representing (discrete) random vari-
ables, are indexed by discrete time t. They provide a com-
pact representation of the joint probability distribution P

for a finite time interval J1, τK (we use Ji, jK to denote the
finite set of time indices {i, . . . , j}) defined as follows:

P (X(1) . . . ,X(τ)) =
n∏

i=1

τ∏

t=1

P (Xi (t) | Ui (t)) (1)

where Ui(.) denotes the set of parent nodes of a node Xi(.)
and P (Xi (t) | Ui (t)) denotes the conditional probability
function associated with the random variable Xi(t) given
Ui(t). X(t) = {X1(t), . . . , Xn(t)}, is called a “slice” and rep-
resents the set of all variables indexed by the same time
t. This joint probability P (X(1), . . . ,X(τ)) represents the
beliefs about possible trajectories of the dynamic process
X(t). DBNs assume the first-order Markov property which
means that the parents of a variable in time slice t must
occur in either slice t− 1 or t :

Ui(t) ⊂ X(t− 1) ∪X(t)\{Xi(t)} (2)

Moreover, the conditional probabilities are time-invariant
(first-order homogeneous Markov property):

P (Xi (t) | Ui (t)) = P (Xi(2)|Ui(2))) ,∀t ∈ J2, τK. (3)

To specify a DBN, we need to define the intra-slice topol-
ogy (within a time slice), the inter-slice topology (between
two time slices), as well as the parameters, i.e conditional
probabilities in Equation (3) for the first two time slices.

In this paper, we consider that Xi(t) are all discrete vari-
ables. Faced with continuous variables Xi, these ones will
be discretized. Let P tijk be the probability that Xi(t) = k,
given that its parents have instantiation j, i.e.

P tijk = P (Xi(t) = k | Ui(t) = j), (4)

for i ∈ {1, . . . , n}, j ∈ {1, . . . , ci} where ci is the number of
distinct configurations of Ui(t) and k ∈ {1, . . . , ri} where ri
is the number of values that node i can take.

2.1.1 Parameter learning and local elicitation

The techniques for learning DBNs are generally exten-
sions of the techniques for learning BNs. Different meth-
ods exist to learn the structure or the parameters from sub-
stantial and/or incomplete data (for overviews, we refer

readers to [5, 34]). In our case, we consider that the topol-
ogy is given (e.g., learned from expert knowledge).

The most commonly used and simplest method which will
be used in this paper is to estimate P tijk by the occurrence
rate of the event (Xi(t) = k,Ui(t) = j) in a training database
:

P tijk = Ntijk/
∑
k N

t
ijk (5)

where Ntijk denotes the number of times where the event
(Xi(t) = k,Ui(t) = j) occurs in database. As we assume the
first-order homogeneous Markov property (3), P tijk does
not depend on time and we can rewrite

∀t′ ∈ J2, τK, P t′ijk =

∑
tN

t
ijk∑

t
∑
k N

t
ijk

(6)

In the case where Ntijk = 0 for all k, the uniform distri-
bution is traditionally used as it maximizes the Shannon
entropy and corresponds to the Laplace indifference prin-
ciple.

A practical methodology able to incrementally build and
update model parameters from heterogeneous information
has been developed in [2] on the basis of Dirichlet model.
From a given network structure, it consists in using a pri-
ori Dirichlet distributions which are then updated through
Bayesian inference by expressing new pieces of informa-
tion into a frequentist form. This method also integrates
the confidence level on the different sources of informa-
tion.

2.1.2 Knowledge propagation - inference

The use of DBNs consists in "query" expressed as con-
ditional probabilities. The most common task we wish to
solve is to estimate the marginal probabilities

P
(
XQ(t′)|{XE(t), ∀t ∈ J1, τK}

)
, ∀t′ ∈ J1, τ ′K (7)

where XQ is a set of query variables, and XE is a set of evi-
dence variables. Inference consists in computing the prob-
ability of each state of a variable when we know the state
of other variables. In general, DBN inference is performed
using recursive operators and Bayes’ theorem that update
the belief state of the DBN as new observations become
available [36]. Due to the natural time ordering of the mod-
elled process, Ui(t) will usually be observed before Xi(t)
and that may help with the sequential updating of the con-
ditional probabilities as well as with the preservation of
the original conditional independence structure.

2.2 Credal Networks and strong extension

A credal network (CN) [17, 19] is an extension of BNs
where imprecision is introduced in probabilities by means
of credal sets [35]. CNs specify a closed convex set K(X)

of multivariate probability mass functions over the whole
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set of variables X. Under the strong extension [17] hypoth-
esis, the joint credal set K(X) over X may be formulated
as:

K(X) = CH



P (X) : P (X) =

n∏

i=1

Pi, Pi ∈ Ki



 (8)

where CH denotes the convex hull, Pi = P (Xi | Ui) and
Ki = K (Xi | Ui) is the closed convex set of probabil-
ity mass function for the random variable Xi given Ui.
In practice, it is sufficient to focus on the extreme points
ext[K (Xi | Ui)] of K (Xi | Ui) in Eq. (8). In our experi-
ments, we will limit ourselves to credal sets specified by
means of probability intervals [25], that is for all i = 1 . . . n

and j = 1 . . . ci:

Kij = CH

{
Pij : Pijk ∈ [P ijk, P ijk] ⊆ [0, 1], ∀k∑
k Pijk = 1

}
(9)

This model has the advantage of creating a small num-
ber of extreme points provided additional constraints :
∀k : P ijk − P ijk = {0, ε} and ε = 1 − ∑k P ijk is a
constant. For such a linear-vacuous mixture, the number
of vertices of K (Xi | Ui = j) is precisely the cardinal-
ity of Xi – assuming there is no modality k for which
P ijk = P ijk in which case | Xi | is an upper bound –
each vertex corresponding to the selection of a modal-
ity k for which P (Xi = k | Ui = j) = P ijk and therefor
∀k′ 6= k : P

(
Xi = k′ | Ui = j

)
= P ijk′ .

Inferences on a credal network comes down to assess
lower and upper probabilities, that is search bounds of
P (XQ|XE) within K(X) (under the strong extension hy-
pothesis) for some values of XQ.

3 Dynamical Credal Networks (DCNs) :
definitions and algorithms

This section introduces the notion of Dynamic Credal Net-
works (DCNs) and discusses their features.

3.1 Definition of Dynamic Credal Networks (DCNs)

A dynamic credal network is a DBN where conditional
probabilities P (Xi (t) | Ui (t)) (noted P ti ) are replaced by
credal sets K (Xi(t) | Ui(t)) (noted Kti ). We assume the
same first-order Markov property (2) as in DBNs (par-
ents only originate from same or previous time slice) and
Eq. (3) becomes

K (Xi(t) | Ui(t)) = K (Xi(2) | Ui(2)), ∀t ∈ J2, τK. (10)

Therefore, specifying a DCN requires the same effort as a
DBN but allows the user to provide conditional credal sets
rather than probabilities if these latter cannot be reliably
estimated (from data and/or experts).

3.2 Independence in DCN

When working with probability sets rather than precise
probabilities, the notion of stochastic independence can
be extended in several ways [15]. Within graphical mod-
els, the most commonly used extension is strong indepen-
dence, that induces the strong extension defined in Eq. 8.
It can be interpreted as a robust model of a precise yet ill-
known BN.

This is in contrast with the notions of epistemic irrele-
vance and independence whose semantic as belief models
is clearer. However, these notions encounters severe com-
putational difficulties [18], limiting their practical interest.
Recent results show that for particular models such as Hid-
den Markov ones, efficient algorithms can be used [22],
however they remain intractable for the kind of models
considered in this paper. This is why we focus on extend-
ing the notion of strong extension to dynamic schemes.

The most straightforward extension is to simply apply
strong independence to the whole network, i.e.,

K(X)st = CH



P (X) : P (X) =

n∏

i=1

τ∏

t=1

P ti , P
t
i ∈ Kti



 (11)

where X = (X(1), . . . ,X(τ)). We call this extension the dy-
namic strong extension and it is worth noting P ti 6= P t

′
i is

valid, t, t′ ∈ J2, τK.

However, when stepping to dynamic models, Condi-
tion (10) allows us to use the notion of repetitive indepen-
dence. This condition states that if two variables X,Y have
the same set of possible outcomes, that is ΩX = ΩY , and
governed by the same probability distribution belonging to
K (X), then the joint credal set K (X,Y ) is :

K (X,Y ) = CH{P (X)P (X) | P (X) ∈ K (X)}. (12)

Adapting this notion of independence to DCN, so that
probabilities of each time slice are assumed to be identical,
leads to a second extension, i.e.,

K(X)rp = CH

{
P (X) : P (X) =

∏n
i=1

∏τ
t=1 P

t
i ,

P2
i ∈ K2

i and P ti = P2
i ∀t ∈ J2, τK

}
(13)

that we call the dynamic repetitive extension. We have
K(X)rp ⊆ K(X)st, as K(X)rp is more constrained. In prac-
tice, the strong extension assumes that the dynamic net-
work is ill-defined and that its behaviour can change be-
tween time slices, while the repetitive extension assumes
that we seek a precise classical DBN who is partially
known.

Next sections investigate the differences between these
two extensions. In particular, we will see that some algo-
rithms extend more easily to one extension than to another.
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3.3 Inference algorithms in DCN

(D)CNs can be queried as (D)BNs were in Section 2.1.2
to get information about the state of a variable given ev-
idence about other variables, with respect to the network
extension. However, the use of credal sets makes the updat-
ing problem much harder, as it becomes an optimization
problem. As such, the computation of the lower bound on
P (XQ | XE) requires to minimize a quotient containing
polynomials :

P (XQ | XE) = min





∑
Xi∈X\XQ∪XE

n∏
i=1

τ∏
t=1

P ti

∑
Xi∈X\XE

n∏
i=1

τ∏
t=1

P ti

, P ∈ Kω(X)





(14)
with P : P (X) ∈ Kω(X) belonging to the dynamic strong
extension (ω = st) or dynamic repetitive extension (ω =

rp) of the network. An upper bound can be obtained
by maximizing (14). It is known that such a minimum
(or maximum) is obtained at a vertex of the dynamic
strong/repetitive extension.

Depending on (1) the structure of network, (2) the num-
ber of modality of variables and (3) the chosen exten-
sion (strong/repetitive), the updating problem will be more
or less complex to solve. Because inferences are already
hard in static credal networks, little work has been done
on DCNs (except for special cases already mentioned).
By unrolling a two-time slice network over T time steps,
the number of possible vertex combinations goes from∏
i,t=0

|ext[Kti ]|
∏
i,t=1

|ext[Kti ]| (with |ext[Kti ]| the number of

vertices of Kti ) in the case of repetitive independence, to∏
i,t=0

|ext[Kti ]|
∏
i,t=1

|ext[Kti ]|T−1 in the case of strong inde-

pendence. Given the potential number of vertices, approx-
imate algorithms seem more appropriate regarding DCNs.

Many algorithms, exact and approximate, have been pro-
posed to deal with CN. Some are generalizations of well
known (D)BNs algorithms. Among the approximate al-
gorithms, there are those that compute inner bounds, i.e.
bounds that are enclosed by the exact ones, outer bounds,
which enclose the exact ones, and those that perform ran-
domly.

3.3.1 Exact inference algorithms

The 2U algorithm [27] performs an exact rapid inference
in the case of binary tree-shaped (D)CNs with the assump-
tion of strong independence.

The CCM transformation [9] turns a (D)CN into a (D)BN
by adding transparent nodes before performing an Maxi-
mum A Posteriori (MAP) estimation over the latter to find
the best combination of vertices. It has the same complex-

ity as credal network inference, that is NPPPComplete,
and performs poorly with separately specified credal net-
works such as the one we used during our trials (because
of the sheer number of vertices).

Optimization techniques such as branch and bound over
local vertices of credal sets [21, 7] are also well suited to
medium-sized networks and can be stopped at any time to
give an approximate answer.

Other algorithms are based on a variable elimination
scheme from (D)BNs, such as Separable Variable Eval-
uation [20, 42] which keeps the separately specified credal
sets as separated as possible during propagation, and can
be mapped to an integer or a multi-linear program [24, 23].

3.3.2 Approximate inference algorithms

Regarding binary and DAG-shaped (DAG : Directed
Acyclic Graph) credal networks, algorithm L2U (Loopy
2U) [32] (similar to LBP (Loopy Belief Propagation) [46])
produces either inner or outer approximations, and its ef-
ficiency is mainly due to the bounded cardinality of vari-
ables and in lesser extent to ignoring loops.

Another way to handle credal sets complexity is to repre-
sent them by simpler means. Variational methods [31, 30]
choose a family of functions to approximate the ex-
act combination of credal sets to decrease computational
costs. Those functions are optimized according to some
criteria until convergence and the inference is then real-
ized in the network with the original credal sets replaced
by the new found functions.

The A\R(+)(+) algorithm [21] uses interval probability
arithmetic to approximate credal sets in a propagation
scheme in tree-shaped networks (with the use of some ad-
ditional constraints limiting the information loss in its en-
hanced version). The intervals produced are outer bounds
of the real ones. Although those algorithms are fast in
medium-sized network, they either produce too many ap-
proximations or are too complex to work with DCNs.

Another popular family of approximate algorithms pro-
ducing inner bounds is based on Monte-Carlo sampling
[29]. Several methods have been proposed to better guide
the search (simulated annealing [6], genetic algorithms
[8]) among the vertices of the (conditional) local credal
sets, but they require some tuning for more accurate re-
sults, otherwise they can lead to poor approximations.

Although there exist several inference algorithms, none al-
lows to do inference, in a realistic and practical way, on
networks capable of representing global complex system
of Life Sciences especially in Food Sciences. Indeed, net-
works is composed of a large number of interacting vari-
ables capable of describing the behaviour of microscopic
scales (as micro organism) involving macroscopic view (as
the evolution of sensory properties). In further inferences,
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we used a simple Monte-Carlo sampling algorithm [29]
which has the advantage as point of reference, as it applies
with the same easiness to dynamic repetitive and strong ex-
tensions (with a faster convergence for dynamic repetitive
extension).

4 DCN for Robustness in DBN

In this section, we apply the concept of DCN to perform a
robustness analysis of a learned precise DBN (both repeti-
tive and strong independence concepts well correspond to
this idea). We first recall some elements about robustness
in classical BN before proceeding to our study.

4.1 Robustness in BN

Roughly speaking, a robustness analysis is the study of the
behaviour of a model given small perturbations in its pa-
rameters. Robustness in Bayesian network is commonly
addressed using sensitivity analysis where the main con-
cern is to analyse the relationships between local network
parameters and global conclusions drawn based on the
BN. Sensitivity analysis has been largely studied by many
researchers [10, 4, 14, 11]. We propose here a small survey
of the main approaches.

The most common case of sensitivity analysis in BN is the
study of single-parameter influence [14, 33]. In a BN, a
parameter is a number in the CPT : p(xi|u) where xi is a
possible value for a random variable X and u is a possible
instantiation of the parents of X in the BN. In this frame-
work, a perturbation ε consists in modifying p(X|u) into

p(xj |u)[ε] =





ε where i = j
p(xj |u)·(1−ε)
1−p(xi|u)

otherwise.
(15)

Under covariation conditions, inferred posterior distribu-
tion of any variable in the BN then takes the form of a
quotient of two linear functions: c1·ε+c2

c3·ε+c4 . Efficient algo-
rithms have been proposed to assess the values of the ci

[43]. This kind of study can further be generalized to n-
way sensitivity analyses where n is the number of param-
eters. It has been applied for DBNs in [13]. However, the
results are often difficult to interpret [33].

Testing the sensitivity of the results of an inference can be
more globally performed in a different manner. Soft evi-
dence (i.e. uncertain evidence) is a way to disturb global
behaviour of the BN using (local) belief revision [41, 12].
However, even if the specification of the perturbations is
different, this methods still faces the same difficulty to
interpret the results when multiple local changes are per-
formed [11].

Sensitivity analysis in BN proposes tools to analytically
follow the change in posterior distributions as a function

of the parameters (or the beliefs) in local CPTs. As attrac-
tive as it might be, this is not exactly what it is asked in
robustness analysis. Indeed, the effects of numerous small
perturbations is not easy to be estimated with such analysis
(using derivative of sensitivity expressions for instance).
One would like to obtain a set of possible distributions for
the posterior as a result. [16] describes such an approach
but with a framework (epistemic independence) difficult
to use in the context of large and complex systems such as
DBNs. The next section extends and implements this ap-
proach by using DCN as a dedicated tool for specification
of sets of complex distributions.

4.2 DCN as a robustness analysis tool

In this paper, we propose a robustness analysis that con-
sists in perturbing the precise DBN by means of condi-
tional credal sets Kt

ij|ε=Kε(Xi(t)|U(t) = j, ε) such that for
all i = 1 . . . n, j = 1 . . . ci and ε ∈ [0, 1]:

Ktij|ε =

{
P tijk ∈ [(1− ε)P tijk, (1− ε)P

t
ijk + ε],

∑
k P

t
ijk = 1

}
(16)

The parameter ε may be understood as a perturbation coef-
ficient: the higher it is, the more imprecise Kt

ij|ε becomes.

4.2.1 Choosing ε

The perturbation should depend on the quantity of data
used to learn the DBNs as well as on the strength of the
intended perturbation. While the strength of the perturba-
tion should be the same over all the network, the number
of data used may differ significantly in different places.
We propose, to pick the ε used for a given (conditional)
probability, to use a function ψ(n, β) : N × [0, 1] → [0, 1]

where n corresponds to the quantity of data for learning
each P tij (that is n = Ntij in our case) and β the strength
of the perturbation, and to take ε = ψ(Ntij , β) to perturb the
conditional probabilities P tij of the network. The mapping
ψ should satisfy the following constraints:

• ψ(n, 0) = 0 and ψ(n, 1) = 1

• ψ is decreasing in n
• ψ is increasing in β

The first conditions ensure that no perturbation will keep
P tij unchanged, while a full perturbation will make the net-
work completely imprecise (this condition may be relaxed
into requiring only that ψ(0, 1) = 1). The two other con-
ditions ensure that a higher perturbation will induce more
imprecision (for a given data set), while more data will re-
sult in less imprecision (for a given perturbation). We may
also require that ψ(0, β) = 1 for any β > 0, that is no data
means full imprecision (unless no perturbation is applied),
and that limn→∞ ψ(n, β) = 0 for any β , that is the pertur-
bation tends to the null perturbation as data accumulates.

ISIPTA ’13: Dynamic Credal Networks: introduction and use in robustness analysis 163



The following function satisfies the conditions:

ψ(n, β) = βf(n) (17)

where f(n) is an increasing function of n. The natural log-
arithmic operator ln satisfies these properties and we use
f(n) = ln(n+ 1).

4.2.2 Keeping the constraint

Note that if P tijk = 0 because it corresponds to an hard
constraint in the network, it should be kept to 0 even when
perturbing the whole network by making it imprecise (only
non constraint probabilities should be made imprecise).
We will see in the next section that preserving such (physi-
cal) constraints indeed play a very important role to ensure
the good behaviour of the prediction dynamics.

4.3 Experiments on real-life case study

To illustrate our approach on a real case, we have focused
on a typical French product, namely the process of the
Camembert-type soft mould cheese ripening that is still ill
known and complicated to control [28]. During the ripen-
ing process, cheese represents an ecosystem and a biore-
actor where relationships exist between microbiological,
physicochemical and organoleptic changes which depend
on environmental conditions. Despite the number of ar-
eas involved in cheese research, available knowledge of
the cheese ripening process remains fragmented and per-
vaded with uncertainty. None of the approaches or inves-
tigations carried out up to now makes it possible to pro-
vide an explicit overview of the causal structure of associ-
ations between the underlying variables and an objective
interpretation of the cheese ripening process. From opera-
tional and scientific knowledge, the structure of a dynamic
Bayesian network providing a qualitative representation of
the coupled dynamics of micro-organism behaviour with
their substrate consumptions influenced by temperature
and involving the sensory changes of cheese during ripen-
ing has been defined [1]. Figure 1 displays a sub-section of
the DBN structure providing a representation of the cou-
pled dynamics of a yeast behaviour (Kluyveromyces marx-
ianus concentration (Km)) with their substrate consump-
tions (lactose concentration (lo) influenced by temperature
(T). We attempt to estimate the lower and upper mean time
evolution

XQ|E,ε(t) = minP∈Kε(X) EP (XQ(t)|XE(t), ∀t)
XQ|E,ε(t) = maxP∈Kε(X) EP (XQ(t)|XE(t),∀t)

(18)

(where EP (XQ(t)|XE(t)) denotes the mean time evolution
of XQ given XE) under some perturbation. The initial pre-
cise model has been learned by integrating (1) experimen-
tal trials; (2) simulated database stemming from existing
partial mechanistic models; (3) expert rules based to the
conservation laws of microbial activities.

T(t)

Km(t)

lo(t)

Km(t+1)

lo(t+1)

Time slice t Time slice t+ 1

Figure 1: Dynamic Bayesian network representing the coupled
dynamics Km growth versus lo consumptions influenced by
temperature during the cheese ripening process.

In our experiment, a simple Monte-Carlo sampling algo-
rithm over vertices is used to draw inference. The reasons
for using such an algorithm are that (1) producing exact
inference is too costly, even for small DCN with few time
steps (here, 3 variables over 14 time steps), (2) it provides
satisfactory bounds that are guaranteed to be inside exact
ones and (3) it is sufficient in the present case, as our pri-
mary objective is not algorithmic efficiency.

4.3.1 Forward propagation

Forward propagation consists in trying to estimate

Km(t)|{Km(1), lo(1), T (1), . . . , T (τ)}
lo(t)|{Km(1), lo(1), T (1), . . . , T (τ)}

(19)

for all t ∈ [1, τ ], using Eq. (18) to test the robustness of
predictions. All temperatures are constant (T (1) = . . . =

T (τ) = 12oC) and τ corresponds to the day before the wrap-
ping of cheeses, namely τ = 14 .

The Monte-Carlo sampling is stopped when lower and up-
per expectation bounds were not improved in the last 4000
samplings. In all our results about forward propagation,
we have not observed differences between the dynamic
strong and repetitive extension and we currently investi-
gate whether it is always true in the case of forward prop-
agation.

Figure 2 displays the upper and lower mean time evolu-
tions of Km and lo for different perturbation levels where
parameter learning have only been carried out from six ex-
perimental trials. We may observe that (1) the precise in-
ferences of Km seem rather biased towards a rapid growth
(line corresponding to β = 0 close to upper expectations);
(2) Km may decrease (a physically impossible phenom-
ena) even for relatively small perturbations (β = 0.6 and
mean perturbation level ε = 0.124) due to the absence of
constraints based on conservation laws.

Figure 3 displays the upper and lower mean time evolu-
tions of km and lo when constraints, based on conserva-
tion laws, are added. The effect of adding or preserving
the constraints is obvious in the perturbed results. How-
ever, we may remark that the precise network is almost
unchanged when constraints are added. This means that

164 Matthieu Hourbracq & Cédric Baudrit & Pierre-Henri Wuillemin & Sébastien Destercke



Figure 2: Upper and Lower mean evolutions of Km and lo ac-
cording to different β values for forward propagation, without
constraints. ε =mean contamination level

constraints play a secondary role when network parame-
ters are well-estimated, however the comparison of Fig-
ures 2 and 3 shows that preserving them in case of bad
estimation ensures more robustness in the inferences.

Figure 3: Upper and Lower mean evolutions of Km and lo ac-
cording to different β values for forward propagation, with con-
straints. ε =mean contamination level

4.3.2 Forward-backward propagation

Forward-backward propagation consists in trying to esti-
mate

Km(t)|{Km(1), lo(1),Km(τ), lo(τ), T (1), . . . , T (τ)}
and

lo(t)|{Km(1), lo(1),Km(τ), lo(τ), T (1), . . . , T (τ)}
(20)

for all t ∈ [1, τ ], using Eq. (18) in order to test the robust-
ness of predictions. Monte-Carlo sampling was done as in
the previous experiment.

Figure 4 displays the upper and lower mean time evo-
lutions of km and lo for different perturbations with the
dynamic repetitive extension, while Figure 5 displays the
same results for the dynamic strong extension without the
preservation of constraints.

Figure 4: Upper and Lower mean evolutions of Km and lo ac-
cording to different β values and dynamic repetitive extension.

Figure 5: Upper and Lower mean evolutions of Km and lo ac-
cording to different β values and dynamic strong extension.

In the case of forward-backward propagation, the results
from the two extensions do not coincide in general. How-
ever, the bounds obtained with the dynamic strong exten-
sion are sometimes inside those obtained for the repeti-
tive extension, meaning that the sampling algorithm has
not reached optimal bounds (indeed, K(X)rp ⊆ K(X)st

by definition). We may also observe that the decreasing
of Km is less severe than in forward propagation even for
high β value because Km(τ) and lo(τ) are now evidences.
Figure 6 displays the results of forward-backward infer-
ence with the dynamic strong extension when constraints
are preserved. Again, we can see that preserving such con-
straints has a serious effect on the results precision.
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Figure 6: Upper and Lower mean evolutions of Km and lo ac-
cording to different β values and dynamic strong extension, with
constraints.

5 Conclusion

There are complex dynamical processes for which no de-
terministic model describing the complete process exists.
In such cases, dynamic Bayesian networks are convenient
models that allow to include expert knowledge, data and
variable interaction in a single framework. However, they
do not allow for a faithful representation of incomplete
knowledge or of scarce data, features that are inherent to
the complexity of bio-physicochemical phenomena occur-
ring in Food and Life Sciences.

In this paper, we have discussed how DBNs can be ex-
tended to include credal sets and cope with such incom-
pleteness and imprecision. We have introduced the concept
of dynamic credal networks and have proposed the con-
cepts of dynamic repetitive and strong extensions. While
the latter can be seen as a straightforward extension of
classical credal networks, the former considers repetitive
independence to allow the model to preserve a temporal
regularity. Inference algorithms of credal networks may
extend better to one case than to the other, depending on
their characteristics.

We have proposed to apply such DCN to the problem of
robustness analysis, introducing an easy method to per-
turb a given precise network and performing some exper-
iments on a real-case study concerning microbial popula-
tion growth. These experiments have shown that includ-
ing constraints (often provided by expert knowledge) in
the network is essential in case of bad estimation of pa-
rameters, as they ensure more robustness, while such con-
straints seem unnecessary in case of good estimation.

We have also observed that in the case of forward propaga-
tion (evidences only on nodes without parents), inferences
for the strong and repetitive extensions coincided. We are

currently investigating under which conditions inferences
of strong and repetitive extensions coincide.

In further works, DCNs should enable us to determine the
contribution of imprecision and/or incompleteness on the
outcomes of a model in order to know if an ambiguous an-
swer is due to a lack of information or due to a random
phenomenon. That is, we plan to develop refined sensi-
tivity analysis techniques based on their use. They should
thus determine key variables and/or key phenomena for
which it will be necessary to acquire more information.
Finally, we also plan to investigate their usefulness in de-
termining optimal control commands.
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Abstract

We utilize second-order probability distributions for
modeling second-order information over imprecise ev-
idence in the form of credal sets. We generalize the
Dirichlet distribution to a shifted version, denoted the
S-Dirichlet, which allows one to restrict the support
of the distribution by lower bounds. Based on the
S-Dirichlet distribution, we present a simple combi-
nation schema denoted as second-order credal combi-
nation (SOCC), which takes second-order probability
into account. The combination schema is based on a
set of particles, sampled from the operands, and a set
of weights that are obtained through the S-Dirichlet
distribution. We show by examples that the second-
order probability distribution over the imprecise joint
evidence can be remarkably concentrated and hence
that the credal combination operator can significantly
overestimate the imprecision.

Keywords. Second-order credal combination, impre-
cise probability, credal sets, second-order probability,
combination, evidence

1 Introduction

One common way of representing belief imprecisely is
by so called credal sets [19], i.e., a closed and convex
set of (discrete) probability distributions. If one uti-
lizes this belief structure in a Bayesian context, where
a prior distribution is updated to a posterior by a like-
lihood function, one ends up with what is referred to
as credal set theory [8, 18], similar to robust Bayesian
theory [1, 2, 4, 14] but without the sensitivity inter-
pretation. Credal set theory can be thought of as a
straightforward generalization of Bayesian theory to
imprecise probability since Bayes’ theorem is applied
point-wise on all elements in a prior credal set and a
set of likelihood functions. In fact, Bayesian theory is
the special case of credal set theory when all sets are
singletons.

Karlsson et al. [18] have previously shown that credal
set theory can yield posterior credal sets that are
highly imprecise and that this extra imprecision can
have a deteriorating effect on decision-making, even
though there exists inherent imprecision in the deci-
sion situation. The main focus in this paper is to take
one step further than only modeling imprecision by
adding information in the form of second-order proba-
bility [9, 20, 28], thus qualifying the imprecision. This
type of research was briefly initiated by Karlsson et
al. [17] where the consequences of modeling second-
order probability was explored by using the uniform
distribution in the simple case where only two states
were present in the state space. In that case, it was
found that the second-order probability over posterior
imprecision can be considerably skewed.

In order to model different second-order probability
distributions, for any number of states, we will here
generalize the Dirichlet distribution to allow for non-
zero lower bounds, denoted the shifted Dirichlet dis-
tribution (S-Dirichlet). Compared to the Dirichlet
distribution, the S-Dirichlet distribution has twice as
many parameters since for each variable there is the
usual Dirichlet parameter but also a lower bound that
allows one to restrict the support of the distribution.
The unique family of second-order distributions that
factorizes into marginals, presented in Sundgren et
al. [27], is a special case of the S-Dirichlet distribu-
tion with fixed Dirichlet parameters. In this case,
the joint second-order distribution equals the normal-
ized product of its own marginal distributions and do
not model any dependencies between first-order prob-
ability other than the necessary requirement that the
probabilities sum to one.

We will utilize the S-Dirichlet distribution for explor-
ing the consequences of modeling second-order prob-
ability over imprecise evidence, in the form of credal
sets, which we combine into a single imprecise joint ev-
idence, also in the form of a credal set, while preserv-
ing second-order information. We introduce a simple
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particle based method for performing the computa-
tion and we denote such a schema by second-order
credal combination (SOCC). The purpose is to utilize
this schema in order to explore the concentration and
placement of the resulting particle cloud. Our schema
is based on considering likelihoods as first-order evi-
dence and second-order probability in the form of the
S-Dirichlet distribution, however, it should be noted
that there exists previous approaches where likeli-
hoods has been considered as a possibilistic second-
order (hierarchical) model [5].

The paper is organized as follows: in Section 2, we
formalize and give an overview of the problem of
combining independent pieces of evidence from dif-
ferent sources. In Section 3, we generalize the Dirich-
let distribution to the shifted version. In Section 4,
we present a simple method for performing SOCC.
Lastly, in Section 5, we summarize the paper and pro-
vide our conclusions.

2 Preliminaries

We here present some background material that the
remaining paper relies on. We start by providing a
general overview of the problem of combining inde-
pendent pieces of evidence. Based on this overview,
we then present how the combination problem can
be tackled within the framework of credal sets [19],
namely by using the credal combination operator also
known as the robust Bayesian combination operator
[1, 2].

2.1 Combination of Evidence

Combination of independent pieces of evidence from
multiple sources, e.g., sensors, is a problem that has
been extensively studied within many different vari-
ants of evidence theory, e.g., [10, 22, 24]. Common to
all these theories is that evidence are represented im-
precisely by so called mass functions which operate on
the power set of some state space. Pieces of evidence
are combined utilizing a so called combination oper-
ator, e.g., Dempster’s rule of combination [22]. One
important aspect to consider when performing such
combination is that of independence. Loosely, this
means that one piece of evidence should not be infor-
mative regarding the other piece (see further [23]).

The problem of combining evidence has not been
equally well studied under a Bayesian perspective or
within the framework of credal sets. However, Arn-
borg [1, 2] has explored the relationship between ro-
bust Bayesian theory [4, 14], which can be considered
a sensitivity interpretation of credal sets, and evidence
theory. He found that the results of these theories can

even be disjoint. One key observation when consid-
ering the combination problem within a Bayesian or
credal framework is that it is the likelihoods that con-
stitute evidence. Let us further elaborate on this in
the next section.

2.2 Credal Combination of Evidence

Since the credal combination operator [15, 18], intro-
duced as the robust Bayesian combination operator by
Arnborg [1, 2] (we deliberately avoid using this ter-
minology since it imposes a sensitivity interpretation
of the imprecision), is a direct generalization of its
Bayesian counterpart, we start by elaborating on how
the latter can be derived. The derivation is similar
to Karlsson et al. [18], and is inspired by Arnborg
[1, 2]. Assume that we have a random variable X
for which we are uncertain about the true value. Let
the state space for X be denoted by ΩX ,

⋃n
i=1{xi}

and that we can obtain observations y1 ∈ ΩY1 and
y2 ∈ ΩY2 . We can then use Bayes’ theorem in order
calculate the posterior distribution, or belief, regard-
ing the true value of X given these observations:

p(X |y1, y2) =
p(y1, y2|X)p(X)∑

x∈ΩX

p(y1, y2|x)p(x)
. (1)

From the above equation, we see that the observations
y1 and y2 only affect the posterior through the joint
likelihood p(y1, y2|X), which hence constitutes the ev-
idence based on the observations. Now by assuming
conditional independence, we obtain:

p(y1, y2|X) = p(y1|X)p(y2|X), (2)

i.e., one observation is not informative about the
other given that we know the true state of X . The
above equation is essentially all that we need in
order to combine two pieces of evidence in the form
of likelihood functions into a single joint evidence.
However, in order to avoid a monotonically decreas-
ing joint evidence, it is convenient to normalize the
joint evidence to a probability function. By also
normalizing the likelihoods, we have constructed
an operator where both the operands and result
are evidences in the form of probability functions.
Note that these normalizations do not affect the
resulting posterior distribution since it is only the
relative strengths of likelihoods that determines the
posterior (see further Karlsson et al. [18] for more
detail). Based on this line of reasoning, we are now
ready to define the Bayesian combination operator
[1, 2, 15, 18]:
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Definition 1. The Bayesian combination operator
ΦB is defined as

ΦB(p̂(y1|X), p̂(y2|X))) , p̂(y1|X)p̂(y2|X)∑

x∈ΩX

p̂(y1|x)p̂(y2|x)
, (3)

where p̂(yi|X), i ∈ {1, 2}, are normalized likelihood
functions satisfying conditional independence in the
sense of Equation (2). The operator is undefined iff∑

x∈ΩX
p̂(y1|x)p̂(y2|x) = 0.

Let us continue by elaborating on how the credal com-
bination operator can be derived based on Def. 1.
Since we now move into the domain of imprecise prob-
ability, we are allowed to utilize a closed and convex
set of probability distributions, i.e., a credal set [19].
Convexity enables one to perform computation by the
sets’ extreme points (see further Karlsson et al. [18,
Theorem 2]). Now, instead of evidence in the form
of a single normalized likelihood function, we have
credal sets of such functions, denoted by P̂(y1|X) and
P̂(y2|X), which we want to combine into a single joint
evidence P̂(y1, y2|X). In order to regard the evidences
as independent, the extreme points needs to factorize,
denoted strong independence [7], i.e., for each extreme
point p̂e(y1, y2|X) we have:

p̂e(y1, y2|X) = p̂(y1|X)p̂(y2|X) (4)

where p̂(yi|X) ∈ P̂(yi|X), i ∈ {1, 2}. The combi-
nation is then performed by the credal combination
operator, which simply applies the Bayesian combi-
nation operator point-wise on each combination of
functions from the operand sets and as last step one
applies the convex-hull operator [1, 2, 15, 18]:

Definition 2. The credal combination operator ΦC is
defined as

ΦC(P̂(y1|X), P̂(y2|X))) ,

CH
({

ΦB(p̂(y1|X), p̂(y2|X))) :

p̂(yi|X) ∈ P̂(yi|X), i ∈ {1, 2}
})

,

(5)

where P̂(yi|X), i ∈ {1, 2}, are credal sets of nor-
malized likelihood functions satisfying strong indepen-
dence in the sense of Eq. (4), ΦB is the Bayesian
combination operator, and CH denotes the convex
hull. The operator is undefined iff there exist a pair
p̂(y1|X) ∈ P̂(y1|X) and p̂(y2|X) ∈ P̂(y2|X) for which
ΦB is undefined.

Note that when only singleton sets are used as
operands, the credal combination operator is equiv-
alent to the Bayesian counterpart.

One important type of credal set that we will use
throughout the article is the probability simplex, i.e.,
the set of all probability distributions over a given
state space, formally defined as:

Definition 3. The set of all probability distributions
P∗(X), i.e., the probability simplex, over a given state
space ΩX is defined as

P∗(X) ,
{

p(X) : p(x) ≥ 0,
∑

x∈ΩX

p(x) = 1

}
. (6)

Another important concept with respect to imprecise
probability is the degree of imprecision of a credal
set. When we refer to “imprecision” in this article we
perform averaging of the imprecision for single states
[29, 16]:

Definition 4. The degree of imprecision I(P̂(y|X))
of a credal set of normalized likelihood functions
P̂(y|X) is defined as:

I(P̂(y|X)) , 1

|ΩX |
∑

x∈ΩX

(
max

p̂(y|X)∈P̂(y|X)
p̂(y|x)

− min
p̂(y|X)∈P̂(y|X)

p̂(y|x)

) (7)

Please note that we only include the above definition
to unambiguously declare the term imprecision. It
will not be utilized for any computation in the paper.

3 Shifted Dirichlet Distributions

Probability values can be considered as random vari-
ables themselves and the corresponding distributions
over such variables is referred to as a second-order
probability distribution [9, 20, 28]. Any probability
distribution that has support on the probability sim-
plex (Def. 3), e.g. a Dirichlet distribution, can be seen
as a second-order probability distribution.

The Dirichlet family of distributions can be general-
ized to have support on subsets of the probability sim-
plex by using lower bounds li on the random variables
Pi corresponding to first-order probabilities. Just as
with related models such as possibility measures [30],
belief functions [22], Choquet capacities of order 2 [6]
and coherent upper and lower probabilities [25], lower
bounds li of probabilities determine upper bounds by
1 − ∑

j 6=i li. There are other possibilities for lower
and upper bounds for the support of second-order
probability distribution, e.g., it is possible to give
lower and upper bounds for all but one of the first-
order probabilities as in, e.g., Sundgren et al. (2009)
[26], but for simplicity we give lower bounds li to all
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n = |ΩX | random variables Pi such that
∑n

i=1 li ≤ 1
and

∑n
i=1 Pi = 1, li ≤ Pi ≤ 1 −∑j 6=i li.

A probability distribution whose support has been
shifted needs renormalization to remain a probabil-
ity distribution. Let us then look at the probability
density function of the Shifted Dirichlet family that
allows for non-zero lower bounds. If

∑n
i=1 li ≤ 1 and∑n

i=1 Pi = 1, li ≤ Pi ≤ 1 −∑j 6=i li then the function:

f({Pi}n
i=1,{αi}n

i=1, {li}n
i=1) =

Γ

(
n∑

i=1

αi

)
n∏

i=1

(Pi − li)
αi−1

(
1 −

n∑

i=1

li

)∑n
i=1 αi−1 n∏

i=1

Γ(αi)

,
(8)

is the probability density function of a probability dis-
tribution, where Pi are random variables, αi are the
parameters of a proper Dirichlet distribution and li
are parameters that determine lower bounds of the
variables Pi (see the Appendix for a proof). Note
that f is a function of Pi only ({αi}n

i=1 and {li}n
i=1

are parameters).

4 Second-Order Credal Combination

Now assume that two agents, i ∈ {1, 2}, for two dif-
ferent types of sensors, have extracted features yi and
that the agents based on this express imprecise in-
dependent evidence through lower bounds on normal-
ized likelihoods {lji ≤ p̂(yi|xj)}n

j=1 where
∑n

j=1 lji ≤ 1.
These lower bounds can then be utilized in order to
construct evidence in the form of credal sets of nor-
malized likelihoods by:

P̂(yi|X) ,
{

p̂(yi|X) :

lji ≤ p̂(yi|xj),

n∑

j=1

p̂(yi|xj) = 1

}
.

(9)

In addition, the agents also express theirs beliefs over
these imprecise operands by specifying alpha-values
for the S-Dirichlet distribution, i.e., {αi

j}n
j=1. The

goal then is to construct a schema for combination
that do not only takes evidence in the form of credal
sets into account but also second-order probability in
the form of S-Dirichlet distributions. We will de-
note such schema by second-order credal combination
(SOCC).

In order to achieve a computationally feasible schema
for SOCC, we propose a simple method for approx-
imating the second-order distribution over the joint
evidence by simulation [12, 3]. Typically, these types

of simulation utilize a set of so called particles1, i.e.,
samples, and a set of corresponding weights of these
particles. Such a representation has, as an example,
previously been proposed as a model for epistemic
reliability by Gärdenfors and Sahlin [11]. Now, we
can obtain a set of particles, denoted {p̂j(yi|X)}m

j=1

where each p̂j(yi|X) ∈ P̂j(yi|X), and a set of weights,
denoted {wi

j}m
j=1, by expanding a grid with a given

precision over each operand. At each point in the
grid we can compute the density value of the S-
Dirichlet and then normalize with respect to all points
in the grid [12, Chapter 11]. We can then use the
grid as a basis for drawing m particles with replace-
ment. Given these particles {p̂j(yi|X)}n

j=1, and the
S-Dirichlet density, we can obtain the corresponding
weights by:

wi
j =

f({p̂j(yi|xk)}n
k=1, {αi

j}n
j=1, {lij}n

j=1)
n∑

j=1

f({p̂j(yi|xk)}n
k=1, {αi

j}n
j=1, {lij}n

j=1)

. (10)

where f is the S-Dirichlet density defined by Eq. (8).
Since we now have particles and weights:

Λi , {(p̂j(yi|X), wi
j)}m

j=1 (11)

from each operand i ∈ {1, 2}, we can compute an
approximation of the second-order distribution over
the joint evidence by combining pairs of particles:

Λ1,2 ,
{(

ΦB(p̂j(y1|X), p̂j(y2|X)),

w1
j w2

j∑m
j=1 w1

j w2
j

)}m

j=1

.

(12)

We can combine the above representation with a new
operand by drawing a number of particles with re-
placement from Λ1,2 where the sampling probability
for each particle is given by its weight (similar to re-
sampling in the case of particle filtering [3]). The
difference is that since we already have a particle rep-
resentation for Λ1,2 we do not have to expand a grid
for that operand.

In addition to the above described combination
schema one can also perform credal combination, i.e:

P̂(y1, y2|X) , ΦC(P̂(y1|X), P̂(y2|X))) . (13)

By doing so, one preserve information about the ex-
treme values, which could be valuable for a decision-
maker in applications where there exists a strong risk
component.

1The term “particle filtering” is frequently used in the track-
ing literature [3].
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Figure 1: The figures depict the probability simplex for three states where the upper figures show operands
for Eq. (14) and Eqs. (15) – (17), and the lower figures show the result of performing SOCC. The intensity of
grey shows the weights of the particle (identical particles have been merged by adding the weights), i.e., darker
particles have more weights. Squares show extreme points of the credal sets, triangles show the expected value
with respect to the particles, diamonds show the centroid of the credal sets, and the uniform distribution over
ΩX is indicated with a cross. The grid used for the operands has been obtained through probability vectors of
rational numbers (a, b, c)/40, where a+b+c = 40, satisfying the lower bounds. In the figures, m = 200 particles
have been sampled.

4.1 Examples

Let us now study SOCC through some examples
where we use the S-Dirichlet distribution for express-
ing belief over imprecise operands and explore the
appearance of the second-order distribution over the
imprecise joint evidence. Assume that the two agents
provide the following lower bounds on normalized like-
lihoods:

l1 = (0.1, 0.4, 0.1)

l2 = (0.4, 0.1, 0.1) ,
(14)

which then can be used in Eq. (9) for constructing
P̂(y1|X) and P̂(y2|X), respectively. Given these lower
bounds, we will explore the result of SOCC for three
different, somewhat arbitrarily chosen although with

some intuition, S-Dirichlet distributions:

α1 = α2 = (1, 1, 1) (15)

α1 = α2 = (3, 3, 3) (16)

α1 = (1, 3, 1), α2 = (3, 1, 1) , (17)

where Eq. (15) corresponds to the uniform (Bayes-
Laplace) distribution; Eq. (16) is a case where the
center of the credal sets is reinforced; and Eq. (17) is
a case where the corner closest to some state has been
reinforced. The result of applying SOCC on Eq. (14)
and Eqs. (15) – (17) is shown in Fig. 1.

We see that the uniform distribution, i.e., Fig. 1(a)
and 1(d), yields a particle cloud that is more scat-
tered compared to the other S-Dirichlet distributions.
Furthermore, we see that utilizing the S-Dirichlet
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Figure 2: The figures depict the probability simplex for three states where the upper figures show operands for
Eq. (18) and Eqs. (15) – (17), and the lower figures shows the result of performing SOCC. The indicators and
other settings are identical as in Fig. 1.

distribution that emphasizes the corners, defined by
Eq. (17) and shown in Figs. 1(c) and 1(f), yields an
expected value that has a lower probability for state
x3 than the others.

One key observation shown by Figs. 1(e) and 1(f), is
that the particle cloud is fairly concentrated within
the credal set, which in a sense means that the credal
combination operator to some degree overestimates
the imprecision. Such an overestimation is even more
evident in the following example defined by:

l1 = (0.01, 0.7, 0.01)

l2 = (0.7, 0.01, 0.01) ,
(18)

and shown in Fig. 2. If one would have ignored the
particle cloud in this example and only base a deci-
sion upon the posterior imprecision, it is quite likely
that the true state could be x3 since the lower right
extreme point is quite close to the lower right ex-
treme point of the simplex. Such results are some-
what counter-intuitive when interpreting what the ev-
idence from the agents actually express, i.e., evidence

for x1 and x2, and both pieces constitute counter evi-
dence against x3 since the operands are positioned far
away from the corner corresponding to x3. However,
when combining the two lower right extreme points
of the operands, the states x1 and x2 are more or less
eliminated by the agents, since both of these extreme
points are close to the boundary of the simplex where
the probability of the these states is close to zero, in
contrast to the probability of state x3, which is not
close to any boundary in relative terms. Therefore
these lower right extreme points of the operand credal
sets gets reinforced to the lower right extreme point of
the joint evidence. This case bares close resemblance
to Zadeh’s counter example [31] against Dempster-
Shafer theory [22]. In that example, when combining
evidence in the form of mass functions, one ends up
with a result where all mass lies on the single state
that the pieces of evidence only weakly indicated (see
further Karlsson et al. [18]). In contrast, from the
particle clouds and expected values, we see a clear
concentration around the left boundary of the joint
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evidence; hence in agreement with the intuition that
the true state is not likely to be x3. If the mass instead
are concentrated around the lower extreme points of
the operands, e.g., by using an S-Dirichlet with the
following parameters instead:

α1 = (1, 1, 3), α2 = (1, 1, 3) , (19)

we obtain the results seen in Fig. 3. In contrast to the
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p(y|x2) = 1 p(y|x3) = 1

(a) Operands given Eq. (18) and Eq. (19)

0 2

0

3
2

p(y1, y2|x1) = 1

p(y1, y2|x2) = 1 p(y1, y2|x3) = 1

(b) SOCC given Eq. (18) and Eq. (19)

Figure 3: The figures depict the probability simplex
for three states where the operands are defined by
Eqs. (18) – (19). The indicators and other settings
are identical as in Fig. 1.

former case, the mass is fairly uniformly distributed
over the joint credal set.

The cases shown in Figs. 2 – 3 demonstrates that
second-order information could be valuable to a
decision-maker when imprecision in decision problems
are modelled.

5 Summary and Conclusions

We have generalized the Dirichlet distribution to the
S-Dirichlet distribution, where the Dirichlet parame-

ters can be used to model different second-order prob-
ability distributions over a restricted region defined
by lower bounds. Based on the S-Dirichlet distri-
bution, we presented a simple combination schema,
denoted as second-order credal combination (SOCC),
which takes second-order probability into account.
The combination schema is based on a set of particles,
sampled from the operands, and a set of weights that
are obtained through the S-Dirichlet distribution. We
then gave some example of SOCC utilizing different
types of S-Dirichlet distributions. By the examples,
we showed that the particle cloud over the joint evi-
dence can be remarkably concentrated in comparison
to the credal set obtained by credal combination.

One new feature that is enabled through SOCC is
that it provides a grounded way of selecting a single
probability function from the credal set to base one’s
decision upon; simply use the expected value with re-
spect to the particle cloud. Such a schema is useful
when a single decision is necessary, something that is
common in many application scenarios, and is simi-
lar to what Smets and Kennes [24] has proposed in
the transferable belief model, i.e., as long as a single
decision does not have to be implemented, use mass
functions, otherwise transform the mass function to
a single probability function and use that for decid-
ing on a single state. Utilizing the expected value of
the particle cloud should be put in contrast to utiliz-
ing the centroid distribution, i.e., the expected value
with respect to a uniform second-order distribution
over the joint evidence. Since uniformity is in general
not the case, as is seen in Figs. 2(d) – 2(f) (see also
Karlsson et al. [17]), there is in principle no reason
to utilize the centroid. Another alternative is utilizing
the maximum entropy distribution [1, 2], representing
a cautious choice, however, in applications without a
risk component, the maximum entropy distribution is
likely to be too cautious.

Given the examples where the particle clouds seems to
be quite concentrated in comparison to the resulting
credal sets, one legitimate question is whether or not
it is reasonable to utilize the credal combination oper-
ator solely, i.e., without modeling second-order prob-
ability. Could it be so that it is always preferable to
model second-order probability when imprecision ap-
pears in a decision problems? Perhaps the credal com-
bination operator can be appropriate to utilize when
the imprecise operands are a consequence of small
perturbations of some precise evidence as is done in
sensitivity analysis (robust Bayesian theory) [4, 14].
In such a setting it seems reasonable to only model
imprecision, and not second-order probability, due to
that only low degrees of imprecision in the operands
are considered. For these cases one is likely to infer
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the same conclusions irrespective of any second-order
probability since the perturbation of the operands is
performed so that every point in the perturbed set is a
reasonable precise evidence. Consequently, every per-
turbed point in the resulting joint evidence is a rea-
sonable joint evidence that a decision maker should
be willing to act upon, irrespective of the amount of
density such a point possesses.

When the imprecise operands are not a consequence
of sensitivity analysis, i.e., when the degree of impre-
cision of the operands could be considerably higher,
then, as our results suggest, second-order probabil-
ity is likely to be an important modeling tool that
cannot be neglected without consequences. In our fu-
ture research, we will therefore continue by exploring
how one can perform different modeling tasks using
second-order probability, i.e., how SOCC can be ap-
plied in an application scenario.
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Appendix

We here prove Eq. (8). Let us use the following short-
hand notation (n = |ΩX |):

γ ,
Γ

(
n∑

i=1

αi

)

n∏

i=1

Γ(αi)

. (20)

We need to show that:

∫

∑n
i=1 Pi=1
Pi≥li

γ

n∏

i=1

(Pi − li)
αi−1

(
1 −

n∑

i=1

li

)∑n
i=1 αi−1

dP = 1 . (21)

Since a proper Dirichlet distribution has probability
density function:

f({Pi}n
i=1, {αi}n

i=1) = γ
n∏

i=1

Pαi−1
i , (22)

we know that:

∫

∑n
i=1 Pi=1
Pi≥0

γ
n∏

i=1

Pαi−1
i dP = 1 . (23)

Let us replace Pi with Pi − li and restrict the support
from

∑n
i=1 Pi = 1, Pi ≥ 0 to

∑n
i=1 Pi = 1, li ≤ Pi ≤

1 −∑j 6=i li. Then, through the variable change:

Yi =
Pi − li

1 −
n∑

i=1

li

, (24)

where i ∈ {1, . . . , n}, we find that:

∫

∑n
i=1 Pi=1
Pi≥li

γ

n∏

i=1

(Pi − li)
αi−1 dP =

∫

∑n
i=1 Yi=1
Yi≥0

γ

n∏

i=1

(
Yi

(
1 −

n∑

i=1

li

))αi−1 ∣∣∣∣
∂P

∂Y

∣∣∣∣ dY =

∫

∑n
i=1 Yi=1
Yi≥0

γ

n∏

i=1

(
Yi

(
1 −

n∑

i=1

li

))αi−1

(
1 −

n∑

i=1

li

)n−1

dY =

∫

∑n
i=1 Yi=1
Yi≥0

γ
n∏

i=1

Y αi−1
i

(
1 −

n∑

i=1

li

)∑n
i=1 αi−n

(
1 −

n∑

i=1

li

)n−1

dY =

(
1 −

n∑

i=1

li

)∑n
i=1 αi−1 ∫

∑n
i=1 Yi=1
Yi≥0

γ

n∏

i=1

Y αi−1
i dY =

(
1 −

n∑

i=1

li

)∑n
i=1 αi−1

.

(25)

Therefore:
1

(
1 −

n∑

i=1

li

)∑
n
i=1 αi−1

(26)

is the normalization factor required for compensating
the restricted support.
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alexander.karlsson@his.se

H. Joe Steinhauer
Infofusion/Informatics Research Center

University of Skövde, Sweden
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Abstract

We present an experiment for evaluating precise and
imprecise evidential combination operators. The ex-
periment design is based on the assumption that only
limited statistical information is available in the form
of multinomial observations. We evaluate three differ-
ent evidential combination operators; one precise, the
Bayesian combination operator, and two imprecise,
the credal and Dempster’s combination operator, for
combining independent pieces of evidence regarding
some discrete state space of interest. The evaluation
is performed by using a score function that takes im-
precision into account. The results show that the pre-
cise framework seems to perform equally well as the
imprecise frameworks.

Keywords. Evidential combination, imprecise prob-
ability, credal sets.

1 Introduction

The problem of combining independent pieces of ev-
idence, most often stemming from multiple sources
of information, e.g., sensors, is common in many ap-
plication scenarios [24]. Typically such applications
involve one or several sensors where for each sensor
a feature can be extracted and used for constructing
an appropriate evidence with regard to the unknown
state of interest. Even though the pieces of evidence
might not be completely independent, in many appli-
cation scenarios (e.g., [21]) where different sources are
used, e.g., different type of sensors, it is reasonable to
assume independence.

In order to investigate the question of how well dif-
ferent evidence combination operators, precise and
imprecise, perform compared to each other, we de-
sign an experiment for an object recognition scenario.
We restrict the comparison to three different eviden-
tial combination operators, Bayesian [1, 2, 20], credal
[1, 2, 20], and Dempster’s combination operator [26].

The latter is one of the most commonly used oper-
ator for combining pieces of evidence. The obvious
difference between the operators is that the Bayesian
one is precise, i.e., its operands are based on a sin-
gle function, and the other two are imprecise, i.e., the
operands are either a set of functions or can be cast
to a set of functions.

Karlsson et al. [20] have previously empirically com-
pared the performance of the Bayesian and credal
combination operators. They found that the Bayesian
combination operator performs better due to the fact
that the credal counterpart could “overestimate” im-
precision and in a sense become too “cautious”. How-
ever, in that evaluation imprecision was inherent in
the state estimation problem, i.e., imprecise operands
were sampled directly, without any particular sta-
tistical information, and the Bayesian operator was
applied on the centroids of these operators while
the credal counterpart was applied directly on the
operands.

In contrast to the work by Karlsson et al. [20], we here
design an experiment specifically aimed at evaluating
the performance of combination operators when only
a limited statistical amount of information is avail-
able and used in the precise and imprecise statistical
models, namely Dirichlet models. This type of situa-
tion, i.e., when only limited information is available,
is often one of the main motivations for using im-
precise probability (including credal sets) [31, 33]. In
addition, we also include Dempster’s combination op-
erator, i.e., another imprecise operator, in our evalu-
ation. Since the imprecise operators have exponential
worst case complexity in comparison to the precise
one, we are specifically interested in comparing these
two classes of operators.

The paper is organized as follows: in Section 2, we
describe the different operators considered in the ex-
periment. In Section 3, we elaborate on the design,
performance, and result of the empirical evaluation,
and lastly, in Section 4, we summaries the work pre-
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sented and discuss the results of the evaluation as well
as include ideas for future research.

2 Preliminaries

In this section, we present the different combination
operators that we later will use in the empirical eval-
uation. One important aspect to note for all of these
combination operators is that the pieces of evidences
must satisfy different types of independence require-
ments which will discuss preceding each formal defini-
tion of the operators. Due to this requirement, a joint
evidence is most often stronger if both operands con-
stitute strong evidence for a certain state; this state
gets reinforced in the combination. This should be
put in contrast to other operators that often goes
under the name aggregation operators [30] which are
typically more “consensus-inspired” which means that
the joint result is an agreement between the operands,
e.g., if both operands are identical the joint result is
equivalent to the operands.

2.1 Bayesian Combination

A Bayesian approach to combining independent pieces
of evidence can be derived by modeling evidence as
likelihood functions [1, 2, 20]. To realize this, as-
sume that we have a random variable X taking values
x ∈ ΩX . Furthermore, assume that we can obtain ob-
servations y1, y2, from two different sources within
the environment of interest and that these observa-
tions are informative about X in the sense that your
belief, i.e., the posterior probability p(X |y1, y2) could
be affected. Now since:

p(X |y1, y2) =
p(y1, y2|X)p(X)∑

x∈ΩX

p(y1, y2|x)p(x)
, (1)

we see that the only way the observations can affect
the belief p(X |y1, y2) is through the joint likelihood
p(y1, y2|X). By assuming that the observations are
conditionally independent given that we know the true
state of X , we obtain:

p(y1, y2|X) = p(y1|X)p(y2|X) . (2)

In terms of evidence, the above equation is a simple
method for combining two independent pieces of ev-
idence, i.e., likelihood functions, into a single joint
evidence, i.e., a joint likelihood function. However, in
order to avoid monotonically decreasing values of the
joint evidence, we normalize after each combination
to obtain a probability function. Such a normaliza-
tion can be performed without loss of generality since
it is the relative strength of the likelihoods that con-
stitute the evidence structure and such relativeness is

preserved under normalization (see further Karlsson
et al. (2011) [20]).

Definition 1. The Bayesian combination operator
ΦB is defined as [1, 2, 20]:

ΦB(p̂(y1|X), p̂(y2|X)) , p̂(y1|X)p̂(y2|X)∑

x∈ΩX

p̂(y1|x)p̂(y2|x)
, (3)

where p̂(yi|X), i ∈ {1, 2}, are normalized like-
lihood functions and where the joint evidence
ΦB(p̂(y1|X), p̂(y2|X)) satisfies the conditionally inde-
pendence assumption in Eq. (2). The operator is un-
defined when

∑
x∈ΩX

p̂(y1|x)p̂(y2|x) = 0.

Note that when the denominator is zero, the sources
mutually exclude all possibilities within the state
space which is a contradiction to the assumption that
the truth exists within this space (given the closed
world assumption). From this viewpoint it is quite
natural that the operator is undefined for such cases.
One way of handling such situation is to perform dis-
counting [15, 20].

2.2 Credal Combination

Credal combination is a straightforward generaliza-
tion of the Bayesian combination operator to impre-
cise probability [33]. It relies on the notion of credal
sets [23, 10, 11], i.e., closed convex sets of probability
functions. Such sets can be conveniently represented
by extreme points and therefore one uses credal sets
in the form of polytopes since such a structure guaran-
tees a finite number of such points. The combination
schema was introduced as the robust Bayesian combi-
nation operator by Arnborg [1, 2], and further studied
by Karlsson et al. [20] as the credal combination op-
erator1.

The main reason for considering imprecision in the
form of credal sets is that it allows one to model
problems when only scarce information is available
regarding the environment of interest [31]. In such
cases it can be considered to be more realistic to ex-
press, e.g., probabilities in terms of intervals instead
of single probability values. Credal sets can also be
thought of as being a result of performing sensitivity
analysis as in robust Bayesian theory [17, 4].

In order to generalize the Bayesian combination op-
erator in Def. 1 to a credal counterpart, we start by
modeling evidence by credal sets of normalized like-
lihoods functions, denoted P̂(y1|X) and P̂(y2|X), in-
stead of a single normalized likelihood function, where

1We denote this operator as the credal combination opera-
tor for the simple reason that we do not want to impose any
particular interpretation of the imprecision as “robust” imposes
a sensitivity-analysis interpretation.
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as previous X denotes a random variable for some-
thing unknown of interest in the environment and y1

and y2 are the observations. In order to model in-
dependent pieces of evidence we use a generalization
of conditional independence denoted strong indepen-
dence [9], which requires that all extreme points must
factorize, i.e:

p̂e(y1, y2|X) = p̂(y1|X)p̂(y2|X) , (4)

∀p̂e(y1, y2|X) ∈ E(P̂(y1, y2|X)) where E(·) denotes
the set of extreme points and where p̂(yi|X) ∈
P̂(yi|X), i ∈ {1, 2}. By using this independence as-
sumption the credal combination operator can be de-
fined in terms of applying the Bayesian combination
operator point-wise on all combinations of functions
in the operand credal sets and as a last step apply-
ing the convex-hull operator CH(·) in order to fulfill
convexity of the joint evidence.

Definition 2. The credal combination operator ΦC is
defined as [1, 2, 20]:

ΦC(P̂(y1|X),P̂(y2|X)) ,

CH
({

ΦB(p̂(y1|X), p̂(y2|X)) :

p̂(yi|X) ∈ P̂(yi|X), i ∈ {1, 2}
})

,

(5)

where P̂(yi|X), i ∈ {1, 2}, are credal sets of normal-
ized likelihoods functions and where the joint evidence
ΦC(P̂(y1|X), P̂(y2|X)) satisfies the conditional inde-
pendence assumption in Eq. (4). The operator is un-
defined if ΦB(p̂(y1|X), p̂(y2|X))) is undefined for any
pair p̂(y1|X) ∈ P̂(y1|X), p̂(y2|X) ∈ P̂(y2|X).

Note that the credal combination operator inherits
the property of being undefined for cases where the
denominator is zero (see further the discussion after
Def. 1) and that when only singleton sets are used the
operator is equivalent to the Bayesian combination
operator. For computation of ΦC , one can restrict
the application of the Bayesian combination operator
to the extreme points of the operand credal sets [20,
Theorem 2], i.e:

ΦC(P̂(y1|X),P̂(y2|X)) =

ΦC(E(P̂(y1|X)), E(P̂(y2|X))) .
(6)

In order to measure the degree of imprecision of a
credal set, we will utilize the following measure [20],
which can be thought of as the average degree of im-
precision for single events [31]:

I(P(X)) , 1

|ΩX |
∑

x∈ΩX

(
max

p(X)∈P(X)
p(x)−

min
p(X)∈P(X)

p(x)

) (7)

2.3 Dempster-Shafer Combination

Dempster-Shafer theory [12, 26], also known as evi-
dence theory, is a variant of imprecise probability [33],
where one models evidence imprecisely by so called
mass functions. A mass function assigns mass to sub-
sets A ⊆ ΩX . The idea is that this schema can be
useful in cases where a source is only partly sure of
the true value of X , e.g. for ΩX = {x1, x2, x3}, a
source might be able to exclude the alternative x3

but not be able to specify more clearly whether the
truth is x1 or x2.

Formally, a mass function is a mapping from the
power set of the state space ΩX , also known as the
frame of discernment, to the interval [0, 1]:

m : 2ΩX → [0, 1] (8)

m(∅) = 0 (9)
∑

A⊆ΩX

m(A) = 1 (10)

Two additional functions that are often encountered
when considering Dempster-Shafer theory are belief
and plausibility, denoted Bel(A) and Pl(A), respec-
tively, and defined by:

Bel(A) ,
∑

B⊆A

m(B) (11)

Pl(A) ,
∑

B∩A 6=∅
m(B) , (12)

where Bel(A) can be interpreted as the sum of all
evidence that supports A and Pl(A) as the sum of
all evidence that does not contradict A. Belief and
plausibility can also be regarded as a lower and upper
bound for the probability of A, i.e:

Bel(A) ≤ p(A) ≤ Pl(A) . (13)

The concept of independent pieces of evidence in
Dempster-Shafer theory, also known as distinct evi-
dences, is a bit problematic [27]. However, when the
mass functions only operate on singleton sets, inde-
pendent pieces of evidence can be defined in the same
way as for the Bayesian combination operator, i.e.,
by using an assumption of conditional independence
[27]. In the other cases, this assumption does not
work, however, according to Smets [27], independent
pieces of evidence can “in practice” be defined as:

m1,2(A) =

{
m1(B)m2(C) ifA = B × C

0 Otherwise
, (14)

where B ⊆ ΩX1 and C ⊆ ΩX2 , i.e., ordinary stochas-
tic independence.
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Given two independent pieces of evidence m1 and m2,
e.g., in the sense of Eq. (14), we can combine them
into a joint evidence m1,2 utilizing Dempster’s com-
bination operator [12].

Definition 3. Dempster’s combination operator ΦD
is defined as [12, 26]:

ΦD(A, m1,m2) ,
1

1 − k

∑

B∩C=A
B,C⊆ΩX

m1(B)m2(C) , (15)

where k is the conflict between evidence m1 and m2,
defined by:

k =
∑

A∩B=∅
A,B⊆ΩX

m1(A)m2(B) . (16)

The operator is undefined when k = 1.

Dempster’s combination operator is related to the
Bayesian combination operator in the way that in case
the mass is distributed only among singletons of ΩX ,
the two operators produce the same results. Also note
that similar to the Bayesian and credal combination
operator, the operator is undefined in cases where the
sources mutually exclude all possibilities of the state
space.

Since a mass function imposes lower and upper
bounds on a probability function, seen in Eq. (13),
one can transform a mass function into a credal set.
The question then arises if the mass function as a re-
sult of Dempster’s combination operator applied on
two operands yields a mass function that when trans-
formed to a credal set is equivalent to the result of
first transforming the same operands to credal sets
and then use the credal combination operator? Arn-
borg [1, 2] has shown that this is not the case, in fact
the resulting credal sets can even be disjoint, hence
the credal and Dempster’s combination operator are
clearly different.

3 Empirical Evaluation

In this section we elaborate on the experiment de-
sign for evaluating the combination operators previ-
ously presented. We start by providing an overview of
the application scenario where the combination takes
place, and then move on to describe the design includ-
ing assumptions, parameters, and score functions.

3.1 Overview

Assume that we want to implement an object recog-
nition algorithm based on two different types of sen-
sors: a camera and a microphone (we assume that the

objects of interest produce some form of sound). Nat-
urally, using both sensors for performing the recogni-
tion should yield a better result than only using one.
Since we utilize different sensors, that observes dif-
ferent features of the object, it is fair to make the
assumption that the sesnor readings yields indepen-
dent pieces of evidence. As an example, if the ob-
ject is positioned at an “unfamiliar” angle, yielding
ambiguous output from an image analysis algorithm,
this can be compensated for by the output from a pat-
tern matching algorithm performed on the signal from
the microphone. Also, if both sensor yields features
that constitute evidence for one particular object, one
would obtain an evidence that is reinforced towards
that object.

Let the unknown object be denoted by X with a cor-
responding state space ΩX . Assume that we use some
technique to extract discrete features from each of the
signals of the sensors. Let the features be denoted as
y1 and y2 with corresponding feature spaces ΩY1 and
ΩY2 . Furthermore, assume that we have performed a
limited number of experiments where we have placed
different objects at different positions in the range
of the camera and microphone, and observed the ex-
tracted features. The goal then is to design an agent2

A that uses this limited set of information in order to
construct evidence based on the observed features y1

and y2 and combine these pieces of evidence for the
purpose of predicting the true object. In the remain-
der of this section, we present three agents based on
the combination operators described in Section 2.

3.2 The Bayesian Agent – AB

We here describe how an agent based on the Bayesian
combination operator in Def. 1 can be used in or-
der to decide on an object x ∈ ΩX based on features
from the sensor readings and previous mentioned lim-
ited statistical information. Since the features are ex-
tracted from different types of signals, it is fair to
assume that y1 and y2 are conditionally independent
given object X . By using a uniform (Bayes-Laplace)
Dirichlet model (used in many scenarios, e.g., [7]),
which amounts to calculating the expected value of
a posterior Dirichlet density [16, 6], we can construct
non-normalized evidence by [18]:

p(yi|X) ,
αyi|X + 1∑

yi∈ΩYi

αyi|X + |ΩYi |
, (17)

where i ∈ {1, 2} and where αyi|X denotes the number
of times a specific feature yi has been extracted given

2The use of an agent paradigm for describing the empirical
evaluation was inspired by Aughenbaugh and Paredis [3].
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an object X . The evidence can then be normalized:

p̂(yi|X) =
p(yi|X)∑

x∈ΩX

p(yi|x)
, (18)

and used as operands in the Bayesian combination op-
erator in order to obtain a joint evidence p̂(y1, y2|X),
i.e.:

p̂(y1, y2|X) = ΦB(p̂(y1|X), p̂(y2|X)) . (19)

Note that when we do not have any statistical in-
formation at all, p̂(y1|X), p̂(y2|X), and consequently
p̂(y1, y2|X), are uniform. Finally, based on the joint
evidence, the agent AB can define the most probable
object(s) by:

AB , O(p̂(y1, y2|X)) , (20)

where O(·) is defined as:

O(p(X)) ,
{

x ∈ ΩX :

(∀x′ ∈ ΩX)

(
p(x) ≥ p(x′)

)}
.

(21)

where p(X) is a probability function (remember that
p̂(y1, y2|X) is a normalized likelihood function, i.e., a
probability function).

3.3 The Credal Agent – AC

Consider the same setting but where one models the
evidence by credal sets. Instead of utilizing the (pre-
cise) Dirichlet model, which was the case for the
Bayesian agent, we utilize the corresponding impre-
cise model, denoted as the imprecise Dirichlet model
[31, 32], where one calculates the expected value of a
set of posterior Dirichlet densities. The difference be-
tween this model and the former is that one uses the
imprecision, i.e., the “size” of a credal set, as a way
of reflecting the amount of information that the evi-
dence is based on. By utilizing the imprecise Dirichlet
model, we can construct normalized evidence P̂(yi|X)
by [18]:

P̂(yi|X) ,
{

p(yi|X)∑

x∈ΩX

p(yi|X)
:

(∀x ∈ ΩX)

(
αyi|x∑

yi∈ΩYi

αyi|x + β
≤ p(yi|x)

≤ αyi|x + β∑

yi∈ΩYi

αyi|x + β

)}
,

(22)

where i ∈ {1, 2} and the parameter β determines how
the imprecision of the set P̂(yi|X) is affected by the
sample size. Note that when the sample size increases,
the imprecision I(P̂(yi|X)) decreases since the lower
and upper bounds for each p(yi|x) in Eq. (22) con-
verge [31, 32]:

lim(∑
yi∈ΩYi

αyi|x

)
→∞

(
αyi|x + β∑

yi∈Ωyi|x

αyi|x + β
−

αyi|x∑

yi∈ΩYi

αyi|x + β

)
= 0 ,

(23)

i.e., imprecision is reflected by the sample size.

We can now utilize the credal combination operator
in Def. 2 in order to obtain the joint evidence:

P̂(y1, y2|X) = ΦC(P̂(y1|X), P̂(y2|X)) . (24)

Based on the joint evidence, agent AC can decide on
the most probable object(s) in a similar way as in the
Bayesian case:

AC ,
⋃

p̂(y1,y2|X)∈P̂(y1,y2|X)

O(p̂(y1, y2|X)),
(25)

where O(·) is defined by Eq. (21). The intuition be-
hind this set is that the agents includes all objects that
are optimal for some probability function, i.e., there
exists a probability function within the credal set that
contains a probability that is highest for a given ob-
ject within the set. In contrast to the Bayesian case,
the above set is more likely to be non-singleton. This
indicates that the agent does not possess enough in-
formation to distinguish between the objects within
the set.

3.4 The Dempster-Shafer Agent – AD

In order to define an agent based on Dempster-Shafer
theory, we first need to elaborate on how mass func-
tions could be constructed based on the credal set ob-
tained from the imprecise Dirichlet model in Eq. (22).
A credal set is a more general structure in compari-
son to a mass function [33, 2]. Hence, transforming
a credal set to a mass function, e.g. by [26, Theorem
2.2]:

m(A) =
∑

B⊆A

(−1)|A−B|Bel(B) , (26)

cannot in general be performed without some approx-
imation [1, 2, 8]. One way, demonstrated by Campos
et al. [8], is to approximate the credal set by cer-
tain types of intervals and then apply the algorithm
proposed by Lemmer and Kyburg [22]. Another way,
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suggested by Arnborg [2], is to utilize Eq. (26) and
transfer mass upwards in the “set-lattice” to eliminate
negative mass. Common to both these ways is that
there is no unique minimal approximation that can be
used for constructing the mass function. As a start-
ing point for our evaluation, we here first consider a
simple method for constructing a mass function based
on the lower bounds of each single state x ∈ ΩX of
the credal set. Lower bounds on single states are of-
ten used in many models, e.g., [29], since they yield
simplices which is the simplest type of imprecision.

By using lower bounds we can obtain the simplex:

P̂∗(yi|X) ,
{

p̂∗(yi|X) :

p̂∗(yi|x) ≥ min
p̂(yi|X)∈P̂(yi|X)

p̂(yi|x),

∑

x∈ΩX

p̂∗(yi|x) = 1, x ∈ ΩX

}
.

(27)

The simplex P̂∗(yi|X) can then easily be transformed
to a mass function using Eq. (26) on the belief func-
tion/lower probabilities defined by [1, 2]:

Bel(A) = min
p̂∗(yi|A)∈P̂∗(yi|A)

p̂∗(yi|A) , (28)

where A ⊆ ΩX , which results in a mass function of
the following form [8]:

mi(x) = min
p̂∗(yi|X)∈P̂∗(yi|X)

p̂∗(yi|x)

mi(ΩX) = 1 −
∑

x∈ΩX

min
p̂∗(yi|X)∈P̂∗(yi|X)

p̂∗(yi|x) ,
(29)

∀x ∈ ΩX . Now, based on m1 and m2, obtained by
Eq. (29), we can perform the combination:

m1,2(A) = ΦD(A, m1, m2) . (30)

In order to be able to compare the results from the
credal agents AC with the above mass function, we de-
fine a Dempster-Shafer agent which includes a trans-
formation of m1,2 back to a credal set by performing
linear programming on the following set of constraints
(cf. Eq. (13)):

P1,2(X) , {p1,2(X) : Bel1,2(A) ≤ p1,2(A)

≤ Pl1,2(A), A ⊆ ΩX} ,
(31)

where Bel1,2 is the belief, or lower probability, in
Eq. (11) and Pl1,2 is the plausibility, or upper prob-
ability, in Eq. (12), with respect to m1,2. Now, based
on the credal set P1,2(X), the Dempster-Shafer agent
AD can decide on objects according to:

AD ,
⋃

p1,2(X)∈P1,2(X)

O(p1,2(X)), (32)

where O(·) is defined in Eq. (21).

3.5 Evaluation Schema

In order to evaluate the different agents, introduced
in the previous sections, we consider a combination
scenario where we have two sources i ∈ {1, 2} that
report evidences, based on features yi ∈ ΩYi where
ΩYi , {fi,1, . . . , fi,m}, regarding a random variable
X ∈ ΩX where ΩX = {x1, . . . , xm} (we will instanti-
ate the parameter m later when we describe the exper-
iment in more detail). Note that |ΩYi | = |ΩX | = m.
Let us now assume that the true state is x1 and that
each agent has a limited set of multinomial observa-
tions from the two sources to base evidence upon. We
will simulate the limited information stemming from
the sources by drawing n samples, where n is a small
number that we will instantiate later, from a multi-
nomial distribution, i.e., we sample a vector:

~αn
yi|x ,

[
αfi,1|x . . . αfi,m|x

]
(33)

∀x ∈ ΩX through:

~αn
yi|x ∼ Mu(~αn|p(fi,1|x), . . . , p(fi,m|x)) , (34)

where αfi,j |x denotes the number of times feature fi,j

has been observed when the object is x and where
Mu(·|·) denotes the multinomial distribution with pa-
rameters p(fi,j |x), j ∈ {1, . . . , m}, i.e., the probability
of observing a specific feature fi,j from source i given
some object x. Note that

∑

j∈{1,...,m}
αfi,j |x = n (35)

∀x ∈ ΩX and i ∈ {1, 2}. The information contained
in each sampled vector can then be used in the pre-
cise and imprecise Dirichlet models, Eqs. (17) – (18)
and (22), by the agents in order to construct evi-
dence. Since the imprecise agents are undefined in
cases where the sources mutually excludes each other
(see further the discussion following Def. 1 – 3), we
simply omit such cases.

To give an example, assume that m = 3 and n = 5
and that we have sampled the following:




~α5
y1|x1

~α5
y1|x2

~α5
y1|x3


 =



4 1 0
1 3 1
1 0 4


 (36)




~α5
y2|x1

~α5
y2|x2

~α5
y2|x3


 =



3 1 1
0 5 0
0 1 4


 . (37)

Further assume that an object x ∈ ΩX have gener-
ated features y1 = f1,1 and y2 = f2,2. This would
mean that we would utilize the first and second col-
umn of the matrices on the right hand side of Eqs. (36)
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(a) Operands in Eqs. (36) and (37)
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(b) Result of the agents

Figure 1: Precise and imprecise operands are shown in Fig. 1(a) and the result of applying agent AB, AC , and
AD on the operands are shown in Fig. 1(b). The operands and results are denoted by triangles, circles, and
squares for agent AB, AC , and AD, respectively.

and (37), correspondingly, for contructing the evi-
dences based on the precise and imprecise Dirichlet
models in Eqs. (17) – (18) and (22). The operands
and result of applying the different agents, i.e., AB
in Eq. (20), AC in Eq. (25), and AD in Eq. (32), on
this data is is shown in Fig. 1. Note in particular
that the imprecision of the credal agent AC is consid-
erably higher in comparison to the Dempster-Shafer
agent AD. From the figure we also see that the re-
sult from the credal agent AC contains extreme points
that could be removed without changing the shape of
the set significantly, however, we omit such removal
in this experiment. In a real-world application such a
removal would be performed to reduce computational
complexity.

In order to compare the performance of the agents
with each other, we will use a score function that takes
imprecision into account [19, 20]:

Υ(A) ,





1

|A| if (x1 ∈ A) ∧ (A 6= ΩX)

0 otherwise

, (38)

i.e., if the agent manage to minimize the imprecision
and is able to return the true state, the agent obtains
the highest possible reward of one. If the set A con-
tains two of the three states, where one of the states
is the truth, i.e., x1, the agent gets half of this re-
ward since the set is still informative due to exclusion
of one erroneous state. The other two cases, i.e., the
truth is not contained in the set and all the states are
reported, are considered to be non-informative; the

latter due to that one already has modeled all possi-
ble states when the state space was designed.

Now, by simulating a large number of cases and apply
the agents on each of these cases, we can obtain a
good approximation of the expected score E [Υ(A)]
of each agent. The experiment, including simulation
parameters, is then defined by the following step-wise
description:

1. For each source i ∈ {1, 2} and x ∈ ΩX , draw γ
according to:

γ ∼ Uniform([0.7, 0.9]) , (39)

set:

p(fi,j |xk) ,
{

γ when k = j
1−γ
m−1 otherwise

(40)

and use these probabilities as multinomial pa-
rameters in Eq. (34) in order to draw vectors
~αn

yi|x. Note that given an object xk, it is most
likely that one observe the feature fi,k from
source i.

2. Let us set β = 2 in Eq. (22) (this parameters
is usually set to a value 1 ≤ β ≤ 2, see fur-
ther the discussion in [32, 5]) and sample new
features to be used by the agents for predicting
the true object by using the multinomial param-
eters in Eq. (40), i.e., sample fi,j ∼ p(Yi|x1) (re-
member that x1 is the true object) and apply the
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agents AB in Eq. (20), AC in Eq. (25), and AD
in Eq. (32), on the sampled vectors ~αn

yi|X from
Step 1.

3. Evaluate the agents by Υ(A) in Eq. (38), and
store the score and repeat from Step 1, 103 times.

4. Approximate the expected score E [Υ(A)] by us-
ing the stored scores from the previous step.

3.6 Results

The results are shown in Table 1, where the param-
eters m (dimension) and n (number of observations)
have been varied. Taking the confidence interval into
account, it seems that agent AB performs as well or
better than agent AC and AD. One reason for this
is that agent AC and AD tends to be too cautious in
many cases, as can be seen from the number of cases
where the complete state space is reported. The dif-
ference in performance seems to increases when the
state space m increases while n is constant.

One interesting and a bit surprising effect that one can
observe is that the performance of agent AD deteri-
orates considerably when the size of the state space
increases when maintaining the same number of ob-
servations (i.e., five). The low performance is due, as
can be seen from the table, that the agent tends to
increase the fraction of times it reports the complete
state space, e.g., when m = 7 and n = 5, it reports
the complete state space in 90.7% of the cases. An ex-
planation for such behavior is that when m increases
under a constant n, the sum of the upper constraints
in the imprecise Dirichlet model in Eq. (22) increases
and this means that the lower bounds of P̂(yi|X) in
Eq. (22) decreases due to the normalization. Also,
since it is not likely that we have observed a feature
fi,j where j 6= 1 (x1 is the truth and according to
Eqs. (39) – (40) it is most likely to observe feature
fi,1), the sum of the lower bounds is also likely to
have decreased and then more mass has been allo-
cated to the complete state space in Eq. (29). This
increased mass is then distributed among the states
when transforming back to a credal set, which means
that the number of cases where a non-singleton set
is reported has increased. In other words, when m
increases under a given n, the degree of imprecision
based on the mass functions increases, as is also seen
from the table. Also note that when we increase the
number of observations to n = 20 when m = 7 the
degree of imprecision decreases again.

The performance of the credal agent AC does not seem
to be equally sensitive when increasing m. In fact,
the performance increases slightly for both agent AB
and AC and for the latter agent the average degree
of imprecision decreases. One explanation for such a

result could be that when the state space increases,
the “noise probability” mass 1 − γ in Eq. (40) is dis-
tributed among more states, which could mean that
it is less likely that a single erroneous state will be
optimal for some probability function within the joint
credal set due to noise.

It should also be noted that the credal combination
operator can introduce substantial imprecision in the
joint evidence, even though the operands are not that
imprecise [20]. This can also be seen in Fig. 1, where
both operands are less imprecise in comparison to the
joint credal set. Such increasment in imprecsion of
joint evidence mainly occur when the operands are
in conflict with each other, i.e., when the operand
credal sets are positioned at different positions within
the simplex, especially when the operands are close to
the boundary of the simplex.

We also observe that agent AB reports an erroneous
set, i.e., when Υ(AB) = 0 and |AB| 6= ΩX in more
cases compared to the other agents. This can be re-
garded as the usual trade-off between imprecision and
precision, i.e., reducing erroneous output by increas-
ing imprecision. It should be noted that the Bayesian
agent AB has a quite crude way of reporting a de-
cision set since the agent reports the most probable
state also in cases where the difference of probabil-
ity for this state in comparison to the other states is
small. In a more refined Bayesian method one could
use some form of thresholding (see further [20]). Nev-
ertheless, even though such crude schema is utilized,
AB performs well in comparison to the other agents.

4 Summary and Discussion

We have described an empirical experiment for eval-
uating and comparing the performance of different
evidential combination operators. Besides compar-
ing individual operators, our interest was also to
compare precise and imprecise operators in general.
The evaluation was restricted to the three operators,
Bayesian combination (precise), credal combination
(imprecise), and Dempster’s combination (imprecise).
For each combination operator we implemented a cor-
responding agent. The evaluation was based on the
precise and imprecise Dirichlet models and a limited
number of multinomial observations. To measure the
agents performance we used a score function that,
based on the informativeness of the outcome, assigned
a reward to the agent.

The results showed that the Bayesian agent seems to
perform at least equally well as its imprecise counter-
parts. Since the imprecise frameworks are often mo-
tivated by their suitability to situations where only
scarce information is available, i.e. the case in the ex-
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Parameters Agent E [Υ(·)] E [I(·)] Υ(·) > 0 (%) Υ(·) = 0 (%)

| · | = 1 | · | = 2 | · | = 1 | · | = 2 | · | = m

m = 3, n = 5

AB 0.82 ± 0.03 0 80.5 2.3 17.0 0.1 0.1

AC 0.75 ± 0.02 0.43 ± 0.01 61.5 11.4 2.6 1.3 23.2

AD 0.80 ± 0.02 0.24 ± 0.00 69.3 16.5 6.0 1.1 7.1

m = 5, n = 5

AB 0.87 ± 0.02 0 86.3 1.2 11.4 0.9 0.0

AC 0.81 ± 0.02 0.38 ± 0.01 73.7 5.1 0.7 0.1 16.0

AD 0.64 ± 0.02 0.41 ± 0.00 49.4 12.0 0.5 0.0 29.4

m = 7, n = 5

AB 0.90 ± 0.02 0 89.1 1.8 8.9 0.1 0.0

AC 0.82 ± 0.02 0.36 ± 0.01 77.0 3.8 0.9 0.4 12.8

AD 0.17 ± 0.01 0.52 ± 0.00 1.1 2.8 0.0 0.0 90.7

m = 7, n = 20

AB 0.83 ± 0.02 0 82.0 1.3 16.5 0.1 0.0

AC 0.79 ± 0.02 0.18 ± 0.01 66.4 21.3 1.2 2.1 7.1

AD 0.80 ± 0.02 0.18 ± 0.00 64.9 29.3 0.6 2.9 0.2

Table 1: Results of the empirical evaluation in terms of expected scores E [Υ(·)] and the degree of imprecision
E [I(·)], all with 95% confidence intervals. In addition, we also see how the cardinality of the reported set of
each agent is distributed among some sets that contains the truth and not.

periment (limited multinomial information), this out-
come appears to be unexpected.

However, it might also be the case that the particu-
lar type of imprecision considered in this experiment
does not do the imprecise operators justice. In partic-
ular we need to careful to judge the Dempster-Shafer
agent based on this particular design of experiment,
using the imprecise Dirichlet model and the given
score function, since the agent was quite sensitive to
the size of the limited statistical data in relation to
the number of dimensions (which in principle could be
reasonable). Also, in our experiment the mass func-
tion for the agent was derived by first approximating
the credal set using a simplex and then transforming
it into a mass function, which is a rather simple ap-
proximation. A more refined approximation might in-
fluence the performance of the Dempster-Shafer agent
(see further the discussion in Section 3.4).

Note that the results are only valid in applications
where the score function in Eq. (38) is accepted. It
could still be useful in certain circumstances to re-
port the entire state space, especially when you have
the option to gather more information and thereby
reduce the cardinality of the result. Depending on
the application one needs to design the score function
accordingly.

In our future research, we will explore different ways
of obtaining the mass functions, and evaluate the im-
precise operators found in this paper and also other
variants, e.g., [13], with alternative forms of impreci-

sion. One interesting way ahead is to simulate mass
functions directly, which then can be transformed into
a credal set, instead of constructing them from credal
sets as was done in the experiment. In that case one
could, e.g., use the pignistic transformation [28] on
the mass functions in order to obtain operands for
the Bayesian combination operator.

The overall conclusion that we infer from the re-
sults is that the Bayesian framework could still be
suitable in applications where only limited statisti-
cal data is available. Taking into account that the
Bayesian framework has considerably lower computa-
tionally complexity, this framework might even be the
best choice for such type of applications.
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Abstract
The notion of imprecise probability can be viewed as
a generalization of the traditional notion of probabil-
ity. Several theories and models of imprecise proba-
bility have been suggested in the literature as more
appropriate representations of uncertainty in the con-
text of single-agent decision making. In this paper I
investigate the question of how such models can be in-
corporated into the traditional game-theoretic frame-
work. In the spirit of rationalizability, I present two
new solution concept called Γ-maximin rationalizabil-
ity and E-rationalizability. They are intended to cap-
ture the idea that each player models the other players
as decision makers who all employ Γ-maximin or E-
admissibility as their decision rules. Some properties
of these concept such as existence conditions and the
relationships with rationalizability are studied.

Keywords. Normal form games, imprecise probabil-
ities, rationalizability, Γ-maximin, E-admissibility.

1 Introduction

The theory of subjective expected utility (axiomatized
by Savage [1954]) has become a widely-accepted nor-
mative theory for dealing with single-agent decision
making under uncertainty. However, the assumption
about the representation of uncertainty in this frame-
work has often been criticized for being overly re-
strictive. In particular, Ellsberg [1961] has argued
that uncertainty, as opposed to risk, cannot be ade-
quately represented by a single personal probability
distribution. Inspired by this challenge, various alter-
native theories of decision making under uncertainty
have been developed in the literature, e.g., Gilboa and

˚This paper is part of my master thesis, which extends the
preliminary idea presented as a poster at the ISIPTA’11 confer-
ence. I have greatly benefited from many extensive discussions
with Teddy Seidenfeld and Kevin Zollman. I also would like to
thank the anonymous referees for pointing out several helpful
references on this topic.

Schmeidler’s multiple priors model [1989] and Schmei-
dler’s Choquet expected utility model [1989]. In ad-
dition, there has been a vast amount of literature on
alternative approaches to representing uncertainty in
decision problems, such as upper and lower probabili-
ties, sets of probability measures, belief functions, and
so on. (See [Walley, 1991] for a detailed discussion of
the models of imprecise probabilities)

The Ellsberg paradox arises in single-agent decision
making situations where uncertainty regarding some
exogenous event is involved. Nevertheless, one would
expect that similar situations of uncertainty could
arise in multi-agent, interactive scenarios, where the
considerations underlying uncertainty for each player
are the other players’ strategy choices, rather than
the state of nature. This naturally suggests a new
line of research, which is to incorporate some model
of uncertainty using imprecise probabilities into tra-
ditional game-theoretic frameworks. New conceptual
issues arise in this approach to game under uncer-
tainty, e.g., how should solution concepts be defined
given the new decision theoretic foundations. In re-
cent years, there has been a growing literature on ap-
plying the aforementioned theories of imprecise prob-
abilities in the context of games, which can be divided
roughly into two categories depending on the way of
addressing these conceptual issues. On the one hand
there are those that investigate the consequences of al-
lowing players’ beliefs to be represented by imprecise
probabilities in the framework of Nash equilibrium or
its refinements. Dow and Werlang [1994] introduce an
equilibrium concept for two-player normal form games
in which players’ beliefs about the opponents’ strategy
choices are represented by non-additive probabilities
and players are Choquet expected utility maximiz-
ers. Eichberger and Kelsey [2000] extend Dow and
Werlang’s equilibrium concept to normal form games
with n-players and discuss some nice properties of this
concept. By using the multiple priors model to rep-
resent players’ uncertainty, Klibanoff [1994] and Lo
[1996] provide two equilibrium-type solution concepts
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for normal form games with any finite number of play-
ers. Unlike these researchers, Liu [2011] presents a
different solution concept called robust equilibrium by
extending the framework of the so-called linear trac-
ing procedure (Harsanyi and Selten [1988]), to accom-
modate games with uncertainty where players’ initial
beliefs are modeled by a set of probability measures
rather than a common prior. This concept can be
viewed as a refinement of Nash equilibrium.

On the other hand, several studies have attempted to
generalize the concept of rationalizability (Bernheim
[1984] and Pearce [1984]) in normal form games to
accommodate notions of rationality other than sub-
jective expected utility maximization. In addition to
the idea of equilibrium with uncertainty aversion, an-
other significant innovation introduced by Klibanoff
[1994] is the characterization of common knowledge of
rationality under uncertainty for normal form games
where each player attempts to maximize the mini-
mum expected utility. Epstein [1997] also considers
normal form games and develops a general framework
for discussing the implications of common knowledge
of rationality in which the definition of rationality can
accommodate different kinds of preference structures
including the multiple priors model.

The approach to game theory with uncertainty I
present in this paper is very much in the same spirit
as Klibanoff’s and Epstein’s approaches, which em-
braces the essential idea of rationalizability, namely,
to assume that each player models the opponents as
the same kind of rational decision maker under un-
certainty. As noted in previous literature, rationaliz-
ability captures the idea that each player attempts
to deduce their opponents’ rational behavior from
the structure of the game by modeling her oppo-
nents as expected utility maximizers, where players’
uncertainty about their opponents’ strategy choices
are fully described by a single probability distribu-
tion. This paper explores the possibility of adapt-
ing this standard assumption by using a set of prob-
ability distributions to model uncertainty in normal
form games. However, even in single-agent decision
theory, there is no generally accepted criterion for
decision making under uncertainty when uncertainty
is depicted by a set of probability distributions. In
view of this, this paper develops a general theoret-
ical framework to analyze the implications of ratio-
nality and common knowledge of rationality in the
sense that each player employs the same decision rule
to choose the best strategy with respect to a set of
probability distributions. In particular, I consider
here two familiar decision rules named Γ-maximin
[Berger, 1985; Gilboa and Schmeidler, 1989] and E-
admissibility [Levi, 1974]. According to the former

rule, a decision maker should choose an option that
maximizes the minimum expected utility with respect
to a set of probability distributions, while the lat-
ter one constrains the decision maker’s admissible
choices to those options that maximizes expected util-
ity for some probability in the set of probabilities.
In analogy with rationalizability, I put forward two
game-theoretic solution concepts under uncertainty,
in which each player is required to model the other
players as the same kind of decision makers who use
either Γ-maximin or E-admissibility to make deci-
sions. This gives rise to the two solution concepts
that we shall call Γ-maximin rationalizability and E-
rationalizability respectively. Just as Γ-maximin and
E-admissibility are extensions of subjective expected
utility theory, both Γ-maximin rationalizability and
E-rationalizability turn out to be generalizations of
rationalizability. Example 1 in Section 4 illustrates
the distinction between these three solution concepts.

The main contribution of this paper is in providing
a general game-theoretic framework which enables us
to discuss how different decision rules can be incorpo-
rated into the framework of rationalizabiity in normal
form games when uncertainty is depicted by a non-
trivial set of probability distributions. This frame-
work can be easily adapted to accommodate some
other decision rules discussed in decision theory such
as Maximality [Walley, 1991]. Although it turns out
that the concept of Γ-maximin rationalizability co-
incides with Klibanoff’s and Epstein’s iterative defi-
nitions of rationalizability with uncertainty aversion
(they used different terms for this concept), the cur-
rent approach to rationalizability under uncertainty
can be regarded as complementary work to their the-
ories, since it provides an alternative way of charac-
terizing the same solution concept. By applying this
new definition, it is easier to check whether a strategy
of a player is Γ-maximin rationalizable (or uncertainty
aversion rationalizable). In a similar way, I define the
concept of E-rationalizability, which, to my knowl-
edge, has not been explored in any previous study.

The rest of this paper proceeds as follows: Section 2
presents a brief review of the solution concept ra-
tionalizability, and discusses some of its properties.
Section 3 motivates the idea of using imprecise prob-
abilities to represent uncertainty in games. I then
propose two solution concepts called Γ-maximin ra-
tionalizability and E-rationalizability, which extend
the framework of rationalizability to contexts where
a set of probabilities is used to represent uncertainty.
Section 4 studies some properties of these solution
concepts, and also includes an example to illustrate
their difference. Section 5 concludes the paper and
suggests possible future work.
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2 Rationalizability

In contrast with the concept of Nash equilibrium
where each player’s belief is required to coincide with
her opponents’ strategies, the concept of rationaliz-
ability, proposed independently by Bernheim [1984]
and Pearce [1984], imposes a weaker requirement on
players’ beliefs. More precisely, it only demands play-
ers to obey the requirement of Bayesian rationality
and common beliefs in Bayesian rationality. It at-
tempts to account for rational behavior as the conse-
quence of common knowledge of the game structure
and the rationality of players, without imposing any
further constraints on players’ strategy choices.

Let us begin with some formal notations and defini-
tions. Throughout this paper, we consider a finite
normal or strategic form game G ” xI, tSiu, tuiuyiPI ,
where I “ t1, 2, . . . , nu is a finite set of players, Si de-
notes a finite set of pure strategies (or actions) avail-
able to player i, and ui : S Ñ R denotes player i’s
payoff function. We shall denote the set of player i’s
mixed strategies by ∆i, which can be regarded as the
set of all probability distribution over Si. For each
mixed strategy δi P ∆i, let δipsiq denote the proba-
bility assigned to si. Recall that a strategy profile is
a Nash equilibrium if no player can benefit by merely
changing her strategy while the other players keep
theirs unchanged. More precisely, a mixed strategy
profile δ˚ P ∆ is a (mixed strategy) Nash equilib-
rium if for each player i, uipδi̊ , δ

˚́
iq ě uipδi, δ

˚́
iq for

every mixed strategy δi of player i. An alternative
way to characterize the notion of Nash equilibrium is
to define it in term of best response. We say that a
strategy δi P ∆i is a best response to δ´i for player
i if uipδi, δ´iq ě uipδ1i, δ´iq for all δ1i P ∆i. Thus a
strategy profile is a Nash equilibrium if each player’s
strategy is a best response to the other players’ strate-
gies. For an arbitrary set X of strategies, we denote
by HpXq the convex hull of the set X, namely, the
smallest closed convex set containing X.

It is well known that the concept of rationalizabil-
ity attempts to characterize rational strategic behav-
ior that are consistent with the assumption that both
the structure of the game and the rationality of the
players are common knowledge to them. To be more
specific, rationalizability in normal form games is de-
fined based on the following assumptions:

• A1: Each player employs a subjective personal
probability to express her belief about the other
players’ strategy choice, which cannot conflict
with any information available to her.

• A2: Each player attempts to maximize expected
utility with respect to her subjective probability

regarding her opponents’ strategy choices.

• A3: The structure of the game, including the
strategy space and payoff functions, and the fact
that each player satisfies the above two assump-
tions are common knowledge.

Informally speaking, we can examine a player’s ratio-
nality by checking whether the actions chosen by that
player are “rational” or not. We say that an action
of a player is rational if there exists some belief regu-
lated by the assumptions given above such that it is
a best response to that belief. Thus, a strategy δi of
player i is rationalizable if she can justify her choice by
explaining that (i) δi is rational, (ii) there exists some
belief δ´i such that δi maximizes her own expected
utility with respect to δ´i, and δ´i assigns positive
probability only to rational actions of her opponents,
and (iii) there are beliefs of her opponents that make
those actions rational and assign positive probability
only to her rational actions, and so on. This suggests
an intuitive way of defining rationalizability without
invoking the iterative process originally suggested by
Pearce (1984). In order to present this formal defini-
tion, we have to make the notion of a belief and what
we mean by a strategy being rational explicitly.
Definition 1. In a strategic form game G, a belief of
player i P I, denoted by µ´i, about the other players’
strategy choices is a probability distribution over the
set of the other players’ strategies S´i ”ś

j‰i Sj.

Here we should draw a clear distinction between
the concepts of belief and mixed strategy. A belief
about player i has the same mathematical form as a
mixed strategy of player i, which is normally found in
the literature. However, the interpretations of both
concepts are different (see [Osborne and Rubinstein,
1994] for a comprehensive discussion on the interpre-
tations of mixed strategies.). A mixed strategy of
player i is usually viewed as an explicit randomiza-
tion over her pure strategies in Si. If player i chooses
to play a mixed strategy, she commits herself to carry
out the deliberate randomization. The main criticism
of this interpretation of mixed strategy is that for each
player there are usually infinitely many mixed strate-
gies that yield her the same expected payoff as her
mixed strategy equilibrium does, given her opponents’
equilibrium behavior. But we are here concerned with
a different solution concept called rationalizability.
Thus, interpreting mixed strategies as objects of delib-
erate choice is appropriate within the current frame-
work. On the other hand, a belief about player i
is a probability distribution on the set of player i’s
mixed strategies, which represents another player’s
view about player i’s strategy choice. It should not be
confused with a randomization that is actually carried
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out by player i. In that sense, we can say that players’
mixed strategies should be understood as the objects
of the beliefs about players’ strategy choices, and the
probability distribution given by a belief about player
i merely represents the likelihood that another player
assigns to player i’s mixed strategies.

Nevertheless, an essential feature of this formulation
of belief is that it allows a player to believe that the
other players choose their strategies according to cer-
tain correlated randomization devices, since a belief
µ´i of player i is a probability measure over S´i and
thus is an element of the set HpS´iq. Note that a
belief µ´i of player i is not necessarily a product of
independent probability distributions on each of the
set Sj of actions for j P Nztiu. That is, a belief µ´i

of player i need not be identified as an element of the
set of mixed strategies of her opponents S´i. In addi-
tion, it is not difficult to see that the set S´i is strictly
smaller than the set HpS´iq in games with more than
2 players. Hence we have to use a different notation
µ´i for a belief in the current framework in order to
distinguish it from a mixed strategy δ´i.

It is assumed that each player always chooses an ac-
tion to maximize her own expected payoff with re-
spect to some belief about the opponents’ strategies.
A strategy being rational can then be defined precisely
in terms of maximization of expected utility.
Definition 2. A strategy δi of player i in a strategic
form game G is a rational strategy if there exists a
belief µ´i of player i such that δi maximizes player
i’s expected utility, that is, uipδi, µ´iq ě uipδ1i, µ´iq
for all δ1i P ∆i. In this case, we say that δi is a best
response to the belief µ´i.

The key idea of the following characterization is to de-
fine an action (or pure strategy) to be rationalizable
by considering each player’s introspective process of
justifying her own strategy choice, based on the anal-
ysis of her opponents’ similar reasoning about their
rational behavior.
Definition 3. In a strategic form game G, an action
si P Si of player i is rationalizable if for each player
j P I, there exists a set Zj Ď Sj of actions such that:
(i) si P Zi, and (ii) every action sj in Zj is a best
response to some belief µ´j of player j whose support
is a subset of Z´j.

Whenever a new solution concept is put forward, a
primary theoretical question is whether the proposed
concept can give rise to at least one solution for games
in general. Regarding the concept of rationalizability,
the answer to this question is positive.
Proposition 2.1 (Pearce, 1984). For finite normal
form games, the set of rationalizable strategies is al-

ways nonempty and contains at least one pure strategy
for each player.

We have considered above how to define the concept of
rationalizability by using the notion of belief and the
rationality of the players. As a matter of fact, the set
of rationalizable actions can be further characterized
for finite strategic games in terms of the familiar idea
of dominance relations. As we shall see, this charac-
terization for rationalizability gives rise to an opera-
tionalizable method for finding the set of rationaliz-
able actions for finite games. Recall that the concept
of rationalizability basically captures the idea that as
a rational decision maker each player can only choose
those strategies that are best responses to some be-
liefs regarding the other players’ strategies. In other
words, a rational player should not adopt a strategy
that is not a best response to any belief about her
opponents’ strategy choices. In the game-theoretic
terminology, such a strategy is called a never-best re-
sponse strategy. Thus one can see that the concept
of rationalizability is closely related to the notion of
never-best response strategy as defined below.
Definition 4. In a normal form game G, an action si

of player i is a never-best response if it is not a best
response to any belief of player i, that is, for every
belief µ´i of player i there exists a strategy δi P ∆i

such that uipδi, µ´iq ą uipsi, µ´iq.
In other words, there is no belief µ´i of player i
about her opponents’ strategies with respect to which
a never-best response action si maximizes her own
expected payoff. This coincides exactly with the cen-
tral idea of rationalizability, namely that the players
are rational in the sense of maximizing expected util-
ity. As mentioned above, each player should rule out
the actions that are not best response to any belief,
namely, never-best response actions.

Let us now turn to the familiar notion of strict domi-
nance which will play a crucial role in the characteri-
zation of rationalizable actions, as we shall see below.
Definition 5. In a normal form game G, an action
si of player i is strictly dominated if there exists a
strategy δi P ∆i such that uipδi, s´iq ą uipsi, s´iq for
all s´i P S´i.

In words, whatever the other players do, player i can
benefit from playing some other strategy rather than a
strictly dominated strategy. Clearly, a rational player
would never use a strictly dominated strategy. Oth-
erwise the player’s choice violates the assumption of
rationality in the sense of maximizing expected utility.
At this point one may wonder whether the notion of
never-best response is equivalent to the conception of
strictly dominated action. It turns out that one can
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establish the equivalence between these two notions
within the current framework.
Lemma 2.2 (Pearce, 1984). In a strategic form game
G, an action si̊ of player i is a never-best response if
and only if si̊ is strictly dominated.

Suggested by the above lemma, we can show that the
set of rationalizable actions can be obtained by it-
eratively deleting strictly dominated actions until we
arrive at the stage where no more strictly dominated
action can be further eliminated. Let us first formally
define the process of iterated elimination of strictly
dominated actions.
Definition 6. Consider a normal form game G. Set
S0

i ” Si for each i P I. Then, for each i P I and
for each k ě 1, the set Sk

i is recursively defined as
follows:

Sk
i –

 
si P Sk´1

i | E δi P HpSk´1
i q

such that uipδi, s´iq ą uipsi, s´iq,@ s´i P Sk´1
´i

(
.

And define S8i –
ś8

k“1 S
k
i . The set S8i is the set of

player i’s actions that survives iterative elimination
of strictly dominated actions.

Observe that after a finite numbers of steps the pro-
cess of iterated elimination of strictly dominated ac-
tions will certainly halt in the sense that there is no
action that can be further eliminated, since we restrict
our attention to finite games. Moreover, one can show
that the procedure of iterated elimination of strictly
dominated actions does not depend on the order that
we proceed the elimination, that is, it always yields
the same surviving set of actions for each player.

With the aid of this procedure, we can thus eas-
ily identify the set of rationalizable actions for each
player in finite games, which thus provides a nice al-
gorithm for finding rationalizable actions.
Proposition 2.3 (Pearce, 1984). For any finite nor-
mal game G, the set of profiles of rationalizable ac-
tions coincides with the set of profiles that survives
the process of iterated elimination of strictly domi-
nated actions.

3 Rationalizability with Imprecise
Probabilities

Following the tradition of decision making under un-
certainty, the concept of rationalizability assumes that
each player’s belief regarding the other players’ strate-
gies is represented by a single personal probability
measure. However, there are many convincing ar-
guments for supporting imprecision in beliefs - even
in the context of single-agent decision problems (see
[Ellsberg, 1961] and [Walley, 1999]). A number of
alternative models to subjective expected utility the-
ory have been proposed, which advocate the use of

imprecise probabilities for dealing with uncertainty
in decision problems (see, for instance, [Gilboa and
Schmeidler, 1989] and [Levi, 1974]). It is thus natural
to incorporate these ideas into the traditional game-
theoretic framework. Based on the rules of Γ-maximin
[Berger, 1985; Gilboa and Schmeidler 1989] and E-
admissibility, we present here a generalized game-
theoretic framework as an initial attempt to examine
how modeling uncertainty with imprecise probabili-
ties may provide insight into traditional game the-
ory. In analogy with the concept of rationalizability,
we propose two new game-theoretic solution concepts:
the solution concept that we shall call Γ-maximin ra-
tionalizability attempts to capture the idea that each
player models the other players as Γ-maximin decision
makers, and the other one named E-rationalizability
is meant to represent the idea that each player thinks
of the other players as rational decision makers who
respects the E-admissibility criterion.

An immediate question that is crucial to this inves-
tigation is: which model of imprecise probabilities
should be assumed as representation of players’ beliefs
in strategic situations? There are a variety of mathe-
matical models proposed in the literature to represent
uncertainty in single-agent decision problems. For in-
stance, lower previsions, upper and lower probabil-
ities, sets of probabilities, non-additive probabilities,
and belief functions (see [Walley, 1991]). Among these
widely-discussed models of imprecise probabilities, a
plausible method is to use a convex set of probability
distributions, also called a credal set [Levi, 1980], to
represent a decision maker’s beliefs when confronted
with uncertainty. A great advantage of this approach
is that it allows us to deal with any state of insufficien-
cies in our information, including complete ignorance,
in a unified way. Here we adopt this representation
of uncertainty as the intended model for the players’
beliefs regarding the other players’ strategy choices.
In order to distinguish it from the previous way of
modeling beliefs, we will hereafter refer to a belief as
a conjecture. Slightly modifying the formulation of
belief in the framework of rationalizability, we define
a conjecture of a player as follows:
Definition 7. In a strategic form game G, a con-
jecture of player i, denoted by C´i, about the other
players’ strategy choices is a (nonempty) convex set of
probability measures over the opponents’ actions S´i.

Note that this way of representing players’ beliefs is
a natural generalization of using a single probabil-
ity distribution, as discussed earlier in the context of
rationalizability. Moreover, this representation of be-
liefs admits the possibility of a correlated conjecture
in the sense that, a player’s conjecture may contain
a probability distribution that cannot be obtained by
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independent mixtures over her opponents’ strategies,
for the elements of a conjecture are probability mea-
sures defined over S´i.

One can interpret each member in a player’s conjec-
ture as the frequency of the strategy choices by her
opponents, each of which is randomly drawn from a
large population. More precisely, each player thinks
that each of her opponents stands for a large set of
players and has the same set of feasible choice. In this
context, the probability distributions in player i’s con-
jecture are viewed as the frequencies with which the
members of the set S´i are used by those large pop-
ulations. In light of this, a probability distribution
in a conjecture of a player has a completely different
meaning from a mixed strategy, even though they may
look the same from a mathematical point of view.

Under the preceding interpretation, it is reasonable to
consider the cases where the set of strategies for some
player is not convex, but players’ conjectures are re-
quired to be convex. We understand that it is stan-
dard practice in game theory to consider the mixed
extensions of games, that is, to include all the mixed
strategies. Nevertheless, we may want to model cir-
cumstances where only the pure strategies are avail-
able to the players, which can be suitably described
in the current framework with our interpretation.

In the context of single-agent decision making, sev-
eral decision rules such as Γ-maximin [Berger, 1985;
Gilboa and Schmeidler, 1989], E-admissibility [Levi,
1974], and maximality [Walley, 1999] have been dis-
cussed in the literature of imprecise probabilities
(for a detailed comparison between these criteria see
[Schervish et al., 2003], [Seidenfeld, 2004], and [Trof-
faes, 2007]). There is, however, no general agree-
ment among decision theorists as to which is the
right rule for judging rational decisions when uncer-
tainty is expressed by a convex set of probability func-
tions. Among these suggested criteria, the rule of Γ-
maximin generalizes the principle of maximizing ex-
pected utility by simply taking the lower expected
utility, thereby inducing a complete order on the de-
cision set. More precisely, according to Γ-maximin,
a rational decision maker should choose an option to
maximize the minimum expected value with respect
to a convex set of probabilities. This rule for decision
making under uncertainty seems suitable for describ-
ing decision makers who are uncertainty averse, as it
always takes the worst possible expected value as the
base for maximization. Nevertheless, it has already
been noted in [Seidenfeld, 2004] that the rule of Γ-
maximin fails to distinguish between open and closed,
convex and non-convex sets of probabilities, since
choices based on this decision rule essentially reduces
to binary comparisons which share the same support-

ing hyperplanes. It thus implies that the properties
of closure and convexity concerning players’ conjec-
tures regarding their opponents’ strategy choices are
indistinguishable by Γ-maximin rationalizability.

The other decision criterion that we shall discuss be-
low is often called E-admissibility, which was implic-
itly mentioned in [Savage, 1954] and extensively ad-
vocated by Issac Levi [1974]. According to this de-
cision rule, an option is E-admissible if it maximizes
expected utility relative to some probability distribu-
tion in the convex set of probabilities. In contrast with
Γ-maximin, E-admissibility does not generate an or-
der of options, but it does avoid the above-mentioned
limitation, since it cannot be characterized by pair-
wise comparisons. As shown in the context of de-
cision making, these two rules are not equivalent in
the sense that they may recommend different sets of
admissible options. Thus it is not surprising that
the game-theoretic solution concepts defined based on
these rules are not equivalent either, as illustrated by
an example in the next section.

Under strategic situations, players are usually as-
sumed to be uncertain about the other players’ strat-
egy behavior, and can only attempt to deduce their
opponents’ rational actions from the structure of the
game and available information about their oppo-
nents’ preferences. In most games, it is impossible for
players to ascertain their opponents’ actual behavior.
Due to the insufficient information about preferences
and irreducible strategic considerations, any level of
uncertainty revealed by the imprecision in the set of
probabilities may occur in situations of strategic in-
teraction. Since Γ-maximin and E-admissibility have
been often discussed in the literature of decision the-
ory, it is therefore interesting to study the cases where
all the players would use the rule Γ-maximin or E-
admissibility to choose their strategies in games. By
analogy to the framework of rationalizability, we need
to be explicit about what we mean by a strategy being
rational under uncertainty.
Definition 8. In a strategic form game G, a strategy
δi of player i is Γ-rational under uncertainty if there
exists a conjecture C´i of player i such that δi maxi-
mizes player i’s minimum expected utility with respect
to C´i. In this case, we say that δi is a Γ-maximin
admissible strategy relative to the conjecture C´i.

Likewise, we can define a notion called E-admissible
strategy in a game where players are assumed to use
E-admissibility as the criterion for strategy choices.
Definition 9. In a strategic form game G, a strategy
δi of player i is E-rational under uncertainty if there
exists a conjecture C´i of player i such that δi max-
imizes player i’s expected utility for some probability
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in C´i. In this case, we say that δi is an E-admissible
strategy relative to the conjecture C´i.

Recall that the key idea of the concept of rational-
izability is that each player regards the other other
players as expected utility maximizers. It requires
not only that players are rational in the sense of max-
imizing expected utility with respect some belief, but
also that players’ beliefs should be consistent with
their opponents being rational in a similar way. The
solution concept introduced below extends this idea
to contexts, where each player is assumed to model
the other players as decision makers who employ Γ-
maximin or E-admissibility as the decision rule with
respect to uncertainty. More specifically, we present a
new solution concept that is meant to capture the idea
that players are required to consider only those strate-
gies that are rational under uncertainty, and that are
supported by conjectures that do not contradict with
their opponents being rational under uncertainty.

Now we need to specify the condition for a player’s
conjecture being consistent with her opponents’ ra-
tionality in the senses of Definition 8 and Definition 9
rather than in a traditional decision-theoretic sense.
A natural suggestion is to require that each element
of the conjecture assigns positive probability only to
those actions of her opponents that are rational un-
der uncertainty. Putting these ideas together, we can
formally define the new solution concept called Γ-
maximin rationalizability.
Definition 10. In a strategic form game G, an action
si P Si of player i is Γ-maximin rationalizable if for
each player j P I, there exists a set Aj Ď Sj of actions
such that: (i) si P Ai, and (ii) every action sj in Aj

is Γ-maximin admissible relative to some conjecture
C´j of player j such that the support of each element
of C´j is a subset of A´j.

According to the above definition, one only needs to
find a set of acts and a conjecture for each player
in order to check whether a strategy is Γ-maximin
rationalizable or not. Unlike the above formulation,
Klibanoff [1996] has provided an alternative charac-
terization of rationalizability with uncertainty aver-
sion (see the definition before Theorem 4), which is
defined as an iterative reduction process on the strate-
gies. We shall see that his definition turns out to be
equivalent to the concept of Γ-maximin rationalizabil-
ity defined above. As noted in [Osborne, 2004], there
are two distinct ways of defining rationalizability: one
depends upon an iterated elimination procedure and
the other does not. In the light of this, it seems fair
to say that Klibanoff’s characterization and the above
formulation follow exactly the two different ways to
generalize rationalizability in normal form games to

accommodate uncertainty aversion, although they ac-
tually correspond to the same solution concept.

Analogously, the other solution concept that we call
E-rationalizability can be formally defined as follows.
Definition 11. In a strategic form game G, an action
si P Si of player i is E-rationalizable if for each player
j P I, there exists a set Aj Ď Sj of actions such
that: (i) si P Ai, and (ii) every action sj in Aj is E-
admissible relative to some conjecture C´j of player
j such that the support of each element of C´j is a
subset of A´j.

4 Discussion of Properties

The aim of this section is to establish some prop-
erties of the solution concepts Γ-maximin rationaliz-
ability and E-rationalizability. Among other things,
we will see that, Γ-maximin rationalizability can rea-
sonably embrace a broader class of strategy profiles
as outcomes under certain circumstances in compari-
son with rationalizability, whereas E-rationalizability
can be distinguished from Γ-maximin rationalizabil-
ity based on the ideas originated in decision theory.
In addition, we will characterize the condition under
which these three solution concepts coincide.

4.1 General Results

As we have noted, both of the decision rules, Γ-
maximin and E-admissibility, can be regarded as sim-
ple extensions of the principle of maximizing expected
utility to contexts where uncertainty is modeled by a
set of probability measures. It is obvious that the
former two rules lead to the same recommendations
as the latter one when the set of probability mea-
sures is a singleton set. This enables us to show that
the concepts of Γ-maximin rationalizability and E-
admissibility generalize the notion of rationalizability
to contexts where a set of probabilities is employed to
represent uncertainty in games.
Proposition 4.1. For any strategic form game G and
each player i, if an action si̊ of player i is rationaliz-
able, then it is Γ-maximin rationalizable. This holds
for E-rationalizability as well.

Proof. Suppose that si̊ P Si is rationalizable. Ac-
cording to Definition 3, we have that there exists a
set Zj of actions for each player j P I such that both
conditions specified in the definition are satisfied. Set
Aj ” Zj for every player j. It immediately follows
that si̊ P Ai. And it is clear that every action in Aj is
both Γ-maximin admissible and E-admissible relative
to some conjecture of player j by considering the set
containing only one probability distribution over A´j ,
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as in this case both Γ-maximin and E-admissibility
are equivalent to the principle of expected utility max-
imization. We can thus conclude that si̊ is Γ-maximin
rationalizable, and E-rationalizable as well. �

According to Proposition 2.1, the set of rationaliz-
able actions of each player is nonempty for any finite
normal form games. By applying this result, we can
easily establish the existences of Γ-maximin rational-
izable and E-rationalizable action in strategic games.
Corollary 4.2. For any strategic form game, there
always exists at least one Γ-maximin rationalizable ac-
tion for each player i. This holds for E-rationalizable
action as well.

4.2 Comparisons

At this point, the reader may wonder whether the sets
of Γ-maximin rationalizable and E-rationalizable ac-
tions are in fact identical to the set of rationalizable
actions. It has already noted in [Epstein, 1997] that
the concepts of Γ-maximin rationalizability and ra-
tionalizability are not equivalent when the analysis is
restricted to only pure strategies. He also includes a
generic game (see the game of Figure 1 in [Epstein,
1997]) that is designed to illustrate that difference.
Yet he offers no explicit demonstration.

It has been pointed out in [Seidenfeld, 2004] that an
option that is Γ-maximin admissible may not be Bayes
admissible. Inspired by this result, I show by the fol-
lowing example that the concept of Γ-maximin may
induce a larger set of solutions compared to rational-
izability. It also serves the purpose of illustrating the
definition of Γ-maximin rationalizability.

Example 1. Consider the 3ˆ 2 game shown in Fig-
ure 1. Unlike the usual setting which includes mixed
strategies, we assume here that both players’ feasible
options are pure strategies only, that is, explicit ran-
domization is excluded; no non-trivial mixed strategy
is available to any player.

L R
U 10, 1 0, 2
M 4, 10 4, 1
D 0, 1 10, 2

Figure 1: A normal form game

It is easy to verify that only the pure strategies D
and R are rationalizable for player 1 and 2 respec-
tively. The previous argument basically relies on the
fact that player 1’s action M is strictly dominated
when mixed strategies are taken into account. As a
matter of fact, in this game the set of rationalizable

action is the same, regardless of whether we allow ex-
plicit randomization or not. To see this, note that
the action M is a never-best response, and thus does
not belong to the support of any belief of her oppo-
nent. Therefore, the restriction imposed on the fea-
sible options of the players does not alter the set of
rationalizable actions for both players.

Nevertheless, I claim that all the actions of both
player are Γ-maximin rationalizable in the sense of
Definition 10. The crucial part for establishing the
claim is to see that the action M of player 1 is actu-
ally Γ-maximin rationalizable, even though it is not
rationalizable. This can be shown by considering the
following construction: (i) let the sets of actions for
both players be specified as follows: A1 “ tU,Mu
and A2 “ tL,Ru, and (ii) assume that player 1’s
and player 2’s conjecture is depicted respectively by
the following convex sets: C´1 “

 
P1p¨q : tL,Ru Ñ

r0, 1s | P1p¨q is a probability and 0.2 ď P1pRq ď 0.6
(

and C´2 “
 
P2p¨q : tU,M,Du Ñ r0, 1s | P2p¨q is a

probability, P2pDq “ 0, and 0.45 ď P2pUq ď 0.95
(
.

Under the specifications above, it is obvious that the
first condition in Definition 10 is directly satisfied,
since the action M belongs to the set A1 specified for
player 1. And it can be seen from Figure 2 and Fig-
ure 3 that the second condition is also satisfied, since
player 1’s lower expected payoff given by the actions
U and M is the same with respect to the set C´1,
and the actions L and R also yield the same lower
expected payoff to player 2 with respect to the set
C´2. We can thus say that every action in A1 and A2
is Γ-maximin admissible relative to the conjectures
C´1 and C´2 respectively. In addition, note that ev-
ery probability distribution in C´1 and C´2 assigns
positive probability only to those action in A2 and
A1 respectively. We can therefore conclude that the
action M is Γ-maximin rationalizable. Once M can
be Γ-maximin rationalized, it is then straightforward
to verify that the other actions of both players are
Γ-maximin rationalizable as well.

Probability assigned to R

u1

0 1

M

DU
10

4

0.60.2

C−1

Figure 2: Expected utility to player 1

This example illustrates that the set of Γ-maximin ra-
tionalizable actions may differ from the set of rational-
izable actions in some cases. In particular, the former
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P2(U)

u2

0 1

R

L
10

0.950.45

C−2

Figure 3: Expected utility to player 2

solution concept admits the action M as a candidate
for the outcome of the game, which is ruled out by the
concept of rationalizability. Intuitively, if player 1 is
completely ignorant about player 2’s strategy choices,
it seems quite reasonable for player 1 to select M , as
it has the highest security level. Thus one may say
that the concept of Γ-maximin rationalizability does
capture our intuition in some games.

The result suggested by the above example is not
surprising, since the concept of Γ-maximin ratio-
nalizability in fact employs a richer representation
of uncertainty than that assumed by rationalizabil-
ity. More precisely, Γ-maximin rationalizability allows
each player to model her opponents as Γ-maximin
decision makers under uncertainty, which in fact in-
cludes the expected utility model considered by ra-
tionalizability as a special case. Hence, the concept
of Γ-maximin rationalizability gives rise to a broader
class of solutions under certain circumstances.

Nevertheless, it has been shown in [Seidenfeld, 2004]
that the E-admissibility criterion differs from the rule
of Γ-maximin in the context of individual decision
making. It is therefore natural to expect that the
solution concepts E-rationalizability and Γ-maximin
rationalizability would not be equivalent in the game-
theoretic context. In order to see this, consider again
the game in Example 1. It is easy to see that player
1’s option M is not E-admissible for any probability
distribution over L,R. Based on this fact, we can then
conclude that M is not E-rationalizable, which is Γ-
maximin rationalizable as established above. There-
fore, E-rationalizability and Γ-maximin rationaliz-
ability are not equivalent to each other in the sense
that they may lead to different sets of admissible ac-
tions for players. It is worthwhile pointing out that
E-rationalizability prescribes the same set of admissi-
ble actions as the one recommended by rationalizabil-
ity in this example. It is not difficult to show that this
holds for all finite normal form games. In this sense,
the concept of E-rationalizability has a more intimate
relationship with the traditional notion of rationaliz-
ability compared to Γ-maximin rationalizability.

Furthermore, there is another subtle difference be-

tween E-rationalizability and Γ-maximin rationaliz-
ability, which is based on some idea in decision the-
ory. As mentioned before, in the context of individ-
ual decision making, Γ-maximin fails to distinguish
among different convex sets of probabilities, while E-
admissibility is capable of distinguishing between any
two closed convex sets of probabilities. Putting this
into a game-theoretic context, we can show that E-
rationalizability and Γ-maximin rationalizability may
lead to different sets of admissible options for a player
given the same conjecture about opponents’ strat-
egy choices. In other words, even though the player
holds the same belief model of the other players, E-
rationalizability may recommend a different set of
admissible options from the other suggested by Γ-
maximin rationalizability. To see this, consider Ex-
ample 1 again. Suppose that player 1’s belief about
player 2’s strategy choice is represented by the con-
jecture C´1 “

 
P1p¨q : tL,Ru Ñ r0, 1s | P1p¨q is a

probability and 0.4 ă P1pRq ď 0.6
(
. Under this be-

lief model, both M and D have the same infimum
of expectation, and thus they are Γ-maximin admissi-
ble. However, only D is E-admissible, since D strictly
dominates M with respect to C´1. In this case, E-
rationalizability and Γ-maximin rationalizability give
rather different recommendations to player 1.

So far, we have shown how the notion of impre-
cise probabilities sheds light on the traditional game-
theoretic framework, by illustrating the difference be-
tween Γ-maximin rationalizability and rationalizabil-
ity, and further by examining the distinction be-
tween E-rationalizability and Γ-maximin rationaliz-
ability. However, it is also interesting to investigate
when these solution concepts turn out to be equiva-
lent. In other words, we want to give the conditions
under which the decision rules Γ-maximin and E-
admissibility reduce to the principle of expected util-
ity maximization, including in cases where a convex
set of probabilities is used to represent uncertainty.

Some basic notation and definitions are necessary for
the following discussion. We are concerned here with
finite decision problems where uncertainty is modeled
by a closed convex set of probability functions. We
let Ω denote a finite state space and let O denote a
finite set of outcomes. An option (or act) f is a map-
ping from the state space Ω to the set of outcomes
O. Let A be a set of options available to the deci-
sion maker. As before, we will use the notation HpAq
to denote the convex hull of A. For sake of simplic-
ity, we assume that the decision maker’s values for
outcomes are determinate and are represented by a
cardinal utility function.

Definition 12. Let A be a set of options and let P
be a convex set of probability distributions on the un-
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derlying state space Ω. An option f P A is Bayes
admissible with respect to P if there exists P P P such
that f maximizes the expected utility under P, that is,
EPpfq ě EPpgq for all g P A.

The above criterion recommends selecting those op-
tions in A that maximizes expected utility for at least
one P P P, which corresponds exactly to the idea of
E-admissibility. We can now present the classic result
(see Corollary 3.9.6 in [Walley, 1999] and Theorem 1
in [Schervish et al., 2003]) in decision theory, which
plays a crucial role in establishing the central result
of this section.
Proposition 4.3. If the option set A is convex, then
every option that is maximal admissible with respect
to a closed convex set P of probability distributions is
Bayes admissible with respect to P. That is, if f P A
is not Bayes admissible, then there exists some g P A
different from f such that EPpgq ą EPpfq for all P P P.

We can now characterize the condition under which
the concepts of Γ-maximin rationalizability and E-
rationalizability are equivalent to rationalizability.
Proposition 4.4. For any strategic form game G, if
each player’s choice set is convex and each player’s
conjecture regarding her opponents’ choices is repre-
sented by a closed convex set of probabilities, then
the set of Γ-maximin rationalizable actions is equal
to the set of rationalizable actions. This holds for E-
rationalizability as well.

Proof. pðq: It follows directly from Proposition 4.1.

pñq: Consider an arbitrary player i P I. Suppose that
si is not rationalizable. Then it follows from Propo-
sition 2.3 that si is strictly dominated, which, by
Lemma 2.2, implies that si is a never-best response.
It thus follows that si is not a Bayes admissible action,
since it is not a best response to any belief of player
i. Note that each player’s choice set is assumed to be
convex. Hence, by Proposition 4.3, we have that si is
not maximal admissible, that is, there exists some δi

in player i’s choice set such that player i’s expected
payoff to δi is strictly greater than her expected payoff
to si with respect to any correlated belief regarding
the other players’ strategic behaviors. Accordingly, si

is not Γ-maximin admissible relative to any conjec-
ture, as any conjecture of player i is a subset of the
set of correlated beliefs about her opponents’ strategy
choices. We can therefore conclude that the action si

is not Γ-maximin rationalizable, as required.

The result concerning E-rationalizability can be es-
tablished in a similar fashion. �

Klibanoff [1996] also establishes the equivalence be-
tween Γ-maximin (or uncertainty aversion) rationaliz-

ability and iterated strict dominance (see Theorem 4),
whose proof depends heavily on the equivalence of the
iterative definitions of uncertainty aversion rational-
izability and rationalizability. By contrast, the proof
I present here uses essentially Proposition 4.3, and
thus has a decision-theoretic flavor. To some extent,
the above proof makes explicit why such an equiva-
lence holds by providing an alternative justification
based on an important result in decision theory.

The above result implies that Γ-maximin rationaliz-
ability, E-admissibility and rationalizability suggest
the same set of strategies for each player as rational
decisions for games where players are allowed to con-
sider the convex extensions of their choice sets. And
it is quite standard in game theory to examine all
the mixtures of the pure strategies. In view of this,
we may say that the current framework provides a
more general theoretical foundation for the concept
of rationalizability. That is, the solutions suggested
by rationalizability can be supported by a more gen-
eral decision theory based on weaker assumptions. In
that sense, rationalizability is a quite robust solution
concept, which is implied merely by the assumption
of common knowledge of players being Γ-maximin ra-
tional or E-rational.

5 Concluding Remarks

A variety of mathematical models have been discussed
in the literature to deal with decision making under
uncertainty in single-agent decision problems. In con-
trast with canonical Bayesian decision theory, which
uses just one probability function to represent a de-
cision maker’s uncertainty, these models use impre-
cise probabilities, such as a nontrivial set of proba-
bility functions, to represent uncertainty. Based on
this idea, I have developed in this paper a general
theoretical framework for analyzing how different de-
cision rules can be incorporated into the framework
of normal-form rationalizability when uncertainty is
represented by imprecise probabilities.

More precisely, I extended the notion of rationaliz-
ability to the case where players’ conjectures about
opponents’ strategy choices are represented by a con-
vex set of probability measures, instead of a unique
probability function. In the spirit of rationalizabil-
ity, I introduced a solution concept called Γ-maximin
rationalizability, which captures the idea that each
player models the other players as Γ-maximin deci-
sion makers with respect to sets of probabilities rep-
resenting uncertainty; similarly, I also defined another
solution concept named E-rationalizability. It is easy
to see that both Γ-maximin rationalizability and E-
rationalizability include the concept of rationalizabil-
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ity as a special case when the set of probability mea-
sures contains only a single probability function. In
addition, I have shown by an example that these con-
cepts are not equivalent. I have also identified the
conditions under which these solution concepts coin-
cide with each other.

Now I sketch some suggestions for future work along
the current line of research. One natural project is to
apply some other decision rules like maximality to in-
teractive situations, in a way similar to the framework
developed in this paper. And it also seems natural to
extend the current framework to the context of ex-
tensive form games in which sequential decisions are
involved. In this way, one can develop a general the-
ory of games under uncertainty.
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Significance of a decision making problem under uncertainty

Kevin Loquin
LIRMM

161 rue Ada
34095 Montpellier Cedex 5 France

kevin.loquin@lirmm.fr

Abstract

In this paper, we work on the interval dominance
based extension of the Savage Expected Utility Max-
imization (SEUM) approach. While usual probabili-
ties only handle variability due uncertainty, imprecise
probabilities additionally handle, in a unique frame-
work, epistemic uncertainty. This side of uncertainty,
often called imprecision, can generate incomparabil-
ity between the acts of a decision problem. Incom-
parability is linked to information held by the impre-
cise probability model quantifying the outcomes un-
certainty. Our proposal, in this paper, is that for a
given decision problem, its significance is the quantity
of information which makes the interval dominance
based imprecise SEUM decision problem change from
incomparable to decidable (and possibly still not com-
parable) or comparable (and possibly still not decid-
able). We discuss incomparability sources, a theoret-
ical and a pragmatical definition of significance of a
decision problem under uncertainty.

Keywords. Savage EUM, decision theory, imprecise
probability, interval dominance, significance

1 Introduction

Decision making boils down to comparing the out-
comes of many possible acts. Modeling a decision
problem (DP) is as simple as ranking the set of pos-
sible acts according to a preference relation generally
constructed from a quantification of the consequences
of each act (by means of a utility function). The dis-
tinction between the notions of comparability and de-
cidability is very important in our work. A DP is said
to be comparable when its set of acts can be ranked
according to a complete preference relation. A DP is
said to be decidable when there is a unique act which
is optimal according to its preference relation.

When no uncertainty pertains the problem, the pref-
erence relation is naturally complete: any act can be

ranked according to this preference relation. Even if
the DP is not decidable, optimal choice(s) can always
be found.

Decision making under uncertainty stands for situa-
tions when an act does not lead to a unique outcome
with certainty. Since the preference relation between
the acts is constructed from their outcomes, it seems
natural to admit incomparability when facing uncer-
tainty. Nevertheless, what is important for most de-
cision maker is to work with a comparable DP and if
possible with a decidable one. Most of the last century
advances in decision making under uncertainty aimed
at making complete, the ranking between the acts, by
means of axioms which are supposed to be consistent
with a rational (subjective) behavior. Among them,
the Savage axiomatic, from which is derived the Ex-
pected Utility Maximization criterion (SEUM), is the
most popular one [14].

Our view is that it is an artificial and arbitrary task
to force the comparability of a DP under uncertainty.
Indeed, due to partial information, a DP is inherently
incomparable. We propose to ground our definition
of significance on this “informativist” view of deci-
sion under uncertainty. Thus, we propose to work
with imprecise probability based decisions theories
[11, 12, 17, 18] instead of usual probability based
decision theories [14]. The main asset of imprecise
probability theories [1, 16, 18] over the usual proba-
bility theory is that they handle partial information.
Within these schemes, uncertainty is characterized by
interval weights (probability or more generally utility)
instead of point-valued weights due to partial infor-
mation. An imprecise probability model is a convex
family of precise probabilities.

As is done in SEUM, some of the imprecise probabil-
ity based decision theories propose a complete ranking
between acts (maximin, maximax or Hurwicz criteria
[11]), but what is the main richness of the imprecise
probability based decision models is that they can ad-
mit incomparability due to lack of knowledge in a rig-
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orous way. For instance, the E-admissibility criterion
of Isaac Levi [12], the maximality as proposed by Pe-
ter Walley [18] or the very simple interval dominance
decision rule all admit incomplete preference relations
between the acts.

We aim at proposing a notion of significance of a DP
based on this informativity interpretation of uncer-
tainty in decision theory. Let us take any DP under
uncertainty (thus incomparable or undecidable in the
general case), its significance is the smallest quantity
of information required to make it comparable or de-
cidable. This is a quite intuitive idea: one faces a
decision problem which is incomparable, the amount
of required information to disambiguate the problem
naturally characterizes the significance of the original
problem. In some sense, significance aims at measur-
ing the missing information for making the DP com-
plete or decidable.

This definition of significance of a DP under uncer-
tainty is abstract and is not grounded on any deci-
sion or uncertainty theory. In order to derive more
concrete definitions, we propose to define the signif-
icance of a DP under uncertainty from the interval
dominance decision rule and imprecise probability as-
sessments over the outcome space.

Section 2 is a reminder (or a presentation) about the
lower prevision model which summarizes the mate-
rials required for a proper understanding of this pa-
per. The notion of imprecise expectation is particu-
larly stressed. Section 3 presents the usual generaliza-
tions to imprecise probabilities of the SEUM. Finally
Section 4 discuss the notion of significance of a DP
under uncertainty as we aim at presenting it. A gen-
eral (unrealistic) definition of significance is proposed,
followed by a pragmatic definition of a significance in-
dex of a DP. A toy example inspired from [8] is also
proposed to illustrate the notion of significance.

2 Imprecise Probability Theory

It is generally obvious (and probably non discussable)
for most readers that the uncertainty about the out-
come of any experiment is modeled by a set of precise
weights between 0 and 1 on all the possible outcomes
of this experiment: the probability weights. The gen-
eral idea behind most of the imprecise probability the-
ories is that uncertainty should preferably be modeled
by a set of probability weights in order to handle im-
precision, partial information or lack of knowledge in-
herent to most systems. Such new uncertainty theo-
ries are more general and powerful models than prob-
ability because they jointly and consistently handle
the distinct notions of uncertainty due to variability
and uncertainty due to imprecision that is generally

called epistemic uncertainty.

2.1 Imprecise Probability Models

This theory presentation (which can be bypassed by
expert readers) will emphasize on lower previsions de-
fined on discrete domains, i.e. on domains with finite
cardinality.

Let X be an uncertain variable whose possible out-
comes are on a (finite) space X containing N exclusive
single elements. Let L(X ) denote the set of bounded
real-valued functions on X . L(X ) is called the set of
gambles. Each element (gamble) f ∈ L(X ) is inter-
preted as the function on X representing the rewards
f(x) associated to the occurence of any possible out-
come x ∈ X of X. Since the outcome value x ∈ X is
uncertain, f(x) is also an uncertain reward and thus
f is an uncertain gamble.

A lower prevision E on L(X ) is defined as a mapping
E : K ⊆ L(X ) → R. Its behavioral interpretation
advocated by Walley is as follows: E(f) is interpreted
as the supremum buying price an agent would accept
for the uncertain reward f(x). In order to ease the
understanding of this fundamental concept, a lower
prevision E(f) can be seen as the lower bound of the
expectations of the uncertain gamble f . To a lower
prevision E is associated its dual upper prevision E
(or upper expectation), defined as E(f) = −E(−f).

A lower prevision is said to be coherent on its gamble
domain K ⊆ L(X ) if it satisfies the following condi-
tions:

(C1) E(f) ≥ infx∈X f(x) for all f ∈ K (accepting
sure gain);

(C2) E(λf) = λE(f) for each f ∈ K and λ ≥ 0
(positive homogeneity);

(C3) E(f +g) ≥ E(f)+E(g) for all f, g ∈ K (super-
additivity).

A less restrictive class of lower previsions is the class
of lower previsions avoiding sure loss. Let G(f) be
the highest expected gain with a gamble f ∈ K. It is
naturally defined by G(f) = f−E(f). We thus have a
loss on f for the assessed prevision E when G(f) < 0.
Thus a lower prevision model is said avoiding sure
loss when there is a set of gambles (fj)j=1,...,n of K
fulfilling

∑n
i=1G(fj) ≥ 0, i.e. when there is at least a

set of gambles whose combination avoids a sure loss.

A coherent lower prevision which is equal to its asso-
ciated upper prevision is said to be linear. Therefore,
a coherent linear prevision denoted by E, i.e. such
that for all f ∈ K, E(f) = E(f) fulfills both super-
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additivity (C3) and sub-additivity1 and thus the fi-
nite additivity axiom: E(f + g) = E(f) + E(g). A
linear prevision can be seen as a usual expectation
operator.

A lower prevision can be associated to a convex set
of linear previsions. The set of linear previsions dom-
inating the coherent lower prevision E, defined on K,
called the credal set, is defined by:

M(E) = {E ∈ E(X ) | (∀f ∈ K) (E(f) ≤ E(f))} ,
(1)

where E(X ) is the set of linear previsions on X .

This object is particularly interesting since it links
a lower expectation to its associated coherent set of
dominating expectations.

An important particular case of coherent lower previ-
sion is the lower probability. To any subset (or event)
A of X can be associated its indicator function, which
is a gamble, 1lA ∈ L(X ). The lower probability of an
event A ⊂ X , denoted by P (A), is the lower prevision
associated to this gamble 1lA. We denote by B(X ), the
set of indicator functions on X , in order to remind the
Borel algebra: B(X ) ⊂ L(X ) can be seen as the set of
events on X . To a lower probability is associated the
dual notion of upper probability P (A) = 1 − P (Ac),
where Ac denotes the complement of A on X .

Many other particular cases of the lower prevision
model exist [3, 4, 19] that match the following in-
clusion: a necessity measure (dual of a possibility
measure) is a particular case of belief function (whose
pieces of evidence are consonant or nested [6]) ; a be-
lief function is a particular case of convex Choquet
Capacity ; a convex Choquet capacity is a particu-
lar case of lower probability ; a lower probability is a
particular case of lower prevision.

2.2 Imprecise Expectation and natural
extension

Facing a given quantity of information, a complete
modeling of an uncertain variable X is done when
a coherent lower prevision can be associated to any
possible gamble f of L(X ). However, in most real
applications, information is limited to a lower previ-
sion, denoted by EK, defined on a subset of gambles
K ⊂ L(X ). The natural extension procedure allows
distributing (conveying) information held by EK to
L(X ) in the most conservative way. In other words,
the natural extension is the most specific model, de-
noted by E, that can be constructed on L(X ) without
any additional information incorporation, i.e. without
reducing the model EK.

1Sub-additivity: axiom (C3) with the reverse inequality.

Definition 2.1 (Natural Extension)
Suppose EK is a lower prevision on K ⊂ L(X ), then
its natural extension E is defined, for any f ∈ L(X ),
by

E(f) = sup
R

{
α : f − α ≥∑n

j=1 λj(fj − EK(fj)),

for some n ≥ 0, fj ∈ K, λj ≥ 0

}
.

(2)

E(f) is the supremum buying price for the gamble f
given that the linear combination of the highest gain
G(fj) = fj −EK(fj) associated to any set of gambles
fj of K is still higher than the gain G(f) obtained on
the gamble f for this price E(f).

When EK avoids sure loss E is the minimal coher-
ent lower prevision which dominates EK on K. This
gives all its meaning to the expression “in the most
conservative way”, which characterizes the way an un-
certainty model EK on K is extended to E on L(Ω).
Note also that when EK is coherent, EK and E coin-
cide on K.

This tool is of prime importance since it tells us how
to accomplish inference from the assessment of an im-
precise prevision model on K ⊂ L(X ) to any gamble
of L(X ).

An interesting particular case is when K = B(X ).
In that case, the natural extension procedure coin-
cides with the computation of the lower expectation
of any bounded function f : E(f) associated to the
constraints provided by the lower probability model
P defined on B(X ). This is exactly what defines the
imprecise expectation: this is the natural extension
to L(X ) of a lower prevision defined on B(X ) (thus of
a lower probability).

The imprecise expectation can only, in the general
case of lower probability, be computed by using linear
programming techniques. But, for a convex capac-
ity (and any of its submodels: necessity, belief func-
tion,...), imprecise expectation can be computed by
means of the Choquet integral [2].

3 Decision under uncertainty with
Imprecise Probability

Uncertainty modeling has many available distinct the-
ories generally associated to different interpretations.
Decision modeling under uncertainty shares the same
kind of diversity in its theories. In this section, we
present the most encountered decision theories under
uncertainty.

ISIPTA ’13: Significance of a decision making problem under uncertainty 205



3.1 SEUM decision theory

In the SEUM decision theory, there is the set of pos-
sible acts, denoted by A. Decision making under
uncertainty stands for situations when an act does
not lead, in general, to a unique outcome with cer-
tainty. Each act X of A is an uncertain variable
with value in the finite outcome space, denoted by X .
This outcome space is a rather abstract space which
can be numerical or not. For instance patient heal-
ing or flood are non numerical outcomes encountered
in usual DP under uncertainty in the fields of medi-
cal decision or environmental risk assessment. In the
SEUM approach, a utility function on the outcome
space is used: u : X → R to quantify (and possibly
rank) the acts (or their outcomes) on a utility scale.

Under the Savage axioms, the following complete pref-
erence relation � is constructed on A and defined, for
X and Y in A by:

X � Y iff EX(u) ≥ EY (u). (3)

In other words, an act X is preferred to another act Y
when its associated expected utility is higher than the
expected utility associated to Y . The optimal act(s)
X∗ is (are) such that

X∗ � Y, ∀Y ∈ A.
At this point it is interesting to link some notations
of the SEUM approach to notations of our imprecise
probability presentation (IP) of Section 2. For in-
stance, a gamble f in IP theory is similar to the utility
function u of SEUM. Besides, the uncertain variable
of IP and the uncertain outcome of SEUM, both de-
noted by X, are similar objects. We chose to incorpo-
rate the uncertain variable X to our IP presentation,
which is generally not present in Walley theory and
especially not in Walley’s book [18], since it can easily
be linked to the uncertain outcome of usual decision
theories under uncertainty.

SEUM is a very elegant axiomatic construction [14]
which entails a rational interpretation to preference
structure (3). Many authors discussed and criticized
the foundations of this approach by stressing too
strong axioms [10]. Perhaps the most severe and con-
structive criticism is due to Ellsberg [7]. The SEUM
is based on the idea that a decision maker behaves as
if he possesses a complete and exhaustive knowledge
of the possible states of the world, and moreover that,
his assessment of the uncertainty about the outcomes
may be represented as a unique finitely additive prob-
ability model. This idea has been termed as proba-
bilistic sophistication [13]. Experimental evidence, as
the Ellsberg paradox [7], has failed to support proba-
bilistic sophistication as a good descriptive theory of
behavior under uncertainty.

3.2 Imprecise SEUM generalizations and
associated decision rules

Questioning the probabilistic sophistication principle
of the SEUM approach has been done for many sub-
models of the lower prevision model: for possibility
theory [5], for belief functions [10] or for capacities
[15]. In such particular cases, the usual expectation
operator based on the Lebesgue integral is replaced by
a two-fold Choquet integral to compute the bounds of
an imprecise utility expectation operator. The most
general framework, i.e. obtained when uncertainty
about the outcomes is modeled by a lower prevision
P , is computationally less tractable since it does not
involve an explicit formulation of the imprecise ex-
pectation bounds but only linear optimization tech-
niques.

Actually, most proposed generalizations of the SEUM
to lower previsions were reduced to find meaningful
ways to compare imprecise quantities: the imprecise
expected utilities [EX(u), EX(u)] instead of compar-
ing precise quantities: the expected utilities EX(u).
In other words, most approaches aim at finding a
meaningful way to fulfill the first Savage axiom (which
claims that a preference relation is a complete order-
ing on the set of possible acts A) when the compared
quantities are imprecise.

In order to expose some of the most encountered ap-
proaches, it is interesting to provide interpretations to
[EX(u), EX(u)]. If u is a utility function on X , u(x)
is uncertain due to the uncertainty on the outcomes
of the act X, thus EX(u) can be considered as the
pessimistic expected utility associated to act X and
EX(u) can be considered as the optimistic expected
utility associated to act X. In such framework, u(x)
represents a reward. It is therefore intuitive to term
as optimistic the highest reward we can expect for un-
certain outcomes of act X, i.e. EX(u). Conversely,
being pessimistic is to consider only the lowest reward
we can expect with such model, i.e. EX(u). Another
remark is that when we are optimistic on a reward,
we are pessimistic on a loss (and conversely) which is
translated by relation EX(u) = −EX(−u), since −u
is a loss when u is a reward.

This relevant interpretations of EX(u) and EX(u) as
respectively the pessimistic and optimistic expected
utility lead to propose a parametric optimal decision
rule: the Hurwicz criterion, whose parameter r is a
marker of the risk aversion of the decision maker. Ac-
tually, a decision maker has a high level of risk aver-
sion when he considers for comparative quantities in
its DP, the pessimistic expected utility. To favor the
less risky problem posing and to be pessimistic are
equivalent. Thus under a risk aversion (or pessimistic)
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attitude, the optimal decision rule is given by

X �P Y iff EX(u) ≥ EY (u). (4)

Optimism and risk are generally in accordance, thus
the optimistic optimal decision rule is

X �O Y iff EX(u) ≥ EY (u). (5)

As a tradeoff between these rules stands the Hurwicz
criterion. It is based on defining the expected utility
for a risk aversion degree of r by :

ErX(u) = rEX(u) + (1− r)EX(u). (6)

r is a sensible risk aversion index since E1
X(u) =

EX(u) and E0
X(u) = EX(u). Thus the Hurwicz deci-

sion rule for a risk aversion degree r is

X �rH Y iff ErX(u) ≥ ErY (u). (7)

Note that �P is exactly �1
H and �O is exactly �0

H .

While the imprecise probability framework is sup-
posed to model imprecision or epistemic uncertainty,
to our view, the only consistent approaches, regarding
this “informativist” view, are the approaches which
allow incomparability between acts. At first sight ad-
mitting incomparability is problematic for providing
optimal choices. However, this is a quite intuitive
idea when facing epistemic uncertainty. In most cases
where information is partial, admitting incomparabil-
ity (and/or indecision) is safer than proposing a choice
even if this choice is supposed to be obtained with a
pessimistic rule. Let us consider an example of cancer
diagnosis which illustrates a rational behavior under
epistemic uncertainty: for most kind of cancers, ab-
normal blood tests results are not significant enough
to diagnose cancer and an additional biopsy is gener-
ally required. Thus when information is partial (only
the blood tests result), the physician admits incompa-
rability and thus indecision. He will never claim that
the patient has cancer and decide to start a heavy
chemotherapy treatment only from these partial evi-
dences.

Three decision rules admitting incomparability
between acts are generally considered, the E-
admissibility of Isaac Levi [12], the maximality as pro-
posed by Peter Walley [18] or the very simple interval
dominance decision rule. Interval dominance criterion
is defined through the following incomplete preference
relation:

X �ID Y iff EX(u) ≥ EY (u). (8)

This is certainly the most intuitive and simple de-
cision rule admitting incomparability with imprecise
probability. It says that an actX is preferred to an act

Y if the imprecise expected utility of X completely (in
terms of interval) dominates the imprecise expected
utility of Y .

Actually this is the most cautious rule. Indeed a DP
which is not comparable for the interval dominance
criterion can be comparable for the E-admissibility
and/or the maximality criteria. It implicitly means
that available information is considered as insufficient
for the interval dominance criterion while sufficient for
the other criteria.

3.3 Sources of incomparability: a discussion

As already mentioned, a DP is said to be compara-
ble when its set of acts can be ranked according to
a complete preference relation and a DP is said to
be decidable when there is a unique act which is op-
timal according to its preference relation. There is
no inclusion relation between the decidability and the
comparability of a DP. A decidable problem is not
necessarily comparable. This is the case if there ex-
ists an optimal act for a partial preference ordering.
Conversely, a comparable problem is not necessarily
decidable. This is the case for any problem which re-
sults in more than one indifferent optimal acts for a
complete preference ordering.

In this paper, we propose to use the non comparability
of a DP under uncertainty to define its significance.
Thus, it is interesting to discuss the incomparability
sources of an imprecise SEUM problem. To our view,
the sources of incomparability are twofold: 1/ epis-
temic (or reducible) uncertainty but also 2/ the prob-
lem construction itself. While they may not be the
only sources of incomparability of an imprecise SEUM
problem, they are certainly among these sources.

Indeed, 1/ the influence of the epistemic uncertainty
on the comparability of a DP can easily be shown: let
us take any incomparable imprecise SEUM problem, if
uncertainty is reduced to a precise probability model
then we recover a usual (i.e. precise) SEUM and thus
a comparable DP.

And, 2/ the influence of the problem construction it-
self can be put forward: let us consider two different
problems (i.e. two different utility functions) but with
the same set of acts and associated uncertain out-
comes and the same imprecise probability assessments
for these parameters. We denote (P1) and (P2) these
imprecise SEUM problems. We can find cases where
(P1) provides a comparable decision framework, while
(P2) is still incomparable.

Among the other possible sources of incomparability,
we were wondering if the imprecise expectation oper-
ator which is used to pass from the uncertainty as-

ISIPTA ’13: Significance of a decision making problem under uncertainty 207



sessment step to the comparison step of an imprecise
SEUM problem, has some impact on the comparabil-
ity of the problem. Our answer is not clear yet but
we showed some continuity results of the imprecise ex-
pectation operator in a working paper. These results
tend to prove that the imprecise expectation operator
does not impact the comparability of the problem.
Indeed, continuity means that variations (measured
with Hausdorff distances) between imprecise expec-
tations are bounded by the variations between their
generative imprecise probability models. Such stabil-
ity is important in imprecise SEUM. It means that
information rooting the uncertainty assessment of an
imprecise SEUM problem is properly conveyed to the
utility comparison step. More than this topological
stability, it was already said that the natural exten-
sion is the most conservative extension of an imprecise
probability model to the expectation of a utility func-
tion (or gamble).

4 Significance of a decision making
problem under uncertainty

Now, let us reexamine an already considered situa-
tion: we are facing two different problems (i.e. with
two different utility functions) with the same uncer-
tain outcomes. Let us consider that both problems
are non comparable and non decidable. If we pro-
gressively reduce the epistemic uncertainty associated
to the uncertain outcomes of the problems, one prob-
lem, for instance (P1), should become comparable or
decidable before the other problem (P2). It is thus
natural to claim that problem (P1) is more signifi-
cant than problem (P2) regarding the original pieces
of information. Indeed, (P1) requires less artificial in-
formation addition than (P2) to become decidable or
comparable.

The previous paragraph is the heart of this paper,
since it explains the notion of significance as we hear
it. We will say that a DP under uncertainty is fully
significant if its associated ranking of the set of acts A
is complete for the interval dominance or is decidable
(even if non comparable). A DP under uncertainty is
fully insignificant when the system must be reduced
to a precise SEUM to become a comparable DP (de-
cidable or not). Between these extreme cases, we will
define the significance index of an incomparable and
undecidable DP: it is the smallest quantity of infor-
mation required to make it comparable or decidable.

In a sense, significance, as we aim at defining it, is a
measure of “missing information” to make the prob-
lem comparable or decidable. Thus significance is a
measure of meta-information: information about in-
formation. As for imprecise SEUM problems, infor-

mation is modeled by lower previsions. It models in-
formation about a true underlying probability mea-
sure. Thus, meta-information can only be consistently
quantified if we know the true underlying probability.
In other words, it is impossible to judge information
(i.e. to quantify meta-information) without knowing
the truth. That is the reason why we ground our
first definition of significance on the (unrealistic and
unapplicable) assumption that we know the true un-
derlying probability of an imprecise SEUM problem.

Note that all the involved lower probabilities in this
definition of significance are consistant with the true
underlying probability. It means that we only work
with information which are not conflicting. Thus,
we do not compete with formal decision frameworks
which deal with ambiguity and conflict as separate
types of uncertainty [9].

4.1 An unrealistic general definition of a
significance index

The most general (but unrealistic) definition of a sig-
nificance index that we will propose requires some pre-
liminary definitions and notations.

Let PX be a lower probability on the act X, which
is an uncertain variable with values in the outcome
space X . Let P0 be the true underlying probability
modeling the uncertainty about X. We assume that
PX is consistant with P0, i.e. P0 ≥ PX .

Let P(PX) = {P : P0 ≥ P ≥ PX} be the set of lower
probabilities consistent with P0 and dominating PX .
It is the set of lower probability models more specific
than PX , i.e. more informed, and still consistant with
PX .

Let d be a distance between imprecise probabilities
of P(PX) which respects the domination. We mean
that, for three encapsulated (according to heir speci-
ficity) lower probabilities P1, P2 and P3, such that
P1 ≤ P2 ≤ P3 then d(P1, P2) ≤ d(P1, P3). This prop-
erty is quite natural since it enables to use such dis-
tance for ranking the lower probabilities specificity-
wise relative to a given lower probability. For in-
stance, d(P1, P2) ≤ d(P1, P3) means that, relatively
to P1, we have that P2 ≤ P3, i.e. that P2 is more
specific than P3. Note that the Hausdorff distance
between sets of probabilities and thus between lower
probabilities fulfills such natural property. It should
be interesting to study other distances between lower
probabilities respecting this property.

Let d0 be this distance between any lower probability
P of P(PX) and P0: d0(P ) = d(P0, P ). We also define

d0X = d0(PX) = d(P0, PX)
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as the distance between PX and P0.

Let α be the distance between any lower probability
P ∈ P(PX) and P0 relative to the distance between
PX and P0. α is defined by

α(P ) =
d0(P )

d0X
.

This relative distance is such that α(P ) ∈ [0, 1] for
any lower probability P ∈ P(PX) and α(P0) = 0 and
α(PX) = 1.

In other words, should we assume that P0 exists and is
known (which is not consistent with the Walley’s be-
havioral imprecise probability framework), α(P ) can
be considered as a normalized index of non specificity
(of imprecision) of P .

Now, let us define, for a given imprecise SEUM prob-
lem (P), C: the set of lower probabilities of P(PX)
which make the problem comparable or decidable.
Now we can propose a general unrealistic definition
of the significance of an imprecise SEUM.

Definition 4.1 (Significance)
Let (P) be an imprecise SEUM problem: PX is a

lower probability on X defined on X and u is a utility
function on X .

Let P ∗, be the least specific lower probability of
P(PX), which makes (P) comparable or decidable.
Then the significance of (P) is given by

S(P ) = α(P ∗). (9)

An alternative definition can be proposed:

S(P ) = max
P∈C

α(P ). (10)

The interpretation we can propose to this index is as
follows. Significance is the maximal degree of impre-
cision (of epistemic uncertainty) which allows compa-
rability. For a lower prevision model with an impre-
cision higher than S(P ), the problem is still incompa-
rable, but for a lower prevision model with an impre-
cision lower than S(P ), the problem i scomparable or
decidable.

Let us retake the example presented in the first para-
graph of Section 4.1. We can rephrase it that way: the
highest imprecision which makes the problem compa-
rable or decidable is bigger for (P1) than for (P2) thus
S(P1) ≥ S(P2).

Finally, if we are facing a problem (P) which is com-
parable regarding the provided information PX , then
the significance of this problem should be the high-
est, i.e. should be equal to 1. With our definition,

S(P ) = 1, since C = P(PX) and α(PX) = 1. On
the contrary, if we are facing a problem (P’) which is
comparable or decidable only when uncertainty is re-
duced to a linear probability, then the significance of
this problem should be the lowest, i.e. should be equal
to 0. With our definition, S(P ′) = 0, since C = {P0}
and α(P0) = 0.

4.2 Significance index : an applicable
definition

Definition 4.1 of the significance is not applicable be-
cause P0 is unknown (even if it exists). We propose in
this section a pragmatic significance index for the im-
precise SEUM approach with the interval dominance
rule.

In Definition 4.1, the imprecision reduction is per-
formed directly on the lower probability PX model-
ing the uncertainty about X. In the applicable def-
inition, we propose to perform this imprecision re-
duction directly on the interval utility expectations
[EX(u), EX(u)] associated to every act X.

This applicable definition is inspired from the Hurwicz
risk aversion degree (6). In our case we define the
relative imprecision index ρ of the imprecise expected
utility as:

{
EρX(u) = (1− ρ)E0(u) + ρEX(u),

E
ρ

X(u) = (1− ρ)E0(u) + ρEX(u),
(11)

where E0(u) =
EX(u)+EX(u)

2 is the middle of

[EX(u), EX(u)].

ρ is an index of imprecision relative to the impre-
cision of EX . We interpret [EρX(u), E

ρ

X(u)] as the

representation of [EX(u), EX(u)] of relative impre-
cision ρ. Indeed, for a relative imprecision ρ = 0,

[E0
X(u), E

0

X(u)] = {E0(u)} and for a relative impre-

cision ρ = 1, [E1
X(u), E

1

X(u)] = [EX(u), EX(u)]. In
other words, [EρX(u), E

ρ

X(u)] goes from {E0(u)} to
[EX(u), EX(u)] when ρ goes from 0 to 1.

We can thus define a new decision rule which is called
the ρ-imprecise decision rule and which is the interval
dominance decision applied to the ρ-imprecise interval
[EρX(u), E

ρ

X(u)] :

X �ρ Y iff EρX(u) ≥ EρY (u). (12)

The proposed definition of the applicable significance
is thus a direct application of Definition 4.1.

Definition 4.2 (Applicable Significance)
Let (P) be an imprecise SEUM problem: PX is a

lower probability on X defined on X and u is a utility
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function on X . Let ρ∗, be the highest relative impreci-
sion index, such that �ρ∗ becomes complete or makes
(P) decidable. Then

S(P ) = ρ∗. (13)

Compared to Definition 4.1, this solution, Definition
4.2 is feasible. Anyway, artificially increasing the in-
formativity of an imprecise probability model is the
only possible way to propose an applicable signifi-
cance index. Indeed the informativity of any model
can only be measured if we know the underlying true
model, which is impossible or artificially possible.

Now let us illustrate this notion of significance on a
toy example taken from [8].

Example

Assume that an individual with initial wealth ω is
facing a risk of loss `. There is uncertainty about the
fact that this loss occurs or not. Each act X has two
possible rewards: one if loss occurs, denoted by x`,
and one if loss does not occur, denoted by x¯̀.

One possible act for the individual would be not to
buy any insurance. This can be represented by the
act X = (x`, x¯̀) = (ω − `, ω). Another act would be
to buy full coverage at a premium π, yielding Y =
(y`, y¯̀) = (ω − π, ω − π). A third possible act would
be to buy partial coverage at a premium π′, yielding
Z = (z`, z¯̀) = (ω − `+ I − π′, ω − π′) where I is the
indemnity paid in case of damage.

We assume that the individual wealth is ω = 3
2 , that

its potential loss ` = 1
2 , that the respective full and

partial coverage are given by π = 1
5 and π′ = 1

10 and
that the indemnity is I = 1

3 . We also assume that
the imprecise probability of loss is given by {(p, 1 −
p) : for p ∈ [ 1

3 ,
1
2 ]}. The utility function is u(x) = x

for x ∈ X . Under such assumptions, the compared
imprecise expectations are given by:

• [EX(u), EX(u)] = [1.25, 1.33],

• [EY (u), EY (u)] = {1.3},
• [EZ(u), EZ(u)] = [1.288, 1.3166].

We can compute easily that the significance of this
DP is 0.2 and that the associated optimal decision is
Z. Indeed, for decreasing relative imprecision indices,
Table 1 shows the evolution of the imprecise utility
expectation when we artificially decrease imprecision.

We can see from Table 1 that the DP becomes decid-
able and completely ranked for ρ = 0.2 and that the
associated optimal choice is Z. In other words, with
a significance of 0.2 the individual should choose to
buy the proposed partial coverage π′.

ρ [EX(u)] [EY (u)] [EZ(u)]
0.3 [1.278, 1.302] 1.3 [ 1.2986 , 1.3069 ]
0.2 [1,282 , 1,298 ] 1.3 [1.3, 1.3056]
0.1 [ 1.286, 1.294] 1.3 [1.3014, 1.3042 ]

Table 1: Imprecise utility expectations for various rel-
ative imprecision

End of Example

It should be noted that the aim of our proposal is not
to provide an optimal decision. Actually, with Def-
inition 4.2, the optimal choice(s) is (are) always the
optimal choice(s) for the center of the utility expec-
tation intervals associated to the acts. The Hurwicz
criterion with a risk aversion of r = 1

2 gives the same
result, i.e. the same optimal choice(s). However, our
approach aims at providing a significance index which
is not done with the Hurwicz criterion or any other
decision rule. The proposed simplified and pragmatic
definition is a simple way to explain and introduce
the notions of interest in this paper. But more sensi-
ble and complex definitions of significance should be
proposed in later works.

5 Conclusion

This article is a discussion paper. Its aim is mainly to
define a new notion of significance of decision prob-
lem under uncertainty and to discuss its foundations.
The idea is that if a decision problem is not compara-
ble then the quantity of information which is required
to make it comparable or decidable is directly linked
to its significance. A theoretical definition of a signifi-
cance index is proposed. This definition is constructed
with the true underlying model of an imprecise prob-
ability and is thus unrealistic. A second artificial but
pragmatical index is proposed. This index is very sim-
ple and inspired from the way the Hurwizc decision
criterion is constructed.

The next step is to derive explicit formulations of
other significance indices based on pragmatic con-
structions similar or different than the one found in
Section 4.2 and obtained for different imprecise prob-
ability models. For instance with any submodel of
the convex Choquet capacities, the imprecise expec-
tation is explicitly computed with the Choquet inte-
gral. Thus explicit formulations of significance indices
are possible. Experimental studies are now to be pro-
posed.
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Abstract

The aim of this paper is to derive new near-ignorancemod-

els on the probability simplex, which do not directly in-

volve the Dirichlet distribution and, thus, that are alterna-

tive to the Imprecise Dirichlet Model. We focus our inves-

tigation to a particular class of distributions on the simplex

which is known as the class of Normalized Infinitely Divis-

ible distributions; it includes the Dirichlet distribution as a

particular case. Starting from three members of this class,

which admit a closed-form expression for the probability

density function, we derive three new near-ignorance prior

models on the simplex, we analyse their properties and

compare them with the Imprecise Dirichlet Model.

Keywords. Prior near-ignorance, Normalized Infinitely

Divisible distribution, Imprecise Dirichlet Model.

1 Introduction

The Imprecise Dirichlet Model (IDM) has been introduced

by Walley [1] to draw inferences about the probability dis-

tribution of a categorical variable. Consider a variable Z

taking values on a finite setZ of cardinalitym and assume

that we have a sample of size N of independent and identi-

cally distributed outcomes of Z. Our aim is to estimate the

probabilities Pi for i = 1, . . . ,m, that is the probability that
Z takes the i-th value. In other words, we want to estimate

a vector on the m-dimensional simplex:

∆m(p) =

{
(p1, . . . , pm) : pi ≥ 0,

m

∑
j=1

p j = 1

}
. (1)

A Bayesian approach consists in assuming a prior Dirich-

let distribution for the vector of variables (P1, . . . ,Pm), and
then taking the posterior expectation of Pi given the sam-

ple. The Dirichlet distribution depends on the parameters

s, a positive real value, and (t1, . . . , tm), a vector of positive
real numbers which satisfy ∑m

i=1 ti = 1. In case of lack of

prior information, an issue in Bayesian analysis is how to

choose these parameters to reflect this condition of prior ig-

norance. To address this issue, Walley has proposed IDM,

which considers the set of all possible Dirichlet distribu-

tions, with fixed value for s, in the simplex ∆m(p):

M =

{
Γ(s)

∏m
i=1 Γ(sti)

m

∏
i=1

p
sti−1
i : ti > 0,

m

∑
i=1

ti = 1

}
, (2)

where Γ(·) is the Gamma function and s > 0 is the prior

strength. For a fixed value s, this is the set of all Dirichlet

distributions obtained by letting (t1, . . . , tm) to freely vary

in ∆m(t). Walley has proven that IDM is a model of prior

“near-ignorance” in the sense that it provides vacuous prior

inferences for the probabilities P(Z = zi) for i = 1, . . . ,m.
In fact, since P(Z = zi) = E[Pi] = ti, and ti is free to vary in

∆m(t), this means that P(Z = zi) is vacuous, which implies:

E[Pi] = 0, E[Pi] = 1, (3)

where E,E denote the lower and respectively, upper expec-

tations. This means that the prior mean of Pi is unknown,

but this does not hold for all functions of P1, . . . ,Pm, for
example

E[PiPj] = 0, E[PiPj] =
1

4

s

s+ 1
, (4)

while a prior ignorance model for PiPj would have upper

expectation equal to 1/4. Walley has shown that prior

ignorance can only be imposed on a subset of the possible

functions of P1, . . . ,Pm otherwise it produces vacuous

posterior inferences [2, Ch. 5], which means that we do

not learn from data (for this reason the model is called

near-ignorance). However, near-ignorance guarantees

prior ignorance for many of the inferences of interest in

statistical analysis and, at the same time, allows to learn

from data and converges to the “truth” (be consistent in

the terminology of Bayesian asymptotic analysis) at the

increase of the number of observations.1 Walley [3] has

also proven that, besides near-ignorance, IDM satisfies

several other desiderata for a model of prior ignorance.

Symmetry principle (SP): if we are ignorant a priori about

Pi, then we have no reason to favour one possible outcome

1A full model of prior ignorance cannot learn from data [3].
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of Z to another, and therefore our probability model on Z

should be symmetric.

Embedding principle (EP): for each event A ⊆ Z , the

probability assigned to A should not depend on the

possibility space Z in which A is embedded. In particular,

the probability assigned a priori to the event A should be

invariant w.r.t. refinements and coarsenings of Z .

Representation Invariance Principle (RIP): for each event

A ⊆ Z , the posterior inferences of A should be invariant

w.r.t. refinements and coarsenings of Z .

Learning/Convergence Principle (LCP): for each event

A ⊆ Z , there exists N such that for N ≥ N the posterior

inferences about A should not be vacuous. Moreover,

for N → ∞, the posterior inferences should converge to

limN→∞ nA/N, where nA is the number of occurrences of

the event A in the N observations [4].2

Near-ignorance, SP and EP hold for any model on

the simplex which satisfies E[Pi] = ti for i = 1, . . . ,m
with (t1, . . . , tm) are free to vary in ∆m(t) [3],3 while RIP

holds if the lower and upper posterior expectations of the

event A do not depend on the number of categories m [3].

Observe that IDM satisfies all the above principles and

also the coherence (CP) and likelihood (LP) principles

[1], [7]. Another important characteristic of the IDM is its

computational tractability, which follows by the conjugacy

between the categorical and Dirichlet distributions for

i.i.d. observations. For instance the prior and posterior

mean of Pi relative to a categorical-Dirichlet conjugate

model are:

E[Pi] = ti, E[Pi|n1, . . . ,nm] =
ni + sti

N+ s
, (5)

where ni is the number of observations for the i-th cate-

gory and, thus, N = ∑m
i=1ni. Hence, the lower and upper

posterior mean derived from IDM can simply be obtained

by

ni+sti
N+s

ti→0
= ni

N+s
= E[Pi|n1, . . . ,nm],

ni+sti
N+s

ti→1
= ni+s

N+s
= E[Pi|n1, . . . ,nm].

(6)

There are other models that involve the Dirichlet distribu-

tion which satisfy (some of) the above desiderata. For in-

stance, a model which satisfies SP and RIP is defined by

Walley in [1, Sec. 2.9] by further constraining the parame-

ters t1, . . . , tm of IDM.

The question we aim to address in this paper is to study

if there are other models that satisfy the above desiderata,

in particular near-ignorance, that are not directly derived

2We are assuming that the likelihood is categorical. For this reason,

this is a weaker principle than the Strong Learning Principle proposed by

Moral [5] which holds irrespectively from the type of the likelihood dis-

tribution. Unfortunately, the strong learning principle is not compatible

with near-ignorance [5], [6].
3Since P(Z = Zi) = E[Pi] = ti , this implies that the lower and upper

probabilities of the event A do not depend on Z .

from a Dirichlet distribution. We focus our investigation

to a particular class of distributions on the simplex which

is known as the class of Normalized Infinitely Divisible

(NID) distributions [8]; it includes the Dirichlet distribu-

tion as a particular case. For this class, it is possible to de-

rive general distributional properties and general moment

formulae, briefly introduced in Section 2.1, which in some

special cases, lead to explicit closed-form expressions [8].

In Sections 3 to 5, starting from three members of this

class, which admit a closed-form expression for the prior

density, we derive three new near-ignorance prior models

on the simplex. We will show that all these new near-

ignorance prior models satisfy EP, SP, LCP, CP and LP,

and that, although they are not conjugate with the categori-

cal distribution, the posterior inferences drawn from these

models are still computationally tractable. In particular,

we will show that for two of these models the lower and

upper expectations of the Pi can be computed by means of

simple algebraic expressions, while for one of these mod-

els, the lower and upper expectations can be computed effi-

ciently by solving numerically one-dimensional integrals.

Furthermore, we will show that one of this models also sat-

isfies RIP and, given s, always provides inferences that are

more conservative than those of IDM. On the other hand,

the other two models, which do not satisfy RIP, have a

posterior imprecision which increases linearly or almost

linearly with the number of observed categories.

2 NID class

The aim of this section is to discuss some general proper-

ties that allow to characterize all infinitely divisible distri-

butions. The most important of these properties follows

from the Lévy-Khintchine representation theorem. Since

the NID distributions studied in this paper admit a PDF,

the use we will make of this general properties is limited

to the derivation in eq. (8) of the moments of Pi; indeed,

the reader that is not interested in a general description of

the class of NID distributions can move on to Section 2.1.

Consider a collection of variables X1, . . . ,Xm which are as-

sumed to be independent and distributed according to a

Gamma distribution with parameters (α1,1), . . . ,(αm,1),
where (αi,1) are respectively the shape and scale param-

eter of the Gamma distribution for the variable Xi. Define

W = X1 + · · ·+Xm and Pi = Xi/W for i = 1, . . . ,m, then it

can be shown that

(P1, . . . ,Pm) ∼ Dir(α1, . . . ,αm),

where Dir(α1, . . . ,αm) denotes the Dirichlet distribution

with parameters α1, . . . ,αm. In other terms, the Dirichlet

distribution can be defined via normalization from a set of

Gamma distributed independent variable divided by their

sum. The Gamma distribution is infinitely divisible (ID),

i.e for any n ∈ N and given variable X Gamma-distributed,
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there exists a collection of i.i.d. variables Y1, . . . ,Yn such

that X
d
= Y1 + · · ·+Yn or, alternatively, the variable X can

be separated into the sum of an arbitrary number of i.i.d.

variables.

Consider then a collection of positive variables X1, . . . ,Xm

which are assumed to be independent and distributed ac-

cording to, not necessarily coinciding, ID distributions [8].

According to the Lévy-Khintchine representation theorem

[9, Ch. 16] for ID distributions, the moment generating

function of Xi can be expressed by:

ψi(u) := E[e−uXi ] = exp


−

∞∫

0

(1− e−ux)νi(dx)


 u ≥ 0,

(7)

whereE denotes the expectationw.r.t. the Lévymeasure νi,
which is any nonnegative Borel measure on R+ satisfying

the condition
∫ ∞
0 min(1,x)νi(dx) < ∞, which completely

characterizes the distribution of the random variableXi, for

each i = 1, ...,m.

Example 1. Consider the case where X is Gamma-

distributed with parameters (α,1), in this case ν(dx) =
αx−1e−xdx, E[e−uXi ] = (u+ 1)−α and, thus,

E[Xn] = (−1)n
dn

dun
(u+ 1)−α

∣∣∣
u=0

,

which, for n = 1,2, . . . gives the non-central moments of a
Gamma distribution with parameters (α,1). Thus, ν(dx)
characterizes completely the distribution of X. �
Then, via the normalization approach Pi = Xi/W for i =
1, . . . ,m with W = X1 + · · · + Xm, we can define a wide

class of distributions for the vector (P1, . . . ,Pm). In partic-

ular, as it holds for the distribution of Xi, each of these dis-

tributions for (P1, . . . ,Pm) is completely characterized by

the corresponding collection of Lévy measures ν1, . . . ,νm.
This class of distributions is termed the normalized ID

(NID) distributions. For this class, it is possible to derive

general distributional properties and general moment for-

mulae, which in some special cases, lead to explicit closed-

form expressions. For instance, the mean of Pi can be de-

termined:

E[Pi] =

∫ ∞

0

(
d

du
ψ j(u)

)
e−∑m

i=1 ψ j(u)du; (8)

the proof can be found in [8, Prop. 2]. The class of NID

distributions represents a natural extension of the Dirich-

let distribution, which can be recovered as special case of

NID distributions by assuming the collection of Lévy mea-

sures to be νi(dx) = αx−1e−xdx for i= 1, . . . ,m. The com-

putations simplify in case Xi admits a probability density

function (PDF) with respect to the Lebesgue measure on

R+.

2.1 NID with a PDF

Assume that the PDF of Xi, denoted by fi, admits a closed-

form expression for every i= 1, . . . ,m and defineW = X1+
· · ·+Xm, Pi = Xi/W for i = 1, . . . ,m. Then, the PDF of the

(NID) vector (P1, . . . ,Pm) is:

g(p1, . . . , pm−1) =

∞∫

0

m−1

∏
i=1

fi(piw) fm

(
w−

m−1

∑
i=1

piw

)
wm−1dw.

(9)

where we have exploited the relationship pm = 1 −
∑m−1
i=1 pi. This can be proven by applying the change of

variable theorem for PDFs.

Example 2. Consider again the case in which Xi is

Gamma-distributed with parameters (αi,1), then f (xi) ∝

x
αi−1
i exp(−xi), and, thus, from (9), neglecting the normal-

ization constant, one derives:

∞∫
0

m−1

∏
i=1

(piw)αi−1 exp(−piw)

·(w−w∑ pi)
αm−1 exp(−(w−w∑m−1

i=1 pi))w
m−1dw

∝ p
α1−1
1 p

α2−1
2 · · · (1− ∑m−1

i=1 pi)
αm−1.

(10)

�
Besides the Dirichlet distribution, further examples of NID

distributions, which admits a PDF are the normalized

inverse-Gaussian distribution [10], the normalized 1/2-
stable [11, 8] and a NID distribution based on two degrees

of freedom (2dof) Gamma variables [8, Sec. 3.5]. In the

next section, we derive new prior near-ignorance models

based on these three NID distributions and analyse their

properties.

3 NID distribution based on 2dof Gammas

Consider the case in which X1, . . . ,Xm have distribution

Xi ∼ Ga(αi;βi) (Gamma distributed) for i = 1, . . . ,m [8,

Sec. 3.5]. The PDF of the NID vector (P1, . . . ,Pm) is eas-
ily obtained by applying (9) leading to

g(p1, . . . , pm−1) =

Γ(s)
m

∏
i=1

βi
Γ(ai)

m−1

∏
i=1

p
αi−1
i

(
1−

m−1

∑
j=1

p j

)αm−1

·
(

m−1

∑
i=1

βipi + βm

(
1−

m−1

∑
j=1

p j

))−s

(11)

where s= ∑m
i=1αi. Note that for β = βi for i= 1, . . . ,m we

are back to the Dirichlet distribution. The r-th non-central
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moment of (11) is given by [8, Sec. 3.5]:

E[Pr
j ] =

Γ(α j+r)∏m
i=1 β

αi
i

Γ(α j)Γ(r)

∞∫

0

ur−1

(β j + u)r
m

∏
i=1

(βi + u)αi

du.

(12)

To model prior near-ignorance, we consider the set of

PDFs in (11) obtained by taking

αi = sti, βi = t ′i for i = 1, . . . ,m with

(t1, . . . , tm) ∈ ∆m, (t ′1, . . . , t
′
m) ∈ ∆m;

(13)

we call this model Normalized 2dof Gamma (N2dG).4

Proposition 1. N2dG model satisfies:

E[Pr
i ] = 0, E[Pr

i ] = 1

E[PiPj] = 0, E[PiPj] ≥ 1
4

s
s+1

.
(14)

for any i, j and r = 1,2, . . . . �
The lower and upper expectations in (14) can be derived by

noticing that for t ′i = 1/m for i = 1, . . . ,m the set of priors

defined by (11) and (13) reduces to IDM. Thus, (14) fol-

lows by (3)–(4). We have not be able to compute the exact

value of E[PiPj], our conjecture is that
1
4

> E[PiPj] >
1
4

s
s+1

.

Consider now the set of posteriors obtained by combining

via Bayes’ rule the likelihood relative to the sequence of

counts (n1, . . . ,nm), i.e.,

L(n1, . . . ,nm|p1, . . . , pm−1) = p
n1
1 p

n2
2 · · ·

(
1− ∑m−1

i=1 pi
)nm

,
(15)

and the set of priors defined by (11) and (13). From this set

of posteriors, we can compute lower and upper posterior

expectations of Pi for i = 1, . . . ,m.

Theorem 1. The lower and upper posterior expectations

of Pi are:

E[Pi|n1, . . . ,nm] = max
(
0, ni−s

N

)
,

E[Pi|n1, . . . ,nm] = min
(
1, ni+s

N

)
,

(16)

for any i = 1, . . . ,m. �
The proof can be found in Appendix. Observe that N2dG

model satisfies near-ignorance, SP and EP; this follows by

the first row in (14) by using the same arguments as for

IDM. It also satisfies LP and CP; coherence follows by

[2, Th. 7.8.1]. Notice that the prior lower and upper ex-

pectations do not depend on the number of categories m

and, thus, N2dG model satisfies also RIP. Moreover, since

E[Pi|n1, . . . ,nm],E[Pi|n1, . . . ,nm] → ni
N

for N → ∞, it also

satisfies LCP.

Corollary 1. The lower and upper posterior expectations

of ∑i∈J Pi, where J denotes a subset of {1, . . . ,m}, are:

E[∑i∈J Pi|n1, . . . ,nm] = max
(
0, ∑i∈J ni−s

N

)
,

E[∑i∈J Pi|n1, . . . ,nm] = min
(
1, ∑i∈J ni+s

N

)
.

(17)

4From (11) it can be noticed that the constant ∑m
i=1 βi simplifies a-

posteriori, and thus w.l.o.g. we can take ∑m
i=1 βi = 1.

for any i = 1, . . . ,m. �
The proof can be found in Appendix. By looking at (16)–

(17), we can highlight the following difference w.r.t. IDM.

The IDM lower probability for the second observation to

be equal to the first, is 1/(1+ s), i.e., 1/2 for s = 1. For

N2dG with s = 1, this lower probability is zero. Walley

has shown that, in case m = 2, IDM with s = 2 encom-

passes all the Bayesian inferences derived from the Jef-

freys (s= 1, t = 0.5), uniform (s= 2, t = 0.5) and Haldane
(s = 0) priors [3]. For N2dG, this is already true for s = 1.

Another difference with IDM, is that the lower and upper

expectations derived in (16) are symmetric w.r.t. the sam-

ple mean ni/N whenever ni−s≥ 0 and ni+s≤N. Further-

more, the denominator in (16) depends only on N and not

on s. Thus, for ni − s ≥ 0 and ni + s ≤ N, the imprecision

2s/N should not be interpreted as additional counts that

are added to the observations but as a swing scenario in

which s counts among the N are moved from a category to

another. It should be pointed out that the lower and upper

expectations in (16)–(17) coincide with those derived in

[12, Sec. 5.2] for a near-ignorance model based on finitely

additive priors obtained as limits of truncated exponential

priors. Moreover, the inferences drawn from N2dG with

s= 1 coincide with those of the Nonparametric Predictive

Inference model [13] in case all the categories have been

observed at least once.

4 The normalized 1/2-stable distribution

Consider now the case where the ID variables X1, . . . ,Xm

have positive stable distribution Xi∼St(γ,β ,αi,µ) with

characteristic exponent γ > 0, skewness parameter β = 1,

scale parameter αi > 0, and a location parameter µ = 0

[14]. Although, in general, the PDF of a stable distribution

does not admit a closed-form expression, for this choice of

parameters and γ = 1/2, the PDF, hereafter referred to as

1/2-stable distribution, is given by:

f (xi|αi) = αi

(2π)1/2
x
−3/2
i exp

(
α2
i

2xi

)
, xi ∈ R+. (18)

From (9) it follows that the NID vector (P1, . . . ,Pm) aris-

ing from the normalization of the m 1/2-stable distributed

variablesX1, . . . ,Xm has theNormalized 1/2−Stable distri-

bution (N1/2S) with PDF [15]:

g(p1, . . . , pm−1) =
Γ(m2 )

m

∏
i=1

αi

π
m
2

m−1

∏
i=1

p
− 3

2
i (1−

m−1

∑
i=1

pi)
− 3

2

[A (p1, . . . , pm−1)]
m
2

,

(19)

where A (p1, . . . , pm−1) = ∑m−1
i=1

α2
j

pi
+ α2

m

1−∑
m−1
i=1 pi

.

Although there is not a closed form expression for the nor-

malized γ-Stable distribution (with γ 6= 1/2) we can com-

pute its first moment for any γ by using (8) (a similar ex-

pression can be used to derive the mixed second moment
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[15]),

E[Pi] = αi
s
, E[PiPj] =

αiα j

s2
(1− γ), (20)

where s = ∑m
j=1 α j .

Starting from a normalized γ-Stable distribution, we can

thus obtain a prior near-ignorance model by considering

the set of distributions obtained by taking:

αi = sti, for i = 1,2, . . . ,m with

s > 0 and (t1, . . . , tm) ∈ △m.
(21)

Proposition 2. For the set of priors defined from a γ-Stable
distribution with parameters varying as in (21), it holds:

E[Pr
i ] = 0, E[Pr

i ] = 1

E[PiPj] = 0, E[PiPj] = 1
4
(1− γ).

(22)

for any i, j and r = 1,2, . . . . �
This can simply be obtained by first observing that αi/s =
ti and, thus, by minimizing and maximizing w.r.t. t1, . . . , tm
the expectations in (20). In the following, we only focus

on the case γ = 1/2 where a closed form for the PDF of

the γ-Stable distribution exists.5 For this case, it can be no-

ticed that the value of the parameter s is irrelevant. In fact,

from the expression of the N1/2S PDF in (19), it is evident

that the parameter s simplifies a-posteriori, and thus it does

not affect the inferences produced by the N1/2S priors.

By considering the likelihood model (15) and the set of

N1/2S priors defined by (19)–(21), a-posteriori we can de-

rive the following.

Theorem 2. Given the sequence of counts (n1, . . . ,nm), the
lower and upper posterior expectation obtained from the

N1/2S set of priors are:

E[Pi|n1, . . . ,nm] = max
(
0, ni−1/2

N

)
,

E[Pi|n1, . . . ,nm] = min
(
1, ni+m̂/2

N

)
,

(23)

for any i = 1, . . . ,m, where m̂ is the number of categories

j 6= i such that n j > 0. �
The proof can be found in Appendix. Note that, as for

the N2dG, the denominators in (23) do not depend on

s. N1/2G model satisfies near-ignorance, SP and EP;

this follows by the first row in (22) by using the same

arguments as for IDM. It also satisfies LP and CP; co-

herence follows by [2, Th. 7.8.1]. Moreover, since

E[Pi|n1, . . . ,nm],E[Pi|n1, . . . ,nm] → ni
N

for N → ∞, it also

satisfies LCP. Since the upper expectation in (23) depends

on m̂, the RIP principle is not satisfied by N1/2S . As a

consequence, the uncertainty about the expected value of

Pj increases with the number of observed categories.

5For γ = 1/2, one has E[PiPj] = 1/8 which coincided with the result

obtained by IDM for s = 1.

5 The normalized inverse-Gaussian

distribution

Consider now m ID variables X1, . . . ,Xm having inverse-

Gaussian distribution Xi∼IG(αi,γ) with shape parameter

αi > 0 and scale parameter γ = 1. Their PDF is given by:

f (xi|αi) = αi

(2π)1/2
exp
[
− 1

2

(
α2
i
xi

+ xi

)
+ αi

]
, xi ∈ R+.

(24)

From (9), it follows that the NID vector (P1, . . . ,Pm) aris-
ing from the normalization of the variables X1, . . . ,Xm has

the normalized inverse Gaussian distribution (NIG) with

PDF [10]:

g(p1, . . . , pm−1) =

exp

(
m

∑
i=1

αi

)
m

∏
i=1

αi

2m/2−1πm/2
×

×
K−m/2[A (p1, . . . , pm−1)

1/2]

m−1

∏
i=1

p
3/2
i (1−

m−1

∑
i=1

pi)3/2[A (p1, . . . , pm−1)]m/4

.

(25)

where K−m/2 is the modified Bessel function of the second

kind of order −m/2. The first and mixed second moments

of the NIG distribution are:

E[Pi] =
αi
s
, E[PiPj] =

αiα j

s2
(1− s2esΓ(−2,s)), (26)

where s= ∑m
i=1 αi and Γ(a,x) =

∫ ∞
x ta−1 exp(−t)dt denotes

the incomplete gamma function.6 To model prior near-

ignorance, let us consider the set of NIG distributions ob-

tained by taking:

αi = sti, for i = 1,2, . . . ,m with

s > 0 and (t1, . . . , tm) ∈ △m.
(27)

Proposition 3. For the set of priors defined by (25) and

(27), it holds:

E[Pi] = 0, E[Pi] = 1,
E[PiPj] = 0, E[PiPj] =

1
4
(1− s2esΓ(−2,s)).

(28)

for any i, j. �
These properties follow from the same arguments used for

Proposition 2. A-posteriori, given the observed likelihood

(15), it is not possible to provide a closed form expression

of the lower and upper posterior expectation of Pi, but it is

possible to indicate for which values of t1, . . . , tm the upper

and lower can be found and provide a simplified integral

expression for them, in the case where all counts are posi-

tive.

Conjecture 1. Consider the set of priors defined by (25)

and (27). Given the set of counts (n1, . . . ,nm), the lower

6For s = 1, E[PiPj] = 0.175 which is bigger than the result obtained

by IDM for s = 1.
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posterior expectation of Pi is found for tk = 1, with k =
argmin

j 6=i
(n j), and the upper posterior expectation is found

for t j = 1. �
Conjecture 1 is based on the experimental verification in

several cases in which n j > 0 holds for all j 6= i. However,

we have not still been able neither to prove this conjecture

nor to extend it to the cases in which n j = 0 for some cat-

egory j 6= i. As a verification of Conjecture 1 consider for

instance Figure 1. Here we are computing the lower and

upper posterior expectation of P1. Figure 1.(a) shows that

by taking only two parameters t2 and t3 different from 0,

the minimum of E[Pi|n1, . . . ,nm] is found for t2 = 1 ( j = 2

is in fact the category j 6= 1 with smaller number of ob-

servations). Figure 1.(b) shows that by taking t2 = 1 the

lower posterior expectation of Pi increases with n2 (this

means that the parameter tk to be taken equal to 1 is the

one corresponding to the category k with minimum num-

ber of counts nk).
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Figure 1: Posterior expectation of P1 when m = 5, n1 = 1,

N = 50, s = 1 and (a) n2 = 3 and n3 = 5, t3 = 1− t2 and t2
spans the interval [0,1] or (b) t2 = 1, and n2 ranges from 1

to 30.

Theorem 3. Given the NIG set of priors defined by (25)

and (27) and the set of counts (n1, . . . ,nm), with n j > 0 for

j = 1, . . . ,m, the lower and upper posterior expectations

of Pi for tk = 1, with k = argmin
j 6=i

(n j), and for ti = 1 are,

respectively,

E[Pi|n1, . . . ,nm] =
ni− 1

2

N−nk− 1
2 (m−1)

×

×
∫ 1
0 p

nk+
m−6
4

k K−m/2

(
s√
pk

)
(1− pk)

N−nk−m−1
2

∫ 1
0 p

nk+
m−6
4

k K−m/2

(
s√
pk

)
(1− pk)

N−nk−m+1
2

,

E[Pi|n1, . . . ,nm] =

=

∫ 1
0 p

ni+
m−2
4

i K−m/2

(
s√
pi

)
(1− pi)

N−ni−m+1
2

∫ 1
0 p

ni+
m−6
4

i K−m/2

(
s√
pi

)
(1− pi)

N−ni−m+1
2

.

(29)

�
The proof can be found in Appendix. Note that the lower

posterior expectation in (29) depends on the minimum

number of counts nk observed for a value zk 6= zi of Z.

However, from Figure 1.(b), it appears that this depen-

dence is weak and that it diminishes at the increasing of

nk. The NIG model satisfies near-ignorance, SP and EP;

this follows by the first row in (28) by using the same ar-

guments as for IDM. It also satisfies LP and CP, coherence

follows by [2, Th. 7.8.1]. From Conjecture 1 and Theorem

3 it follows that, if there is at least one count for each value

of Z considered, the lower and upper posterior expecta-

tions of Pi are not vacuous. Furthermore, the lower and up-

per posterior expectations of Pi converge to limN→∞
ni
N
; this

follows from (29) by noticing that for large N and n j > 0

for j = 1, . . . ,m the lower and the upper concentrate on
ni
N
.

Thus LCP is also satisfied. Yet, since both the lower and

upper posterior expectations in (29) increase with m, the

RIP principle is not respected by this set of priors. Figure

2 shows the upper and lower expectation for set of IDM,

N2dG, N1/2S and NIG prior distributions for different val-

ues of m̂ and a given case study. For the NIG set of priors,

it can be noticed that the variation of the lower posterior

expectation with m̂ is negligible. Furthermore, it can also

be noticed that the upper of the N1/2S and NIG set of pri-

ors are quite similar and both increase as m̂
2N

.
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Figure 2: Posterior expectation of P1 for n1 = 2, nk = 3

with k = arg j 6=1min(n j), N = 50, s = 1, and m̂ ranging

from 1 to 15.
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P(Z = red|n1, . . . ,nm) P(Z = red|n1, . . . ,nm)

Z1 Z2 Z3 Z1 Z2 Z3

IDM 0.222 0.222 0.222 0.333 0.333 0.333

N2dG 0.125 0.125 0.125 0.375 0.375 0.375

N1/2S 0.188 0.188 0.125 0.438 0.313 0.313

NIG 0.176 0.178 0.120 0.489 0.371 0.368

Table 1: Upper and lower probabilities of drawing a red

marble for different choices of Z and sets of priors (s= 1).

Z1 Z2 Z3

IDM [0.032; 0.681] [0.032; 0.681] [0.032; 0.681]

N2dG [0.004; 0.710] [0.004; 0.710] [0.004; 0.710]

N1/2S [0.016; 0.766] [0.016; 0.648] [0.004; 0.648]

NIG [0.015; 0.778] [0.015; 0.685] [0.004; 0.683]

Table 2: 95% credible intervals for P1.

6 Examples of inferences about a bag of

marbles

To illustrate the difference between the three sets of pri-

ors proposed in this work and to compare them with

the IDM, let us consider a bag of marbles containing

coloured marbles of an unknown number of different

colours [1]. Each colour represents a category zi. Sup-

pose we draw a sequence of N = 8 marbles 3 of which

are blue, 1 green, 2 yellow, 1 light red, and 1 dark

red. We consider three different possibility spaces Z1 =
{red, blue, green, yellow}, Z2 = {red, all other colors},
Z3 = {light red, dark red, all other colors}. Tables 1

and 2 show, respectively, the upper and lower probabili-

ties, P(Z = red|n1, . . . ,nm) and P(Z = red|n1, . . . ,nm), of
drawing a red marble at the next trial and its 95% credible

interval for the different possibility spaces Z , and sets of

priors.

Notice that the uncertainty of the estimates provided by the

three sets of priors proposed in this paper is always larger

than that of the IDMwith s= 1. As expected, since the RIP

principle is not respected by the N1/2S and the NIG sets of

priors, the estimates provided by them depends on the pos-

sibility space Z adopted: their uncertainty increases with

the number of categories in Z . This dependence could

appear unjustified in this example, since the definition of

the categories is rather arbitrary, so that it is desirable that

inference do not depend on them. However, in a situa-

tion where the categories could be objectively defined, the

fact that uncertainty increases with the number of category,

can reflect the idea that the knowledge of a system after

a number of trials N is as more precise as simpler is the

system, i.e., in this case, as smaller is the number of cat-

egories. To show an example where this property may be

valuable, consider the following situation: assume to draw

IDM N2dG N1/2S NIG

m̂ = 1, N = 100 0.0099 0.0100 0.0050 0.0321

m̂ = N, N = 100 0.0099 0.0100 0.5000 0.6008

m̂ = 1, N = 1000 0.0010 0.0010 0.0005 0.0066

m̂ = N, N = 1000 0.0010 0.0010 0.5000 0.6000

Table 3: Upper probability of observing a marble in the

new category zm̂+1.

N marbles from a closed marble bag and to ask yourself

what is the probability of drawing from the bag a marble

of a new colour, not yet observed in any of the N trials.

Said m̂ the number of different colours observed after N

trials, this corresponds to finding the probability that the

event of observing a marble in the category zm̂+1 occurs

at the (N + 1)-th trial. The lower posterior expectation of

Pm̂+1 is zero, since, by hypothesis nm̂+1 = 0. The upper

posterior expectation is shown in Table 3, in the limiting

cases where the number of values observed inN = 100 and

N = 1000 trials is m̂ = 1 (only one category has been ob-

served) or m̂ = N (a different category has been observed

in each drawn). In the first case, one obtains upper proba-

bilities of observing amarble in a new categorywhich goes

to zero for largeN; this same result is obtained if m̂=N for

the IDM and N2dG sets of priors, whereas for the N1/2S

priors the upper probability remains constant regardless of

the number of trials N and for the NIG priors it converges

for large N to a value close to 0.6. The result provided by
the N1/2S and NIG sets of priors in this second case seems

more appropriate than that provided by IDM, according to

which the probability of observing a new category at the

N + 1-th trials goes to zero, although a new category has

been, indeed, observed at each drawn of the N trials. This

means that for predictive models the dependency of the

lower and upper posterior expectations to the number of

observed categories can lead to more intuitive inferences

than the one derived by IDM or its predictive form [16].

7 Differences with IDM

In this Section, we briefly summarize the differences be-

tween the new prior “near-ignorance” models proposed in

this paper and IDM. A characteristic of IDM, which has

been criticized, is that the lower probability for the second

observation to be equal to the first is equal to 1/(1+ s).
The values s= 1 or s= 2 lead to high values for this lower

probability. However, it seems reasonable to assume that

the lower probability of observing twice the same category

is significantly large than 0 only if we have a strong prior

belief that the number of categories is low. Instead, un-

der complete prior ignorance, we may not want to bet on

a category after we have seen it only once, but we would

preferably wait until we see it for the second time before

starting betting on it. If, for example, the process were a
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random generator, the probability of observing twice the

same outcome would be 0 (see also [1, pages 43-44] and

[13] for further discussion on this point). For the N2dG

model, we have already seen that if s ≥ 1 this lower prob-

ability is equal to 0. More generally, the lower probability

of observing a specific category after N trials is equal to

0 until we observe at least s+ 1 realizations in that cate-

gory. In this view, the parameter s can be interpreted as

a threshold on the number of observations in a given cate-

gory below which we would never bet on it, regardless of

the reward. Thus, the N2dGmodel satisfies RIP but is also

able to account for our prior ignorance about the number

of categories. For the N1/2S model, the lower probability

for the second observation to be equal to the first is 1/2, so
equal to that of IDM for s = 1.7

Another weak point of IDM is that, after N observations,

the upper probability of observing a new category goes

to zero as s/(s+N). This upper probability does not de-

pend on how much variety there has been in the previous

observations, i.e., the upper probability in case we have

observed the same category in all the N previous observa-

tions or N different categories is the same. However, if

N different categories have been observed in N trials we

may not want to bet against seeing a new category at the

next trial, regardless of the reward. In this case, we would

like the upper probability of observing a new category to

be equal to 1. This weak point is also discussed by Wal-

ley in [1, page 50]. The N2dG model gives in practice

the same upper probability of IDM. For the N1/2S and the

NIG sets of priors, we have seen that the upper probability

of observing a new category depends on howmuch variety

there has been in the previous observations. Consider for

instance N1/2S, as it has been shown in Section 6, if we

observe N different categories in all the previous observa-

tions this upper probability is equal to 1/2, while if we ob-
serve the same category in all the N previous observations,

this upper probability is 1/2N. This difference between

IDM, N2dG and N1/2S, NIG seems in this case be due to

the RIP property. IDM and N2dG satisfy RIP, while N1/2S

and NIG do not. It has already been argued in [13, Sec. 5]

that the RIP principle is not always a desirable property. In

this paper, the authors stress that from the perspective of in-

terval probability theory, the difference between lower and

upper probabilities should depend on the amount of infor-

mation available and the data representation. We think that

this is especially true for predictive models in which we

have no prior evidence about the number of categories and

the inferences should depend on the number of observed

category. Notice that none of the three models proposed in

this paper meet at the same time both the desiderata here

addressed: a lower probability for the second observation

to be equal to the first equal to 0 and an upper probability

7For the NIG prior we are not able to compute the lower probability

in this case, since Theorem 3 is valid only if at least 1 observation has

been collected for each category.

of observing a new category having observed N different

categories in N previous trials equal to 1. In this view, it

could be interesting to extend the N1/2S model by consid-

ering a stable prior distribution with values of the γ param-

eter different from 1/2. This way, the upper and lower

probabilities predicted by the model would depend on γ ,
so that it might be possible to find a value of it (probably

γ = 1) for which both desiderata can be met at the same

time. Clearly, this would require workingwith the moment

generating function since the PDF of the stable distribu-

tion does no admit a closed-form expression. On the other

hand, the RIP property seems to be desirable for a prior

ignorance model. In objective Bayesian analysis, a com-

mon practice is to impose invariance principles to derive

non-informative priors. In this respect, the fact that IDM

and N2dG satisfy EP, SP and RIP, while the commonly

used precise non-informative priors do not, is valuable. In

[17], the authors show that IDM can be derived starting

from general invariance principle, in particular exchange-

ability and representation insensitivity (which is similar to

RIP). This result reinforces the importance of IDM as a

model of prior ignorance. In [17], the authors conclude the

papers listing several open questions about representation

insensitivity for predictive systems. One of this question

was if there exist other models which satisfy RIP besides

IDM.With the N2dG model derived in this paper, we have

shown that this is the case.8

8 Conclusions

In this paper, we have derived new near-ignorance models

for three members of the class of Normalized Infinitely

Divisible distributions. We have shown that all these

new near-ignorance prior models satisfy the embedding,

symmetry, likelihood, learning and coherence principles,

which are desirable properties for a model of prior igno-

rance. Furthermore, we have shown that one of these mod-

els satisfies the representation invariance principle while,

for the other two models, the posterior imprecision de-

pends linearly or almost linearly on the number of ob-

served categories. As future work, we aim to complete

the analysis of these three new near-ignorance models by

proving the conjecture that we have discussed in the pa-

per. Furthermore, we aim to extend our analysis to other

members of the Normalized Infinitely Divisible distribu-

tions by working directly on the domain of the Infinitely

Divisible distributions, that is before normalization. For a

practical side, we plan to apply our models to solve classi-

fication and prediction problems and compare the results

with the ones obtained by precise models and by the Im-

precise Dirichlet Model.

8The paper [17] discusses IDM as a predictive model. We plan to

extend the N2dG model to predictive inferences and, thus, to verify if it

satisfies the other properties listed in [17].
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A Appendix: Proofs

A.1 Proof of Theorem 1

Without loss of generality, we assume that i = 1. For n1 − s ≥
0 the lower can be derived by taking β1 = 1 and applying the

formula of IDM with α1 replaced by α1 − s. For n1 + s ≤ N, let

us consider the integral:

∫ 1

0
dp1p

n1+α1−1
1

∫ 1−p1

0
· · ·
∫ 1−p1−···−pm−1

0

p
n2+α2−1

2 p
n3+α3−1

3 (1−p1−···−pm−1)
nm+αm−1

(
m−1

∑
i=1

βipi+βm(1−p1−···−pm−1)

)s dp2 · · ·dpm−1

(30)

Set β1 = 0 and introduce the change of variables p′
i = pi/(1− p1)

for i = 2, . . . ,m− 1 then, neglecting the normalization constant,

the previous integral reduces to:

∫ 1
0 p

n1+α1−1
1 (1− p1)

N−n1−α1−1dp1. (31)

Therefore, the posterior expectation of P1 for β1 = 0 is

E[P1|n1, . . . ,nm] =
∫ 1
0 p1p

n1+α1−1

1 (1−p1)
N−n1−α1−1dp1∫ 1

0 p
n1+α1−1

1 (1−p1)N−n1−α1−1dp1
= n1+α1

N ,

where the last equality follows from the property of the Beta

distribution. Hence, the upper posterior expectation of P1 is

E[P1|n1, . . . ,nm] = (n1+s)/N. Consider now the case n1+s>N.

For (30), we introduce the short notation:
∫ 1
0 dp1p

n1+α1−1
1 (. . .),

where (. . .) denotes the multidimensional inner integration in

(30), then for a chosen ε ∈ (0,1) one has:

E[P1|n1, . . . ,nm]

=
∫ 1−ε
0 dp1p

n1+α1+1−1

1 (...)+
∫ 1
1−ε dp1 p

n1+α1+1−1

1 (... )
∫ 1−ε
0 dp1p

n1+α1−1

1 (...)+
∫ 1
1−ε dp1 p

n1+α1−1

1 (... )

≥
∫ 1−ε
0 dp1p

n1+α1+1−1

1 (...)
∫ 1−ε
0 dp1p

n1+α1−1

1 (...)+
∫ 1
1−ε dp1 p

n1+α1−1

1 (... )

+
(1−ε)

∫ 1
1−ε dp1 p

n1+α1−1

1 (... )
∫ 1−ε
0 dp1p

n1+α1−1

1 (...)+
∫ 1
1−ε dp1p

n1+α1−1

1 (...)

(32)

Now, since for β1 → 0 it results that
∫ 1
1−ε dp1p

n1+α1−1
1 (. . .) →

∞ (this can be derived from (30) by noticing that for n1 +
s > N the argument of the integral goes to infinity at p1 =
1 faster than 1/(1 − p1)), while

∫ 1−ε
0 dp1p

n1+α1−1
1 (. . .) and∫ 1−ε

0 dp1p
n1+α1+1−1
1 (. . .) are finite, then this implies that the

right hand side of (32), is lower bounded by 1− ε which goes

to 1 for ε → 0. This shows that for n1 + s > N, the upper poste-

rior expectation is E[P1|n1, . . . ,nm] = 1. A similar approach can

be used to prove that E[P1|n1, . . . ,nm] = 0 for n1 − s < 0.

A.2 Proof of Corollary 1

The proof is similar to that of Theorem 1.

A.3 Proof of Theorem 2

Without loss of generality, we assume that i = 1. For n1 −1/2 >
0, i.e., n1 > 0, the lower posterior expectation can be derived by

taking t1 = 0. Then, neglecting the normalization constant, the

integral expression for the posterior expectation E[P1|n1, . . . ,nm]
becomes:

∫ 1

0
dp1p

n1−3/2+1
1

∫ 1−p1

0
· · ·
∫ 1−p1−...−pm−1

0

m−1

∏
i=2

p
ni−3/2+m/2
i (1−

m−1

∑
i=1

pi)
nm−3/2+m/2

[
(1−

m−1

∑
i=1

pi)
m−1

∑
i=2

(
t2i

m−1

∏
i 6= j=2

p j

)
+t2m

m−1

∏
i=2

pi

]m/2 dp2 · · ·dpm−1

(33)

By introducing the change of variable p′
i = pi/(1 − p1), i =

2, . . . ,m− 1 the previous integral and its normalization constant

reduces to:

E[P1|n1, . . . ,nm] =

1∫
0

p
n1− 3

2
+1

1 (1− p1)
N−n1− 1

2

1∫
0

p
n1− 3

2

1 (1− p1)
N−n1− 1

2

=
n1 − 1

2

N

(34)

where the last equality follows from the property of the Beta dis-

tribution with α1 = −1/2+ n1 > 0, α2 = N − n1 + 1/2 > 0. A

similar approach than that used in the proof of theorem 1 can be

used to prove that E[P1|n1, . . . ,nm] = 0 if n1 = 0.

For n1 + m̂/2 < N, i.e., n1 < N, the upper expectation can be

computed from E[P1|n1, . . . ,nm] = 1− ∑m
i=2E[Pi|n1, . . . ,nm]. In

the first part of this proof, we have shown that the lower expecta-

tion of Pi is (ni −1/2)/N only for the m̂ possible values zi 6= z1
of Z for which ni > 0, whereas for the remaining m− m̂−1 val-

ues of Z for which ni = 0 the lower expectation is zero. Then,

∑m
i=2E[Pi|n1, . . . ,nm] = N−n1−m̂/2

N
, and one obtains the expres-

sion in (23). An approach similar to that used in the proof of The-

orem 1 can be used to prove that E[Pj|n1, . . . ,nm] = 1 if ni = N.

A.4 Proof of Theorem 3

Without loss of generality, we assume that k = 1 and i = 2. Tak-

ing t1 = 1 and t j = 0, j = 2, . . . ,m, if ni > 0, i = 1, ..,m, the
integral expression for the posterior expectation E[P1|n1, . . . ,nm],
neglecting the normalization constant, can be written as:

∫ 1

0
dp2p

n2− 3
2
+ m

4

2 K−m/2

(
s√
p2

)

∫ 1−p1

0
p
n2− 3

2
+1

2 dp1

∫ 1−p1−p2

0
· · ·
∫ 1−p1−···−pm−1

0

m−1

∏
i=3

p
ni− 3

2

i (1−
m−1

∑
i=1

pi)
nm− 3

2 dp3 · · ·dpm−1

(35)

By introducing the change of variable p′
i = pi/(1 − p1), for

i = 2, . . . ,m− 1, and p′′
i = p′

i/(1− p2), for i = 3, . . . ,m− 1, the

previous integral and its normalization constant reduces to:

∫ 1
0 p

n1+
m−6
4

1 K−m/2

(
s√
p1

)
(1− p1)

N−n1− m−1
2

∫ 1
0 p

n1+
m−6
4

1 K−m/2

(
s√
p1

)
(1− p1)

N−n1− m+1
2

×

∫ 1
0 p′n2− 3

2
+1

2 (1− p′
2)

N−n1−n2− m
2 dp′

2
∫ 1
0 p′n2−

3
2

2 (1− p′
2)

N−n1−n2− m
2 dp′

2

,

(36)

where the second term of the product is equal to
ni−1/2

N−nk−(m−1)/2

from the property of the Beta distribution with α1 = −1/2+n1 >
0, α2 = N − n1 − n2 −m/2+ 1 > 0. A similar approach can be

used to prove the result for t2 = 1.
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Abstract

In this paper we consider the problem of learning
credal networks from observations when the prior in-
formation is given by a set of prior densities instead
of a single one. We shall concentrate in the case in
which the prior information is given by a family of
Dirichlet distributions with uniform weights and dif-
ferent values of the equivalent sample size parameter.
Also the use of imprecise probability models to spec-
ify the prior probability regarding the different graphs
will be considered. The novelty is twice: first we as-
sume an additional information on the set of possible
values of the equivalent sample size parameter; and
second we give a formalization of the problem which
includes also as particular case different Bayesian ap-
proaches. Additionally, approximate and exact algo-
rithms based on the A∗ search procedure are provided
to compute the set of undominated decisions. Some
preliminary experiments are reported.

Keywords. Credal networks, learning, imprecise
sample size Dirichlet model, search algorithms.

1 Introduction

Learning Bayesian networks from a dataset of obser-
vations [15, 8, 12] is an important research challenge
that despite the important effort made in past years,
is far from having resulted in a satisfactory solution
in all situations. In particular, in some cases it is
assumed that providing a single network can be in-
sufficient, especially if the sample size is small, as
there can be several graphical structures with high
posterior probability given the data. Model averaging
approaches [7] provide a set of alternative networks
each one with its own posterior probability. Infer-
ences about any structural feature (for example the
presence of a link) are carried out by averaging in
the solution set. In this paper, we will show that
even if our decision consists in selecting one graph,
it makes sense to consider a set of alternative solu-

tions if we use imprecise probability models to specify
the prior probability regarding graphs and parameters
[18]. In this paper we present a new framework which
is based on imprecision in the prior probability about
the graph associated to the network and in the value
of the equivalent sample size of a BDeu score [2]. The
result of the learning problem will be a set of undom-
inated graphs (a multigraph credal network [5, 10]).
The approach is based on our previous work [10] but
assumes more information on the equivalent sample
size (ε-contaminated model of a uniform distribution)
and on the space of graphs. The main contributions
of this paper are the following: we provide a new for-
mulation of the learning problem depending on the
prior information and the set of possible decisions; we
transform the problems of computing undominated
solutions in simpler problems involving the optimiza-
tion of specific scores; and we propose different algo-
rithms both approximate and exact for the associated
optimization problems. Corani and Zaffalon [4] also
consider multigraph credal networks in a classification
problem. They are based on an imprecise prior infor-
mation on the space of graphs but their approach is
different of the one proposed in this paper and they
concentrate in the classification problem and not in
the computation of the graphs.

The paper is structured as follows: Section 2 reviews
the problem of learning Bayesian networks; Section 3
is devoted to credal networks; Section 4 introduces our
framework for learning multigraph credal networks
[10]; Section 5 proposes approximate and exact algo-
rithms to compute the set of undominated decisions;
Section 6 reports some very preliminary experiments;
while Section 7 is devoted to the conclusions.

2 Learning Bayesian Networks

Assume that we have a vector X = {X1, . . . , Xm} of
variables. A Bayesian network about variables X is
a directed acyclic graph G with a node for each vari-
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able Xi and a list of conditional probability distribu-
tions (p(X1|Π1), . . . , p(Xm|Πm)), where Πi is the set
of parents of variable Xi in graph G [13] and p(Xi|Πi)
is a conditional distribution of variable Xi given Π.
Given the independence relationships represented by
G, the list of conditional distributions determines a
joint probability distribution about X as a product of
the conditional distributions (p factorizes with respect
to G):

p(X1, . . . , Xm) = p(X1|Π1) · . . . · p(Xm|Πm) (1)

The number of different values of variables in Πi is
denoted by qi, the set of possible values of Πi by
{πi1, . . . , πiqi}, the number of possible values of Xi is
denoted by ki, and the set of possible values of Xi by
{wi1, . . . , wiki}.
If we have a database of n observations D of variables
{X1, . . . , Xm}, learning a Bayesian network consists
first in estimating the graph G, and then estimating
the conditional probability distributions associated to
the graph [12]. In both cases, the most common ap-
proach is based on assuming a Dirichlet prior proba-
bility distribution for the values of each one of the con-
ditional probability distributions p(Xi|Πi = πij) with

parameters D(αi, . . . , αi) (the weights are the same
for the different values πij of the parents, but they
can be different for different variables). The value
si = kiα

i is called the equivalent sample size.

To estimate G, it is also assumed that there is a
prior probability about the different graph structures
(usually the uniform) and that the prior distributions
for the different conditional distributions are indepen-
dent. Under these conditions, it is possible to com-
pute p(G|D) which is a value proportional to (under
the uniform prior for the graphs):

p(G|D) ∝ P (D|G) =

m∏

i=1

qi∏

j=1

Γ(kiα
i)

Γ(nij + kiαi)

ki∏

l=1

Γ(αi + nijl)

Γ(αi)

(2)
where nij is the number of cases inD in which Πi = πij
and nijl the number of cases in D in which Πi = πj ,
Xi = wil , and Γ(.) is the gamma function. This value
is called the score of the graph given the data and will
be denoted as Score(G|D).

The problem is then to find the graph with maxi-
mum score, and usually a greedy search algorithm is
employed: given an initial graph, the set of graphs
obtained by adding, removing, and inverting a link is
computed, and for each one of them the score is found.
Then the current graph is changed to the graph of the
set with highest score, and the process is repeated
while a score greater than the score of the current
graph can be found.

Once a graph with highest score has been found, G,
the conditional probabilities can be estimated (pa-
rameter learning). If for each conditional probability
p(Xi|Πi = πij) we have a Dirichlet prior with param-

eters D(αi, . . . , αi) and these prior distributions are
independent, then the estimation can be done inde-
pendently for each conditional probability. The esti-
mated values are [12]:

p(Xi = wil |Πi = πij , D) =
nijl + αi

nij + kiαi
(3)

In both problems (learning the structure and the pa-
rameters), we have to specify how the weights, αi,
are computed. Usually the so called Bayesian Dirich-
let equivalent metric or BDeu [2] is used in which a
parameter s is fixed (the global equivalent sample size)
and then the weights for each variable are computed
as αi = s

qiki
. Though for the conditional probabilities

it is also common to consider the Laplace correction
which is equivalent to consider αi = 1. In this paper,
we will always consider αi = s

qiki
.

3 Credal Networks

A credal network [5] is a generalized Bayesian net-
work where the probabilities can be imprecise. More
concretely, a locally defined credal network [5] is a di-
rected acyclic graph G and a list (P1, . . . ,Pm) where
each Pi is a set of conditional distributions for vari-
able Xi given its parents in G. The joint credal set
associated to a credal network, is the set of probabil-
ity distributions p that can be obtained as a product
p(X1, . . . , Xm) = p1(X1|Π1) · . . . · pm(Xm|Πm), where
pi ∈ Pi. A credal network is a directed acyclic graph
G and a credal set of joint probability distributions
P such that any extreme probability p ∈ P factor-
izes with respect to G, i.e. it can be expressed as
p(X) = p1(X1|Π1) · . . . · p(Xm|Πm), where p(Xi|Πi)
is a conditional distribution of Xi given its parents in
G. Not every credal network is locally defined.

A credal network can be obtained by determining a
single graphical structure (either elicited from experts
or learned with a Bayesian procedure) and a set of
decomposable probability distributions learned with
an imprecise probability procedure, for example us-
ing the Imprecise Dirichlet Model (IDM) [19]. The
most simple application is the separable estimation
of the conditional probabilities, being the result a lo-
cally defined credal network where Pi is the set of
all the conditional probability distributions such that
p(Xi = wil |Πi = πij , D) ∈ [

nijl
nij+s

,
nijl+s
nij+s

], where s is

a global parameter (usually s = 1 or s = 2). This
procedure has a tendency to produce overly impre-
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cise intervals when computing conditional imprecise
probabilities given observations in these credal net-
works [21]. There is another alternative application
of the IDM to learn the parameters: the global appli-
cation [21] which produces more precise results, but it
is more difficult to compute with it. There is a solu-
tion procedure for the naive credal classifier [21], but
there is no efficient algorithm available for computing
at the general case.

Sometimes the most natural result of learning is a
family of graphs instead of a single one [4, 10]. To en-
compass this case, we define a multigraph credal net-
work as a finite set a credal networks, i.e. a set of
graphs and with each graph having a set of probabil-
ity distributions that factorize according to the graph.
In our approach, usually each graph will have a single
probability distribution associated to it.

A multigraph credal network will be said to be locally
defined when the variables can be sorted in such a way
that for each variable Xi we have a family of possi-
ble sets of parents for this variable {Π1

i , . . . ,Π
li
i } were

Πj
i is always included in the set of variables preceding

Xi in the given order, and for each set of parents Πj
i

we have a set of conditional probability distributions
for Xi given Πj

i . A locally defined multigraph credal
network will have an associated multigraph credal net-
work: we only have to consider all the credal networks
obtained by selecting a possible set of parents Πj

i and
its corresponding set of conditional probability distri-
butions for each variable Xi. For a locally defined
multigraph we have to give the family of possible par-
ents and for each parent the set of possible conditional
distributions. However, if li is the number of possible
parents for Xi, the number of credal networks that
can be obtained by selecting a possible set of par-
ents for each variable is

∏m
i=1 li, which can be a very

large number. Then it is clear that the local definition
can be much more compact than the multigraph def-
inition. Furthermore, it is possible to directly make
inferences with the local definition [10].

To locally define a multigraph credal network, we need
to specify an order of the variables in such way that
the set of parents of a variable are selected from pre-
ceding variables. If we did not specify this order then,
there could be two variables Xi and Xj , a possible set
of parents of Xi, Πi, containing Xj and a possible set
of parents of Xj , Πj , containing Xi. The two set of
parents Πi and Πj are not compatible as they give rise
to a cycle. More complex cycles could be created by
circular relationships. So modularity would be lost,
as we could not locally specify a family of parent sets
for each variable without considering additional global
restrictions for them.

4 Learning Multigraph Credal
Networks

A directed acyclic graph G about variables X will be
represented by a finite list G = (Π1, . . . ,Πm) of the
set of parents of the different variables. The set of all
the acyclic directed graphs will be denoted as G.

To learn a multigraph credal network, we will follow a
variant of the Imprecise Sample Size Dirichlet Model
(ISSDM) introduced in [10]. As in the case of learning
precise Bayesian networks, our model is based on as-
suming prior distributionsD(αi, . . . , αi) for the condi-
tional probability distributions p(Xi|Πi = πij), where
αi = s

qiki
and s > 0 is the global equivalent sample

size. But now instead of an unique global equivalent
sample size s > 0, it will be assumed that there is a
finite set S of possible equivalent sample sizes1.

In [10] two basic applications of the Imprecise Sample
Size Dirichlet Model (ISSDM) have been considered:

• The global approach.- Given a graph G, the set of
prior distributions for the conditional probabili-
ties p(Xi|Πi = πij) is the set of Dirichlet distri-

butions D(αi, . . . , αi) that are obtained by con-
sidering a value s ∈ S and computing αi = s

qiki
.

• The local approach.- Given a graph G, the set of
prior distributions for the conditional probabili-
ties p(Xi|Πi = πij) is the set of Dirichlet distri-

butions D(αi, . . . , αi) that are obtained by con-
sidering a value si ∈ S for each variable Xi and
computing αi = si

qiki
.

The difference between the local and the global ap-
proach is that in the global we have to select the same
s ∈ S to compute the weights of the prior distribu-
tion for each variable Xi, and in the local approach,
we can select a different value si ∈ S for each vari-
able. The number of different prior distributions for
the parameters is higher in the local approach than in
the global approach. In the global approach it is |S|
(the cardinal of S) but in the local approach is |S|m.

In this paper we will follow the local approach. So,
given a graph G, we will consider that there is a prior
distribution about the values of the conditional prob-
abilities for each s = (s1, . . . , sm) ∈ Sm, where the
prior distribution for the conditional probabilities of
variable Xi is D(αi, . . . , αi) where αi = si

qiki
. There

are reasons for assuming the possibility of a different
si ∈ S for each variable instead of the same s ∈ S
for all the variables. The value si ∈ S determines

1In [10] it was assumed that S was an interval, but finally
for computational reasons it was approximated by a finite set.

ISIPTA ’13: A New Framework for Learning Generalized Credal Networks 225



the prior probabilities for the conditional probability
distribution of Xi: with small values of si the prior
Dirichlet distribution is concentrated in the extremes
(close to 0 and 1) and with high values of si the prior
distribution is concentrated around the uniform dis-
tribution (all the probabilities close to 1

ki
). If all the

values are the same for all the variables, we are as-
suming that if prior density of Xi is concentrated in
the extreme values (small s) so is the prior probability
about the conditional probabilities for Xj . Assuming
a different values of si for different variables, we are
expressing that the probabilities for one variable can
be extreme, while for other variable they can be close
to the uniform distribution. In [3], we elaborate on
these arguments when using precise Bayesian meth-
ods.

Given s ∈ Sm, we can compute the score of a graph
using (2) and to estimate the conditional probabilities
associated to a graph with expression (3), with αi =
si
qiki

. To emphasize the dependence upon s, the score

will be denoted by Score(G|D, s) and the estimated
conditional probability by ps(Xi|Πi, D).

Given an arbitrary set H, an ε-contaminated impre-
cise probability model of the uniform distribution in
H where ε > 0 is given by the set of all the prob-
ability distributions p defined on H and satisfying
p(h) ≥ 1−ε

k , where k is the number of elements in
H. Equivalently this model can be characterized

by the inequalities p(h)
p(h′) ≥ βε, where βε = 1−ε

1−ε+kε .
This is a convex set of probabilities and there is an
extreme probability, pεh, for each h ∈ H, given by
pεh(h) = 1−ε

k + ε and ph(h′) = 1−ε
k if h′ 6= h. This

probability can be expressed as a convex combina-
tion: pεh = εph+(1− ε)pu, where ph is the probability
degenerated on h (assigning probability 1 to h) and
pu is the uniform distribution. pεh will be called the
probability that concentrates mass ε on h and it is
the probability for which the probability of h is max-
imized.

In [10] it was considered that the information on Sm

was vacuous, but in this paper additional assumptions
will be made.

• There will be an imprecise prior probability for
the graph and the equivalent sample size vector,
i.e. in G × Sm. The following options will be
considered:

– An ε-contaminated model of the uniform dis-
tribution in G × Sm, where ε > 0. The as-
sociated set of probability distributions will
be denoted as P1.

– An ε-contaminated model of the uniform dis-
tribution in the space of directed acyclic

graphs G and for each graph G ∈ G we have
an uniform distribution in Sm conditioned
to G. It will be denoted as P2.

• The set of possible decisions, D, can be one of
the following options:

– The set of graphs D = G.

– The set of graphs and equivalent sample
sizes: D = G × Sm.

• The utility function when D = G is U : G ×D →
[0, 1], given by

U(G,G′) =

{
1 if G = G′

0 otherwise
,

where G is the true graph and G′ our decision.

If D = G × Sm, the utility function is U : G ×
Sm ×D → [0, 1] given by:

U(G, s, G′, s′) =

{
1 if G = G′, s = s′

0 otherwise

where G is the true graph and s the true equiva-
lent sample size and (G′, s′) our decision.

A decision d ∈ D is said to be dominated by an-
other decision d′ ∈ D if and only if for any possi-
ble probability distribution, p, associated to the prob-
lem we have that p(U(., d)|D) < p(U(., d′)|D), where
U(., d) is the function that assigns to each graph G
(or pair (G, s)) the value U(G, d) (or U(G, s, d)) and
p(U(., d)|D) stands for the prevision or mathematical
expectation of this function with respect to p condi-
tioned to the dataset D.

In these conditions, learning is defined as the com-
putation of all the undominated decisions. Assume
that a probability p has been fixed in G × Sm. If
D = G, then if d = G, we have that p(U(., d)|D) =
p(G|D) = p(d|D), as U(., d) is a function in G that is
equal to 1 in G and 0 otherwise. Analogously, in the
case of D = G × Sm and d = G × s, we also obtain
p(U(., d)|D) = p(G× s|D) = p(d|D).

Depending on the different options, we have the fol-
lowing situations.

4.1 D = G and P2 as prior probability

In this case, we have an ε-contaminated model in G
and for each graph an uniform distribution in Sm.

Given that p(U(., G)|D) = p(G|D), we have to com-
pute all the graphs G such that for any graph G′ there
is a probability p ∈ P2 such that p(G|D) ≥ p(G′|D).
Given that we have the ε-contaminated model in G,
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then this probability exists, if and only if this inequal-
ity is satisfied for the probability pεG in G that max-
imizes the probability of G (concentrates the ε mass
on G).

So we have to compute all the graphs G such that
pεG(G|D) ≥ pεG(G′|D),∀G′ ∈ G, for the probability
pεG ∈ P2.

For any probability p ∈ P2, we have that
p(G|D) ∝ p(G)p(D|G). In this expression, p(D|G) =∑

s∈Sm p(D|G, s) = 1
|S|m

∑
s∈Sm Score(G|D, s), as

given a graph, we have the uniform distribution in
Sm. This probability is fixed and does not depend
on the probability p ∈ P2 and will be denoted as
AScore(G|D) = 1

|S|m
∑

s∈Sm Score(G|D, s).

As for any graph we have that
pεG(G′)
pεG(G) = βε, then a

graphG is undominated if and only if AScore(G|D) ≥
βεAScore(G

′|D) for any graph G′.

If G is the graph maximizing AScore(G|D), then this
graph is undominated (βε is always lower than 1),
and another graph G′ is undominated if and only if
AScore(G′|D) ≥ βεAScore(G|D).

AScore(G|D) is the locally averaged score of a
Bayesian network as defined by Cano et al. [3]. It
is immediately clear that it is not necessary to aver-
age an exponential number of scores as,

AScore(G|D) =
1

|S|m
∑

s∈Sm
Score(G|D, s) =

m∏

i=1


 1

|S|
∑

si∈S

qi∏

j=1

Γ(ki.α
i)

Γ(nij + ki.αi)

ki∏

l=1

Γ(αi + nijl)

Γ(αi)


 .

In short, in this case the problem is to compute the
set of graphs with an averaged score greater or equal
to βε.MAXAV G, where MAXAV G is the maximum
averaged score of a graph. If ε = 0, we have the prob-
lem of computing the graph G optimizing the locally
average score as considered in [3].

4.2 D = G × Sm and P2 as prior probability

In this case, we have to select a graph G and a vector
of equivalent sample sizes s = (s1, . . . , sm) such that
there is not another pair (G′, s′) such that for any
probability p we have that p(G, s|D) < p(G′, s′|D).
Given that for any p ∈ P2 the prior probability in
Sm given G is uniform, we have that p(G, s|D) ∝
p(G)Score(G|D, s). So, a pair (G, s) is undominated
if and only if for any pair (G′, s′) there is a prob-
ability in p ∈ P2 for which p(G)Score(G|D, s) ≥
p(G′)Score(G′|D, s′). As Score(G|D, s) does not de-
pend on p ∈ P2, if this inequality is true for a
probability p ∈ P2, it will also hold for the prob-

ability maximizing the probability of G, pεG. So
this is equivalent that for any (G′, s′) we have that
pεG(G)Score(G|D, s) ≥ pεG(G′)Score(G′|D, s′). Tak-

ing into account that
pεG(G′)
pεG(G) = βε (if G 6= G′),

this inequality is equivalent to Score(G|D, s) ≥
βεScore(G

′|D, s′) if G 6= G′ and to Score(G|D, s) ≥
Score(G′|D, s′) if G = G′.

If G is fixed, then (G, s′) dominates (G, s) if and only
if Score(G|D, s′) > Score(G|D, s). Then for a pair
(G, s) to be undominated, it is necessary that s =
args′ maxScore(G|D, s′).
Let us define MScore(G|D) =
maxs∈Sm Score(G|D, s) and assume that
MAXMAX is the maximum of this score in
the space of all the graphs and G∗ the graph for
which this score is obtained. We can prove the
following result.

Proposition 1 A pair (G, s) is undominated if
and only if s = args′ maxScore(G|D, s′) and
MScore(G|D) ≥ βεMAXMAX.

Proof: If the pair (G, s) is undominated we
know that s = args′ maxScore(G|D, s′). Also
this pair can not be dominated by (G∗, s∗)
where s∗ = args′ maxScore(G∗|D, s′) and
therefore MScore(G|D) ≥ βεScore(G

∗|D, s∗) =
βεMAXMAX.

On the other hand, assume s =
args′ maxScore(G|D, s′) and MScore(G|D) ≥
βεMAXMAX. If s = args′ maxScore(G|D, s′) then
the pair (G, s) is not dominated by any pair (G, s′)
(a pair with the same graph and different vector
of equivalent sample sizes). Also MAXMAX ≥
Score(G′|D, s′) and therefore for any pair (G′, s′)
Score(G|D, s) ≥ βεMAXMAX ≥ βεScore(G

′|D, s′),
and the pair (G, s) is not dominated by any pair
(G′, s′) with G′ 6= G either. So, the pair (G, s) is
undominated. �
It is important to remark that MScore(G|D) can be
locally computed as

MScore(G|D) = max
s∈Sm

Score(G|D, s) =

max
s∈Sm

m∏

i=1




qi∏

j=1

Γ(ki.α
i)

Γ(nij + ki.αi)

ki∏

l=1

Γ(αi + nijl)

Γ(αi)


 =

m∏

i=1


max
si∈S

qi∏

j=1

Γ(ki.α
i)

Γ(nij + ki.αi)

ki∏

l=1

Γ(αi + nijl)

Γ(αi)


 .

In short, in this case the problem is to compute the
set of graphs with a maximum score greater or equal
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than βε.MAXMAX, where MAXMAX is the opti-
mal value of the maximum score of a graph and for
each one of these graphs we have to determine the
vector s maximizing the score. If ε = 0, we have the
problem of computing the graph (G, s) optimizing the
score MScore(G|D, s′). This approach has been con-
sidered by Steck [16] to minimize the effect in the
learned structure of a Bayesian network of the equiv-
alent sample size parameter. However, in that paper a
continuous set of possible parameters S is considered
and a global approach is applied: the same parame-
ter s must be applied to the conditional probability
of each variable Xi.

4.3 D = G × Sm and P1 as prior probability

This case is similar to the one consid-
ered in Subsection 4.2. Now, we have that
p(G, s|D) ∝ p(G, s)Score(G|D, s) and we have
an ε-contaminated model in G × Sm. If a pair
(G, s) is dominated by another pair (G′, s′),
then this is equivalent to p(G, s)Score(G|D, s) <
p(G′, s′)Score(G′|D, s′) for any probability p ∈ P,
which given the structure of P1 is equivalent to
pεG,s(G, s)Score(G|D, s) < pεG,s(G

′, s′)Score(G′|D, s′)
where pεG,s is the probability in P1 maximizing
the probability of (G, s). And this is equivalent to
Score(G|D, s) < βεScore(G

′|D, s′).
It is immediately clear that for a graph G there
is a pair (G, s) that is undominated if and only if
MScore(G|D) ≥ βεMAXMAX. The difference with
the computations in Subsection 4.2, is that for a given
undominated graph G, now there can be several vec-
tors of parameters s ∈ Sm such that (G, s) is un-
dominated: all the pairs for which Score(G|D, s) ≥
βε.MAXMAX.

We can proceed as follows: we can compute the set of
graphs with a MScore(G|D) greater or equal than
βε.MAXMAX as in the previous case. Then for
each graph G we compute the set S′ of parameters
s such that Score(G|D, s) ≥ βεMAXMAX. This
computation can be difficult as the number of ele-
ments in s ∈ Sm is exponential and the problem can
not be decomposed by computing a set of compo-
nents, Si, for each variable Xi and then computing
S′ = S1× · · ·×Sm. Whether a component si belongs
to an undominated vector s depends on the other com-
ponents in the vector and can not be separately com-
puted for each variable.

4.4 D = G and P1 as prior probability

This case poses an additional difficulty compared to
above situations. A graph G is undominated if and
only if for each graph G′ there is a probability p such

that p(G|D) ≥ p(G′|D). The difference is that now
the probability p can depend on the graph G′. In
previous cases, the problem could be simplified as it
could be shown that if this happened we could select
the same probability for any graph: the probability
pεG maximizing the probability of G. But this simpli-
fication is not possible in this case. A possible solution
is to concentrate in the set e-admissible decisions [9]:
a graph G is e-admissible if it maximizes p(G|D) for a
possible probability p. All the e-admissible decisions
are undominated but not the reverse.

In the following we shall concentrate in computing e-
admissible solutions. If G′ maximizes the conditional
probability p(.|D) with p in a convex set P1, then
G′ will also be optimal for one extreme probability
p(G,s) ∈ P1. So we shall concentrate in finding the
graphs that optimize the posterior probability for ex-
treme probabilities.

Let us consider p(G,s)(G
′|D) the posterior probability

of graph G′ when the prior probability in G × Sm is
p(G,s). We have the following situations:

• If G 6= G′, then

p(G,s)(G
′|D) ∝

∑

s′∈Sm
p(G,s)(G

′, s′)p(G,s)(D|G′, s′) =

∑

s′∈Sm

1− ε
k

Score(G′|D, s′) =
1− ε
k′

AScore(G′|D),

where k′ = k
|S|m . In the above equalities, we have

that p(G,s)(D|G′, s′) is equal to Score(G′|D, s′)
as this conditional probability does not depend
of the prior probability in G × Sm.

• If G = G′, then

p(G,s)(G|D) ∝
∑

s′∈Sm
p(G,s)(G

′, s′)p(G,s)(D|G, s′) =

∑

s′∈Sm

1− ε
k

Score(G|D, s′) + εScore(G|D, s) =

=
1− ε
k′

AScore(G|D) + εScore(G|D, s)

where k′ = k
|S|m

Given above expressions, it can immediately be seen
that if G′ maximizes p(G,s)(G

′|D) for one extreme
probability, then G′ = G. In that case, we have that
p(G′,s)(G

′|D) = 1−ε
k′ AScore(G

′|D) + εScore(G′|D, s)

and p(G′,s)(G|D) = 1−ε
k′ AScore(G|D), for G 6=

G′. Then, if G′ maximizes p(G,s)(G
′|D), it will

also do it when s = args′ maxScore(G′|D, s′), and
in this case, p(G′,s)(G

′|D) = 1−ε
k′ AScore(G

′|D) +
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εMScore(G′|D). So, we can express the con-
dition for G′ e-admissible: 1−ε

k′ AScore(G
′|D) +

εMScore(G′|D) ≥ 1−ε
k′ AScore(G|D), ∀G ∈ G.

To compute the set of e-admissible graphs, we
can start by computing the graph G∗ maxi-
mizing AScore(G|D). It is clear that this
graph is e-amissible and that a graph G′ is
non dominated if and only if 1−ε

k′ AScore(G
′|D) +

εMScore(G′|D) ≥ 1−ε
k′ AScore(G

∗|D), which is

equivalent to AScore(G′|D) + εk′

1−εMScore(G′|D) ≥
AScore(G∗|D). If we call MAMScoreε(G

′|D) to

AScore(G′|D) + εk′

1−εMScore(G′|D). The computa-
tional problem is similar to the previous ones: to com-
pute a family of graphs with a score above a threshold.

5 Algorithms

In this section we discuss some procedures to com-
pute the set of undominated graphs or undominated
graphs and equivalent sample sizes. In all the situa-
tions the procedure involves the computation of one
graph maximizing a specific score, Score1 (in some
cases the averaged and in others the maximum score).
Then we have to compute all the graphs with a score
(Score2) above B, where B is a value depending of
the previous computed optimum. If A is the opti-
mum of Score1, then this value will be denoted as
B = f(A). The scores of the first and second stages
are not necessarily the same as in the case of D = G
and P1 as prior probability.

To carry out this task, we shall propose approximate
and exact algorithms. Approximate algorithms can
be based on algorithms that try to visit a significant
set of networks with a high score as in Bayesian model
averaging procedures [7]. In this paper we have con-
sidered a modification of the algorithms presented in
Masegosa, Moral [11]. The procedure has two stages:

• First, it computes a graph G∗ with a high value
Score1 using the Max-Min hill climbing algo-
rithms by Tsamardinos et al. [17], a state of the
art algorithm to learn Bayesian networks. Com-
pute A = Score1(G∗|D) and B = f(A).

• In a second step, a Markov Chain Monte-Carlo
procedure is employed to compute the family of
undominated graphs. It starts with a family H of
graphs containing only G∗, the current graph G is
initially equal to G∗. Then it randomly generates
a graph G′ from the neighboring graphs of the
current graph G (the graphs obtained by adding,
deleting, or reversing a link of G) and computes
Score2(G′|D). If Score2(G′|D) ≥ B, then the
current graph is set to G′ and is added to H.

It also computes Score1(G′|D) (there is no ad-
ditional computation if Score1 = Score2) and
if Score1(G′|D) > A, then we make B =
f(Score1(G′|D)) and remove from H all the
graphs G with Score2(G|D) < B. This step is
done because the first stage is an approximate
algorithm, and in this step we are visiting graphs
with a high Score2. As the different scores are
strongly correlated, there is a possibility that the
computed optimum is improved by one of the
graphs visited at this stage. This is specially con-
venient when Score1 = Score2 and there is not
necessity in doing additional computations.

Recently, exact algorithms for computing the
Bayesian networks maximizing a decomposable score
have been presented [14, 6]. In this paper, we will
concentrate on the A∗ algorithm proposed by Yuan
et al. [20] and we will indicate how it can be gen-
eralized to compute the full family of undominated
graphs in the case of a decomposable score such that
Score1 = Score2. Score is decomposable if and only
if we can express Score(G|D) =

∏m
i=1 Scorei(Πi|D),

i.e. it can be expressed as a product of scores as-
sociated to each variable and its sets of parents in
the graph. This covers all the situations except
the last one (D = G and P1 as prior probability),
as the score MAMScoreε(G|D) = AScore(G|D) +
εk′

1−εMScore(G|D) can not be expressed as a product

of scores for each variable2.

In the following Score(G|D) is any decomposable
score function and LScore(G|D) is the logarithm
of this score. We have that LScore(G|D) =∑m
i=1 LScorei(Πi|D), where LScorei(Πi|D) is the

logarithm of Scorei(Πi|D). First, we describe the A∗

algorithm for precise Bayesian networks (to compute
the graph maximizing the score). It is assumed that
we have a function BestScore(Xi, Ri) that computes
the optimal value of LScore(Πi|D) for Πi ⊆ Ri (see
[20] for efficient procedures for this task) where Ri is
a subset of X. The learning problem is formulated
as a search of the best path between two states. The
set of states is the family of all the possible subsets
Y ⊆ X. The initial state is the empty set and the
final state is the full set X. The set of children of a
state Y is the set of states Y ∪ {Xi}, where Xi 6∈ Y.
The utility of going from one state Y to one of its chil-
dren Y ∪ {Xi} is BestScore(Xi,Y). The utility of a
path is the sum of the utilities of each one of its arcs,
and the problem is to compute the path maximizing
the utility of going from the initial state to the final

2As it is a linear combination of decomposable scores this
does not pose any problem for the local computation under local
changes (we locally compute AScore(G|D) and MScore(G|D)
which are decomposable).

ISIPTA ’13: A New Framework for Learning Generalized Credal Networks 229



one. For that the A∗ algorithm is used with heuris-
tic function h(Y) =

∑
Xi 6∈Y BestScore(Xi,X\{Xi}).

It can be proved that this heuristic is admissible [20]
as it is an optimistic evaluation of the utility of the
rest of the path. In these conditions a search proce-
dure that expands the node with maximum value of
g(Y) = u(Y) + h(Y), where u(Y) is the utility of
the best path arriving to Y, is guaranteed to find the
optimal path the first time it chooses the final state
X to be expanded.

A path from the initial state to the goal represents
an ordering of the variables (if we go from Y to
Y∪{Xi}, then all the variables from Y are predeces-
sors of {Xi}). The utility of this path is the logarithm
of the score of the best network that can be obtained
restricted to this order (a variable can not be a parent
of one of its predecessors). Knowing this path, we ob-
tain the order with best score. The optimal graph can
be found by considering for each variable Xi the first
time this variable appears in the path from node Y to
node Y∪{Xi}. The set of parents of Xi is the subset
of Y for which the optimal value BestScore(Xi,Y)
is obtained.

In order to adapt this algorithm to our problem we
have to compute all the graphs with an score greater
than or equal to log(f(A)), where A is the graph with
best score. A first approximation can be to continue
after the final node X has been expanded, and ex-
pands the nodes while g(Y) ≥ log(f(A)) (the value
of A is known after the first time the full node is ex-
panded). In this way we obtain a set of paths, and
for each path an undominated graph with the same
procedure used in the optimal path. With this mod-
ification, it is necessary that if the same state is ob-
tained with two different paths we keep the two copies
of the state one for each path as they can lead to dif-
ferent solutions3. However, in this procedure we do
not obtain all the undominated graphs, but the set of
orders of the variables such that there is an undom-
inated graph compatible with this order. However,
only one undominated graph is obtained for each one
these orders. Computing all the undominated graphs
given an order can be difficult and perhaps a solution
could be to decompose the problem and once an order
is considered, to compute a set of different parents for
each variable, for example for variable Xi we compute
all the set of parents Πi selected from the predeces-
sors variables Y (the parent state), such that chang-
ing BestScore(Xi,Y) as utility of the arc arriving to
Xi by the value LScorei(Πi|D) the cost of the path

3alternatively, we could maintain a unique state with a set
of utilities, one of each path arriving to it. A utility value is
active while the value plus the heuristic value is greater than
or equal to the threshold. But for simplicity in the exposition,
we shall assume that we repeat the states.

is greater than or equal to the threshold (log(f(A))).
This procedure has the advantage of decomposing the
problem in local problems for each variable, and that
we obtain a locally defined credal network. But not all
the compatible networks are undominated: it is pos-
sible that changing the best parent for Xi or changing
the best parent for Xj we obtain undominated graphs,
but changing both of them the obtained graph is dom-
inated.

A modification of the A∗ algorithm can be done in or-
der to compute all the undominated graphs. For that,
we change the set of states to the set of pairs (Y,T),
where T ⊆ Y. Y will have the same interpretation
as above, and T will be the set of parents of the last
variable introduced in Y. The problem starts with
(∅, ∅) and the final states are (X,T) where X is the
full set of variables. The children of an state (Y,T)
are all the states (Y ∪ {Xi},T′), where Xi 6∈ Y and
T′ ⊆ Y. The utility of the arc going from (Y,T) to
(Y∪{Xi},T′) is the logarithm of LScorei(T

′|D). The
heuristic function on one state is computed as above
h(Y,T) = h(Y) =

∑
Xi 6∈Y BestScore(Xi,Y \ {Xi})

The algorithm first computes the optimum value A
of the score. For that, it works as the A∗, but not
expanding all the nodes. (Y,T) is only expanded to
nodes (Y∪{Xi},T), where Xi 6∈ Y and T is the sub-
set of Y\{Xi} maximizing LScorei(T|D), i.e. the set
of parents for which BestScore(Xi,Y) is obtained. In
this way, the behavior is very similar to the simple A∗

algorithm, with the only difference that here we make
explicit the best set of parents for each variable. Af-
terwards, we compute all the undominated graphs, i.e.
those with a score greater than or equal to the thresh-
old, log(f(A)). For that, for a node (Y,T) we expand
all the children (Y ∪ {Xi},T′), such that u(Y,T) +
LScorei(T

′|D) + h(Y ∪ {Xi}) ≥ log(f(A)) (the cost
of the path to arrive to the state plus the cost of the
heuristic is above the threshold). This implies to com-
pute all the set of parents T′ ⊆ Y with a score greater
that or equal to log(f(A)) − u(Y,T) − h(Y ∪ {Xi})
for a given variable Xi. Existing algorithms to com-
pute BestScore(Xi,Y) can be adapted to this task,
as they make almost an exhaustive search in the set
of all possible parents of Xi in Y.

The algorithm expands a state with a new variable
and a set of parents if the associated partial network
could obtain a score above the threshold, by assuming
an optimistic evaluation for the score of the rest of the
variables (X \ (Y ∪ {Xi})). At the end, all the paths
arriving to final states (X,T) represent undominated
Bayesian networks (their utility is the log of the score,
being the heuristic function equal to 0, so we have an
exact value of the utility). In each path the graph is
obtained by assigning to variable Xi the set of parents
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Ti in the node (Y, Ti) for which Xi ∈ Y for the first
time (starting in the root node).

In the case of D = G × Sm and P2, with this algo-
rithm we can compute all the graphs for which there is
a vector s of equivalent sample sizes for which (G, s)
is undominated. If we want to compute all the un-
dominated pairs (G, s), we can proceed with a further
modification of the A∗ algorithm. In this case, the set
of states is the set of all triples (Y,T, s) where now s
represents the equivalent sample size with which the
score of the set of parents T has been computed. The
procedure is completely analogous to the above one
(first only expanding the states with s maximizing
the score) and then all the states with a cost plus
heuristic above the threshold. In that case, in a path
to a final state, we record the equivalent sample size
of each variable and we have the pair (G, s).

6 Experiments

We have done some experiments to illustrate the be-
havior of our approach. The experiments are done
with the approximate algorithm for the case of P2 as
prior probability. In both cases, we have to compute
the set of graphs in which the score is greater or equal
than a given threshold: Score(G|D) ≥ βε, where
Score(G|D) is the average score if D = G and the
maximum score if D = G × Sm. In the last case, the
decision involves the vector s for which the maximum
score is obtained, but these data are not reported.
We have considered a very well known network, the
Alarm network [1]. This network has 37 nodes and 46
arcs. We have considered different data samples (50,
100, 500, 1000, 5000) and two different values of βε
(0.8 and 0.9). For each one of them, we have com-
puted the following values: NM number of different
learned models (graphs); PI percentage of imprecise
links (links appearing in some models and not in oth-
ers without taking into account the direction) in rela-
tion with the total number of possible links (37*36/2);
PE percentage of sure extra links (links appearing in
all the learned models but not present in the original
graph) with respect to the missing links in the orig-
inal graph ( 37*36/2 - 46 ); PM percentage of sure
missing links (links appearing in the original graph
but missing in all learned networks) with respect to
the number of links of the graph (46). Results are
reported in Table 1.

We can observe that the imprecision decreases with
the sample size (with N = 5000 we have almost no
imprecision); it is greater if βε decreases (ε increases
and introduce more imprecision in the ε-contaminated
prior); and it is higher when using the MScore (we
decide about the graph and about the equivalent sam-

Table 1: Results of the experimental evaluation.
Samples 50 100 500 1000 5000
AScore-0.8
NM 67.00 22.50 10.40 4.40 3.40
PI 3.95 1.44 0.45 0.21 0.05
PE 8.50 5.82 2.18 1.58 0.76
PM 43.04 31.96 12.61 8.26 6.09
AScore-0.9
NM 34.20 9.20 2.00 2.20 1.80
PI 1.98 0.66 0.06 0.09 0.00
PE 9.35 6.29 2.34 1.53 0.79
PM 51.22 45.78 31.65 27.26 19.30
MScore-0.8
NM 126.20 36.70 7.10 3.30 2.10
PI 4.95 1.59 0.39 0.26 0.12
PE 6.97 5.98 2.92 2.24 0.98
PM 38.91 30.87 10.65 8.48 5.22
MScore-0.9
NM 58.60 22.40 2.30 2.30 1.30
PI 2.37 0.87 0.11 0.15 0.05
PE 7.98 6.18 3.10 2.29 0.95
PM 42.61 32.17 11.09 7.83 5.22

ple sizes) than when using the AScore (we only decide
about the graph).

On the other hand, it can be seen that the structural
errors, PE and PM , strongly improve with the sam-
ple size. When βε decreases there are less missing
links but more extra links (we have more models and,
in consequence, more links are considered); and, at
least for this BN, MScore seems to obtain less struc-
tural errors than AScore specially for βε = 0.9 where
PM is much higher (although more extensive experi-
ments are needed to evaluate if this trend persists).

7 Conclusions

We have presented a general methodology for learning
multigraphs credal networks. Our approach justifies
the use of different scores that can be found in the
literature and the fact that several networks are the
result of the learning task. Even if our set of deci-
sions consists in determining a single graph, it makes
sense that the output of the learning task is a set of
undominated decisions (graphs) if we have imprecise
prior information. Though the problem is computa-
tionally more difficult than learning a single network,
algorithms have been proposed, both for exact and
approximate computation. In the future, we plan to
make a more extensive experimentation including the
exact algorithms and to compare with the results of
learning a single network.
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Abstract

Bayesian model averaging (BMA) weights the in-
ferences produced by a set of competing models,
using as weights the models posterior probabili-
ties. An open problem of BMA is how to set the
prior probability of the models. Credal model av-
eraging (CMA) is a credal ensemble of Bayesian
models, which generalizes BMA by substituting
the single prior over the models by a set of pri-
ors. The base models of the ensemble are learned
in a Bayesian fashion. We use CMA to ensem-
ble base classi�ers which are Bayesian logistic
regressors, characterized by di�erent sets of co-
variates. CMA returns indeterminate classi�ca-
tions when the classi�cation is prior-dependent,
namely when the most probable class depends
on the prior probability assigned to the di�er-
ent models. We apply CMA for modelling the
presence and absence of marmot burrows in an
Alpine valley in Italy and show that it compares
favorably to BMA.

Keywords. Bayesian model averaging, credal
model averaging, logistic regression, classi�ca-
tion, ecological modeling.

1 Introduction

Over the last years, classi�ers based on imprecise
probabilities have been mostly developed by ex-
tending probabilistic graphical models (see [30]
for a pioneering work and [7] for a recent re-
view) or decision trees (see [1] and the references
therein). Alternatively, extension of the k nearest
neighbors have been also proposed [11].

In this paper we consider the idea of credal model

averaging (CMA) [8, 6], which can be described
as a credal ensemble of Bayesian classi�ers. In
other words, the parameters of the base models
are learned in a Bayesian way. The ensemble of
the base models is instead carried out in an im-
precise way, modelling a condition of ignorance
about the prior probability of the di�erent mod-
els.

Model uncertainty is the problem of many models
being consistent with the available data. In this
condition, there is substantial uncertainty about
which model should be chosen for drawing infer-
ences or computing predictions. Choosing a sin-
gle model and then ignoring the substantial un-
certainty of the model selection leads to overcon-
�dent inferences [3]. Bayesian model averaging
(BMA) is a sound approach to deal with model
uncertainty, based on the key idea of averaging
the inferences produced by a set of di�erent mod-
els, using the models' posterior probabilities as
weights.

However, BMA requires to specify the prior prob-
ability of each model. This is a critical issue, as it
is recognized in the BMA literature [5]. To tackle
this issue, some authors repeat the BMA analysis
assigning di�erent prior probabilities to the mod-
els [21, 28]. From the viewpoint of the credal clas-
si�cation, it is well-known the relying on a sin-
gle prior implies unavoidable arbitrariness, which
entails the risk of drawing prior-dependent clas-
si�cations.

CMA generalizes BMA, overcoming the problem
of the prior speci�cation by adopting a set of
prior over the models. As a result, the posterior
probability of the models lies within an interval
rather being a punctual value. Moreover, CMA
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automatically detects the instances which are
prior-dependent, namely whose most probable
class varies depending on the prior probability as-
signed to the di�erent models. On such instances,
CMA suspends the judgment by returning more
than one class, thus automating the sensitivity
analysis. So far, CMA has been proven e�ec-
tive in ensembling probabilistic graphical models
[8, 6].

We develop CMA for ensembling logistic regres-
sion models characterized by di�erent feature
sets. Indeed, BMA of logistic regressors was al-
ready used to model presence or absence of eco-
logical populations [21, 28]; we then compare
BMA and CMA on the case study of predict-
ing the presence of marmot burrows in an Alpine
valley.

2 Bayesian model averaging
(BMA)

Let us consider a logistic regression model for pre-
dicting the value of a binary class C, with classes
c0 and c1. The set of covariates (or features) is
X = {X1, X2, . . . Xk}; in a generic instance, the
value of the covariates is x = x1, . . . , xk. We de-
note π0 = P (C = c0|x) and π1 = P (C = c1|x).
The logistic regression model is

y = logit(π0) = ln
π0

1− π0
= ln

π0
π1

=

= β0 +

j=k∑

j=1

βjxj (1)

where xj is the observation of Xj .

Given k covariates, the model space M is com-
posed of 2k possible model structures. Each
model structure includes a speci�c set of covari-
ates. We denote by mi the i-th structure. The
model size is de�ned as the number of covariates
included in the structure.

Feature selection is the problem of identifying the
supposedly best set of covariates for the model.
The traditional feature selection approach is to
assess the signi�cance of each covariate through
hypothesis tests [10]. More modern approaches
for feature selection are instead based on the so-
called Information Criteria [3], such as the Akaike
Information Criterion (AIC) or the Bayesian In-

formation Criterion (BIC)1. Information Criteria
have been recognized to be more e�ective than
repeated hypothesis tests for the purpose of fea-
ture selection [3]. Yet, even adopting Information
Criteria one could face the problem of model un-
certainty. If, for instance, di�erent models obtain
a similar value of BIC, a substantial uncertainty
underlies the choice of a single model. The sub-
sequent inferences are hence overcon�dent if this
uncertainty is disregarded.

BMA addresses model uncertainty by combin-
ing the inferences of multiple models, using as
weights the posterior probability of the mod-
els. We denote by D the available dataset, by
P (mi|D) the posterior probability of model mi

and by P (Y |D) the entire posterior distribution
of Y given D, from which posterior probabilities
P (y|D) of a speci�c value y can be obtained. The
posterior of Y under BMA is [5]:

P (Y |D) =
∑

mi∈M
P (Y |mi, D)P (mi|D) (2)

where:

P (mi|D) =
P (mi)P (D|mi)∑

mk∈M P (mk)P (D|mk)

P (D|mi) =

ˆ

P (D|βi,mi)P (βi|mi)dβi,

having denoted by P (mi) the prior probability
of model mi, βi the vector of its parameters and
P (D|mi) its marginal likelihood, which in the lin-
ear case can be exactly computed [25]. Equation
(2) requires an extensive summation over 2k mod-
els, which is usually carried out by sampling the
model space . Only for small k it is possible to
exhaustively treat the model space.

As a result of averaging across di�erent models,
P (Y |D) is given by a sum of distributions and
thus has a multi-modal shape. Inferences about
other quantities of interest such as the parameter
of the models can be obtained by averaging over
the models as in Eq(2).

BMA requires to set a precise prior over the pa-
rameters and over the models. As a prior dis-
tribution on the parameters P (βi|mi) we adopt
Zellner's g-prior [13], setting g equal to the num-
ber of observations. As for the prior over the

1The BIC provides a simple but e�ective approxima-
tion of the posterior probability of a given model [24].
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models, we adopt the binomial prior [25, 13];
namely, every covariate has the same prior proba-
bility θ of being included in the model; moreover,
the probability of inclusion of each covariate is in-
dependent. Thus, the prior probability of model
mi, which includes a number ki of covariates, is:

P (mi) = θki(1− θ)k−ki . (3)

Once the prior probability of each possible model
is speci�ed according to Eq.3, it can be analyzed
the prior distribution of the random variable con-
stituted by the model size, namely the number of
covariates included in the model. The model size
follows a binomial distribution with mean θk and
variance θ(1− θ)k [19], where k is the total num-
ber of available covariates. An easy way to elicit
the prior distribution over the models is to ask
the expert his beliefs about the model size.

3 Credal Model Averaging(CMA)

CMA generalizes BMA by substituting the sin-
gle binomial prior over the models by a set of
binomial priors: thus, the prior probability of in-
clusion of each covariate varies within the range
[θ, θ]; thus, the mean model size a priori varies
within the range [θk, θk]. Thus, CMA allows elic-
iting from the expert an upper and a lower model
size. If no expert is available, one can model a
situation of ignorance a priori, by setting θ = ε
and θ = 1− ε. In our experiments we adopt this
approach, setting ε=0.05.

Each model of the ensemble is learned in a
Bayesian fashion, using a precise prior over the
parameters. Instead, the prior probability of the
models is imprecisely modelled. Hence CMA is
a credal ensemble of Bayesian models. Because
of imprecision, CMA computes for the logit the
interval [y, y] rather than a point value as in tra-
ditional logistic regression. The length of such
interval varies instance by instance, showing the
sensitivity of the prediction on the priors which
has been set over the models, namely how much
the BMA prediction would vary as a consequence
of θ varying between θ and θ. No coverage prob-
ability can be assigned to the CMA intervals. To
compute y and y, CMA solves a maximization
and a minimization problem on each instance.
Since the prior probability of inclusion θ is equal
for all covariates, the optimization problem in-
volves only a single variable.

Let us focus on the minimization case. We de-
note by a hat the estimated values. Given the
data set D and the observation x = x1, . . . , xk of
the covariates, we denote the prediction of model
mi as ŷi = βi0 +

∑j=ki
j=1 βijxj , where β

i
0 and βij

denote the parameters of mi (the previous for-
mula assumes, with no loss of generality, that for
model mi the covariates have been re-ordered, so
that the �rst ki covariates are those included in
the model). For simplicity of notation we do not
indicate the dependence of ŷi on D and x. The
lower bound ŷ of the CMA interval is computed
as:

ŷ = min
θ∈[θ,θ]

∑

mi∈M
ŷiP (mi|D) =

min
θ∈[θ,θ]

∑

mi∈M
ŷi

P (D|mi)P (mi)∑
mj∈M P (D|mj)P (mj)

=

= min
θ∈[θ,θ]

∑
mi∈M ŷiP (D|mi)θ

ki(1− θ)k−ki∑
mj∈M P (D|mj)θkj (1− θ)k−kj

:= min
θ∈[θ,θ]

h(θ)

Let us de�ne the k sets M1 . . .Mk which in-
clude all the models containing respectively
{1, 2, . . . , k} covariates. For instance, M2 con-
tains all the models which include two covariates.
To address the optimization problem it is useful
noting that all the models contained in the set
Mj have the same prior probability θj(1−θ)k−j .
We introduce Zj =

∑
mv∈Mj

ŷvP (D|mv) and

Lj =
∑
v∈Mj

P (D|mv) and then rewrite func-

tion h(θ) as:

h(θ) =

∑k
j=0 θ

j(1− θ)k−jZj
∑k
j=0 θ

j(1− θ)k−jLj
(4)

In the interval [θ, θ], the maximum and minimum
of h(θ) should lie either in the boundary points
θ = θ and θ = θ, or in an internal point of the
interval in which the �rst derivative of h(θ) is 0.

Let us introduce f(θ) =
∑k
j=0 θ

j(1−θ)k−jZj and
g(θ) =

∑k
j=0 θ

j(1− θ)k−jLj . The �rst derivative
h′(θ) is:

h′(θ) =
f ′(θ)g(θ)− f(θ)g′(θ)

g(θ)2
, (5)
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where g(θ) is strictly positive because Lj is a
sum of marginal likelihoods. We can therefore
search the solutions looking only at the numera-
tor f ′(θ)g(θ)−f(θ)g′(θ), which is a polynomial of
degree k(k−1) and thus has k(k−1) solutions in
the complex plain. We are interested only in the
real solutions that lie in the interval (θ, θ). Such
solutions, together with the boundary solutions
θ = θ and θ = θ, constitute the set of candidate
solutions. To �nd the minimum and the max-
imum h(θ), we evaluate h(θ) in each candidate
solution point, and eventually we retain the min-
imum and maximum among such values.

Having determined the upper and lower logit val-
ues y and y, we obtain the upper and lower pos-
terior probabilities of the two classes by inverting
Eq.(1):

π0 =
exp(y)

1 + exp(y)

π0 =
exp(y)

1 + exp(y)

π1 = 1− π0

π1 = 1− π0

CMA adopts the criterion of interval-dominance
[27] to take decisions: class c1 is returned if
π1 > π0, namely if π1 > 1/2. Conversely, class
c0 is returned if π0 > 1/2. In these cases the in-
stance is safe because the rank between the two
classes is the same regardless the prior probabili-
ties assigned to the competing models. If instead
the intervals of the posterior probability of the
two classes overlap, the judgment is suspended.
The instance is prior-dependent, since the rank
among the classes changes when di�erent prior
probabilities are assigned to the competing mod-
els.

A �nal note regards the relation between the logit
computed by BMA and CMA. If the value of θ
used to induce BMA is included in the interval
[θ, θ] used to induce CMA, the logit computed
by BMA is included within the the logit interval
computed by CMA. Thus when CMA returns a
single class, this is the same class returned by
BMA.

4 Case study

The study area is located in the Italian Alps, near
the Stelvio National Park. The valley has an alti-

tude comprised between 2100 and 3100 m above
sea level. The �eld surveys identi�ed the position
of the Alpine marmot burrows and the character-
istics of their surrounding territory. The censuses
were carried out in the summers 2010 and 2011;
three di�erent areas of the valley were investi-
gated. To develop the species distribution model
we divide the area into cells of 100m2; the cen-
sused area is overall of about 95 ha ( 9500 cells).
Presence of burrows has been detected in about
4.5% of the cells. Each cell is then labelled as
presence or absence.

The considered covariates are altitude, slope, as-
pect (the direction in which the slope faces) to-
pographic ruggedness index (TRI) [26], hillshade,
curvature, soil temperature and soil cover. For
the aspect, we did not directly use the angle from
North, but we divided the information into two
sub-variables that we called northitude and easti-
tude. The northitude is calculated as the cosine of
the angle from North, while the eastitude is cal-
culated as the sine of the same quantity. While
the former represents the attitude of the mar-
mot to select sunny slopes, the latter represents
the preference to have a sunny territory during
the sunrise and the morning rather than during
the sunset and the evening. To build the soil
temperature map we relied on �ve di�erent me-
teorological stations (altitude comprised between
1800 and 2600 m a.s.l.) located in the surround-
ings, which provide the data of air temperature
and snow depth. The soil temperature is a mean
yearly value and was calculated starting from the
DEM (digital elevation model) and the data of air
temperature and snow depth, using the model
developed by [14]. Finally, we express the soil
cover as the percentage of cells with debris and
outcrops cover in the bu�er area (see later for an
explanation of the bu�er area).

As a pre-processing step we removed some highly
cross-correlated (|ρ| > .8) covariates: more pre-
cisely the soil temperature (anti-correlated with
the altitude), the TRI (anti-correlated with the
slope) and the hillshade, correlated with the nor-
thitude.

The Alpine marmot is a mobile species, which
uses a huge territory for its activities. Thus,
we supposed that the decision to dig a burrow
in a given cell does depend also on the envi-
ronmental conditions of surrounding cells. For
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this reason, the value associated to each cell (for
each environmental variable) is calculated as the
mean of the values of the variable in a surround-
ing of the same cell. We refer to this area with
the term bu�er area, and, in our case, it has a
pseudo-circular shape, since we considered the
cells within a circular area built around the given
cell. The home range of the Alpine marmot
ranges between 1 and 3 ha [23, 17]. We con-
sidered bu�er areas of size 1 ha, 2 ha and 3 ha.
Since the results are quite consistent when di�er-
ent bu�er areas are considered, in the following
we present results referring only to a bu�er area
of 2 ha.

5 Results

To gain understanding of the data and to inves-
tigate the role of the di�erent covariates, we de-
velop a BMAmodel using the entire dataset. The
prior probability of inclusion of the covariates is
set to 0.5, corresponding to a uniform prior prob-
ability over the models.

Under BMA the posterior probability of inclu-
sion of a covariate is calculated as the sum of the
posterior probability of the models in which the
covariate is included. In Table 1 we report the
posterior probability of inclusion of the covari-
ates, the expected values and the standard devi-
ations of the parameters of the models, obtained
using the standardized values of the variables.
The expected values and the standard deviations
of the coe�cients are calculated averaging over
the models which do include the covariate.

Variable 2ha
p.inc. EV SD

altitude 1 -1.050 0.158
slope 1 0.491 0.067

curvature 0.02 0.001 0.011
northitude 1 -1.381 0.010
eastitude 1 -0.553 0.056

% of outcrops and debris cover 0.97 -0.399 0.122

Table 1: Posterior probability of inclusion of
the covariates (p.inc), expected values (EV) and
standard deviations (SD) of the model parame-
ters.

The most important variables are the altitude,
the slope, the eastitude and the northitude. The
signs of the parameters con�rm, for most of the
variable, what is reported in literature. The co-
e�cient of the altitude has a negative value, and

the valley altitude ranges from ca. 2200 m a.s.l.
and 3000 m a.s.l.. The suitable altitude for the
marmot is approximately between 1650 m a.s.l.
and 1950 m a.s.l. [4, 2] with maximum altitudes
around 3000 m a.s.l.. Since the valley is above
the optimal altitude range of the marmot, the
fact that the suitability of the valley decreases
with the altitude con�rm the past results. The
slope positively in�uences the presence of bur-
rows. In this case, we have con�icting results re-
ported in literature, with an optimal slope that
varies from 0 to 60◦[22]. The northitude nega-
tively in�uences the presence of burrows, so that
the marmot preference is for southerly exposed
slopes, as previously reported in several studies
[2]. The eastitude negatively in�uences the pres-
ence of burrows, contrary to what is reported in
literature [2], with a preference for the westerly
exposed slopes in the valley. This preference is
probably due to the fact that, in the valley, the
areas located at a higher elevation and with a low
suitability, are mainly westerly exposed. This re-
sult seems therefore to be mainly due to the val-
ley shape. A high percentage of outcrops and
debris cover negatively in�uences the presence of
marmot burrows, showing the importance of the
alpine meadows for the species, as reported by
[2, 22].

5.1 Comparing BMA and CMA

We compare BMA and CMA using training
data sets of varying sample size. For compar-
ing BMA and CMA, we downsample the orig-
inal data set, generating training sets of size
n ∈ {30, 60, 90 . . . , 300}. For each sample size, we
build 30 di�erent training sets. The instances not
contained in the training set constitute the test
set. The training sets contain the same preva-
lence (fraction of presence data) of the entire
dataset, namely 4.6%. For CMA we assume a
situation of substantial ignorance a priori, set-
ting θ = 0.95 and θ = 0.05.

CMA can be seen as dividing the instances into
two groups: the safe ones, for which a single
class is returned, and the prior-dependent ones,
for which instead the judgment is suspended
and both classes are returned. For the prior-
dependent instances, presence or absence is more
probable depending on the prior probability of
the competing models.
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The most common measure of performance in
classi�cation is the accuracy, de�ned as the pro-
portion of instances correctly classi�ed. To eval-
uate the e�ectiveness of CMA, we assess the ac-
curacy of BMA on the safe and on the prior-
dependent instances. As can be seen in Fig.1,
BMA undergoes a sharp drop of accuracy on the
instances indeterminately classi�ed by CMA.
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Figure 1: The accuracy of BMA drops on the
prior-dependent instances. For each sample size,
the boxplot refers to 30 experiments.
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Figure 2: The length of the CMA interval (π0, π0)
decreases with the sample size. For each sample
size, the boxplot refers to 30 experiments.

The length of the logit interval [y, y] of CMA de-
creases with the dimension of the training set as
shown in Figure 2: the larger the sample size, the
less in�uential the prior probability of the mod-
els.

5.2 Credal Classi�cation and Reject

Option

Traditional classi�ers can be equipped with a re-
ject option [16], thus refusing to classify an in-
stance if the posterior probability of the most
probable class is below a certain threshold. To
adopt the reject option, it is necessary setting the
rejection cost which is incurred into when reject-
ing an instance. When classifying an instance,
the expected cost [12] associated to decision of re-
turning each class is computed. The instance is
rejected if the expected classi�cation cost of each
class is higher than the rejection cost. This cor-
responds to rejecting all the instances in which
the posterior probability p∗ of the most probable
class is below a threshold t [16].

However, the behavior induced by the reject op-
tion is quite di�erent from that of a credal classi-
�er. On a large data set the posterior probability
of the classes is not sensitive on the choice of the
prior; a credal classi�er will generally return a
single class. On the other hand, the determinate
classi�er could reject even a considerable num-
ber of instances, if the rejection cost is small. To
fairly compare a traditional classi�er equipped
with rejection option against a credal classi�er,
it would be necessary making the credal classi-
�er aware of the rejection cost. This point we
leave for future research.

However, applying a rejection option to BMA
does in general yield a behavior which is quite dif-
ferent from that of CMA. The point is that on the
prior-dependent instances the BMA predictions
are not tightly distributed around a 50% poste-
rior probability; instead, there are many prior-
dependent instances in which BMA estimates a
posterior probability larger than 60-70% for the
most probable class: see for an example Figure
3. Thus, BMA equipped with rejection option
would reject only part of the prior-dependent in-
stances. Conversely, it will instead reject some
instances which are not prior-dependent.

5.3 Utility-discounted accuracy

To further compare CMA and BMA we adopt the
utility-discounted accuracy introduced in [29].
We brie�y summarize here the idea underlying
this approach. The starting point is the dis-
counted accuracy, which rewards a prediction
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Figure 3: Distribution of the posterior proba-
bility associated by BMA to the most probable
class in the prior-dependent instances. The �gure
refers to a training set of dimension n=210.

containing m classes with 1/m if it contains
the true class, and with 0 otherwise. Within
a betting framework based on fairly general as-
sumptions, discounted-accuracy is the only score
which satis�es some fundamental properties for
assessing both determinate and indeterminate
classi�cations; thus, the discounted accuracy
of a credal classi�er can be compared to the
accuracy achieved by a determinate classi�er.
Yet discounted-accuracy has severe shortcom-
ings. Consider two medical doctors, doctor ran-
dom and doctor vacuous, who should diagnose
whether a patient is healthy or diseased. Doc-
tor random issues uniformly random diagnosis;
doctor vacuous instead always returns both cat-
egories, thus admitting his/her ignorance. Let
us assume that the hospital pro�ts a quantity of
money proportional to the discounted-accuracy
achieved by its doctors at each visit. Both doc-
tors have the same expected discounted-accuracy
for each visit, namely 1/2. For the hospital,
both doctors provide the same expected pro�t
from each visit, but with a substantial di�er-
ence: the pro�t of doctor vacuous has no vari-
ance. Any risk-averse hospital manager should
thus prefer doctor vacuous over doctor ran-
dom: under risk-aversion, the expected utility
increases with expectation of the rewards and
decreases with their variance [18]. To model
this fact, it is necessary to apply a utility func-
tion to the discounted-accuracy score assigned
to each instance. The utility function is de-

signed as follows in [29]: the utility of a cor-
rect and determinate classi�cation (discounted-
accuracy 1) is 1; the utility of a wrong classi�ca-
tion (discounted-accuracy 0) is 0. Therefore, the
utility of a traditional determinate classi�er cor-
responds to its accuracy. The utility of an accu-
rate but indeterminate classi�cation consisting of
two classes (discounted-accuracy 0.5) is assumed
to lie between 0.65 and 0.8. Two quadratic util-
ity functions are then derived corresponding to
these boundary values, and passing respectively
through {u(0) = 0, u(0.5) = 0.65, u(1) = 1} and
{u(0) = 0, u(0.5) = 0.8, u(1) = 1}, denoted as
u65 and u80 respectively. Since u(1) = 1, util-
ity and accuracy coincide for determinate classi-
�ers; therefore, utility of credal classi�ers and ac-
curacy of determinate classi�ers can be directly
compared. Interestingly, the u65 and u80 func-
tions provides score which are numerically close
to respectively the F1 and F2 metric, which have
been used to score indeterminate classi�cations
in [9], adopting an approach based on informa-
tion retrieval.

In Figure 4 we compare the CMA utility (cal-
culated using the u80 utility function) and the
BMA accuracy. The utility produced by CMA
is slightly higher on average than that of BMA;
however the most striking feature of Fig.4 is that
the CMA boxplots are much tighter than the
BMA ones. This means that the utility yielded
by CMA is not only higher on average, but also
much more stable and predictable than that of
BMA. The result do not change substantially
if the u65 utility function is considered instead,
apart from a slight shift downwards of the CMA
boxplots.

5.4 The cost-sensitive setup

The classes of our problem are strongly skewed:
about 4.5% and 95.5% of the instances are re-
spectively presence and absence. It is unlikely
that the two di�erent kind of errors (false pres-
ence and false absence) have identical costs, as
it is assumed by both the classi�cation accuracy
and the utility-discounted accuracy. To make the
assessment more realistic, it is thus worth consid-
ering a cost-sensitive setup.

A simple measure of performance which accounts
for costs is the AUC [20], namely the area un-
der the receiver operating characteristic (ROC)
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Figure 4: CMA utility compared to BMA accu-
racy, using the u80 utility function.

curve. Figure 5 shows that BMA achieves much
higher AUC on the safe instances (determinately
classi�ed by CMA) than on the prior-dependent
ones (indeterminately classi�ed by CMA). This
is a further favorable result for CMA.
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Figure 5: The AUC of BMA drops on the prior-
dependent instances.

Yet, the AUC summarizes into a single scalar the
whole area under the ROC curve, mixing the per-
formance obtained under very di�erent cost sce-
narios [20]. To provide a more detailed picture of
the behavior of the classi�er in the cost-sensitive
setup, we then follow the approach of [12]. We
introduce the cost matrix ; in particular, we de-
note by d(ci, cj) the cost of predicting class ci
when the actual class is cj . The cost matrix is
2x2 since the problem has two classes (presence
and absence), as shown in Table 2. Let us as-
sume that the model is used to predict the pres-

ence/absence of burrows in a territory that has
not yet been censused. If the model predicts the
presence of a burrow in a given cell, an operator
is sent to search for burrows, incurring the cost
κ (this is a simpli�cation, since the cost could
vary for instance with the position of the cell to
be surveyed). If a burrow is found, a gain ζ is
obtained; overall, the negative cost (namely the
reward) for having correctly predicted the pres-
ence is κ − ζ < 0. If absence is predicted no
survey is organized; thus, no costs are incurred
regardless whether the considered cell contains or
not a burrow.

Actual

Predicted Absence Presence
Absence 0 0
Presence κ κ− ζ

Table 2: Cost matrix.

In the cost-sensitive setup, the classi�er should
return the class with the lowest expected
cost rather than the most probable class.
The expected cost of predicting class ci is∑
cj∈C πjd(ci, cj), where C denotes the set of

classes and πj is the posterior probability of class
cj , computed according to the logistic regression
model. Given the above cost matrix, the ex-
pected cost of predicting absence is 0. Thus pres-
ence is predicted if the expected cost of doing so
is negative:

Expected cost (predicting presence) < 0⇔
π1(κ− ζ) + π0(κ) < 0⇔

κ− π1ζ < 0

In other words, presence is predicted if its pos-
terior probability is higher than the threshold
t = κ/ζ. Dealing with CMA, in some instances
the posterior probability of presence might �uc-
tuate below and above the threshold t depending
on the prior probability assigned to the compet-
ing models. In this case, the decision should be
suspended since the evidence coming from data
is not strong enough to take a decision. How-
ever, we want CMA to take a decision. To this
purpose, we consider the Γ-maximin approach
[27], namely worst-case optimisation; this implies
returning a prediction of absence on the prior-
dependent instances. We also consider the oppo-
site approach Γ-maximax, namely optimization
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of the best case; this implies returning a pre-
diction of presence on the prior-dependent in-
stances.

We perform experiments with di�erent values of
the threshold t = κ/ζ. Moreover, to compare the
results obtained with di�erent t, we �xed ζ = 1; it
is indeed easy to prove that ζ is only a multiplica-
tive factor in the computation of the total cost,
so that its value does not in�uence the quality of
the results. In Figure 7 we report the results for
the case t=0.5 (ζ = 2κ) and t=1/23 (ζ = 23κ).
The latter value, in which the threshold equals
the marginal probability of presence, is referred
to as Kolmogorov-Smirnov statistic in [15]. Given
the rarity of presence, we do not consider values
of ζ smaller than 2κ, namely t > 0.5. Figures
6 and 7 show the results for the prior-dependent
instances only; on the instances which are not
prior-dependent, BMA and CMA take the same
decisions and thus incur the same costs. Given
the cost matrix of Table 2, the Γ-maximin strat-
egy incurs a cost of 0 on the prior-dependent
instances. In the case t = 1/2 (Figure 6), Γ-
maximin incur lower costs than if the decision
is taken according to the single posterior proba-
bility computed by BMA. The highest costs are
instead incurred adopting the Γ-maximax strat-
egy. However, the situation is reversed in the
case t=1/23 (Figure 7): Γ-maximax incurs the
lowest costs, followed by BMA; Γ-maximin in-
curs instead the highest costs. Interestingly the
di�erences among the costs incurred by the vari-
ous policies generally decrease with the size of the
training set. For the case t = 1/5 (not shown) the
costs of all policies are almost equivalent, lying
close to 0.

It cannot be predicted whether deciding accord-
ing to either Γ-maximin or Γ-maximax will even-
tually incur lower or higher total costs, for the
prior-dependent instances, than deciding accord-
ing to BMA. Our viewpoint is that on the prior-
dependent instances taking a decision should be
preferably avoided, trying instead to acquire new
information.

6 Conclusions

CMA has proven e�ective on the real-world case
study of predicting the presence of the Alpine
marmot. Some future extensions can be fore-
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seen. The �rst is adopting maximality rather
than interval-dominance for detecting the prior-
dependent instances; this should decrease the
number of instances indeterminately classi�ed
without compromising the robustness of the clas-
si�cations. Secondly, one could allow the prior
probability of inclusion of each covariate to vary
within a di�erent interval; this would however
imply solving a more complex optimization prob-
lem to detect the upper and lower bounds of the
logit interval. Eventually the current algorithms
could be extended to deal with more than two
classes; for this purpose, the base classi�ers to
be ensembled should be polytomous (rather than
dychotomous) logistic regressors.
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Abstract

The conditions for a 2-monotone lower prevision to be
uniquely updated to a conditional lower prevision are
determined. Then a number of particular cases are in-
vestigated: completely monotone lower previsions, for
which equivalent conditions in terms of the focal ele-
ments of the associated belief function are established;
random sets, for which some conditions in terms of
the measurable selections can be given; and minitive
lower previsions, that are shown to correspond to the
particular case of vacuous lower previsions.

Keywords. Coherent lower previsions, n-
monotonicity, belief functions, minitive measures,
natural extension, regular extension.

1 Introduction

The theory of imprecise probabilities contains a wide
variety of mathematical models that are of interest
in situations where it is unfeasible to determine the
probability model associated to an experiment with
certain guarantees. Under any of them, one important
problem is that of updating the model under the light
of new information. Unfortunately, this problem is
far from settled, and quite a number of different rules
have been proposed. Out of them, arguably some of
the most popular are Dempster’s rule of conditioning
[11], regular extension [4] and natural extension [27].

In order to be able to choose one rule above the oth-
ers, it is essential to have a clear interpretation of the
mathematical model we are using. In this paper, we
shall consider the behavioural approach championed
by Peter Walley [27], that has its roots in the works
on subjective probability by Bruno de Finetti [10].
This approach regards lower and upper probabilities
as supremum and infimum betting rates, and focuses
on a consistency notion between these betting rates
called coherence.

When we move to the conditional case, there is also

a notion of coherence that tells us if the conditional
betting rates are compatible with the unconditional
ones. However, this notion does not suffice to uniquely
determine the conditional models from the uncondi-
tional ones. This was showed for instance in [20],
where it was established that in general we may have
an infinite number of conditional models compati-
ble with the unconditional one, and that the small-
est and greatest such models are determined by the
procedures called natural and regular extension, re-
spectively. In this paper, we investigate under which
conditions there is only one conditional model that is
coherent with the unconditional one.

Walley’s theory is established in terms of lower and
upper previsions (or expectations), because these are
more informative than the lower and upper proba-
bilities that can be considered as a particular case.
We shall recall the basics from the theory of coher-
ent lower previsions in Section 2. Then we shall fo-
cus on a particular case of coherent lower previsions:
those satisfying the property of 2-monotonicity [2, 7].
Lower previsions with this property have the advan-
tage of being uniquely determined by their restrictions
to events (a 2-monotone lower probability) by means
of the Choquet integral.

After establishing a necessary and sufficient condition
for the uniqueness of the coherent extensions to the
conditional case in Section 3, we focus on two par-
ticular cases of 2-monotone lower previsions. First,
in Section 4 we consider completely monotone lower
previsions, that correspond to the Choquet integral
with respect to a belief function [7]; then we discuss
minimum-preserving lower previsions in Section 5.
Our results in this section illustrate one interesting
fact: that the coherence between unconditional and
conditional lower probabilities studied in [30] is not
equivalent to the coherence of the respective lower
previsions they determine by means of the Choquet
integral.

Due to limitations of space, proofs have been omitted.
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2 Preliminary concepts

2.1 Coherent lower previsions

Consider a possibility space Ω, that we shall assume
in this paper to be finite. A gamble is a real-valued
functional defined on Ω. We shall denote by L(Ω) the
set of all gambles on Ω. One instance of gambles are
the indicators of events. Given a subset A of Ω, the
indicator function of A is the gamble that takes the
value 1 on the elements of A and 0 elsewhere. We shall
denote this gamble by IA, or by A when no confusion
is possible.

A lower prevision is a functional P defined on a set of
gambles K ⊆ L(Ω). Given a gamble f , P (f) is under-
stood to represent a subject’s supremum acceptable
buying price for f , in the sense that for any ε > 0 the
transaction f − P (f) + ε is acceptable for him.

Using this interpretation, we can derive a notion of
coherence:

Definition 1. A lower prevision P : L(Ω) → R is
called coherent if and only if it satisfies the follow-
ing properties for every f, g ∈ L(Ω) and every λ > 0:

(C1) P (f) ≥ min f .

(C2) P (λf) = λP (f).

(C3) P (f + g) ≥ P (f) + P (g).

The interpretation of this notion is that the accept-
able buying prices encompassed by {P (f) : f ∈ L(Ω)}
are consistent with each other. In the particular
case when P satisfies (C3) with equality for every
f, g ∈ L(Ω), it is called a linear prevision. Any coher-
ent lower prevision is the lower envelope of the set of
linear previsions that dominate it, i.e.,

P (f) = min{P (f) : P linear prevision, P ≥ P}.

The conjugate functional P of a coherent lower previ-
sion P , given by P (f) = −P (−f) for every f ∈ L(Ω),
is called a coherent upper prevision. It corresponds to
the upper envelope of the set of linear previsions that
dominate P .

A coherent lower prevision defined only on indicators
of events is called a coherent lower probability. In
particular, the restriction of a linear prevision to in-
dicators of events corresponds to a (finitely additive)
probability measure. Hence, coherent lower previsions
are simply lower envelopes of closed and convex sets
of probability measures, and as such they can also be
given a Bayesian sensitivity analysis interpretation.

One particular case of coherent lower previsions are
the vacuous ones. They correspond to the case where

we have the information that the outcome of the ex-
periment belongs to some set A (and nothing else).
In that case, our coherent lower prevision is given by

P (f) = min
ω∈A

f(ω) ∀f ∈ L(Ω). (1)

Although a linear prevision is uniquely determined
by the probability measure that is its restriction to
events, this is not the case for lower previsions: a
coherent lower probability will have in general more
than one coherent extension to the set of all gam-
bles. This is the reason why the theory is estab-
lished in terms of gambles instead of events. Inter-
estingly, there are some cases where the restriction to
events uniquely determines the coherent lower previ-
sion. One particular case that shall be important in
this paper is that where the restriction to events is
0–1-valued:

Lemma 1. [27, Note 4, Section 3.2.6] Let P be a
coherent lower prevision on L(Ω) whose restriction to
events is 0–1-valued. Then P is the unique coherent
extension of its restriction to events, and it is given
by

P (f) = sup
F :P (F )=1

inf
ω∈F

f(ω);

moreover, the class {F ⊆ Ω : P (F ) = 1} is a filter.

This applies in particular for the vacuous lower pre-
visions in Eq. (1).

2.2 Conditional lower previsions

Given a partition B of the possibility space Ω, a condi-
tional lower prevision on L(Ω) is a functional P (·|B)
on L(Ω) that to any gamble f and any B ∈ B assigns
the value P (f |B), that represents a subject’s supre-
mum acceptable buying price for f , if he comes to
know later that the outcome of the experiment be-
longs to the subset B of Ω. Thus, P (·|B) is a func-
tional on L(Ω) for every B ∈ B. By putting all these
values together, we end up with the gamble

P (f |B) :=
∑

B∈B
IB(f − P (f |B)).

Similarly to conditions (C1)–(C3), we can establish a
notion of coherence for conditional lower previsions.

Definition 2. A conditional lower prevision P (·|B) on
L(Ω) is separately coherent when

(SC1) P (f |B) ≥ minω∈B f(ω),

(SC2) P (λf |B) = λP (f |B),

(SC3) P (f + g|B) ≥ P (f |B) + P (g|B)
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for every f, g ∈ L(Ω), λ > 0 and B ∈ B.

The behavioural interpretation of this notion is that
the acceptable conditional buying prices encompassed
by P (·|B) are consistent with each other for every
fixed set B in the partition B. Together they imply
P (B|B) = 1 ∀B ∈ B.

If we start with a coherent lower prevision P and con-
sider a partition B of the space Ω, there is in general
not a unique way of updating P into a separately co-
herent conditional lower prevision P (·|B). This is re-
lated to the problem of conditioning on sets of prob-
ability zero, which has attracted a lot of attention in
the literature [3, 13, 18]; see also [27, Chapter 6] for
the approach considered in this paper. In the next
section we detail how the conditional lower prevision
may be derived and we formulate the problem we shall
study in this paper.

2.3 Formulation of the problem

Consider now a coherent lower prevision P on L(Ω),
let B be a partition of Ω and assume we want to up-
date P into a separately coherent conditional lower
prevision P (·|B) on L(Ω).

One strategy to derive P (·|B) from P is to verify that
the assessments present in these two lower previsions
are compatible with each other. This gives rise to the
concept of joint coherence, which is studied in much
detail in [27, Chapters 6 and 7]. In this case, where we
are dealing with finite spaces, we have the following
characterisation:

Proposition 1. [27, Theorem 6.5.4] Consider a co-
herent lower prevision P and a separately coherent
conditional lower prevision P (·|B) on L(Ω), where Ω
is a finite space. They are jointly coherent when

P (B(f − P (f |B))) = 0 ∀f ∈ L(Ω), B ∈ B. (2)

The above equation is called the Generalised Bayes
Rule, because it reduces to the well-known Bayes’ rule
in the precise case. It holds trivially when P (B) = 0,
so any conditional lower prevision P (·|B) is compati-
ble with P in that case; on the other hand, if P (B) > 0
then for every gamble f there is a unique real number
µ such that P (B(f − µ)) = 0, so there is only one
conditional lower prevision P (·|B) that is compatible
with P .

The most interesting case is that where the condi-
tioning event has zero lower probability and positive
upper probability, i.e., that of P (B) = 0 < P (B). In
that case, there is usually an infinite number of con-
ditional lower previsions that are compatible with P ;
there were characterised in [20], where it was proven

that they are bounded by the so-called natural and
regular extensions.

Definition 3. Given B ∈ B, the natural extension
E(·|B) induced by P is given by:

E(f |B) :=

{
infP≥P {P (f |B)} if P (B) > 0

minω∈B f(ω) otherwise

for any gamble f ∈ L(Ω).

The natural extension is vacuous when the condition-
ing event has zero lower probability, and is uniquely
determined by Eq. (2) otherwise. Although it pro-
duces a conditional lower prevision that is coherent
with P , it is arguably too uninformative. A more in-
formative alternative is called the regular extension:

Definition 4. Given B ∈ B, the regular extension
R(·|B) induced by P is given by:

R(f |B) :=

{
infP (B)>0,P≥P {P (f |B)} if P (B) > 0

minω∈B f(ω) otherwise

for any gamble f ∈ L(Ω).

Hence, regular extension corresponds to applying
Bayes’ rule whenever possible on the set of precise
models compatible with our conditional lower previ-
sion, and to take then the lower prevision of the re-
sulting set of conditional previsions. It has been pro-
posed as an updating rule in a number of works in the
literature [4, 8, 14, 15, 17, 28].

It turns out that the natural and the regular exten-
sions characterise the set of conditional lower previ-
sions that are jointly coherent with P :

Proposition 2. [20, Theorem 9] Let P be a coherent
lower prevision on L(Ω) and B a partition of Ω such
that P (B) > 0 for any B ∈ B. Then a separately co-
herent conditional lower prevision P (·|B) is coherent
with P if and only if P (f |B) ∈ [E(f |B), R(f |B)] for
every f ∈ L(Ω) and every B ∈ B.

In this paper we shall not deal with the case P (B) = 0
because then any conditional model P (·|B) satisfies
the Generalised Bayes Rule with P .

The conditional lower previsions determined by the
natural and regular extension may not coincide when
P (B) = 0 < P (B) (see for instance Example 2 later
on). In this paper, we are going to characterise their
equality for one interesting particular case of coherent
lower previsions: the 2-monotone ones. As particular
cases, we shall consider completely monotone lower
previsions, random sets and possibility measures.
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3 Updating 2-monotone lower
previsions

One important instance of coherent lower previsions
are the n-monotone ones, that were first introduced
by Choquet in [2]:

Definition 5. A coherent lower prevision P on L(Ω)
is called n-monotone if and only if

P

(
p∨

i=1

fi

)
≥

∑

∅6=I⊆{1,...,p}
(−1)|I|+1P

(∧

i∈I
fi

)
(3)

for all 2 ≤ p ≤ n, and all f1, . . . , fp in L(Ω), where
∨ denotes the point-wise maximum and ∧ the point-
wise minimum.

In particular, a coherent lower probability P :
P(Ω)→ [0, 1] is n-monotone when

P

(
p⋃

i=1

Ai

)
≥

∑

∅6=I⊆{1,...,p}
(−1)|I|+1P

(⋂

i∈I
Ai

)
(4)

for all 2 ≤ p ≤ n, and all subsets A1, . . . , Ap of Ω.

Although a coherent lower prevision is not determined
uniquely by its restriction to events, it is when we re-
quire in addition the property of n-monotonicity, in
the following sense: given a n-monotone lower prob-
ability, its natural extension is the only n-monotone
extension to L(Ω). It corresponds moreover to the
Choquet integral [12] with respect to this fuzzy mea-
sure [7, 26], so we have that

P (f) := (C)

∫
fdP = inf f +

∫ sup f

inf f

P (f ≥ t)dt

for every gamble f .

A coherent lower prevision on L(Ω) that is n-
monotone for all n ∈ N is called completely mono-
tone, and its restriction to events is a belief function;
its conjugate P is a plausibility function. One exam-
ple of completely monotone coherent lower previsions
are the vacuous ones in Eq. (1); another one is given
by the linear previsions, that moreover satisfy Eq. (3)
with equality for every n.

In particular, a coherent lower prevision P on L(Ω) is
2-monotone if and only if it satisfies Eq. (3) for n = 2,
that is, if and only if

P (f ∨ g) + P (f ∧ g) ≥ P (f) + P (g)

for every f, g ∈ L(Ω). On the other hand, we de-
duce from Eq. (4) that a coherent lower probability
on P(Ω) is called 2-monotone whenever

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B) ∀A,B ⊆ Ω.

In this section, we are going to determine under which
conditions a 2-monotone lower prevision P on L(Ω)
can be uniquely updated to a conditional lower pre-
vision P (·|B) that is coherent with P , in the sense of
Eq. (2). In order to do this, we shall use the formula
for the conditional lower probability determined by
regular extension:

Proposition 3. [26, Theorem 7.2] Let P be a 2-
monotone lower prevision on L(Ω), and consider B ⊆
Ω such that P (B) > 0. Then for any event A,

R(A|B) =

{
P (A∩B)

P (A∩B)+P (Ac∩B)
if P (Ac ∩B) > 0,

1 otherwise,

(5)
and R(·|B) is a 2-monotone lower probability.

Interestingly, we shall show in Example 3 later on that
in general R(·|B) need not be 2-monotone on gambles.
As we shall see, we can only guarantee 2-monotonicity
on gambles when the conditioning event has zero lower
probability and positive upper probability.

To see that Eq. (5) does not hold without the assump-
tion of 2-monotonicity, consider the following exam-
ple:

Example 1. Consider Ω = {a, b, c, d} and let P1, P2 be
the linear previsions determined by the mass functions
p1, p2 given by

a b c d
p1 0.5 0.5 0 0
p2 0.25 0.25 0.25 0.25

It has been showed in [26, Section 6] that the lower
envelope P of {P1, P2} is a coherent lower prevision
that is not 2-monotone. Consider B = {a, b} and
A = {a}. Then P (Ac ∩B) = P ({b}) = 0.5 > 0, and

P (A ∩B)

P (A ∩B) + P (Ac ∩B)
=

0.25

0.25 + 0.5
=

1

3
;

on the other hand any P ≥ P is given by αP1 + (1−
α)P2, where α ∈ [0, 1]; since P1({a}) = P1({b}) and
P2({a}) = P2({b}), it follows that any P ≥ P must
satisfy P ({a}) = P ({b}) too, whence R(A|B) = 0.5.
Hence, Eq. (5) does not hold. �

From Proposition 3 we deduce the following:

Proposition 4. Let P be a 2-monotone lower previ-
sion on L(Ω) and consider B ⊆ Ω such that P (B) =
0 < P (B). Then for any gamble f

R(f |B) = min
ω∈C

f(ω),

where C is the smallest subset of B satisfying
R(C|B) = 1.
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Interestingly, this shows that, if the lower prevision P
satisfies 2-monotonicity, when the conditioning event
B has zero lower probability and positive upper prob-
ability, the regular extension R(·|B) is a completely
monotone lower prevision, even if the lower prevision
P we start from is not completely monotone.

Using these results, we can determine in which cases
the natural and regular extensions coincide:

Proposition 5. Let P be a 2-monotone lower previ-
sion on L(Ω), and consider B ⊆ Ω with P (B) > 0 =
P (B). The following are equivalent:

1. E(f |B) = R(f |B) for every f ∈ L(Ω).

2. E(A|B) = R(A|B) for every A ⊆ Ω.

3. P ({ω}) > 0 for every ω ∈ B.

We immediately deduce the following:

Theorem 1. Let P be a 2-monotone lower previ-
sion on L(Ω), and let B be a partition of Ω. Then
E(·|B) = R(·|B) if and only if P ({ω}) > 0 ∀ω ∈ B ⊆
Ω s.t. P (B) = 0 < P (B).

To see that this result cannot be extended to arbitrary
coherent lower previsions, it suffices to consider the
coherent lower prevision P in Example 1, B = {c, d}
and A = {c}: we get E(A|B) = 0 < 0.5 = R(A|B).

4 Coherent updating of completely
monotone lower previsions

We consider next the case where the lower prevision
P on L(Ω) is completely monotone.

One of the most important rules in that case is Demp-
ster’s rule of conditioning [11, 24], where, given a plau-
sibility function P on P(Ω) and a conditioning event
B with P (B) > 0, the conditional plausibility is de-
fined by

P (A|B) :=
P (A ∩B)

P (B)
.

However, this conditional upper probability is not co-
herent with the unconditional upper probability P
[31]; see also [27, Section 5.13] and [29]. Thus, Demp-
ster’s rule is not interesting from the behavioural
point of view, and we shall focus in this section on
the natural and the regular extensions instead.

Given a conditioning event B with P (B) > 0, its reg-
ular extension is determined by Eq. (5). This formula
has also been established in a few papers ([14, Theo-
rem 3.4]; [15, Proposition 4]; see also [4, 11]). More-
over, it has been established in [14, 15, 25] that the
restriction of R(·|B) to events is a belief function for
every B ⊆ Ω such that P (B) > 0.

The equality between the natural and the regular ex-
tensions of P is characterised by Theorem 1. In this
section, we give equivalent conditions in terms of the
focal elements of P .

Definition 6. [24] Given a belief function P on P(Ω),
its Möbius inverse m : P(Ω)→ [0, 1] is given by

m(A) =
∑

B⊆A
(−1)|A\B|P (B) ∀A ⊆ Ω.

It holds that P (A) =
∑
B⊆Am(B), and m is called a

basic probability assignment within the evidential the-
ory of Shafer. For the plausibility function P that is
conjugate to P , it holds that P (A) =

∑
B∩A 6=∅m(B)

for every A ⊆ Ω.

For the results in this section, it shall be interesting
to work with the focal elements of the belief function:

Definition 7. [24] Given a belief function P with
Möbius inverse m, a subset B ⊆ Ω is called a focal
element when m(B) > 0. The union F of all the
focal elements of P is called the core of P .

We shall be particularly interested in those belief
functions whose focal elements cover the possibility
space Ω:

Definition 8. A belief function P with core F is called
full when F = Ω.

Since P (F c) =
∑
B focal:B∩F c 6=∅m(B) = 0, given a

belief function that is not full, any set included in F c

will have zero upper probability. Equivalently, if P is
a full belief function, any subset B of Ω has a positive
upper probability.

Recall that for any conditioning event B, it holds that
E(·|B) = R(·|B) if P (B) > 0 or P (B) = 0. Hence, the
natural and regular extensions will agree as soon as
there is no conditioning event with zero lower prob-
ability and positive upper probability. This case is
characterised by the following definition:

Definition 9. A belief function is called non-atomic if
for every focal element B, it holds that m({ω}) > 0
for every ω ∈ B.

The reason for this terminology is that given such a
belief function there is no setB with |B| ≥ 2 satisfying
P (B) > 0 and P (A) = 0 for every A ( B. See
[1, 19] for related concepts. Non-atomic and full belief
functions can be characterised in the following way:

Proposition 6. Let P be a belief function on P(Ω).

1. P is non-atomic if and only if for any B ⊆ Ω
either P (B) = 0 or P (B) > 0.

2. P is full if and only if for any B ⊆ Ω, P (B) > 0.
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3. P is full and non-atomic if and only if P (B) > 0
for every B ⊆ Ω.

When the conditioning event B has zero lower proba-
bility and positive upper probability the equality be-
tween the natural and the regular extensions is char-
acterised by Proposition 5: we need that P ({ω}) > 0
for every ω ∈ B; in the case of belief functions, this is
equivalent to B ⊆ F , the core of the belief function.
From this we deduce the following result:

Proposition 7. Let P be a completely monotone
lower prevision on L(Ω), and let µ denote the belief
function that is the restriction of P to events. Then,
E(·|B) = R(·|B) for every B ⊆ Ω if and only if µ is
either full or non-atomic.

This result allows to provide an example where the
natural and the regular extensions do not coincide:

Example 2. Consider Ω = {a, b, c, d}, and let P be
the completely monotone lower prevision given by

P (f) = min{f(b), f(c)} ∀f ∈ L(Ω).

The restriction to events of P is the belief function as-
sociated to the basic probability assignment m where

m({b, c}) = 1 and m(C) = 0 for every C 6= {b, c}.

Obviously, this belief function is not full. If we take
B = {a, b} and A = {b}, then any probability P ≥ P
satisfying P (B) > 0 must satisfy P ({b}) > 0, be-
cause P ({a}) ≤ P ({a}) = 0. But then P will satisfy
P (A|B) = 1, and from this we deduce that

R(A|B) = 1 > 0 = E(A|B),

where the last equality holds because P (B) = 0.
Hence, the natural and regular extensions do not co-
incide. �

Moreover, for completely monotone lower previsions
we can give an alternative expression of the regular
extension to that in Proposition 4.

Proposition 8. Let P be a completely monotone
lower prevision, and let F be the core of its associ-
ated belief function. Then for any B ⊆ Ω such that
P (B) = 0 < P (B),

R(f |B) = min
ω∈B∩F

f(ω) ∀f ∈ L(Ω).

Let us recall again that the condition P (B) = 0 <
P (B) we consider in this theorem implies that the
belief function is not non-atomic.

From Proposition 7 we immediately derive the follow-
ing theorem.

Theorem 2. Let P be a completely monotone lower
prevision on L(Ω) and let B be a partition of Ω. If
the restriction to events µ of P is either full or non-
atomic, then E(·|B) = R(·|B).

Note that the sufficient condition in this theorem is
not necessary: it may be that µ is neither full nor
non-atomic and µ(B) > 0 for every B in the partition
B, and then E(·|B) = R(·|B).

4.1 Random Sets

One context where completely monotone lower pre-
visions arise naturally is that of measurable multi-
valued mappings, or random sets [11, 23].

Definition 10. Let (X,A, P ) be a probability space,
(Ω,P(Ω)) a measurable space, where Ω is finite, and
Γ : X → P(Ω) a non-empty multi-valued mapping. It
is called a random set when it satisfies the following
measurability condition:

Γ∗(A) := {x ∈ X : Γ(x) ⊆ A} ∈ A ∀A ⊆ Ω.

Its associated lower probability P∗Γ : P(Ω) → [0, 1] is
a belief function and is given by

P∗Γ(A) = P (Γ∗(A)) ∀A ⊆ Ω. (6)

The focal elements of P∗Γ are given by

{A ⊆ Ω : P (Γ−1(A)) > 0},

and its Möbius inverse is given by m = P ◦ Γ−1. The
conjugate plausibility measure is denoted by P ∗Γ and
it is called the upper probability of the random set Γ.
It satisfies

P ∗Γ(A) = 1− P∗Γ(Ac) = P ({x : Γ(x) ∩A 6= ∅}),

where the set {x : Γ(x) ∩ A 6= ∅} is the upper in-
verse of A by Γ, and is usually denoted by Γ∗. The
Choquet integral with respect to P∗Γ is a completely
monotone lower prevision on L(Ω), and it corresponds
to the natural extension of P∗Γ from P(Ω) to the set
of all gambles. If we want to update this completely
monotone lower prevision, we can use the natural or
the regular extensions, that, by Proposition 7, coin-
cide if and only if P∗Γ is either full or non-atomic.
These properties can be easily characterised in terms
of the images of Γ:

Proposition 9. Let (X,A, P ) be a probability space,
Ω a finite set and Γ : X → P(Ω) a random set with
associated lower probability P∗Γ. Let F denote the
core of P∗Γ.

1. P∗Γ is full ⇔ F = Ω ⇔ P ∗Γ(B) > 0 for all B ⊆
X ⇔ P ∗Γ({ω}) > 0 for all ω ∈ Ω ⇔ P ({x : ω ∈
Γ(x)}) > 0 for all ω ∈ Ω.
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2. P∗Γ is non-atomic ⇔ ∀ω ∈ F, P (Γ−1(ω)) > 0.

Moreover, E(·|B) = R(·|B) for all B ⊆ Ω if and only
if P∗Γ is either full or non-atomic.

One interesting interpretation of random sets is the
epistemic one, where they are seen as models for the
imprecise knowledge of a random variable [16]. In
that case, our information about this random variable
is provided by the measurable selections of Γ: those
measurable mappings U : X → Ω such that U(x) ∈
Γ(x) ∀x ∈ X. We shall denote by S(Γ) the set of
measurable selections of Γ and by P (Γ) the set of the
probability measures they induce on P(Ω). This set
is included in the class M(P∗Γ) of probabilities that
dominate P∗Γ. Although both sets do not coincide in
general, when Ω is finite it can be checked that:

Proposition 10. [21, Theorem 1] Let Γ :
X → P(Ω) be a random set, where Ω is fi-
nite. Then Ext(M(P∗Γ)) ⊆ P (Γ) and M(P∗Γ) =
Conv(Ext(M(P∗Γ))).

Moreover, from [11], M(P∗Γ) has a finite number of
extreme points, that are related to the permutations
of the final space.

The epistemic interpretation can be carried on to-
wards the regular extension, in the following sense:

Proposition 11. Let (X,A, P ) be a probability space,
Ω a finite set and Γ : X → P(Ω) a random set with
associated lower probability P∗Γ. Consider B ⊆ Ω
with P ∗Γ(B) > 0. Then, for every f ∈ L(Ω),

R(f | B) = min{PU (f | B) : U ∈ S(Γ), PU (B) > 0}.

To conclude this section, we use random sets to es-
tablish that, even if the conditional lower probability
derived from a completely monotone lower prevision
by Generalised Bayes Rule is a belief function [14, 15],
when we move from events to gambles we do not nec-
essarily obtain a completely monotone lower previ-
sion.

Example 3. Consider the probability space
(X,P(X), P ), where X = {a, b, c, d, e}, and
P is the probability measure determined by
the equalities P (a) = P (b) = 1/8, and
P (c) = P (d) = P (e) = 1/4. Let Γ be the
multi-valued mapping Γ : X → P({1, 2, 3, 4}) given
by Γ(a) = {1},Γ(b) = {2},Γ(c) = {1, 4},Γ(d) =
{2, 4},Γ(e) = {3, 4}.
Let P∗Γ denote the lower probability induced by
this random set. This is a belief function, and the
lower prevision P on L({1, 2, 3, 4}) given by P (f) =
(C)

∫
fdP∗Γ is a completely monotone lower previ-

sion.

It follows from Eq. (6) that

P∗Γ({1, 2, 3}) = P ({a, b}) =
1

4
> 0.

As a consequence, the natural and regular extensions
coincide, and we deduce from Proposition 11 that

R(f |{1, 2, 3}) = min{PU (f |{1, 2, 3}) : U ∈ S(Γ)}.
(7)

Let us consider the gamble f on {1, 2, 3, 4} given by
f(ω) = 4 − ω for all ω ∈ {1, 2, 3, 4}. Then since f =
1 I1,2,3+1 I1,2+1 I1, its Choquet integral with respect
to R(·|{1, 2, 3}) would be

1 +R({1, 2}|{1, 2, 3}) +R({1}|{1, 2, 3}).

We deduce from Eq. (7) that

R({1}|{1, 2, 3}) =
1

6
and R({1, 2}|{1, 2, 3}) =

1

2
;

as a consequence, (C)
∫
f dR(·|{1, 2, 3}) = 5/3.

On the other hand, the smallest value of
{PU (f |{1, 2, 3}) : U ∈ S(Γ)} is given by
7/4 > 5/3. This means that R(f |{1, 2, 3}) >
(C)

∫
fdR(·|{1, 2, 3}).

But it has been established in [7, 26] that if we have a
2-monotone lower probability on all events (as is the
case for R(·|{1, 2, 3}), the only 2-monotone extension
to all gambles is the Choquet integral. This means
that the conditional lower prevision R(·|{1, 2, 3}) is
not 2-monotone on L({1, 2, 3}). �

5 Coherent updating of
minimum-preserving previsions

We consider now the particular case of com-
pletely monotone lower previsions that are minimum-
preserving, i.e., lower previsions P such that

P (f ∧ g) = min{P (f), P (g)}

for every pair of gambles f, g on Ω. They correspond
to the Choquet integral with respect to their restric-
tion to events, which is a necessity measure N . Their
conjugate upper previsions P are the Choquet inte-
gral with respect to the possibility measure Π that is
determined by N using duality, and are maximum-
preserving.

From Proposition 7, we deduce the following:

Corollary 1. Let P be a minimum-preserving coher-
ent lower prevision. Then E(·|B) = P (·|B) for all
B ⊆ Ω if and only if either of the following conditions
holds:

(i) P ({ω}) > 0 for all ω ∈ Ω.
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(ii) P ({ω}) = 1 for some ω ∈ Ω.

The result in Corollary 1 can be simplified further tak-
ing into account that de Cooman and Aeyels proved
in [5] (see also [6]) that a coherent upper prevision P
on L(Ω) is maximum-preserving if and only if its re-
striction to events is a 0–1-valued possibility measure.
Then, if we define F := {ω : P ({ω}) = 1}, it turns
out that F is the only focal element of the possibility
measure P , and m(F ) = 1. Hence, P is the vacuous
lower prevision on F , that is,

P (f) = min
ω∈F

f(ω) ∀f ∈ L(Ω).

Now, given a conditioning event B ⊆ F , there are a
number of possibilities:

• B ⊆ F c. Then P (B) = 0 and both the natural
and regular extensions are vacuous.

• B ∩ F 6= ∅ 6= B ∩ F c. Then P (B) = 0 < 1 =
P (B), whence E(·|B) is vacuous on B and R(·|B)
is vacuous on B ∩ F . Hence, in that case the
natural and regular extensions do not coincide.

• B ⊆ F . Then both E(·|B) and R(·|B) are vacu-
ous on B.

Note that in this case P is only non-atomic when F is
a singleton (i.e., when P corresponds to the expecta-
tion operator with respect to a degenerate probability
measure), and P is full if and only if F = Ω, meaning
that P corresponds to the vacuous model. Hence, we
only have the equality between the natural and the
regular extensions for all B ⊆ Ω in these two extreme
cases.

We summarise the coherent updating of a minimum-
preserving lower prevision in the following theorem.

Theorem 3. Let P be a minimum-preserving lower
prevision on L(Ω), and consider a partition B of Ω.
Consider F ⊆ Ω such that P (f) = minω∈F f(ω)∀f ∈
L(Ω). Given B ∈ B and f ∈ L(Ω),

1. E(f |B) =

{
minω∈B f(ω) if F * B

minω∈F f(ω) if F ⊆ B.

2. R(f |B) =

{
minω∈B∩F f(ω) if B ∩ F 6= ∅
minω∈B f(ω) if B ∩ F = ∅.

3. E(f |B) = R(f |B) if and only if either B∩F = ∅
or B ∩ F c = ∅.

4. A separately coherent conditional lower prevision
P (·|B) is coherent with P if and only if

min
ω∈B

f(ω) ≤ P (f |B) ≤ min
ω∈B∩F

f(ω)

for every f ∈ L(Ω), B ∈ B s.t B ∩ F 6= ∅.

From Theorem 3, the bounds determined by natural
and regular extension are both minimum-preserving,
and as a consequence they correspond to the Cho-
quet integral of their respective restrictions to events.
However, it is easy to see that not every separately
coherent conditional lower prevision between them is
minimum-preserving.

5.1 Comparison with the updating of
possibility measures

The results in this paper allow us to show one interest-
ing phenomenon: that, even if a minimum-preserving
lower prevision P is the natural extension of its re-
striction to events N , the coherence of N with a con-
ditional lower probability N(·|B) is not equivalent to
the coherence of the lower previsions P , P (·|B) that
each of them determines by natural extension. This
is the reason behind the apparent contradiction with
the results in [30]: it is showed there that Dempster’s
rule is a coherent updating rule for updating a pos-
sibility measure, even if it can be more informative
than the conditional possibility we obtain by regular
extension.

To make this clearer, let us study the results in [30]
in more detail. The authors consider two finite sets
X and Y, and let Ω = X × Y. They take a possibil-
ity measure Π(·, ·) on P(Ω) and look for the smallest
and greatest conditional possibility measures Π(·|Y )
that satisfy coherence with Π. Note that, since we
are dealing with upper previsions now, it follows from
conjugacy and Proposition 2 that a conditional up-
per prevision P (·|B) is coherent with P if and only if
P (f |B) ∈ [R(f |B), E(f |B)] for every gamble f and
every B ⊆ Ω s.t. P (B) > 0, where R(·|B) and E(·|B)
are the conjugate upper previsions of the regular and
natural extensions, respectively.

In [30], the focus is on conditional upper probabili-
ties instead of previsions, and in particular on those
conditional possibility measures Π(·|Y ) that satisfy
coherence with the unconditional possibility measure
Π. They prove in [30, Theorem 4] that the great-
est such conditional possibility measure is given by
natural extension, while the smallest such conditional
possibility measure is determined by Dempster’s rule,
which produces the possibility measure associated to
the following possibility distribution:

πDE(x|y) =

{
π(x,y)
π(y) if π(y) > 0

1 if π(y) = 0.

Then in [30], it is advocated to use the harmonic mean
between Dempster’s rule and natural extension as an
informative updating rule for updating a possibility
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measure Π. This harmonic mean determines the pos-
sibility measure defined by the possibility distribution
πHM (x|y) given by
{

2π(x,y)
π(x,y)+π(y)+1−max{π(x,y),Π({y}c) if π(y) > 0

1 if π(y) = 0.

However, this rule may be dominated by the regular
extension, that produces the conditional possibility
measure πRE(x|y) given by





π(x,y)
π(x,y)+1−max{π(x,y),Π({y}c) if π(yc) < 1

0 if Π({y}c) = 1, π(y) > π(x, y) = 0

1 otherwise,

and as a consequence it is not a valid updating rule if
we are working with upper previsions instead of upper
probabilities. Consider the following example:

Example 4. Consider X = {x1, x2},Y = {y1, y2} and
let Π be the possibility measure associated to the
possibility distribution π(x1, y1) = 0.3, π(x1, y2) =
1, π(x2, y1) = 0.5 and π(x2, y2) = 0.2. Then
it can be checked that the conditional possibility
measure determined by the harmonic mean satis-
fies πHM (x2|y2) = 0.235, whereas both the natural
and the regular extensions produce πNE(x2|y2) =
πRE(x2|y2) = 0.285. Thus, the conditional possi-
bility measure determined by the harmonic mean is
dominated by the one produced by regular extension,
and as a consequence the conditional upper prevision
determined by means of the Choquet integral with
respect to ΠHM (X|Y ) is not coherent with the un-
conditional upper prevision associated to Π. �

6 Conclusions

In this work we have considered the problem of up-
dating a coherent lower prevision into a conditional
one, while preserving the property of coherence. This
problem has a simple solution when the conditioning
event has a positive lower probability, as showed by
Walley in [27]: it suffices to apply Generalised Bayes
Rule. However, when the conditioning event has zero
lower probability and strictly positive upper proba-
bility, there may be an infinite number of coherent
updated models. In that case, it becomes necessary
to determine a rule to elicit the appropriate one for
the problem at hand. Here, we have studied in which
cases we can skip this situation, because the proce-
dures of natural and regular extension give rise to the
same updated model. We have considered the partic-
ular case when our unconditional model satisfies the
property of 2-monotonicity, which guarantees that the
lower prevision is the Choquet integral of the coherent
lower probability that is its restriction to events, and

we have obtained necessary and sufficient conditions
for the equality between the natural and regular ex-
tensions. As particular cases, we have also considered
the updating problem for completely monotone lower
previsions, random sets and minimum-preserving pre-
visions.

It is interesting to remark that the conditional lower
probabilities determined by the natural and regu-
lar extension preserve the property of n-monotonicity
from the unconditional model; in fact, when the con-
ditioning event has zero lower probability and posi-
tive upper probability, they are moreover minimum-
preserving. However, the conditional lower previsions
they determine are not necessarily 2-monotone, even
if we start from a completely monotone coherent lower
prevision, as we have showed in Example 3. On the
other hand, the properties of the natural and the reg-
ular extension are not shared in general by all the
conditional models that are coherent with the uncon-
ditional one.

Finally, let us stress once again that, even if the prop-
erty of 2-monotonicity means that the lower previ-
sion is uniquely determined by its lower probability,
the problem of coherently updating 2-monotone lower
probabilities is not equivalent to that of updating 2-
monotone lower previsions; this can be seen from the
results in Section 5.1.

With respect to the open problems arising from this
work, perhaps the most important one would be the
extension of our results to infinite spaces. Although
some work in this direction was already carried out
in [20], we expect the problem to be much more dif-
ficult; one of the reasons is that the coherence condi-
tion between the unconditional and conditional lower
previsions must take into account the property of con-
glomerability. See [27, Chapter 6] and [22] for more
details. Another interesting line of research may be
the extension of our work to the updating by means
of several partitions. In that case, we should distin-
guish between the notions of weak and strong coher-
ence studied by Walley in [27, Chapter 7].
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Abstract
Given a coherent lower prevision P , we consider the prob-
lem of computing the smallest coherent lower prevision
F ≥ P that is conglomerable, in case it exists. F is called
the conglomerable natural extension. Past work has showed
that F can be approximated by an increasing sequence
(En)n∈N of coherent lower previsions. We close an open
problem by showing that this sequence can be made of
infinitely many distinct elements. Moreover, we give suffi-
cient conditions, of quite broad applicability, to make sure
that the point-wise limit of the sequence is F in case P is
the lower envelope of finitely many linear previsions. In
addition, we study the question of the existence of F and
its relationship with the notion of marginal extension.

Keywords. Coherent lower previsions, conglomerability,
conglomerable natural extension, natural extension, mar-
ginal extension.

1 Introduction

When the possibility space Ω is infinite and you express
your beliefs through a coherent lower prevision P , you may
want to consider a partition B of Ω made of infinitely many
conditioning events. In this case it may happen that P is
not coherent, in Walley’s sense, with any lower prevision
conditional on B; we say that P is not conglomerable.1

Conglomerability is a concern for Walley’s theory, because
its failure makes it impossible to update P . More generally
speaking, conglomerability should arguably be a rationality
requirement for a probabilistic model under a dynamic
interpretation of conditioning that relates present and future
commitments, as detailed in [9].2

If we endorse conglomerability as a rationality requirement
and consider a non-conglomerable coherent lower prevision
P , it becomes interesting to consider the conglomerable

1We consider the case of a fixed partition B in this paper, so we do not
deal with full conglomerability. See [6, Sections 6.8 and 6.9] for more
details on the latter notion.

2On the other hand, there are also works on conditional previsions
where conglomerability is not imposed [1, 3, 7]; we refer to [6, Section 6.8]
for some discussion on this topic.

natural extension of P , if it exists: that is, the weakest
conglomerable coherent lower prevision F that extends P .
Thus, it plays the analogous role that the natural extension
of a lower prevision (which avoids sure loss) plays with
respect to coherence. Some recent work [5] has showed
that F can be approximated though a sequence of coherent
lower previsions (En)n∈N such that P ≤ E1 ≤ E2 ≤
· · · ≤ Ei ≤ · · · ≤ F . It is known already that if the
sequence becomes stable, that is, if Ei−1 = Ei for some
i, then Ei = F ; and, conversely, if the sequence breaks
down, which means that Ei cannot be produced for some i,
then F does not exist.

However, some fundamental questions have been left open
with regard to the sequence (En)n. One of them is whether
or not it may be infinite—without ever becoming stable. If
that is the case, then the next question is whether or not
the point-wise limit Q of the sequence equals F . In fact, in
principle it could be the case that Q is not conglomerable
while F exists; this would mean that you should re-start a
new sequence from Q in order to get to F (and possibly
another, and another, and another, etc.).

After some introductory concepts we give in Section 2, we
start a preliminary analysis in Section 3: we show that some
basic procedures, like taking point-wise limits, or convex
combinations, of conglomerable models do not preserve
conglomerability in general. In Section 4 we discuss the
question of the existence of F and its relationship with
some pre-existing concepts about coherent lower previsions.
In particular, Example 3 yields one more negative, and yet
important, result: that F may not exist even when P avoids
partial loss with its conditional natural extension P (·|B),
i.e., the model obtained by conditioning P in the least-
committal way.

In Section 5 we close the first question mentioned above:
we construct in Example 4 a model P whose related se-
quence (En)n is infinite. In this case the limit Q of the
sequence equals F , which does not allow us to close the
second question, which remains thus open.

In Section 6 we deepen the study, preliminarily started in
[5], on the relationship between marginal extension and the
conglomerable natural extension. We consider in particular

255



the relationship between (En)n and the sequence (Mn)n,
whereMn := En−1(En−1(·|B)) is the marginal extension
of En−1 and its conditional natural extension En−1(·|B).
It turns out that (Mn)n is also an increasing sequence of
coherent lower previsions that is dominated by F ; however
we show in Example 5 that the point-wise limit Q′ of the
sequence (Mn)n may differ from F . In addition, by detail-
ing the relationships among P , Q, Q′ and F we deduce in
Proposition 8 that if (En(·|B))n converges uniformly to the
conditional natural extension Q(·|B) of Q, then Q = F .

In Section 7 we focus on the special case where P is domin-
ated by a set of linear previsions with finitely many extreme
points. This allows us to deduce two new simple conditions,
which seem to be quite broadly applicable, that make sure
that (En(·|B))n converges uniformly to Q(·|B), and hence,
through Proposition 8, that Q = F . This analysis shows in
particular that, when P is the lower envelope of two linear
previsions, there is a procedure to determine whether F
exists, and in this case we always have that Q = F .

We report our summary views in Section 8. Due to limita-
tions of space, proofs have been omitted.

2 Introduction to Imprecise Probabilities

Let us introduce the basics of the theory of coherent lower
previsions that we use in this paper. We refer to [6] for an
in-depth study, and for a behavioural interpretation of the
following notions in terms of buying and selling prices.

Consider a possibility space Ω. A gamble is a bounded
map f : Ω → R. The set of all gambles is denoted by
L(Ω), or simply by L when there is no ambiguity about the
possibility space we are working with.

A lower prevision P is a real-valued functional defined on
some set of gambles K ⊆ L. When the domain K of P
is a linear space—closed under point-wise addition and
multiplication by real numbers—P is called coherent when
it satisfies the following conditions:

C1. P (f) ≥ inf f ∀f ∈ K;

C2. P (λf) = λP (f) ∀f ∈ K, λ ≥ 0;

C3. P (f + g) ≥ P (f) + P (g) ∀f, g ∈ K.

Given a partition3 B of Ω, a conditional lower prevision
on L is a functional P (·|B) :=

∑
B∈B BP (·|B) such that

for every set B ∈ B, P (·|B) is a lower prevision on L.
P (·|B) is called separately coherent when P (·|B) is coher-
ent and P (B|B) = 1 for every B ∈ B. For every gamble
f , P (f |B) is the gamble on Ω that takes the value P (f |B)
on ω ∈ B, and this for every B ∈ B.

3See also [7] for an alternative approach where the conditioning is
made on a class of events that do not necessarily form a partition.

For every lower prevision P and every conditional lower
prevision P (·|B), we use the notations: GP (f) := f −
P (f), GP (f |B) := B(f − P (f |B)) and GP (f |B) :=
f−P (f |B) =

∑
B∈BGP (f |B). If we consider a coherent

lower prevision P on L and a separately coherent condi-
tional lower prevision P (·|B) on L, they are called coher-
ent4 if and only if for every gamble f and every B ∈ B,

P (GP (f |B)) ≥ 0, (CNG)
P (GP (f |B)) = 0. (GBR)

This second condition is called the generalised Bayes rule,
and if P (B) > 0 it can be used to uniquely determine the
value P (f |B): in that case there is only one value satisfying
(GBR) with respect to P . On the other hand, (CNG) is a
conglomerability condition based on the behavioral idea
thatGP (f |B) is a combination of (possibly infinitely many)
acceptable transactions, and should be then an acceptable
transaction, too.

A particular case of coherent P , P (·|B) is that made of
the vacuous unconditional and conditional lower previ-
sions, given by P (f) = infω∈Ω f(ω) and P (f |B) =
infω∈B f(ω) for all f ∈ L and all B ∈ B.

On the other hand, a coherent lower prevision P and a
separately coherent conditional lower prevision P (·|B) on
L are said to avoid partial loss (APL) when

sup
[
GP (f) +GP (g|B)

]
≥ 0 (1)

for every pair of gambles f, g ∈ L. Eq. (1) holds whenever
P (·|B) is the vacuous conditional lower prevision irrespect-
ive of the coherent lower prevision P , because in that case
GP (f |B) ≥ 0 for any gamble f .

A particular case of coherent lower previsions is that
of linear previsions. A linear prevision is a functional
P : L → R satisfying conditions C1 and C2, and con-
dition C3 with equality for all gambles f, g ∈ L. Its re-
striction to P(Ω), the powerset of Ω, is a finitely additive
probability, and P is the corresponding expectation op-
erator. The set of all linear previsions is denoted by P.
Given a lower prevision P on K, its associated credal
set is M(P ) := {P ∈ P : (∀f ∈ K)P (f) ≥ P (f)}, and
each P in M(P ) is said to dominate P . A lower previ-
sion for which M(P ) 6= ∅ is said to avoid sure loss. It
is coherent if and only if P = minM(P ). Similarly, a
conditional linear prevision is a functional P (·|B) on L
such that P (B|B) = 1 and P (·|B) is a linear prevision for
every B ∈ B.

Given a coherent lower prevision P , we define by

P (f |B) :=

{
infω∈B f(ω) if P (B) = 0

min{P (f |B) : P ∈M(P )} otherwise
(2)

4See [6, Section 6.3.2] for a definition of coherence on more general
domains, and also [6, Theorem 6.5.3].
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its conditional natural extension. P (f |B) is a separately
coherent lower prevision, defined for every B ∈ B and
every f ∈ L, which always satisfies (GBR) with P . Thus,
P , P (·|B) are coherent if and only if (CNG) holds for
every gamble f . When that is the case, we say that P is
a conglomerably coherent lower prevision. We refer to [6,
Sections 6.8 and 6.9] for a thorough study of conglomer-
ability. For the purposes of this paper, the most important
property is that a conglomerably coherent lower prevision
is one that can be updated to a conditional lower prevision
while satisfying Walley’s notion of coherence, so it is essen-
tial if we want to use Walley’s approach in the conditional
case.

Conglomerability holds trivially whenever P (B) = 0 for
all but a finite number of conditioning events B ∈ B.
Moreover, (CNG) always holds whenever the support of the
gamble f , which is given by S(f) := {B ∈ B : Bf 6= 0}
is finite. In particular, this means that conglomerability
holds trivially for finite partitions.

3 Basic Properties of Conglomerability

Let us begin by making a preliminary study of conglom-
erably coherent lower previsions. Unlike the family of co-
herent lower previsions (see [6, Section 2.6]), the set of
conglomerably coherent lower previsions is not closed un-
der convex combinations or point-wise limits. We begin by
focusing on this second property:
Example 1. Consider a partition B of Ω and two linear
previsions P1, P2 on L such that P1 is conglomerable and
P2 is not for a countable partition B := {Bn : n ∈ N}
such that P1(Bn), P2(Bn) > 0 for all n. (In this paper N
denotes the set of positive natural numbers.)

Define Qn on L by Qn(f) := P2(fI∪n
i=1Bi

) +
P1(fI∪i>nBi); it can easily be checked that Qn is a lin-
ear prevision. Moreover, Qn(f |Bm) is equal to P2(f |Bm)
if m ≤ n and to P1(f |Bm) if m > n, whence
Qn(Qn(f |B)) = Qn(f).

This means that the linear prevision Qn is conglomerable
for every n. On the other hand, limnQn(f) = P2(f) for
every f , so the limit of the sequence (Qn)n is not a con-
glomerable prevision.

The above comments also show that the coherence of an
unconditional and a conditional lower prevision is not pre-
served by point-wise limits: since Qn(Bm) > 0 for all
m,n ∈ N, we deduce that Qn is coherent with its condi-
tional natural extension Qn(·|B), which is a linear previ-
sion. However, the point-wise limit of the sequence (Qn)n,
that is, the linear prevision P2, is not coherent with its condi-
tional natural extension P2(·|B) because P2 is not conglom-
erable. It also follows that limnQn(f |Bm) = P2(f |Bm)
for all m ∈ N, f ∈ L, whence P2(·|B) is the limit of
Qn(f |B). ThusQn, Qn(·|B) are coherent for all n but their

point-wise limits P2, P2(·|B) are not. �

Next, we investigate if the property of conglomerability is
preserved by taking convex combinations. As discussed by
Walley in [6, Theorem 6.9.1], a sufficient condition for a lin-
ear prevision P to be conglomerable is that it is countably
additive on B, in the sense that

∑
B∈B P (B) = 1. This

means in particular that a convex combination of two lin-
ear previsions P1, P2 that are countably additive on B will
again be countably additive with respect to this partition,
and as a consequence it will also be conglomerable.

However, there are also conglomerable linear previsions
P that are not countably additive on B [6, Examples 6.6.4,
6.6.5], and they can be used to show that conglomerability
is not necessarily preserved by convex combinations:
Example 2. Consider Ω := N ∪ −N, Bn := {−n, n} and
the partition B := {Bn : n ∈ N}. Let P1, P2 be two linear
previsions whose restrictions to events satisfy

P1(Bn) =

{
1

2n if n odd,
0 if n even,

P1({2n}n∈N) = 1
3 ,

P2(Bn) =

{
1

2n−1 if n even,
0 if n odd,

P2({2n− 1}n∈N) = 1
3 ;

that is, P1 (resp., P2) is countably additive on ∪n∈NB2n−1

(resp., ∪n∈NB2n) and purely finitely additive on ∪n∈NB2n

(resp., ∪n∈NB2n−1). Assume moreover that P1({n}) =
P1({−n}) and P2({n}) = P2({−n}) for every n.

For any gamble f on Ω, it holds that P1(G1(f |B)) ≥
P1(G1(fI∪n∈NB2n−1

|B)), taking into account that
P 1(·|B2n) is vacuous for every n and as a con-
sequence G1(fI∪n∈NB2n) ≥ 0. Moreover, if we
consider the set D := ∪n∈NB2n and the partition
B′ := {D} ∪ {B2n−1 : n ∈ N} of Ω, it follows that∑
B′∈B′ P1(B′) = 1. Applying [6, Theorem 6.9.1], it

follows that P1 is conglomerable with respect to B′, and
from this we deduce that P1(G1(fI∪n∈NB2n−1

|B)) =
P1(G1(fI∪n∈NB2n−1

|B′)) ≥ 0. As a consequence, P1

is conglomerable. Similarly, so is P2. However, if we
consider the linear prevision P := 0.5P1 + 0.5P2, it
holds that P (f |Bn) = f(n)+f(−n)

2 ∀n ∈ N, f ∈ L.
Given f := 2I−N, it follows that P (f |Bn) = 1 for
every n, whence P (G(f |B)) = 1

3 − 2
3 < 0, since

P1(N) = P2(N) = 2
3 by construction. This shows that P

is not conglomerable. �

4 On the Existence of the Conglomerable
Natural Extension

The above preliminary results illustrate the fact that con-
glomerably coherent lower previsions do not share many
of the properties of coherent lower previsions. Another in-
stance of this is that a lower prevision P that avoids sure
loss has always a smallest dominating coherent lower pre-
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vision, but it may not have a dominating conglomerably
coherent lower prevision. This is easy to see by means of
a linear prevision P that is not conglomerable: any con-
glomerably coherent lower prevision F that dominates P
should also coincide with P , because of linearity, and as a
consequence such an F does not exist.

Although in Section 3 we have showed that the limit of a
sequence of conglomerable lower previsions may not be
conglomerable, it follows from [6, Theorem 6.9.3] that the
lower envelope of a family of conglomerable lower previ-
sions is again conglomerable. Hence, if P has a dominating
conglomerable model, then there is also a smallest dom-
inating conglomerable model. We shall refer to it as the
conglomerable natural extension of P .
Definition 1. Let P be a coherent lower prevision on L and
let B be a partition of Ω. The (B-)conglomerable natural
extension of P is the smallest coherent lower prevision
F ≥ P that is conglomerable with respect to B.

As we have showed before, the conglomerable natural ex-
tension of a lower prevision P may not exist. Taking this
into account, it becomes interesting to provide sufficient
conditions for its existence. We begin by investigating the
relationships among a number of consistency notions from
[6, Chapters 6 and 7]:
Proposition 1. Let P be a coherent lower prevision on L,
B a partition of Ω, and P (·|B) a separately coherent lower
prevision. Consider the following possibilities:

(a) P , P (·|B) are coherent.

(b) P , P (·|B) are dominated by coherent Q,Q(·|B).

(c) The conglomerable natural extension of P exists.

(d) P , P (·|B) are dominated by Q,Q(·|B) that avoid par-
tial loss.

(e) P , P (·|B) avoid partial loss.

Then (a)⇒(b)⇒(d)⇔(e) and (b)⇒(c). If, in addition,
P (·|B) is the conditional natural extension of P , then
(c)⇒ (b) holds as well, and if in particular P is linear then
we have also that (b)⇒ (a) and (d)⇒ (b), so all of them
are equivalent conditions.

Now, if we consider a coherent lower prevision P , it fol-
lows that its conglomerable natural extension exists if and
only if there is a coherent lower prevision F ≥ P that is
conglomerable. Since conglomerability is equivalent to the
coherence with the conditional natural extension, it follows
that the conglomerable natural extension of P exists if and
only if P , P (·|B) are dominated by coherent Q,Q(·|B),
where P (·|B) denotes the conditional natural extension
of P . We deduce from Proposition 1 that the following
implications hold:

P conglomerable ⇒ F exists⇒ P , P (·|B) APL, (3)

where F is the conglomerable natural extension of P , in-
troduced in Definition 1. Moreover, F exists if and only if
P , P (·|B) avoid conglomerable partial loss, in the sense
of [4, Definition 21]. The converses of the implications
in (3) do not hold in general: on the one hand, there are
previsions P that are not conglomerable but whose con-
glomerable natural extension exists (one instance is that
in Example 4 later on). Next we show that the converse
of the second implication does not hold either. In other
words, the conditions of avoiding partial loss and avoiding
conglomerable partial loss are not equivalent in general. In
order to build this example, we need to define the notion of
unconditional natural extension:
Definition 2. Let P be a coherent lower prevision and
P (·|B) be a separately coherent conditional lower prevision
on L. Their unconditional natural extension E1 is given on
f by the supremum α such that

f − α ≥ GP (g) +GP (h|B) for some g, h ∈ L.

Then E1 is a coherent lower prevision on L if and only
if P , P (·|B) avoid partial loss. Moreover, if P (·|B) is the
conditional natural extension of P and E1(·|B) is that of
E1, then any coherent Q,Q(·|B) that dominate P , P (·|B)
must also dominate E1, E1(·|B). Thus, the conglomerable
natural extensions of P and E1 coincide.
Example 3. Consider Ω := N ∪ −N, Bn := {n,−n} and
B := {Bn : n ∈ N}. Let P1 be a σ-additive linear prevision
on L determined by P1(n) := P1({−n}) := 1

2n+1 .

Let P be a finitely additive probability on P(N) satisfy-
ing P ({n}) = 0 for all n, P ({2n + 1 : n ∈ N}) = 0.
We can use it to define a linear prevision P2 on L whose
restriction to events is the finitely additive probability
given by P2(B) := 3

4P (Π1(B)) + 1
4P (Π2(B)), where

Π1(B) := B ∩N and Π2(B) := −(B ∩−N). Define then
the linear prevision P3 := 1

2P1 + 1
2P2.

Let now P ′ be another finitely additive probability on P(N)
such that P ′({n}) = 0 for all n, P ′({2n+ 1 : n ∈ N}) =
0.5, so that P ′(Ieven) = 0.5 too. Let P4 be the linear previ-
sion on L whose restriction to events is the finitely additive
probability

P4(B) :=
1

4

∑

n∈B∩N

1

2n
+

3

4
P ′(−(B ∩ −N)).

Take P := min{P3, P4}. Then P (Bn) =
min

{
1

2n+1 ,
1

2n+2

}
> 0 ∀n ∈ N, whence

P (f |Bn) = min
{
f(n)+f(−n)

2 , f(n)
}
∀f ∈ L, n ∈ N.

Fix a gamble f and let C := ∪n:f(n)<f(−n)Bn, so that
P (f |Bn) = f(n) if Bn ⊆ C and P (f |Bn) = f(n)+f(−n)

2
otherwise. Then G(f |B) = G(f · C|B) +G(f · Cc|B) ≥
G(f · Cc|B) because G(f |Bn) ≥ 0 if Bn ⊆ C.

Denote Pα := αP3 +(1−α)P4. We are going to determine
for which α ∈ [0, 1] it holds that Pα(G(f |B)) ≥ 0 for
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all f . Taking into account the above observation, we can
conclude that Pα(G(f |B)) ≥ 0 ∀f ∈ L if and only if
Pα(G(f |B)) ≥ 0 ∀f ∈ L s.t. f(n) ≥ f(−n) ∀n.

Take thus f s.t. f(n) ≥ f(−n) for all n (in this case C is
empty). Then

{
G(f |Bn)(n) = f(n)−f(−n)

2 ≥ 0,

G(f |Bn)(−n) = f(−n)−f(n)
2 ≤ 0.

(4)

If we denote g := G(f |B), it holds that g(n) = −g(−n),
whence P1(gIN) + P1(gI−N) = 0. On the other hand,
P2(gIN) + P2(gI−N) = 3

4P (g+) + 1
4P (g−), where

g+ : N→ R
n ↪→ g(n)

and
g− : N→ R

n ↪→ g(−n) = −g(n).
(5)

Thus P2(gIN) + P2(gI−N) = 1
2P (g+) ≥ 0; as a con-

sequence, P3(G(f |B)) ≥ 0 for every gamble f .

Now, if in particular we fix n ∈ N and let f :=
2I{2n+1,2n+3,... }, then, using (4) again, G(f |B) =
I{2n+1,2n+3,... } − I{−2n−1,−2n−3,... } and P1(G(f |B)) =
0 = P2(G(f |B)), because we have chosen P such that
P ({2n+ 1 : n ∈ N}) = 0. Thus, P3(G(f |B)) = 0.

On the other hand, for this gamble f we obtain that
P4(G(f |B)) =

∑
k≥n

1
2(2k+1)+2 − 3

8 < 0 for n big enough.

This implies that Pα(G(f |B)) < 0 for all α 6= 1. As a
consequence {Pα : Pα(G(f |B)) ≥ 0 ∀f} = P3 = E1,
taking into account thatM(P ) = {Pα : α ∈ [0, 1]} and
using [5, Proposition 13]. Since the natural extension E1

of P , P (·|B) exists, it follows that P , P (·|B) avoid partial
loss. But P3 is not conglomerable: given g := 2I−N, we
can use the expression of P3(·|Bn) (available from that of
P (·|Bn)) to see that P3(g|Bn) = [2I−N](n)+[2I−N](−n)

2 =
2
2 = 1, so thatGP3(g|B) = −IN + I−N and P3(G(g|B)) =
− 1

4 < 0. Thus P3, P3(·|B) do not avoid partial loss, and
applying (3) we deduce that the conglomerable natural ex-
tension of P3 does not exist. But since P3 is the natural ex-
tension of P , P (·|B), the conglomerable natural extension
of P coincides with that of P3. Hence, the conglomerable
natural extension of P does not exist either. �

We can get more, and different, results in the special case
where the conditional natural extension of P is linear.

Proposition 2. Let P be a coherent lower prevision on
L and assume that its conditional natural extension is a
linear prevision P (·|B). Then:

(a) P , P (·|B) avoid partial loss if and only if P , P (·|B)
avoid conglomerable partial loss.5

(b) P is conglomerable if and only if it is a lower envelope
of conglomerable linear models.

5This has essentially been showed already in [5, Proposition 15].

From [6, Theorem 6.9.3], a lower envelope of a family of
conglomerable lower previsions is again a conglomerable
lower prevision; the converse is not true: [6, Example 6.6.9]
shows that it may be that P is a conglomerably coherent
lower prevision but no dominating model is. One interesting
particular case where an assessment of conglomerability is
compatible with an envelope theorem is when we are deal-
ing with marginal extension models [6, Theorem 6.7.4]: any
marginal extension is a conglomerable model that is a lower
envelope of a family of conglomerable linear previsions.
Proposition 2 provides an instance of this case.

5 Approximation by a Sequence

In [5], it was devised a procedure to approximate the con-
glomerable natural extension (if it exists) of a coherent
lower prevision P : we consider the sequence of coherent
lower previsions (En)n, where E0 := P and for every
n ≥ 1, En is the (unconditional) natural extension of
En−1, En−1(·|B), where En−1(·|B) is the conditional nat-
ural extension of En−1, given by Eq. (2).

Proposition 3. [5] Assume that the conglomerable natural
extension F of P exists. Then:

1. (En)n is an increasing sequence of coherent lower
previsions, and (En(·|B))n is an increasing sequence
of separately coherent conditional lower previsions.

2. Given their point-wise limits Q,Q(·|B), it holds that
Q(·|B) is the conditional natural extension of Q.

3. Q ≤ F , and Q = F ⇔ Q is conglomerable.

Moreover, it was showed in [5, Example 5] that the se-
quence may not stabilise in the first step, or, in other words,
that the natural extension of P , P (·|B) does not always
coincide with the conglomerable natural extension.

In terms of credal sets, we have the following:

Proposition 4. [5, Propositions 13 and 14] Let P be a co-
herent lower prevision on L, B a partition of Ω and P (·|B)
its conditional natural extension. Let E be the uncondi-
tional natural extension of P , P (·|B). Then

M(E) = {P ∈M(P ) : P (GP (f |B)) ≥ 0 ∀f ∈ L}
=M(P ) ∩M(M), where M := P (P (·|B)).

In this section, we are going to study the above sequence
in more detail. It follows that if the sequence stabilises in
a finite number of steps, i.e., if Q = En for some n, then
Q is the conglomerable natural extension of P . However,
as we shall see later, it may happen that the sequence is
infinite. In order to provide an example, we are going to
give a tool first that will allow us to build sequences that
can be made both conglomerable and non-conglomerable,
depending on the choice of two parameters.
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Proposition 5. Let P1 be a σ-additive probability on L(N)
such that P1({n}) > 0 for all n ∈ N; let P2 be a finitely
additive probability on P(N) such that P2({n}) = 0 for
all n ∈ N. We consider Ω := N ∪ −N and B := {Bn :
n ∈ N}, with Bn := {n,−n}. Given a gamble h in L(Ω),
we let h+, h− be derived from h as in Eq. (5). Consider
α, β ∈ [0, 1] and let Q1, Q2 on L(Ω) be given by

Q1(h) := αP1(h+) + (1− α)P1(h−) and

Q2(h) := βP2(h+) + (1− β)P2(h−).

Consider also γ ∈ (0, 1) and let Q := γQ1 + (1− γ)Q2.
Then Q is conglomerable⇔ α = β.

We exploit Proposition 5 to show that the sequence (En)n
may not stabilise in a finite number of steps.

Example 4. Consider Ω := N ∪ −N, B := {Bn : n ∈ N},
with Bn := {n,−n}, and the linear previsions on L(Ω)

P1({n}) := P1({−n}) :=
1

2n+1
for all n ∈ N

P2(h) :=
1

2

∑

n

h(n)
1

2n
+

1

2
P (h−)

P3(h) :=
3

4
P (h+) +

1

4
P (h−)

P4(h) :=
1

2
P1(h) +

1

2
P3(h),

where P is a finitely additive probability on N s.t.
P ({n}) = 0 for all n ∈ N and h+, h− are determined by
Eq. (5). Given α ∈ [0, 1], we set Qα := αP2 + (1− α)P4.
It follows that

Qα(h) =
1

2

[
1 + α

2
P̃1(h+) +

1− α
2

P̃1(h−)

]

+
1

2

[
3− 3α

4
P (h+) +

1 + 3α

4
P (h−)

]
,

where we denote by P̃1 the linear prevision given by
P̃1({n}) := 1

2n for all n ∈ N. Proposition 5 yields:

Qα is conglomerable⇔ 1 + α

2
=

3− 3α

4
⇔ α = 0.2.

Let P be the lower envelope of the credal set {Qα :
α ∈ [a, b]} for given a, b s.t. 0 < a < 0.2 < b < 1.
The conglomerable natural extension of P exists since
P ≤ Q0.2. We aim at analysing whether the sequence
of coherent lower previsions P ,E1, E2, . . . , originated by
P , yields the conglomerable natural extension in the limit
and whether or not the sequence itself stabilises in a finite
number of steps.

We start by detailing the form of the conditional nat-
ural extension of P . Since Qα(f |Bn) = 1+α

2 f(n) +
1−α

2 f(−n) ∀f ∈ L and P (Bn) > 0, it follows from
Eq. (2) and [6, Theorem 6.4.2] that for every gamble f ,

P (f |Bn) =

{
1+a

2 f(n) + 1−a
2 f(−n) if f(n) ≥ f(−n)

1+b
2 f(n) + 1−b

2 f(−n) if f(n) ≤ f(−n).

If we denote A := {n ∈ N : f(n) ≤ f(−n)}, then
{
GP (f |Bn)(n) = 1−b

2 [f(n)− f(−n)] ≤ 0

GP (f |Bn)(−n) = 1+b
2 [f(−n)− f(n)] ≥ 0

whenever n ∈ A, and
{
GP (f |Bn)(n) = 1−a

2 [f(n)− f(−n)] ≥ 0

GP (f |Bn)(−n) = 1+a
2 [f(−n)− f(n)] ≤ 0

when n /∈ A. Now we would like to check for which values
of α it is the case that Qα(GP (f |B)) ≥ 0 for all f ∈ L,
because from Proposition 4 we have thatM(E1) = {Qα :
Qα(GP (f |B)) ≥ 0 for all f ∈ L}.
Given a gamble f , its associated set A = {n ∈ N : f(n) ≤
f(−n)}, andC := ∪n∈ABn, it holds that f = fIC+fICc ,
whence GP (f |B) = GP (ICf |B) +GP (ICcf |B). Denote
g′ := GP (ICf |B), g′′ := GP (ICcf |B). We proceed to
determine when Qα(g′) ≥ 0, Qα(g′′) ≥ 0.

• Let us consider Qα(g′). If n /∈ A, then g′(−n) =
g′(n) = 0; if n ∈ A, then g′(−n) = 1+b

2 [f(−n) −
f(n)] and g′(n) = 1−b

2 [f(n) − f(−n)]. As a con-
sequence, g′(−n) = − 1+b

1−bg
′(n) ≥ 0. Then:

P2(g′) =
∑

n

g′(n)
1

2n+1
+

1

2
P (g′−) and

P4(g′) =
∑

n

g′(n)
1

2n+1
· −b
1− b+P (g′−)·1

4
·2b− 1

1 + b
.

This implies that Qα(g′) is equal to
∑

n

g′(n)
1

2n+1

︸ ︷︷ ︸
≤0

· α− b
1− b︸ ︷︷ ︸
≤0

︸ ︷︷ ︸
≥0

+P (g′−) · 1

4︸ ︷︷ ︸
≥0

·3α+ 2b− 1

1 + b
,

so that 3α+ 2b− 1 ≥ 0⇒ Qα(g′) ≥ 0. On the other
hand, if 3α+2b−1 < 0, we can always find g′, by let-
ting g′− tend to 1 with n→∞, such that P (g′−) = 1,
using that P is a finitely additive probability that is
not σ-additive. And this is compatible with making∑
n g
′(n) 1

2n+1 as small as we want by making the
first m images equal to zero, where m is an arbitrary
positive number: it holds that limm P (g′I∪n≥mBn) =

P (g′) while limm

∑
n≥m g

′(n) 1
2n−1 = 0. We con-

clude that we can always find some g′ such that
Qα(g′) < 0 when 3α+ 2b− 1 < 0.

• Let us focus on Qα(g′′). It holds that g′′(n) =
− 1−a

1+ag
′′(−n) ≥ 0. Then:

P2(g′′) =
∑

n

g′′(n)
1

2n+1
+

1

2
P (g′′−) and

P4(g′′) =
∑

n

g′′(n)
1

2n+1
· −a
1− a+P (g′′−)·1

4
·2a− 1

1 + a
.
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This implies that Qα(g′′) is given by
∑

n

g′′(n)
1

2n+1
· α− a

1− a
︸ ︷︷ ︸

≥0

+P (g′′−) · 1

4︸ ︷︷ ︸
≤0

·3α+ 2a− 1

1 + a
,

so that 3α+2a−1 ≤ 0⇒ Qα(g′′) ≥ 0. On the other
hand, if 3α+ 2a−1 > 0, we can reason as in the case
of Qα(g′) to conclude that we can always find some
g′′ such that Qα(g′′) < 0.

Let us consider the case where 3α + 2b − 1 ≥ 0 and
3α + 2a − 1 ≤ 0 (note that we can attain this case given
that 3b + 2b − 1 ≥ 0 and 3a + 2a − 1 ≤ 0 if and only
if a ≤ 0.2 ≤ b). Then Qα(g′) ≥ 0, Qα(g′′) ≥ 0 and
therefore Qα(g) ≥ 0; using Proposition 4 we obtain that
Qα ∈M(E1). On the other hand, in the case where 3α+
2b − 1 < 0 or 3α + 2a − 1 ≤ 0, we know that there is
g′ s.t. Qα(g′) < 0, and g′′ s.t. Qα(g′′) = 0 (it is enough
to use an f , in the definition of g′′, s.t. f(n) = f(−n)
for all n /∈ A); applying again Proposition 4, we obtain
that Qα /∈M(E1). Analogous considerations hold for the
remaining cases.

Thus, recalling that M(P ) = {Qα : α ∈ [a, b]},
with 0 < a < 0.2 < b < 1, it follows that
M(E1) is given by the linear previsions Qα where α ∈[
max

{
a, 1−2b

3

}
,min

{
1−2a

3 , b
}]
. Note that if a < b then

it must be the case that [max{a, 1−2b
3 },min{ 1−2a

3 , b}] (
[a, b], because it is not possible that both a ≥ 1−2b

3 and
b ≤ 1−2a

3 hold. This means that at least one of the two ex-
treme points of [a, b] must change. Moreover, note that the
new interval will have still to contain the value 0.2 properly,
in the sense that 0.2 will have to be an interior point of the
new interval, because

a < 0.2 < b⇒ max

{
a,

1− 2b

3

}
< 0.2 and

a < 0.2 < b⇒ min

{
b,

1− 2a

3

}
> 0.2.

Thus, the infinite sequence P ,E1, E2, . . . is in correspond-
ence with an infinite sequence of intervals of strictly de-
creasing length, each one containing 0.2 properly.

Let us show now that 0.2 is actually the limit of this se-
quence. We must consider a number of cases:

• If in the passage fromM(P ) toM(E1) both extreme
points of the interval change, then we go from [a, b]
to [ 1−2b

3 , 1−2a
3 ], and the length of the new interval is

two thirds of the length of the previous one.

• Assume otherwise that that in the passage
from M(P ) to M(E1) only the left extreme
of the interval [a, b] changes (if it were the
right extreme, we would eventually obtain ana-
logous conclusions). We can then rewrite the

interval as [max{a, 1−2b
3 },min{ 1−2a

3 , b}] =

[ 1−2b
3 ,min{ 1−2a

3 , b}]. If we now do one more
step, to get to M(E2), we see that the left ex-
treme cannot change and hence the new interval
will be [ 1−2b

3 , 1+4b
9 ]. Hence, in two steps we go

from [a, b] to [ 1−2b
3 , 1+4b

9 ], and the length of the
latter interval is 10b−2

9 . Now, since a ≤ 1−2b
3 , we

deduce that 3a + 2b ≤ 1, and as a consequence
3
2 · 10b−2

9 = 5b−1
3 ≤ b− a. This means that the length

of [ 1−2b
3 , 1+4b

9 ] is at most two thirds of the length of
[a, b].

By iterating the argument, we conclude that every two steps
the length of the intervals decreases at least exponentially
fast by 2

3 . As a consequence, given that 0.2 is always in-
cluded in the intervals, the sequence (En)n will converge
towards Q0.2, which, being conglomerable, is the conglom-
erable natural extension of P . �

6 Conglomerability and Marginal
Extension

The previous example shows that the sequence (En)n may
not stabilise in a finite number of steps. When Q does not
coincide with En for any n, it is an open problem whether
Q always coincides with the conglomerable natural ex-
tension or not. Here, we shall give a number of sufficient
conditions for the equality Q = F . We shall show that one
particular case of interest is that where Q is a marginal
extension model and we are going to explore in more de-
tail the connection between conglomerably coherent lower
previsions and marginal extensions. We begin by proving
an elementary and yet interesting result:

Proposition 6. Let P be a coherent lower prevision on
L, B a partition of Ω and P (·|B) the conditional natural
extension of P . Define M := P (P (·|B)). Then M ≤ P ⇔
P conglomerable.

It is possible to find examples that show that not every
conglomerably coherent lower prevision is a marginal ex-
tension, or, in other words, that we do not necessarily have
the equality P = M .

Next, we investigate the properties of the sequence of
marginal extensions (Mn)n associated to (En)n, where
Mn := En−1(En−1(·|B)) for every n > 1 and M1 :=
P (P (·|B)). It follows from Proposition 4 thatM(En) =
M(En−1) ∩M(Mn), so Mn ≤ En for all n. Since the
sequence (En(·|B))n is also increasing, we deduce that
so is the sequence (Mn)n. Thus, (Mn)n is an increasing
sequence of conglomerable and coherent lower previsions
that is dominated by F , the conglomerable natural exten-
sion of P . Moreover, if En is not conglomerable, then it
cannot be Mn ≥ P , because then it would be Mn = F ,
and therefore also En = F would be conglomerable.
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However, it may be that the conglomerable natural exten-
sion is not a marginal extension model, and therefore that
the increasing sequence of marginal extensions stabilises
on a model that is not the conglomerable natural extension,
as the following example shows.

Example 5. Consider Ω := N ∪ −N, Bn := {n,−n} and
B := {Bn : n ∈ N}. Let P be a finitely additive probability
on P(N) s.t. P ({n}) = 0 for all n, and P1 a σ-additive
probability on P(Ω) s.t. P1({n}) = P1({−n}) = 1

2n+1

for all n. Consider also the linear previsions

P2(h) :=
1

2

∑

n

h(n)
1

2n
+

1

2
P (h−)

P3(h) :=
3

4
P (h+) +

1

4
P (h−)

P4(h) :=
1

2
P1(h) +

1

2
P3(h),

where h ∈ L and h+, h− are derived by Eq. (5). Finally,
let P := min{P1, P2, P4}. Given f := I−N, it holds
that: P (f) = min

{
1
2 ,

1
2 ,

3
8

}
= 3

8 . In [5, Example 5]
it is showed that the unconditional natural extension of
P , P (·|B) is given by

E1 = min

{
P1, P4,

1

3
P2 +

2

3
P4

}
,

that the conditional natural extension of E is given by

E1(h|Bn) = min

{
h(n) + h(−n)

2
,

2h(n) + h(−n)

3

}
,

and that P4(GE(h|B)) < 0 for some h, so E1 is not con-
glomerable.

On the other hand, it can be showed that both
P1(GE1

(·|B)) ≥ 0 and P5(GE1
(·|B)) ≥ 0. It follows

from Proposition 4 that the unconditional natural exten-
sion E2 of E1, E1(·|B) is dominated by the lower envel-
ope of {P1, P5}, from which we obtain that E2(·|Bn) ≤
min{P1(·|Bn), P5(·|Bn)} and in particular that E2(h|Bn)
is dominated by

min

{
h(n) + h(−n)

2
,

2h(n) + h(−n)

3

}
= E1(h|Bn)

for every h ∈ L and every n ∈ N, which implies that
E2(h|Bn) = E1(h|Bn) for every gamble h. Applying [5,
Proposition 16], we deduce that E2 is conglomerable and
therefore it is the conglomerable natural extension of P .

Now, if we reconsider f := I−N, then E2(f |Bn) = 1
3

for all n, so if E2 was a marginal extension model, we
would have E2(f) = E2(E2(f |B)) = E2( 1

3 ) = 1
3 . But

we know that E2(f) ≥ P (f) = 3
8 >

1
3 . This shows that

the sequence of marginal extensions may not stabilise on
the conglomerable natural extension. �

Let us study in more detail the sequence (Mn)n of marginal
extensions. We begin by characterising their relationship
with Q in terms of credal sets.

Proposition 7. Let Q := limnEn and let Q′ :=

limnQ(En(·|B)). ThenM(Q′) = ∩nM(Mn), whence:

1. M(Q) =M(P )∩(∩nM(Mn)) =M(P )∩M(Q′).

2. Q′ conglomerable⇔ Q′ = Q(Q(·|B)).

Thus, the limit of the increasing sequence (Mn)n is the
coherent lower prevision Q′ = limnQ(En(·|B)). Taking
this into account, we can establish a sufficient condition for
the conglomerable natural extension to be the limit of the
sequence of marginal extensions:

Proposition 8. Let Q,Q′ be given as in Proposition 7, and
consider the following possibilities:

(a) Q(·|B) is the uniform limit of (En(·|B))n.

(b) Q = Q′ = F .

(c) Q′ is conglomerable.

(d) Q is conglomerable.

(e) Q = F .

Then (a)⇒ (c)⇒ (d)⇔ (e) and (b)⇒ (c). If in particular
Q′ ≥ P , then:

1. (b)⇔ (c)⇔ Q′ = Q(Q(·|B)).

2. (d)⇔ (e)⇔ Q = Q(Q(·|B)).

3. (a)⇒ (b)⇔ (c)⇒ (d)⇔ (e).

7 The Finitary Case: Sufficient Conditions

As we have showed in Example 4, the sequence (En)n of
coherent lower previsions that provides a lower bound on
the conglomerable natural extension may not stabilise in a
finite number of steps. On the other hand, in Proposition 8
we have showed that a sufficient condition for (En)n to
converge towards the conglomerable natural extension is
the uniform convergence of the sequence of conditional
lower previsions. In this section, we give two sufficient
conditions for this uniform convergence.

We focus on the case of an initial lower prevision P char-
acterised by an associated credal setM(P ) that contains
finitely many extreme points. We call this a finitary model,
or a finitary lower prevision.

In other words, we consider finitely many linear previsions
P1, . . . , Pk on L and let P := min{P1, . . . , Pk}. Then
M(P ) = {Pᾱ : ᾱ ∈ ∆}, where ∆ := {(α1, . . . , αk) :

αi ≥ 0 ∀i,∑k
i=1 αi = 1} is the (k − 1)-dimensional

simplex, and simplifying the notation by letting Pᾱ :=
α1P1 + · · ·+ αkPk, with ᾱ := (α1, . . . , αk). We consider
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as usual a partition B of Ω and the sequence (En)n of
coherent lower previsions that we use to approximate the
conglomerable natural extension F of P (provided that
it exists), and Q = limnEn. We aim at giving sufficient
conditions for Q to coincide with F .

If there is m ∈ N such that Em = Em−1, then limnEn =
Em = F and in particular Q = F . Otherwise, if the se-
quence never stabilises, thenEn � En+1 for all n, whence
M(En) ) M(En+1). For each natural number n, we
have that M(En) = {Pᾱ : ᾱ ∈ ∆n}, where ∆n is a
closed and convex subset of ∆.

Hence (∆n)n is a strictly decreasing sequence of closed
and convex subsets of ∆; since ∆ is a compact subset of
Rk, we deduce that limn ∆n =: ∆′ is a compact subset of
∆, that determines moreover Q = limnEn.

Next, we are going to use these sets to give a sufficient
condition for the uniform convergence of the sequence of
conditional natural extensions. One important issue here
is that of the positivity of the lower probabilities of the
conditioning events: as we have showed in (2), Q(f |B)
can only be non-vacuous when Q(B) > 0, and similarly
for En. Then it may be that Q(B) > 0 for all B in B while
for every n there is an infinity of B for which En(B) = 0,
thus preventing the uniform convergence. Our next result
shows that for finitary models this is not an issue:

Lemma 9. If P = min{P1, . . . , Pk}, then there is some
natural number n such that, for every B ∈ B, Q(B) >
0⇒ En(B) > 0.

Since the conglomerable natural extension of P coincides
with that of En for every n ∈ N, we are going to assume
that P (B) > 0 whenever Q(B) > 0; otherwise, it suffices
to start the sequence at the n for which the condition in
Lemma 9 holds.

Let us give now two sufficient conditions for the uniform
convergence of the sequence (En(·|B))n.

Theorem 10. Under any of the following conditions:

1. ∃N > 0 s.t. P (B)
P (B) < N ∀B ∈ B,

2. ∃ν > 0 s.t. minki=1 αi ≥ ν > 0 ∀ᾱ ∈ ∆′,

Q(f |B) is the uniform limit of (En(f |B))n ∀f ∈ L and
therefore Q is the conglomerable natural extension of P .

It can be checked that neither of these sufficient conditions
is necessary for the limit to be conglomerable.
Remark 1. The second of these sufficient conditions is
particularly revealing in the binary case, where we con-
sider the lower envelope of two linear previsions, P :=
min{P1, P2}. If we denote Pα := αP1 + (1− α)P2, then

we can identify each ∆n with a subset of [0, 1]:

M(P ) : = {Pα : α ∈ [0, 1]},
M(En) : = {Pα : α ∈ [an, bn]} and
M(Q) : = {Pα : α ∈ [a, b]},

where 0 ≤ an ≤ bn ≤ 1 for all n, and (an)n ↑ a, (bn)n ↓
b. There are a number of possibilities:

• If a = b = 1, then Q = P1, so the conglomerable
natural extension exists if and only if it coincides with
Q = P1.

• If a = b = 0, then Q = P2, so the conglomerable
natural extension exists if and only if it coincides with
Q = P2.

• If a, b ∈ (0, 1), then Theorem 10 implies that
(En(f |B))n converges uniformly to Q(f |B), and as a
consequenceQ is the conglomerable natural extension
of P .

• If a = 0 and b ∈ (0, 1), then we can deduce from
Theorem 10 that (Pbn(f |B))n converges uniformly to
Pb(f |B) for every gamble f , and from this we deduce
that Q is the conglomerable natural extension of P . A
similar result applies when a ∈ (0, 1) and b = 1.

This means that if we consider a binary model P =
min{P1, P2} and that the conglomerable natural extension
of P exists, then it necessarily coincides with Q. �

8 Conclusions

The importance of the conglomerable natural extension
can be appreciated when one realises that it is the analog,
for a theory of probability based on conglomerability, of
the deductive closure in logic. Unfortunately, this paper
shows that such a closure is not finitary, in the sense that
to compute the conglomerable natural extension F of a
coherent lower prevision P , one might have to create an
infinite sequence (En)n of distinct approximating coherent
lower previsions.

Moreover, at the moment it is still an open problem whether
the point-wise limit Q of such a sequence actually attains
F in general. However, in the special case where P is the
envelope of finitely many linear previsions, this paper gives
sufficient conditions for Q = F that seem to have quite
broad applicability. This gives reasons to believe that Q
will equal F in many cases of practical interest.

Yet, solving the mentioned problem in general seems to us
the most important question, and a very difficult one too,
that should be addressed by future research.
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Abstract

First order logic lies at the core of many methods in mathe-
matics, philosophy, linguistics, and computer science. Al-
though important efforts have been made to extend first or-
der logic to the task of handling uncertainty, there is stilla
lack of a consistent and unified approach, especially within
the Dempster-Shafer (DS) theory framework. In this work
we introduce a systematic approach for building belief as-
signments based on first order logic formulas. Further-
more, we outline the foundations ofUncertain Logic, a
robust framework for inference and modeling when infor-
mation is available in the form of first order logic formulas
subject to uncertainty. Applications include data fusion,
rule mining, credibility estimation, and crowd sourcing,
among many others.

Keywords. Uncertain Logic, Uncertain Reasoning, Prob-
abilistic Logic, Dempster-Shafer Theory, Belief Theory.

1 Introduction
Natural language processing, artificial intelligence, and
graph analysis are among a number of applications that
heavily rely on first order logic formulations. Due to its
capability for representing knowledge for inference sys-
tems, first order logic has been gradually enriched to han-
dle imperfections in real-life data. Some approaches in-
clude fuzzy logic and probabilistic logic [1]. These so-
lutions, however, are not well suited for handling scenar-
ios characterized by ranges of uncertainty, or that require
modeling evidence in a very strict manner to minimize the
risk of inference results leading to wrong conclusions.

Dempster-Shafer theory [2] provides an ideal modeling
tool to address this problem. However, although signifi-
cant effort has been dedicated to modeling uncertainty in
logic under DS theory, there is still a need for a unified
approach that is consistent with basic logic operations and
that provides the support for handling variables and quan-
tifiers. To address this problem we introduceUncertain
Logic, which is the extension of first order logic into DS
theory. Consider, for example, an expression of the form:

∃x : ϕ(x), with uncertainty[α, β], whereϕ(x) is a logic
predicate that depends on the variablex. The uncertain
logic framework allows us to model this sentence, and to
combine it with similar ones in order to solve various in-
ference problems. Whenα = β, uncertain logic renders
probabilistic results. Whenα = β ∈ {0, 1}, uncertain
logic converges to first order logic. Unlike existing DS
models for logic that, in general, cannot guarantee logic
consistency for a plurality of logic constructs, uncertain
logic preserves this consistency, and can grow to incorpo-
rate logic rules and properties without loss of uncertainty
measures. By preserving this consistency, it is possible
to seamlessly move between the logic and DS domains,
and to incorporate both the strength of first order logic for
information representation, inference, and resolution, and
the strength of DS for representing and manipulating un-
certainty in the data.

1.1 Existing Methods for Handling Uncertainty in
Logic

The need for reasoning under the presence of uncertainty
has lead to important work aimed at providing logic rea-
soning with uncertainty management capabilities. Re-
search in this area encompasses a number of aims, such
as the investigation of the source and meaning of uncer-
tainty, the enrichment of logic systems with appropriated
formalisms for uncertainty management (e.g., semantics,
axioms), and the creation of appropriate models and oper-
ators to quantify the propagation of uncertainty in reason-
ing and inference problems.

Relevant foundational work, with emphasis on analyzing
the source and representation of uncertainty in logic sys-
tems, can be found in [3]. In this work, the author in-
troduces two different approaches to giving semantics to
first-order logics of probability, the first one incorporating
probability in the domain (for problems involving statis-
tical information), and the second one assigning proba-
bilities to possible worlds. This work is extended in [4],
where the author further discusses the use of a “possible-
worlds” framework to represent and reason about uncer-
tainty. Then, quantification of the uncertainty is accom-
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plished by assigning a probability distribution to the pos-
sible worlds. In addition, the author discusses the impor-
tance of considering time in the inference process, i.e.,
possible words should describe states at each time point of
interest. The work in [5] provides insight on how to pro-
cess and combine data-driven (e.g., information obtained
from observed events) and knowledge-driven (e.g., infor-
mation provided by domain experts) using different logic
systems.

In addition to first-order logic, uncertain representations of
logic systems have been extended to other types of logic.
For example, the work in [6] introduces a multi-agent epis-
temic logic able to represent and merge partial beliefs of
multiple agents. This logic system is based on possibility
theory [7], and enhances epistemic logic with parametric
models to obtain lower bounds on the degree of belief of
agents. Similarly, an axiomatization of a modal logic using
fuzzy sets and DS belief functions for measuring probabil-
ities of modal necessity is presented in [8].

When addressing quantification and propagation of uncer-
tainty in logic reasoning systems, one of the most im-
portant approaches is probabilistic logic [9]. Probabilis-
tic logic provides a generalization of logic in which the
truth values of sentences are probability values (between 0
and 1). A related approach, possibilistic logic [10], de-
fines mechanisms (based on possibility theory) to asso-
ciate classical logic formulas with weights. These weights
represent lower bounds of necessity degrees. Other ap-
proaches that extend logic reasoning to address uncertain
scenarios are many-valued and fuzzy logics. Many-valued
logics do not restrict the number of truth values of proposi-
tions to two. The interpretation of the truth values depends
on the actual application. Fuzzy logic can be seen as a type
of many-valued logic. Fuzzy logic is based on the theory
of fuzzy sets [11]. In fuzzy logic, the imprecision in prob-
abilities is modeled through membership functions defined
on the sets of possible probabilities and utilities.

Although useful in some applications, these approaches
are sometimes limited by the way they model uncertainty,
or simply by the complexity of the problem formulation.
Extensions of these approaches could be strengthened by
adding more flexibility in assigning probabilities (e.g.,
through intervals) and a more rigorous method of assign-
ing probability measures (e.g., one that does not require
defining priors or membership functions).

Regarding the use of intervals as means of representing
uncertainty, it appears in several methods, such as pos-
sibility theory [12] and DS theory. The latter, in addi-
tion, incorporates a rigorous methodology for assigning
probabilistic measures based on available evidence [13].
Given the direct relation that exists between DS theory
and probability (DS belief and plausibility measures cor-
respond precisely to probabilistic inner and outer mea-

sures [13]), it is possible to simplify DS models to prob-
abilistic models. Considering these advantages, a number
of researchers have studied the relation of DS theory and
logic. In [14], DS theory is formulated in terms of proposi-
tional logic, enabling certain logic reasoning operationsin
the DS framework. Insight into the relationship between
DS theory and probabilistic logic is presented in [14]. A
belief-function logic that uses DS models and operations
to quantify and estimate uncertainty of logic formulas is
introduced in [15]. This logic system allows non-zero be-
lief assignments to the empty set, relies on Dempster’s
combination rule as the method for quantifying the prop-
agation of uncertainty, and is used in deduction systems
where the logic formulas are in Skolemized normal con-
junctive form. An application of this system for inference
is described in [16]. Further analysis on DS-based logic
is presented in [17]. A detailed study on uncertain impli-
cation rules is in [18]. This latter work, however, is not
focused on ensuring consistency with classical logic, but
on modeling causal probabilistic relations.

In spite of existing research to provide logic with uncer-
tainty modeled by DS, efforts to date can be improved by
ensuring consistency with classical logic and reducing the
number of assumptions needed for the logic systems to
work. For example, most of the existing methods are based
on Dempster’s Combination Rule, which, as it is shown in
this manuscript, is not necessarily well suited for logical
reasoning. In addition, inference processes could benefit
from eliminating the condition that logic formulas need to
be expressed in normal conjunctive form or as implication
rules, as well as eliminating the need for allowing non-zero
belief assignments to the empty set in a DS model.

1.2 Our Contribution: Uncertain Logic

To address these issues, and with emphasis on methods to
quantify uncertainty propagation, we introduce uncertain
logic. Uncertain logic deals with logic propositions whose
truth is uncertain. The level of uncertainty is modeled with
DS theory. Uncertain logic allows reasoning and inference
using (conventional) first order logic inference rules, but
also allows for appending uncertainty to the inference pro-
cess.

To describe the uncertain logic framework, we start in Sec-
tion 2 with an overview of DS theory. Basic definitions
and notation of uncertain logic are then introduced in Sec-
tion 3. A set of uncertain logic operators and quantifiers
are described in Sections 4 and 5, respectively. Finally,
inference in uncertain logic is introduced in Section 6.

2 DS Theory: Basic Definitions

DS Theory is defined for a discrete set of elementary
events related to a given problem. This set is called the
Frame of Discernment(FoD). In general, a FoD is de-
fined asΘ = {θ1, θ2, . . . , θN}, and has a finite cardinality
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N = |Θ|. Elements (or singletons)θi ∈ Θ represent the
lowest level of discernible information. The power set of
Θ is defined as a set containing all the possible subsets
of Θ, i.e., 2Θ = {A : A ⊆ Θ}. The cardinality of the
power set ofΘ is 2N . Next we introduce some basic def-
initions of DS Theory, as required for building uncertain
logic models. For additional details on DS Theory, we re-
fer the reader to [1, 2].

2.1 Basic Belief Assignment
A Basic Belief Assignment (BBA) ormass assign-
ment is a mappingmΘ(·) : 2Θ → [0, 1] such that:∑

A⊆ΘmΘ(A) = 1 and mΘ(∅) = 0. The BBA mea-
sures the support assigned to propositionA ⊆ Θ. Masses
in DS theory can be assigned to any singleton or non-
singleton (e.g.,{θ1, θ2}, {θ1, θ3}, {θ1, θ2, θ3}) proposi-
tion. A belief function is called Bayesian if each focal
element inΘ is a singleton. The subsetsA such that
m(A) > 0 are referred to as focal elements of the BBA.
The set of focal elements is the coreFΘ. The triple
{Θ,FΘ,mΘ(·)} is referred to asBody of Evidence(BoE).

2.2 Belief and Plausibility
Given a BoE{Θ,F ,m}, thebelief functionBel : 2Θ →
[0, 1] is defined as:BelΘ(A) =

∑
B⊆AmΘ(B). Bel(A)

represents the total belief that is committed toA with-
out also being committed to its complementAC . The
plausibility function Pl : 2Θ → [0, 1] is defined as:
PlΘ(A) = 1 − BelΘ(AC). It corresponds to the total be-
lief that does not contradictA. Theuncertaintyof A is:
[BelΘ(A),PlΘ(A)].

2.3 Combination Rules
Dempster Combination Rule (DCR). For two focal sets
C ⊆ Θ andD ⊆ Θ such thatB = C ∩ D, and two
BBAs mj(·) andmk(·), the combinedmjk(B) is given
by: mjk(B) = 1

1−Kjk

∑
C∩D=B;B 6=∅mj(C)mk(D),

whereKjk =
∑

C∩D=∅mj(C)mk(D) 6= 1 is referred
to as theconflict between the two BBAs;Kjk = 1 iden-
tifies two totally conflicting BBAs for which DCR-based
fusion cannot be carried out.

Conditional Fusion Equation (CFE). A combina-
tion rule that is robust when confronted with con-
flicting evidence is theConditional Fusion Equation
(CFE) [19], which is based on the DS theoretic condi-
tional approach [20]. The CFE combinesM BBAs as
[19]: m(B) =

∑M
i=1

∑
Ai∈Ai

γi(Ai)mi(B|Ai), where∑M
i=1

∑
Ai∈Ai

γi(Ai) = 1. Here Ai = {A ∈ Fi :
Beli(A) > 0}, i = 1, . . . ,M. The conditionals are com-
puted using Fagin-Halperns’ Rule of Conditioning [21].

3 From Propositional Logic to Uncertain
First-Order Logic

Propositional Logic. Recall that apropositionis simply
a statement such as “this is an introduction to uncertain

logic”. We will represent formulas in propositional logic
by lower case greek letters (e.g.,ϕ, ψ). In propositional
logic, a proposition can be obtained from other proposi-
tions using connectives like∧ (and),∨ (or), ¬ (not), and
=⇒ (implies). Through (classical)inference, propositions
can be derived from a given a set of propositions (called
premises) using (classical) “rules of inference” such as
“modus ponens”.

Predicate Logic. Predicate logic allows us to look into the
structure of propositions. For example, the fact that some
entity a is aboveanother entityb would be expressed as
Above(a, b), where “Above” is a two-place predicate
symbol and “a” and “b” are individual constants. For the
remainder of this paper, we will assume finite domains for
the interpretation of predicate logic formulas (i.e., individ-
ual variables ranges over a finite number of entities).1

First-Order Logic. First Order Logic extends predicate
logic by the universal quantifier(∀) and theexistential
quantifier (∃). Quantified formulas provide a more flex-
ible way of talking about all objects in the domain (i.e.,
elements in our universe of discourse) or of asserting a
property of an individual object.

Uncertain Logic. Uncertain logic deals with propositions
(ϕ1, ϕ2, . . .) whose truth is uncertain. The level of uncer-
tainty is modeled with DS theory and is bounded in the
range[0, 1]. In general, we will consider formulas withk
free variables that range over individuals from some finite
domainΘX = {x1, . . . , xn}, with n ≥ 1, for example

ϕ(x), with uncertainty[α, β], (1)

whereϕ(x) is a formula with the only free variablex rang-
ing over elements inΘX and [α, β] it the corresponding
uncertainty interval with0 ≤ α ≤ β ≤ 1. 2

To emphasize the fact that uncertain logic models uncer-
tainty of the true value of a proposition, we define thelog-
ical FoD as follows.

Definition 1 (Logical FoD) Given a logic proposition
ϕ(x) with x ranging over entities inΘX , and a true-false
FoD Θt–f = {1,0}, the logical FoDΘϕ(x)×{1,0} is given
by:

Θϕ(x)×{1,0} = {ϕ(x) × 1, ϕ(x) × 0}. (2)

1When referring to propositional and predicate logic, we follow the
conventions and definitions provided in [22] and [23].

2We can define this first-order logic expression more formallyas fol-
lows: Consider a quantifier-free first-order formulaϕ(x) from a (not
necessarily finite) set of formulasΦ in some first-order languageL with
x being the only free variable inϕ. Moreover, letΘX = {x1, . . . , xn}
be a non-empty set of individuals under observation with respect to for-
mulas inΦ. Throughout this paper, we may represent the logic for-
mulaϕ(x/xi), the property expressed byϕ for the individualxi, i =
1, . . . , n, with the abbreviated notationϕ(xi), i.e.,ϕ(xi) ≡ ϕ(x/xi).
In addition, the DS models that we define for a quantifier-freefirst-order
formulaϕ(x) extend to the sets of formulasϕ(xi), i = 1, . . . , n, de-
fined on the corresponding logical FoDs. This extension is used in Sec-
tion 5, where we define models for existential and universal quantifiers.
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When no confusion can arise, we will employ the follow-
ing notation:

ϕ(x) ≡ ϕ(x)×1;ϕ(x) ≡ ϕ(x)×0; Θϕ(x) ≡ Θϕ(x)×{1,0}.

A DS theoretic model that would capture the information
in (1) is:

ϕ(x) : m(ϕ(x)) = α;

m(ϕ(x)) = 1 − β;

m(Θϕ(x)) = β − α, (3)

defined over the logical FoD{ϕ(x), ϕ(x)}. In order to
simplify the arguments in the mass assignments, we may
use the following alternate notation:

ϕ(x) : mϕ(x) = α;mϕ(x) = 1−β;mϕ(Θϕ(x)) = β−α.
(4)

Semantics. In classical logic there are two truth values,
“true” and “false”. An expression that is true for all inter-
pretations is called a tautology (“⊤”). An expression that
is not true for any interpretation is a contradiction (“⊥”).
Two expressions are semantically equivalent if they take
on the same truth value for all interpretations.

In uncertain logic we extend these definitions. The truth
value of an expression corresponds to the support that
is projected into the true-false FoD,Θt–f = {1,0}. A
BBA (3) defined by[α, β] = [1, 1] corresponds to the clas-
sical logical truth. A BBA (3) defined by[α, β] = [0, 0]
corresponds to the classical logical falsehood.

The notions of tautology and contradiction in uncertain
logic are extended following an approach similar to that
in [24]. In particular, given a generic propositionψ char-
acterized by the uncertainty intervalσ = [α, β], we define
a σ-tautology as⊤σ ≡ ψ ∨ ¬ψ, and aσ-contradiction
as ⊥σ≡ ψ ∧ ¬ψ. It follows that ⊤ ≡ ⊤σ=[1,1], and
⊥≡⊥σ=[0,0].

4 Uncertain Logic Operators

The AND and OR operators are, together with the logical
negation, the basic operators in classical logic. This is also
the case in uncertain logic, as any other operator can be
defined using combinations of these three basic operators.
In order to ensure consistency with classical logic, uncer-
tain logic operators should satisfy at least the following:
(a) (ϕ1(x) ∨ ϕ2(x)) and¬(¬ϕ1(x) ∧ ¬ϕ2(x)) must have
identical DS theoretic models; (b)(ϕ1(x) ∧ ϕ2(x)) and
¬(¬ϕ1(x) ∨ ¬ϕ2(x)) have identical DS theoretic models;
(c) in the general case, the DS model for AND and OR
operations are distinct; (d) in the absence of uncertainty,
uncertain logic models converge to those of conventional
logic; (e) in a probabilistic scenario (i.e.,α = β), uncer-
tain logic models are also probabilistic; (f) Uncertain logic
AND and OR operators must be idempotent, commutative,
associative, and distributive.

4.1 Uncertain Logic Negation

Consider a logical FoDΘϕ(x) = {ϕ(x), ϕ(x)} and a BBA
mϕ(·) defined as:

mϕ(x) = α; mϕ(x) = 1−β; mϕ(Θϕ(x)) = β−α. (5)

A complementary BBA for (5) is given by [25]:

mc
ϕ(x) = 1−β; mc

ϕ(x) = α; mc
ϕ(Θϕ(x)) = β−α. (6)

Based on the complementary BBA, we can define an un-
certain logic negation as follows.

Definition 2 (Logical Not in Uncertain Logic) Given an
uncertain propositionϕ(x) as defined in (1), and its cor-
responding DS model defined by (4), the logical negation
ofϕ(x) is given by:

¬ϕ(x), with uncertainty[1 − β, 1 − α]. (7)

We utilize the complementary BBA corresponding to (4) as
the DS theoretic model for¬ϕ(x), i.e.,

¬ϕ(x) : mc
ϕ(x) = 1 − β;

mc
ϕ(x) = α;

mc
ϕ(Θϕ(x)) = β − α. (8)

Definition 2 satisfies an important property: Given a
propositionϕ(x), the BBA corresponding to its double-
negation is the same model as the one associated with
ϕ(x). In other words, Definition 2 satisfies¬¬ϕ(x) =
ϕ(x), which is a basic property in (classical) logic.

4.2 Uncertain Logic AND/OR

Definition 3 (Logical And & Or in Uncertain Logic)
Suppose that we haveM logic propositions, each provid-
ing a statement of the following type regarding the truth
of x with respect to the propositionϕi(·):

ϕi(x), with uncertainty[αi, βi], i = 1, . . . ,M. (9)

The corresponding DS theoretic models are
ϕi(x) : mϕi(x) = αi; mϕi(x) = 1−βi; mϕi(Θϕi(x)) =
βi − αi, for i = 1, 2, . . . ,M . We propose to utilize the
following DS theoretic models for the logical AND and
OR of the statements in(9):

M∧

i=1

ϕi(x) : m(·) =

M⋂

i=1

mϕi(·);

and
M∨

i=1

ϕi(x) : m(·) =

(
M⋂

i=1

mc
ϕi

(·)
)c

, (10)

where
⋂

denotes an appropriate fusion operator.3

3A similar model can be obtained for the case of AND/OR opera-
tions of a set of expressions{ϕ(xi)} with uncertainty[αi, βi], xi ∈
{x1, x2, . . . , xn}. In this case,

Vn
i=1 ϕ(xi) : m(·) =

Tn
i=1 mϕ(·),

and
Wn

i=1 ϕ(xi) : m(·) =
`

Tn
i=1 m

c
ϕ(·)

´c
. This case represents

AND/OR models applied to the truthfulness of elements{xi} satisfy-
ing a propertyϕ, whereas (10) analyzes the case ofx satisfying multiple
properties{ϕi}.
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Table 1: DCR-Based Logical AND and OR. Note that the DS modelsfor AND and OR are identical, which suggests that
DCR is not an appropriate fusion operator for consistent logic operations. Note that, in both cases, the masses should be
normalized by1 −K, withK = 1 −∑A∈F m(A) = α1(1 − β2) + (1 − β1)α2.

Focal Set ϕ1(x) ∧ ϕ2(x) ϕ1(x) ∨ ϕ2(x)
x α1β2 + (β1 − α1)α2 α1β2 + (β1 − α1)α2

x (1 − β1)(1 − α2) + (β1 − α1)(1 − β2) (1 − β1)(1 − α2) + (β1 − α1)(1 − β2)
Θ(ϕ1·ϕ2)(x) (β1 − α1)(β2 − α2) (β1 − α1)(β2 − α2)

4.3 DCR-Based Uncertain Logic

When the fusion operator
⋂

in (10) is DCR, the AND op-
eration in this model is equivalent to the conjunctive rule
of combination in [17]. In this subsection we go further
and explore the viability of using DCR as the fusion oper-
ator in uncertain logic.

Consider the two-source/two-propositions (i.e., M = 2)
case. Table 1 contains the DCR-based logical AND and
OR operations for this case. Notice that the mass assign-
ments for the AND operation (i.e.,ϕ1(x) ∧ϕ2(x)) are ex-
actly the same as the ones obtained for the OR operation
(i.e., ϕ1(x) ∨ ϕ1(x)). Having identical models for both
AND and OR operators suggests that, although DCR may
work as a fusion operator for certain operations, it does not
render models that satisfy important properties for all the
logical operations defined in this paper. More particularly,
DCR-based uncertain logic does not satisfy the “unique-
ness of the model” property. As an alternative, we propose
using a more appropriate fusion strategy, such as the CFE,
which is analyzed next.

4.4 CFE-Based Uncertain Logic
Recall (from Section 2) that CFE-based fusion requires the
definition of coefficientsγi(·). For uncertain logic, we in-
troduce the Logic Consistent (LC) strategy, which ensures
consistency with logical operations.

Definition 4 (Logic Consistent (LC) Strategy) For the
caseM = 2 in (10), let us defineα = min(α1, α2);
β = min(β1, β2); α = max(α1, α2); β = max(β1, β2);

δ1 = β1 − α1; δ2 = β2 −α2; δ = β −α; andδ = β − α.
Then select the CFE parameters as follows:

γ1(x) = γ2(x) ≡ γ(x); γ1(x) = γ2(x) ≡ γ(x);

γ1(Θ) = γ2(Θ) ≡ γ(Θ),

where the CFE parametersγ(x), γ(x), andγ(Θ) are se-
lected in the following manner.

a. Logical AND:

– If δ1 + δ2 6= 0:

γ(x) =
α(β1 + β2) − β(α1 + α2)

2(δ1 + δ2)
;

γ(x) =
1

2
−

β(2 − α1 − α2) − α(2 − β1 − β2)

2(δ1 + δ2)
;

γ(Θ) =
δ

δ1 + δ2
.

– If δ1 + δ2 = 0, i.e.,α1 = β1 andα2 = β2:

γ(x) =
α− γ(Θ) (α1 + α2)

2
;

γ(x) =
(1 − α) − δ(Θ) (2 − α1 − α2)

2
;

γ(Θ) = arbitrary.

b. Logical OR:

– If δ1 + δ2 6= 0:

γ(x) =
1

2
− β(2 − α1 − α2) − α(2 − β1 − β2)

2(δ1 + δ2)
;

γ(x) =
α(β1 + β2) − β(α1 + α2)

2(δ1 + δ2)
;

γ(Θ) =
δ

δ1 + δ2
.

– If δ1 + δ2 = 0, i.e.,α1 = β1 andα2 = β2:

γ(x) =
α− γ(Θ) (α1 + α2)

2
;

γ(x) =
(1 − α) − δ(Θ) (2 − α1 − α2)

2
;

γ(Θ) = arbitrary.

When used for the AND operation, the LC strategy renders
the following BBA (see Appendix A for the derivation of
this BBA):

ϕ1(x) ∧ ϕ2(x) : m(x) = α;

m(x) = 1 − β; and

m(Θ(ϕ1∧ϕ2)(x)) = β − α. (11)

When used for the OR operation, the LC strategy renders
the following BBA:

ϕ1(x) ∨ ϕ2(x) : m(x) = α;

m(x) = 1 − β; and

m(Θ(ϕ1∨ϕ2)(x)) = β − α. (12)

In general, the CFE-based models for the logical AND
and OR are not identical (the exception would be a particu-
lar combination of uncertainty parameters[α, β] rendering
identical models), as is the case when DCR is used. There-
fore, CFE-based fusion is better suited for uncertain logic
than DCR. Indeed, referring to the conditions at the begin-
ning of Section 4, the CFE-based operations areconsistent
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Table 2: CFE-Based AND/OR Operations: Uncertainty
parameters are defined so that they represent complete cer-
tainty on the truth (or falseness) of each proposition.

Parameters mϕ1∧ϕ2(·) mϕ1∨ϕ2(·)
[α1, β1] [α2, β2] x x Θ x x Θ
[0, 0] [0, 0] 0 1 0 0 1 0
[0, 0] [1, 1] 0 1 0 1 0 0
[1, 1] [1, 1] 1 0 0 1 0 0

Table 3: CFE-Based Logical AND/OR Operations: Prob-
abilistic Scenario ([αi, βi] = [αi, αi], i ∈ {1, 2}).

Logical AND Logical OR
m(x) = α m(x) = α
m(x) = 1 − α m(x) = 1 − α
m(Θ(ϕ1∧ϕ2)(x)) = 0 m(Θ(ϕ1∨ϕ2)(x)) = 0

with classical logic. Referring to the same conditions, (a)
and (b) can be verified by checking Definition 3; (c) is ver-
ified by (11) and (12) above; (d) is proved in Table 2; (e)
is shown in Table 3; (f) is proved in Appendix B.

4.5 Other Uncertain Logic Operators
Based on the uncertain logic definitions and operators de-
scribed above, it is possible to extend them and create new
operators. As an example, consider implication rules.

Definition 5 (Logical Implication in Uncertain Logic)
Given two logic statementsϕ1(·) andϕ2(·), an implica-
tion rule in propositional logic has the property:

ϕ1(xi) =⇒ ϕ2(yj) = ¬ϕ1(xi) ∨ ϕ2(yj)

= ¬ (ϕ1(xi) ∧ ¬ϕ2(yj)) ,

wherexi ∈ ΘX andyj ∈ ΘY . Consider the case where
the antecedentϕ1(xi) and/or the consequentϕ2(yj) are/is
uncertain. Furthermore, suppose that said uncertainty is
represented via the DS theoretic modelsmX(·) andmY (·)
over the logical FoDs{ϕ(xi), ϕ(xi)} and{ϕ(yj), ϕ(yj)},
respectively. Then, the implication ruleϕ1(xi) =⇒
ϕ2(yj) is taken to have the following DS theoretic model:

mϕX→ϕY (·) = (mc
X ∨mY )(·)

= (mX ∧mc
Y )c(·), (13)

over the FoD{ϕ(xi), ϕ(xi)} × {ϕ(yj), ϕ(yj)}.

5 Uncertain Logic Quantifiers

We define existential and universal quantifiers in uncertain
logic as follows.

Definition 6 (Existential Quantifier in Uncertain Logic)
Consider the statement:

∃x ϕ(x), with uncertainty[α, β], (14)

wherex ∈ ΘX = {x1, x2, . . . , xN}. Let us define an ex-
tended logical FoDΘX′ = {ϕ(x1), ϕ(x2), . . . , ϕ(xN )}×
{1,0}. Then, we define the DS theoretic model for (14)
as:

N∨

i=1

ϕ(xi), (15)

over the FoDΘX′ , subject to the constraint:

m(1) =
∑N

i=1
mϕ(xi) = α;

m(0) =
∑N

i=1
mϕ(xi) = 1 − β;

m(ΘX′) = β − α. (16)

This model is an alternative to Skolemization [23]. This
model, however, does not rule out the use of Skolemiza-
tion, as there might be scenarios where the latter technique
is a better alternative. Note that if the uncertainty of at
least one of the propositionsϕ(xi) in (15) is [α, β], and
the uncertainty of every other proposition is[0, 0] (or, in
general,[αj , βj ], with αj ≤ α, βj ≤ β, andi 6= j), then
the DS model corresponding to (15) is equivalent to the
DS model corresponding to (14) when the OR operations
are computed as indicated by Definitions 3 and 4. Also, al-
though an infinite number of solutions satisfy (16), a use-
ful solution (e.g., for existential instantiation on inference
problems) is given bymϕ(xi) = α; mϕ(xi) = 1 − β; and
mϕ({xi, xi}) = β − α, i = 1, 2, . . . , N . This solution
can be proven by successively applying the idempotency
property to the OR operator.
Definition 7 (Universal Quantifier in Uncertain Logic)
Consider the statement:

∀x ϕ(x), with uncertainty[α, β], (17)

wherex ∈ ΘX = {x1, x2, . . . , xN}. Then, we define the
DS theoretic model for (17) as:

N∧

i=1

ϕ(xi), (18)

over the FoD ΘX′ = {ϕ(x1), ϕ(x2), . . . , ϕ(xN )} ×
{1,0}, subject to the constraint:

m(1) =
∑N

i=1
mϕ(xi) = α;

m(0) =
∑N

i=1
mϕ(xi) = 1 − β;

m(ΘX′) = β − α. (19)

Note that if the uncertainty of every propositionϕ(xi)
in (18) is [α, β], then the DS model corresponding to (18)
is equivalent to the DS model corresponding to (17) when
the AND operations are computed as indicated by Def-
initions 3 and 4. Also, although an infinite number of
solutions satisfy (19), a useful solution (e.g., for univer-
sal instantiation on inference) is given bymϕ(xi) = α;
mϕ(xi) = 1 − β; andmϕ({xi, xi}) = β − α, i =
1, 2, . . . , N . This solution can be proven by applying
idempotency to the AND operator.
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6 Inference in Uncertain Logic
Inference in uncertain logic shares the fundamental prin-
ciples of classical logic, and adds the possibility of attach-
ing, tracking, and propagating uncertainties that may arise
on premises and/or rules. Due to the extensive number of
methods for logic inference, the scope of this section is
limited to the introduction of some of the most fundamen-
tal inference rules, along with some basic examples that
illustrate uncertain logic inference. For an extended defi-
nition of these rules and their application for inference in
the context of classical logic, we refer the reader to [22].

Modus Ponens (MP). This rule states that, whenever the
logic sentencesϕ =⇒ ψ andϕ have been established,
then it is acceptable to infer the sentenceψ as well. MP
extends to uncertain logic as follows. Consider:

ϕ1(x), with uncertainty[α1, β1];

ϕ2(y), with uncertainty[α2, β2]; and

ϕ1(x) =⇒ ϕ2(y), with uncertainty[αR, βR]. (20)

Then, given the uncertain premisesϕ1(x) =⇒ ϕ2(y)
andϕ1, MP allows us to infer the uncertain expression
ϕ2(y). Note that, if the uncertainty parameters[α2, β2]
are unknown, their value should be obtained by apply-
ing the methodology introduced in Section 4 above. It
can be shown that uncertain MP (as well as the infer-
ence rules introduced this section) lead to⊤σ, with σ =
[max(αR, 1 − βR),max(αR, 1 − βR)].

To better understand MP in uncertain logic, consider an
example whereα1 = β1 = α2 = β2 = 1. By using
the model in Definition 5, we can obtainαR = βR = 1.
Furthermore, given theϕ1(x) =⇒ ϕ2(y) andϕ1(x),
then we can inferϕ2(y) with uncertainty[α2 = β2] =
[1, 1]. This case represents a scenario with no uncertainty.

Now consider a scenario where there is uncertainty in the
rule, in such a way that[αR, βR] = [0.5, 1.0], and assume
that we have a model for the uncertainty ofϕ1(x) such that
α1 = β1 = 1. Then, MP allows us to inferϕ2(y), with
the uncertainty[α2, β2] obtained from the equationsαR =
max(1 − β1, α2) andβR = max(1 − α1, β2). Solving
these equations we obtainα2 = 0.5 andβ2 = 1.

Modus Tolens (MT). This rule states that, if we know that
ϕ =⇒ ψ, then we can infer¬ϕ if we believe thatψ
is false. MT extends to uncertain logic as follows. As-
sume that the uncertainty on each of the expressions in-
volved in MP are defined by (20). Then, given the uncer-
tain premisesϕ1(x) =⇒ ϕ2(y) and¬ϕ2, MT allows
us to infer the uncertain expression¬ϕ1(y). As with MP
above, if the uncertainty parameters[α2, β2] are unknown,
their value should be obtained by applying the methodol-
ogy introduced in Section 4.

Other rules of inference. Uncertain logic can be extended
by incorporating new rules of inference that already exist
in conventional logic inference. Some examples of new

rules of inference are: AND elimination (AE), AND intro-
duction (AI), universal instantiation (UI), and existential
instantiation (EI). The definition of these rules of infer-
ence is straightforward based on their definition for con-
ventional logic, and is not included in this manuscript.

Example. Consider the following problem, originally in-
troduced in [22]. We know that horses are faster than dogs
and that there is a greyhound that is faster than every rab-
bit. We know that Harry is a horse and that Ralph is a
rabbit. We also know that greyhounds are dogs and that
our speed relationship is transitive. Then:

∀x ∀y Horse(x) ∧ Dog(y) ⇒ Faster(x, y) (21a)

∃y Greyhound(y) ∧ (∀z Rabbit(z) ⇒ Faster(y, z)) (21b)

∀y Greyhound(y) ⇒ Dog(y) (21c)

∀x ∀y ∀z Faster(x, y) ∧ Faster(y, z) ⇒ Faster(x, z) (21d)

Horse(Harry) (21e)

Rabbit(Ralph). (21f)

Using these logic statements, it can be inferred that Harry
is faster than Ralph (i.e., Faster(Harry, Ralph)) [22].

Now, let us introduce uncertain logic operations by assum-
ing that the logic premise (21a) is uncertain, with uncer-
tainty [α1, β1], and that there is no uncertainty in premises
(21b)-(21f). This represents some uncertainty in the sen-
tence “horses are faster than dogs”, which may occur if
we consider cases such as sick or old horses compared
to healthy dogs. The steps that are used for inferring
Faster(Harry, Ralph), as well as the uncertainty in each of
the steps of this process are in Table 4. It is easy to verify
that, ifα1 = β1 = 1. The initial steps in the inference pro-
cess are simply the reproduction of (21a)-(21f) as premises
1 to 6. Steps 7 to 13 can be obtained from applying EI, AI,
UI, and MP rules to premises 2 to 6. In our initial exam-
ple (only the first premise is uncertain), the uncertainty in
premises 2 to 6 is[αi, βi] = [1, 1], i = 2, 3, . . . , 6. Uncer-
tain logic operations become relevant in steps 14 to 19. For
example, the uncertainty in premise 16 is obtained from
solving the system of equations shown in the correspond-
ing row in Table 4. This system of equations is derived
from Definition 5. As a consequence, any change in the
uncertainty[α1, β1] directly affects[α16, β16]. Figure 1
illustrates the result in a probabilistic scenario. Note that,
for us to be able to conclude “Faster( Harry, Ralph )” given
the initial uncertainty,α4 must be larger thanα1. Similar
results can be further verified by modifying uncertainties
on the premises, whose values can be computed as indi-
cated in Table 4.

7 Conclusions
We have introducedUncertain Logic, a DS theoretic ap-
proach for first order logic operations. Uncertain logic
provides support for handling variables and quantifiers,
in addition to fundamental logic operations (i.e.,¬,∧,∨).
The framework introduced in this paper allows system-
atic generation of mass assignments based on uncertain
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Table 4: Steps followed for the inference of the sentence Faster(Harry, Ralph) based on the premises defined in (21). The
uncertainty is obtained from applying uncertain logic definitions and rules to the example described in Section 6.

Logic Formula Premises & Rule Uncertainty

1 ∀x ∀y Horse(x) ∧ Dog(y) ⇒ Faster(x, y) ∆ [α1, β1]
2 ∃y Greyhound(y) ∧ (∀z Rabbit(z) ⇒ Faster(y, z)) ∆ [α2, β2] = [1, 1]
3 ∀y Greyhound(y) ⇒ Dog(y) ∆ [α3, β3] = [1, 1]
4 ∀x ∀y ∀z Faster(x, y) ∧ Faster(y, z) ⇒ Faster(x, z) ∆ [α4, β4]
5 Horse(Harry) ∆ [α5, β5]
6 Rabbit(Ralph) ∆ [α6, β6] = [1, 1]
7 Greyhound(Greg) ∧ (∀z Rabbit(z) =⇒ Faster(Greg, z)) 2, EI [α7, β7] = [1, 1]
8 Greyhound(Greg) 7, AE [α8, β8] = [1, 1]
9 ∀z Rabbit(z) =⇒ Faster(Greg, z) 7, AE [α9, β9] = [1, 1]
10 Rabbit(Ralph) =⇒ Faster(Greg, Ralph) 9, UI [α10, β10] = [1, 1]
11 Faster(Greg, Ralph) 10, 6, MP [α11, β11] = [1, 1]
12 Greyhound(Greg) =⇒ Dog(Greg) 3, UI [α12, β12] = [1, 1]
13 Dog(Greg) 12, 8, MP [α13, β13] = [1, 1]
14 Horse(Harry) ∧ Dog(Greg) =⇒ Faster(Harry, Greg) 1, UI [α14, β14] = [α1, β1]
15 Horse(Harry) ∧ Dog(Greg) 5, 13, AI [α15, β15] = [α5, β5]
16 Faster(Harry, Greg) 14, 15, MP [α16, β16] obtained from solving

(

α14 = max(1 − β15, α16)

β14 = max(1 − α15, β16)

17 Faster(Harry, Greg) ∧ Faster(Greg, Ralph) =⇒ Faster(Harry, Ralph) 4, UI [α17, β17] = [α4, β4]
18 Faster(Harry, Greg) ∧ Faster(Greg, Ralph) 16, 11, AI [α18, β18] = [α16, β16]
19 Faster(Harry, Ralph) 17, 18, MP [α19, β19] obtained from solving

(

α17 = max(1 − β18, α19)

β17 = max(1 − α18, β19)

α
1
 = β

1

α 4 =
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4

Uncertainty (α
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Figure 1: Uncertainty in Premise 19 of Table 4.

first order logic formulas. Furthermore, by using appropri-
ate fusion operators, higher-level applications are possible
within this framework, such as inference and resolution
based on uncertain data models.
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Appendix A. BBA for LC CFE-based AND

Based on the definition of the CFE fusion operator:

m(x) = γ1(x) + γ1(Θ)m1(x) + γ2(x) + γ2(Θ)m2(x). (22)

Substituting the CFE coefficients for the AND operation, as in-
dicated by Definition 4, in (22):

m(x) = 2γ(x) + 2γ(Θ)(α1 + α2).

• Whenδ1 + δ2 6= 0:

m(x) =
α(β1 + β2) − β(α1 + α2)

δ1 + δ2
+

δ(α1 + α2)

δ1 + δ2

= 1
δ1+δ2

(αβ1 + αβ2 − α1β − α2β + δ(α1 + α2)).

Sinceδ = β − α:

m(x) = 1
δ1+δ2

(αβ1 + αβ2 − α1β − α2β

+ α1β + α2β − α1α− α2α)

= 1
δ1+δ2

(αβ1 + αβ2 − α1α− α2α)

= 1
δ1+δ2

(α(β2 − α2 + β1 − α1)). (23)

Substitutingδ1 = β1 − α1 and δ2 = β2 − α2 in (23):
m(x) = α.

• Whenδ1 + δ2 = 0, and makingγ(Θ) = 0:

m(x) = 2γ(x) = α.

The massm(x) is given by:

m(x) = γ1(x) + γ1(Θ)m1(x) + γ2(x) + γ2(Θ)m2(x). (24)

Substituting the CFE coefficients as indicated by Definition4
in (24):

m(x) = 2γ(x) + 2γ(Θ)(2 − β1 − β2).

• Whenδ1 + δ2 6= 0:

m(x) =
δ1 + δ2 − β(2 − α1 − α2) + α(2 − β1 − β2)

δ1 + δ2

+
δ(2 − β1 − β2)

δ1 + δ2

= 1
δ1+δ2

(δ1 + δ2 − β(2 − α1 − α2)

+ α(2 − β1 − β2) + δ(2 − β1 − β2)).
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Sinceδ = β − α:

m(x) = 1
δ1+δ2

(δ1 + δ2 − β(2 − α1 − α2)

+ α(2 − β1 − β2) + (β − α)(2 − β1 − β2))

= 1
δ1+δ2

(δ1 + δ2 − β(2 − α1 − α2 − 2 + β1 + β2))

= 1
δ1+δ2

(δ1 + δ2 − β(β1 − α1 + β2 − α2)).

Substitutingδ1 = β1 − α1 andδ2 = β2 − α2 in (24):

m(x) = 1 − β.

• Whenδ1 + δ2 = 0, and makingγ(Θ) = 0:

m(x) = 2γ(x) = 1 − α = 1 − β.

Finally,m(Θ) = 1 −m(x) −m(x) = β − α.

Appendix B. Properties of the LC CFE-based
Uncertain Logic operations

Consider logic expressions of the formϕ(xi),with 1 ≤ i ≤ N.
Then, the following properties are satisfied:

1. Idempotency: This property is defined by: ϕi(x) ∧
ϕi(x) = ϕi(x) ∨ ϕi(x) = ϕi(x). In this case:

m∧(x) = α = min(αi, αi) = αi

= max(αi, αi) = α = m∨(x);

m∧(x) = 1 − β = 1 − min(βi, βi) = 1 − βi

= 1 − max(βi, βi) = 1 − β = m∨(x);

m∧(Θ) = β − α = βi − αi

= β − α = m∨(Θ).

2. Commutativity: This property refers to satisfying:ϕ1(x)∧
ϕ2(x) = ϕ2(x) ∧ ϕ1(x),
and ϕ1(x) ∨ ϕ2(x) = ϕ2(x) ∨ ϕ1(x). Let us call
mϕi∧ϕj (·) the BBA resulting fromϕi(x) ∧ ϕj(x), i =
{1, 2}. Then, for the AND operation:

mϕ1∧ϕ2(x) = min(α1, α2)

= min(α2, α1) = mϕ2∧ϕ1(x)

mϕ1∧ϕ2(x) = 1 − min(β1, β2)

= 1 − min(β2, β1) = mϕ2∧ϕ1(x)

mϕ1∧ϕ2(Θ) = min(β1, β2) − min(α1, α2)

= min(β2, β1) − min(α2, α1)

= mϕ2∧ϕ1(Θ).

A proof for commutativity for the logical OR operation is
obtained by following a similar procedure.

3. Associativity: The associative property is defined by:
ϕ1(x) ∧ [ ϕ2(x)∧ϕ3(x) ] = [ϕ1(x)∧ϕ2(x) ] ∧ ϕ3(x),
and ϕ1(x) ∨ [ ϕ2(x) ∨ ϕ3(x) ] = [ ϕ1(x) ∨
ϕ2(x) ] ∨ ϕ3(x). Let us callϕ4(·) the model gener-
ated byϕ2(x) ∧ ϕ3(x), andϕ5(·) the model generated by
ϕ1(x)∧ϕ2(x). Also, let us callmϕi∧ϕj (·) the BBA result-
ing fromϕi(x)∧ ϕj(x), i = {1, . . . , 5}. Our goal (for the

AND operation) is to show that the model forϕ1(·)∧ϕ4(·)
is equivalent to the model forϕ5(·) ∧ ϕ3(·):

mϕ1∧ϕ4(x) = min(α1,min(α2, α3))

= min(min(α1, α2), α3) = mϕ5∧ϕ3(x)

mϕ1∧ϕ4(x) = 1 − min(β1,min(β2, β3))

= 1 − min(min(β1, β2), β3)

= mϕ5∧ϕ2(x)

mϕ1∧ϕ4(Θ) = min(β1,min(β2, β3))

− min(α1,min(α2, α3))

= min(min(β1, β2), β3)

− min(min(α1, α2), α3) = mϕ5∧ϕ3(Θ).

A proof for associativity for the logical OR operation is
obtained by following a similar procedure.

4. Distributivity: Distributive operations satisfy:
ϕ1(xi) ∧ [ ϕ2(xj) ∨ ϕ3(xk) ] = [ ϕ1(xi) ∧
ϕ2(xj) ] ∨ [ ϕ1(xi)∧ϕ3(xj) ], andϕ1(xi) ∨ [ ϕ2(xj)∧
ϕ3(xk) ] = [ ϕ1(xi) ∨ ϕ2(xj) ] ∧ [ ϕ1(xi) ∨ ϕ3(xj) ].
Let us call ϕ4(·) the model generated by
ϕ1(x) ∧ [ϕ2(x) ∨ ϕ3(x)], and ϕ5(·) the model gen-
erated by[ϕ1(x) ∧ ϕ2(x)] ∨ [ϕ1(x) ∧ ϕ3(x)]. Our goal is
to show that the model forϕ4(·) is equivalent to the model
for ϕ5(·). In general, these two models are:

mϕ4(x) = min(α1,max(α2, α3));

mϕ4(x) = 1 − min(β1,max(β2, β3));

mϕ4(Θ) = min(β1,max(β2, β3));

− min(α1,max(α2, α3)); and

mϕ5(x) = max(min(α1, α2),min(α1, α3));

mϕ5(x) = 1 − max(min(β1, β2),min(β1, β3));

mϕ5(Θ) = max(min(β1, β2),min(β1, β3))

− max(min(α1, α2),min(α1, α3)).

Now, consider the focal setx. We have three cases (other
possible cases are equivalent to these three after applying
the commutativity rule): (a)α1 ≤ α2 ≤ α3; (b) α2 ≤
α1 ≤ α3; and (c)α2 ≤ α3 ≤ α1. The mass associated to
the focal setx is:

(a) mϕ4(x) = α1 = mϕ5(x);

(b) mϕ4(x) = α1 = mϕ5(x); and

(c) mϕ4(x) = α3 = mϕ5(x);

i.e.,mϕ4(x) = mϕ5(x) in all the cases. For the focal set
x we also have three basic cases: (a)β1 ≤ β2 ≤ β3; (b)
β2 ≤ β1 ≤ β3; and (c)β2 ≤ β3 ≤ β1; which render:

(a) mϕ4(x) = 1 − β1 = mϕ5(x);

(b) mϕ4(x) = 1 − β1 = mϕ5(x); and

(c) mϕ4(x) = 1 − β3 = mϕ5(x);

Based on the cases above, it can be shown that also
mϕ4(Θ) = mϕ5(Θ), proving distributivity for the logical
AND operation. A proof for distributivity for the logical
OR operation is obtained by following a similar procedure.
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Abstract
Lower previsions defined on a finite set of gambles can
be looked at as points in a finite-dimensional real vector
space. Within that vector space, the sets of sure loss avoid-
ing and coherent lower previsions form convex polyhedra.
We present procedures for obtaining characterizations of
these polyhedra in terms of a minimal, finite number of
linear constraints. As compared to the previously known
procedure, these procedures are more efficient and much
more straightforward. Next, we take a look at a procedure
for correcting incoherent lower previsions based on point-
wise dominance. This procedure can be formulated as a
multi-objective linear program, and the availability of the
finite characterizations provide an avenue for making these
programs computationally feasible.

Keywords. Coherence, avoiding sure loss, linear constraint,
polytope, enumeration, projection, multi-objective linear
programming, incoherence, dominance.

1 Introduction

In the theory of coherent lower previsions (for an overview,
see Walley 1991 or Miranda 2008), its coherence condi-
tion takes a central role: it defines which models—lower
previsions—are fully rational, meaning that they do not im-
plicitly encode commitments—in terms of buying prices for
gambles—that are more demanding than the ones explicitly
made. The consequences of this criterion have been exten-
sively studied both in the unconditional and the conditional
case, in finite and infinite spaces.

In this paper, we study the coherence criterion for uncondi-
tional lower previsions defined on a finite set of gambles,
which in turn are essentially defined on a finite possibil-
ity space. What can we still add in this restricted setting?
Results that make new numerical applications feasible,
namely, procedures for obtaining a characterization of co-
herence in terms of a minimal, finite number of linear con-
straints that are more efficient than the existing one. These
results are presented in Section 4. Note that our procedures

give an answer to the question “Which lower previsions are
coherent?”, and should not be confused with verification
procedures, which deal with the question “Is this specific
lower prevision coherent?”. Of course, the characterization
our procedures generate can be used for verification pur-
poses, but this may be reasonable only if many verifications
need to be performed

One may wonder what new kinds of applications are possi-
ble once we have a minimal linear constraints characteriza-
tion? In Section 5, we provide one example in a proposal
for a method to correct an incoherent lower prevision down-
ward to make it coherent. Similarly to natural extension,
this method is formulated in terms of pointwise dominance
of lower previsions.

Because of the finitary context of this paper and its aim to be
an enabler for numerical applications, it is advantageous to
reformulate a number of variants of the coherence criterion
and the related criterion of avoiding sure loss in matrix
terms; we do this in Section 3.

We make use of polytope theory concepts throughout this
paper. We also make use of multi-objective linear program-
ming both for our downward correction method as well as
for some of our procedures to obtain the minimal linear
constraints characterization. Therefore, we start out with
short primers on these topics in Section 2.

2 Primers

2.1 Polytope Theory Essentials

Let us review some concepts and techniques from polytope
theory (for more information, see, e.g., Grünbaum 1967,
Ziegler 1995, or Fukuda 2004). Any convex polyhedron in
a n-dimensional space can be described in two ways:

As an H-representation {x ∈Rn ∶ Ax ≤ b}: A set of k linear
constraints (inequalities/half-spaces) defined by a matrix
A in Rk×n and a column vector b in Rk; denoted compactly
as [A,b], where the comma denotes horizontal concatena-
tion of matrices.
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As a V-representation {x ∈Rn ∶ x =V µ ∧ µ ≥ 0 ∧ w⊺µ = 1}:
A set of ` points and rays, defined by a matrix V in Rn×`
and a row vector w in R`, with the zero components
indicating rays; denoted compactly as [V ;w], where the
semicolon denotes vertical concatenation of matrices.

The two representations are dual in the sense that [A⊺;b⊺] is
the V-representation of some polyhedron and [V⊺,w⊺] is the
H-representation of some—possibly different—polyhedron.
This duality is also present in the algorithms of polytope
theory.

On the right, we give a simple
2-dimensional polyhedron, in
gray, in both a visual H- and
V-representation.

H- and V-representations may contain redundant con-
straints and points or rays, i.e., those that are implied by the
other constraints or the other points or rays. Non-redundant
extreme points or rays are called vertices and extreme rays.
In our illustration, there is one redundant constraint in the
H-representation and one redundant point in the V-repre-
sentation. Let i be the total number of constraints or points
and j the non-redundant number; redundancy removal al-
gorithms essentially require solving i linear programming
problems of size n× j (Clarkson 1994).

Moving between the H- and V-representations is done using
vertex enumeration algorithms and the dual facet enumer-
ation algorithms. There are enumeration algorithms with
a complexity linear in n, k, and ` (Avis & Fukuda 1992).
Nevertheless, enumeration is inherently highly complex, as
` can be exponential in k and vice versa.

Projecting a polyhedron is straightforward in V-represent-
ation: project the vertices and then remove the redundant
ones. However, in H-representation the best technique de-
pends on the polyhedron’s properties: the classical ap-
proach, Fourier–Motzkin elimination, is inefficient and on
top of that generates a lot of redundant constraints; another
approach, block elimination, is inefficient when the num-
ber of vertices is high, which is common. The equality set
projection approach is claimed to be useful in such cases
(Jones et al. 2004), but our input data caused errors in the
available code (Kvasnica et al. 2006).

Below, we assume that the output of enumeration and pro-
jection algorithms is minimal, i.e., non-redundant.

2.2 Multi-Objective Linear Programming

We here give a brief introduction to multi-objective lin-
ear programming (for more information, see, e.g., Ehrgott
2005). We assume familiarity with standard, single objec-
tive linear programming (if not, have a quick look at a
standard reference such as Bertsimas & Tsitsiklis 1997).

Any multi-objective linear program can be put in the fol-

lowing form:
maximize y =Cx,

subject to Ax ≤ b and x ≥ 0.
(1)

In this program, x denotes the n-dimensional real opti-
mization vector, y is the m-dimensional objective vector,
and Ax ≤ b is a set of k linear constraints; so we assume
C ∈ Rm×n, A ∈ Rk×n, and b ∈ Rk as given. Vector inequali-
ties should be read as follows: x ≥ z ⇔ min(x− z) ≥ 0 and
x > z ⇔ x ≥ z ∧ x ≠ z. Here, min (max) selects its argument
vector’s minimum (maximum) component value.

Whereas in single objective linear programming, with m= 1,
all optimization vectors x are completely ordered by the
single objective, whenever m > 1, they are only partially or-
dered through the standard ordering of the objective vectors.
Consequently, whereas in single objective linear program-
ming all optimal solutions are equivalent from the objective
value point of view, in multi-objective linear programming
there are in general multiple sets of incomparable ‘Pareto’
optimal (or ‘efficient’)—i.e. C-undominated—solutions.

The sets of feasible optimization and objective vectors areX ∶= {x ∈Rn ∶ Ax ≤ b ∧ x ≥ 0} and Y ∶= {Cx ∶ x ∈X}, respec-
tively. Furthermore,X ∗ ∶= {x ∈X ∶ (∀z ∈X ∶Cx /<Cz)} is the
set of C-undominated solutions, and so Y∗ ∶= {Cx ∶ x ∈X ∗}
is the set of undominated objective vectors. The sets of
extreme points of the sets of undominated solutions and
objectives are extX ∗ and extY∗, respectively.

Let us give a simple graphical illustration (with n =m = 2)
below right to clarify the concepts just introduced. The sets

x1

x2 X
X ∗

C1

C2

y1

y2

Y

Y∗
ŷ

y̌

X and Y are shaded gray. The
sets X ∗ and Y∗ are shown as
black lines. The members of
extX ∗ and extY∗ are shown
as black dots. The vectors
C1 and C2—rows of C—that
point towards higher objective
vector component values are
drawn free: only their direc-
tion and magnitude matter.

In the picture of the objec-
tive vector space, we have
included the so-called ideal
point ŷ and nadir point y̌, the
upper and lower envelopes ofY∗, respectively. They pro-
vide bounds on the values at-
tained by the undominated ob-
jective vector components.

The main computational tasks
are, in non-decreasing order of complexity:

M1. Finding the ideal point ŷ, which can be done by solv-
ing a linear program maximizing each of the compo-
nents of y separately.
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M2. Finding the nadir point y̌ (for algorithms, see Ehrgott
& Tenfelde-Podehl 2003 and Alves & Costa 2009).

M3. Finding the extreme points extY∗ and the whole setY∗ of undominated objective vectors (for algorithms,
see Benson 1998 and Ehrgott et al. 2012; these are
relatively efficient only if m is small compared to n).

M4. Finding the extreme points extX ∗ of the set of op-
timal optimization vectors (for algorithms, MOLP
simplex solvers, see, e.g., Evans & Steuer 1973, Strij-
bosch et al. 1991, or Ehrgott 2005, Sec. 7).

M5. Finding the whole set X ∗ of optimal optimization
vectors (for algorithms, based on post-processing the
MOLP simplex solver output, see, e.g., Yu & Zeleny
1975 or Isermann 1977).

3 Matrix Formulations
of Avoiding Sure Loss and Coherence

Consider a finite possibility space Ω and a finite set of
gambles K ⊂RΩ on this possibility space. The elements ofK can be looked at as vectors; we group them as columns
in a gamble matrix K ∈RΩ×K. We use the same notation
for scalars and constant vectors; the identity matrix is de-
noted I; there will be no ambiguity in this paper because
we leave their size implicit. The columns of K⊺ are the
degenerate previsions, so {K⊺µ ∶ µ ≥ 0 ∧ 1⊺µ = 1} is the set
of linear previsions. Any lower prevision P defined on K
can be looked at as a column vector in RK. Similarly, min
and max can also thought of at as column vectors in RK.

A lower prevision P on K is said to avoid sure loss (cf.,
e.g., Walley 1991, §2.4) if and only if

∀λ ≥ 0 ∶ P⊺λ ≤max(Kλ), (2)

or, based on dominance by a linear prevision (cf. Walley
1991, §3.3.3(a)), if

∃µ ≥ 0 ∶ P ≤K⊺µ ∧ 1⊺µ = 1, (3)

or, by introducing slack variables, if

∃µ,ν ≥ 0 ∶ P =K⊺µ − Iν ∧ 1⊺µ = 1. (4)

This last form shows that the set of all sure loss avoiding
lower previsions is a convex polyhedron by providing a
V-representation

[V
w] ∶= [K⊺ −I

1⊺ 0⊺] . (5)

Now, let S denote the set of matrices obtained from the
identity matrix by changing at most one 1 to −1. Then a
lower prevision P on K is called coherent (cf., e.g., Walley
1991, §2.5) if and only if

∀S ∈ S ∶ ∀λ ≥ 0 ∶ P⊺Sλ ≤max(KSλ), (6)

or, by formal analogy to Equation (3) and because S⊺= S, if

∀S ∈ S ∶ ∃µS ≥ 0 ∶ SP ≤ SK⊺µS ∧ 1⊺µS = 1, (7)

or, by introducing slack variables and because S−1 = S, if

∀S ∈ S ∶ ∃µS,νS ≥ 0 ∶ P =K⊺µS−SνS ∧ 1⊺µS = 1. (8)

This last form shows that the set of all coherent lower
previsions is an intersection of ∣K∣+1 convex polyhedra
with V-representations

[VS
wS

] ∶= [K⊺ −S
1⊺ 0⊺] , (9)

and therefore is a convex polyhedron. Furthermore, co-
herence implies that min ≤ P ≤ max (cf. Walley 1991,
§2.6.1(a)), so the set of coherent lower previsions is a
bounded polyhedron, i.e., a polytope.

We will later on in this paper use the Lower Envelope
Theorem (see, e.g., Walley 1991, §2.6.3):
Theorem. The lower envelope P of a subset Q of the
coherent lower previsions on a set of gamblesK is coherent.
(So P f ∶= infQ∈QQ f for each gamble f in K.) ⊲
We give a proof based on Equation (7)—a version of the
coherence criterion a shallow search of ours left unencoun-
tered in the literature:
Proof. By coherence of the Q inQ, we have a vector µQ,S such
that SQ ≤ SK⊺µQ,S for each S in S. By the lower envelope def-
inition, for S ∶= I, we have P ≤ Q ≤ K⊺µQ,I for any Q in Q. For
other S, let gS denote the gamble corresponding to the −1 diagonal
component in S. Let QS be a coherent lower prevision from Q
such that PgS = QSgS. Then SP ≤ SQS ≤ SK⊺µQS,S. ◻
In the literature on verification procedures—which are typi-
cally formulated in the more general conditional context—,
there is a clear separation between algorithms based on
criteria formulations of the type of Equations (2) and (6)
(cf. Walley et al. 2004), and those of the type of Equations
(3)–(4) and (7)–(8) (see, e.g., Vicig 1996 and Biazzo &
Gilio 2000). This separation is also present in the char-
acterization procedures we present; the latter type leads
to the procedures in Section 4.1, the former to those in
Section 4.2.

4 Computing Constraints Efficiently

Building on earlier work with lower probabilities (Walley
1991, App. A; Quaeghebeur & De Cooman 2008; Quaeghe-
beur 2009), we presented a procedure for obtaining char-
acterizations of the polytope of coherent lower previsions
in terms of a minimal, finite number of linear constraints
(Quaeghebeur 2010). However, the procedure is such that a
relatively large number of redundant constraints are gener-
ated, which at a later step need to be removed—a computa-
tionally demanding task. Moreover, the procedure and its
derivation is somewhat involved.
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It is possible to derive procedures in a more direct way.
Some of these more direct procedures turn out to be compu-
tationally more efficient as well, resulting in running times
that are up to an order of magnitude shorter.

What are our concrete goals? We wish to find minimal
H-representations for the set of all lower previsions P

A. that avoid sure loss ([ΛA,αA]),
B. that avoid sure loss and for which P ≥min ([ΛB,αB]),
C. that are coherent ([ΛC,αC]).
So for each goal, we want to obtain a block matrix [Λ ,α]
that stands for the linear constraints ΛP ≤ α .

These goals are formulated based on experimental results
from earlier work (Quaeghebeur & De Cooman 2008;
Quaeghebeur 2009, 2010): For coherence, we observed
that the V-representations have a much larger size than the
H-representations, and to such a degree that it currently
seems impractical to generate and use them. We observed
that avoiding sure loss with lower bound constraints leads
to a smaller H-representation than plain avoiding sure loss.
As the lower bound constraints are uncontroversial in most
contexts, it may be useful to use this combination as a
‘lighter’ proxy for plain avoiding sure loss.

Below, we first discuss the direct procedures and follow this
up with a look at improved versions of our earlier, involved
approach. We close the section with a short discussion of
our numerical experiments.

4.1 Straightforward Procedures

The straightforward procedures for Goal A go as follows:

A1. Apply a facet enumeration algorithm to the V-repre-
sentation of the polyhedron of lower previsions that
avoid sure loss in Equation (5) to obtain [ΛA,αA].

A2. As can be seen from Equation (3), we know an
H-representation for pairs [P;µI] of which the P-
components are lower previsions that avoid sure loss:

[AI,P AI,µI b0] ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

I −K⊺ 0−I 1
1⊺ 1−1⊺ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Project this H-representation onto the P-part to obtain[ΛA,αA].
The straightforward procedures for Goal B build on those
for Goal A:

B1. Start from the resulting H-representation of Proce-
dure A1 and add the lower bound constraints to it,
i.e., the block row [−I,−min(K)⊺], where the mini-
mum is taken column-wise. Because some constraints
may have become redundant because of this, perform
redundancy removal to obtain [ΛB,αB].

B2. Idem as Procedure B1, but now starting from the H-
representation resulting from Procedure A2.

The straightforward procedures for Goal C are based on the
similarities of the underlying problem with that of Goal A:

C1. Recall that the polytope of coherent lower previsions
is the intersection of ∣S ∣ = ∣K∣+1 polyhedra, one for
each value of S. So apply a facet enumeration algo-
rithm to the V-representation as given in Equation (9)
for each S to obtain the corresponding H-representa-
tions [AS,bS]. An H-representation of the intersection
polyhedron of polyhedra given as H-representations
is the vertical concatenation of these matrices. (In-
tersection of polyhedra in V-representation, or mixed
representations is not straightforward.) Perform redun-
dancy removal on this concatenation H-representation
to obtain [ΛC,αC].

C2. As can be seen from Equation (7), for each S we also
know an H-representation for pairs [P;µS] of which
the P-component belongs to the polyhedron corre-
sponding to S already mentioned in Procedure C1:

[AS,P AS,µS b0] ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

S −SK⊺ 0−I 1
1⊺ 1−1⊺ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Project this H-representation onto the P-part to obtain
the H-representation [AS,bS] already encountered in
Procedure C1, the remainder of which is to be followed
here as well.

C3. Equation (7) also shows that we can actually create a
single H-representation for pairs [P;µ] of which the
P-components are coherent lower previsions:

[AP Aµ b] ∶=⎡⎢⎢⎢⎢⎢⎢⎢⎣

AI,P AI,µI b0⋮ ⋱ ⋮
ASg,P ASg,µSg

b0⋮ ⋱ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

where Sg ∈ S, with g in K, has negative diagonal g-
component. Projecting this H-representation onto the
P-part again gives us [ΛC,αC]. Because of the block
diagonal structure of the set of columns to be removed
by projection, this procedure is essentially identical to
Procedure C2 from the computational point of view.

Comparing the two main procedure types, enumeration-
based (A1, B1, C1) and projection-based (A2, B2, C2, C3),
our numerical experiments showed that the enumeration-
based ones were faster by at least an order of magnitude. It
is not yet clear whether this is inherent or whether this is
due to the fact that the enumeration implementation used
(the double description method of Fukuda & Prodon 1996)
is efficient, and the facet projection implementations used
(Fourier–Motzkin and block elimination) are not.
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4.2 A More Involved Type of Procedure

All of the procedures in the previous section were based
on Equations (3)–(4) and (7)–(8). In these expressions, P
appears free, i.e., without being multiplied by a variable
vector such as λ , this in contrast to the other expressions
characterizing avoiding sure loss and coherence, Equations
(2) and (6). This allowed us to consider P as variable as
well, directly leading to the straightforward procedures.

In our earlier work (Quaeghebeur 2010), we created a pro-
cedure starting from the expressions with bound P. It is,
by the standard set by the best performing of the straight-
forward procedures, inefficient. However, it is possible to
create bound-P-based procedures that are relatively effi-
cient; we present the ones we found here, as the techniques
used might be useful in other contexts as well.

We first make an assumption, namely that all gambles
are non-constant and non-negative with zero minimum,
or NNZM. In Appendix 4.3 immediately following this
section we show that for coherent lower previsions this as-
sumption is non-limiting and how to move between general
gamble sets and NNZM gamble sets. The assumption is,
however, limiting for lower previsions that only avoid sure
loss. Note that P ≥min becomes P ≥ 0 for an NNZM set of
gambles K; i.e., positivity constraints.

We do not develop procedures for Goal A here and move
straight to Goal B, which because of the limiting nature of
the NNZM assumption must be seen as preparation for the
procedures for Goal C:

B3. We can rewrite Equation (2) as

∀γ ∈R ∶ ∀λ ≥ 0 ∶ max(Kλ) = γ ⇒ P⊺λ ≤ γ, (13)

which, because K is NNZM, can be normalized to

∀λ ≥ 0 ∶ max(Kλ) = 1 ⇒ P⊺λ ≤ 1. (14)

Now, again because K is NNZM, Kλ is pointwise
strictly increasing in λ . So we know that the feasible
set {λ ≥ 0 ∶Kλ ≤ 1} is bounded and that apart from 0,
all its vertices satisfy max(Kλ) = 1. So in our proce-
dure, we first vertex enumerate

[A b] ∶= [ K 1−I 0] , (15)

and then use this V-representation [V ;w] for the λ ’s to
construct an H-representation [V⊺,w⊺] for lower pre-
visions. Add positivity constraints [−I,0]; then after
redundancy removal we obtain [ΛB,αB].

B4. Because we assume K is NNZM, P ≥ 0, so we know
that all pointwise dominated vertices of the feasible set{λ ≥ 0 ∶ Kλ ≤ 1} encountered in Procedure B3 result
in redundant constraints (cf. the implicand in Equa-
tion (14)). So we can use the MOLP

maximize λ ,
subject to Kλ ≤ 1 and λ ≥ 0,

(16)

to select only the undominated vertices. Gather them
as columns in a matrix V̂ and construct the H-repre-
sentation [V̂⊺,1] to replace [V⊺,w⊺] of Procedure B3.

B5. Because Kλ is pointwise strictly increasing in λ , we
can replace the MOLP (16) by

maximize Kλ ,
subject to Kλ ≤ 1 and λ ≥ 0.

(17)

We are now ready to present the procedures for Goal C,
which strongly parallel those for Goal B:

C4. We can rewrite Equation (6) as

∀S ∈ S ∶ ∀λ ≥ 0 ∶ ∀γ ∈R ∶
max(KSλ) = γ ⇒ P⊺Sλ ≤ γ,

(18)

which, because K is NNZM and only a single column
of KS is non-positive, but with zero maximum, can be
normalized and rewritten as

∀S ∈ S ∶ ∀κ ∈RK ∶
Sκ ≥ 0 ⇒ {max(Kκ) = 1 ⇒ P⊺κ ≤ 1,

max(Kκ) = 0 ⇒ P⊺κ ≤ 0.

(19)

Now, again because K is NNZM, Kκ is pointwise
monotone strictly increasing in κ . So we know that the
set {Sκ ≥ 0 ∶Kκ ≤ 1} is bounded and that apart from 0,
all its vertices satisfy max(Kκ) = 1. We also know
that the set {0 ≤ Sκ ≤ 1 ∶Kκ ≤ 0} is bounded and that
all its vertices satisfy max(Kκ) = 0. So the procedure
consists in, for every S in S, vertex enumerating

[AS,0 bS,0] ∶=
⎡⎢⎢⎢⎢⎢⎣

K 0−S 0
S 1

⎤⎥⎥⎥⎥⎥⎦
, [AS,1 bS,1] ∶= [ K 1−S 0] ;

(20)

then use the resulting V-representations [VS,1;wS,1]
and [VS,0;wS,0] to construct the H-representations[V⊺

S,1,w⊺S,1] and [V⊺
S,0,0]. Vertically concatenate

these H-representations for every S to obtain an H-rep-
resentation for the set of coherent lower previsions onK and apply redundancy removal to obtain [ΛC,αC].

Entirely analogously to what was done in Procedures B4
and B5, we can use MOLPs to generate undominated vertex
versions of [VS,γ ;wS,γ] for all S in S and γ in {0,1}:

C5. The κ-variant:

maximize κ,
subject to Kκ ≤ γ , Sκ ≥ 0 and, if γ = 0, Sκ ≤ 1.

(21)

C6. The Kκ-variant:

maximize Kκ,
subject to Kκ ≤ γ , Sκ ≥ 0 and, if γ = 0, Sκ ≤ 1.

(22)
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In principle, the MOLP-based procedures (B4, B5, C5, and
C6) should be more efficient than the vertex enumeration
ones (B3, C4), as for both the same polytope needs to be
mapped, but for the MOLPs only in part, which also results
in less redundant constraints to be removed later on. In
our numerical experiments, the vertex enumeration variant
turned out to be quite efficient: the number of redundant
constraints it produces is about the same as the number of
non-redundant ones; for our earlier procedure, this quickly
grew beyond a difference of an order of magnitude. How-
ever, the results for Procedures B4 and C5 were not as
good: the M3-solver at our disposal (Löhne 2012) could
not deal in reasonable time with sets of gambles that the
enumeration-based procedures digested almost instantly
(its author explained that it was not designed for large ob-
jective vectors). Procedures B5 and C6 could not be tested
due to an apparent lack of publicly available M4-solvers.

4.3 Appendix: the NNZM Assumption & Coherence

Given a general set of gambles K, let K̄ be the subset of
constant gambles and Ǩ the subset of non-constant gambles.
Let b̄ be the vector with the values of the constant gambles
and K̂ an NNZM set of gambles associated with Ǩ. The
restrictions of a lower prevision P on K̄∪Ǩ∪K̂ to these sets
are P̄, P̌, and P̂. (Properties of coherent lower previsions
used here can be found in Walley 1991, §2.6.1(b),(c).)

If P is coherent, we know that Pβ = β for any constant gam-
ble β and so the constraints are P̄ = b̄. For any other gamble
f in K we have the linking constraint P̌ f − P̂( f −min f ) =
min f . Fix K̂ ∶= { f −min f ∶ f ∈ Ǩ}; this set is NNZM. Let
ÂP̂ ≤ b̂ be the constraints for the polytope of coherent lower
previsions P̂ on K̂, then, using the linking constraints, the
corresponding constraints for P̌ on Ǩ are ÂP̌ ≤ b̂+ Âmin.
So the full H-representation of the set of coherent lower
previsions [P̄; P̌] on K is

[AK bK] ∶=
⎡⎢⎢⎢⎢⎢⎣

I b̄−I −b̄
Â b̂+ Âmin

⎤⎥⎥⎥⎥⎥⎦
. (23)

4.4 Quantitative Results of Numerical Experiments

Above, we have already mentioned some qualitative evalu-
ations and comparisons of the different procedures. Here
we present more quantitative results. Our CPU-bound nu-
merical (floating point) experiments were run on an Intel
i7-2620M processor. (The Python scripts we developed are
publicly available: Quaeghebeur, pycohconstraints.)

Our experiments showed that the sparsity σ , i.e., the frac-
tion of zero components in the gamble matrix K, has an
important influence on the running times of our procedures.
The graph below indicates that the running time of Pro-
cedure C1 decreases exponentially as a function of the
sparsity. The approximate equidistance of the curves of

doubling possibility space cardinality ∣Ω ∣ indicates that the
running time increases approximately linearly as a func-
tion of ∣Ω ∣. The curves are least-squares fits to the data
points obtained from randomly generated NNZM gamble
sets with values taken from {0, . . . ,9}. To give an idea of
the variance, we have also plotted the data points for ∣Ω ∣ in{4,32,1024,8192} as gray dots.
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The same gamble sets were also processed using Proce-
dure C4; the running times were typically 1.5 times, but
sometimes 4 times longer. The other procedures were or-
ders of magnitude too slow for reliable testing.

In the graph below, the approximate equidistance of the
lines for ∣K∣ in {3,6,9} and for ∣K∣ in {4,8,12}, respec-
tively, indicates that the running time of Procedure C1 in-
creases (at least) exponentially as a function of ∣K∣. Again
to give an idea of the variance, we have plotted the data
points for ∣K∣ in {4,8,12} as gray dots.
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5 Correcting Incoherent Lower Previsions

Now that we have procedures for obtaining minimal linear
constraint characterizations for lower previsions that avoid
sure loss or are coherent, we are ready to look at what lies
beyond: sure loss and other forms of incoherence.

Automatic methods for learning lower previsions from data
ideally produce coherent lower prevision, but some may
not—possibly for good reasons. Also, when eliciting lower
previsions from experts—but not in imprecise probability
theory—, it is not reasonable to expect the result to be co-
herent or perhaps even avoid sure loss. For incoherent, but
sure loss avoiding lower previsions, we can apply natural
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extension to perform a pointwise upward correction that
makes explicit all implicit commitments. This is appropri-
ate when the user of the automatic method or the elicitee
provide informed consent. Otherwise a conservative, down-
ward correction may be more acceptable.

Downward changes of a lower prevision imply a reduction
in both explicit and implicit commitments. When it is not
possible to decide on the changes with input from the user
or the elicitee, automatic downward correction methods are
an option, after informed consent. We here propose one
such automatic downward correction method.

5.1 Forms of Incoherence

Let us briefly give a categorization of the possible forms
of incoherence. To this end, consider a two-gamble ex-
ample on a possibility space {a,b,c}: consider the setK ∶= {g1,g2}, with g1 ∶= [1;1/2;0] and g2 ∶= [0;1;1/2]. Using

Pg10 1
2

1

Pg2

0

1
2

1
Pb

Pamin

Pc

a procedures from Sec-
tion 4, we have obtained
the constraints, drawn us-
ing bestubbled lines, de-
limiting the shaded con-
vex polytope of coherent
lower previsions. Its ver-
tices have been named:
the vacuous lower previ-
sion min and for every
atom ω in {a,b,c} the de-
generate prevision Pω ∶= [g1ω;g2ω], the columns of K⊺.
We recalled at the end of Sec-
tion 3 that coherent lower pre-
visions P are bounded, i.e., that
min ≤ P ≤ max. Our first cate-
gory of incoherent previsions are
those that are out of bounds. On
the right, we shaded the mag-
nitude-wise smallest part of this
unbounded region in gray.

Equations (3)–(4) and (7)–(8) showed us
that the convex set of linear previsions can
take a central role in both the definitions
of avoiding sure loss and coherence. For
our example, it is in gray on the right.

More concretely, Equation (8) made it clear that the poly-
tope of coherent lower previsions is an intersection of
polyhedra corresponding to avoiding sure S-loss—i.e., S-
dominance by a linear prevision—, one for each S in S.
Below, we show, in gray, the part of these polyhedra within
bounds, accompanied by their respective S-matrix and the
extreme rays of the dominance cone it implies. With each
S there corresponds a set whose members incur sure S-loss.
The set of incoherent lower previsions is their union.

[1
1] [−1

1] [1 −1]
To get a feel for what constellations can occur when faced
with larger sets of gambles, we extend our two-gamble
example with a gamble g3 ∶= [1/2;0;1]. Below, we give the
polytope of coherent lower previsions. It is bounded by
the cuboid defined by the min and max points. Its edges
in the coordinate planes are shown using thin dashed lines.
The new vertices can be characterized for g in {g1,g2,g3}
by PAg ∶= minω∈A gω . The range of values attained by the
vertex lower previsions is {0,1/2,1}.

Pg1

Pg2

Pg3

min

P{b,c}

Pb

Pa

Pc

P{a,b}
P{c,a}

Below, we furthermore give the ∣S ∣ = ∣K∣+ 1 = 4 sets of
lower previsions that avoid sure S-loss.

This illustration shows that some lower previsions within
bounds may incur sure S-loss for all S; max, for example.

5.2 Bringing Lower Previsions Within Bounds

Correcting a lower prevision P that is out of bounds to
one that is within bounds is trivial: We replace it by the
pointwise closest such lower prevision BP, so for every

P

BP QBQ

gamble f in K we have

BP f ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min f P f ≤min f ,
max f P f ≥max f ,
P f otherwise.

(24)
This correction method may
produce both downward and
upward pointwise changes.

From now on we assume that all lower previsions are within
bounds.
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5.3 Maximal Dominated Coherent Lower Previsions

Our proposal for the downward correction of an incoherent
lower prevision P is the lower envelope of the maximal
coherent lower previsions dominated by P. In other words,
it is the nadir point DP of the MOLP (cf. Section 2.2):

maximize Q,

subject to ΛCQ ≤ αC and Q ≤ P.
(25)

This proposal is essentially the same as the specific so-
called prudential correction PH mentioned by Pelessoni &
Vicig (2003, §3.4). They generalize the interval-probability
concept F-Hülle (see Weichselberger 2001, 342ff. and
375ff.; translated as F-cover in Weichselberger 2000). How-
ever, they only aim to apply this correction when sure loss
is avoided; we make no such restriction.

P

DP

Q

DQ

On the right, the method is illustrated
for two incoherent lower previsions
that are within bounds; extreme max-
imal dominated coherent lower previ-
sions are shown as gray-filled dots.

We should not conclude from these il-
lustrations that the extreme maximal
coherent lower previsions dominated
by the given incoherent lower previ-
sion can always be reached by reduc-
ing single components; a graphical
counterexample is given below.

Pg1

Pg2

Pg3

DP

P

The lower prevision DP satisfies the necessary require-
ments:

i. It is a downward correction as a lower envelope of
lower previsions dominated by P.

ii. It is coherent by the Lower Envelope Theorem.

Furthermore, as a nadir point it has a number of further
desirable properties:

iii. The correction it embodies is neutral in the sense
that no tradeoff between corrections for the different
components of P is made; this makes it especially
suited for unguided corrections.

iv. It is the maximal such neutral correction—the vac-
uous lower prevision min is another—and therefore
preserves as much of the commitments expressed by
P as possible.

v. The set of coherent lower previsions dominated by
an incoherent lower prevision P is non-decreasing
with pointwise increasing P. So the more incoherent
a lower prevision, the more imprecise its correction.

It is actually not necessary to calculate [ΛC,αC] in order to
find DP, because we have a full constraint based characteri-
zation of coherence with the H-representation (12). So an
alternative to the MOLP (25) is the following MOLP:

maximize Q,

subject to AQQ+Aµ µ ≤ b and Q ≤ P,
(26)

where we use the notation of Equation (12). (Weichsel-
berger 2001, 468ff, also proposes an as of yet untested
algorithm that is essentially based on a representation such
as the one given by Equation (12).) This problem has(∣K∣+1) ⋅ ∣Ω ∣ more variables than the MOLP (25), which
has ∣K∣ variables. It has (∣K∣+1) ⋅(∣K∣+ ∣Ω ∣+2) constraints,
whereas the MOLP (25) typically has of the order of 3 ⋅ ∣K∣
constraints. This results in a greater average running time
for the nadir computation using the alternative MOLP, even
if we take the setup time—calculating [ΛC,αC] (cf. Sec-
tion 4.4) versus generating [AQ,Aµ ,b] (about 10−3s)—into
account. This can be seen in the graphical summary of the
results of our numerical experiments, which we are going
to describe next. (The Octave/Matlab scripts we developed
are publicly available: Quaeghebeur, mcohconstraints.)
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2

29

2

8

3

26

5

206

2

206

2

16

16

16

16

∣K∣

[s]

DP via (25)

DP via (26)

∣Ω ∣ = 5, σ ≈ 1/2
3 8 17 24 39 53 112 228 247

In this experiment, for each value of ∣K∣ in {2, . . . ,10},
we generated about 10 NNZM gamble sets K—as in Sec-
tion 4.4—with sparsity σ fixed at approximately 1/2, on a
possibility space Ω with ∣Ω ∣ = 5. Next, we calculated the
corresponding [ΛC,αC]—using Procedure C1—and gen-
erated the corresponding [AQ,Aµ ,b]. Finally, for each K,
we generated about 10 incoherent lower previsions within
bounds to correct. This we did using both the MOLP (25)
and the MOLP (26), resulting in about 100 computation
time samples per ∣K∣ for each of both approaches. Each of
these sample sets is summarized using a box plot indicat-
ing minimum, lower quartile, median, upper quartile, and
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maximum; its arithmetic mean is indicated with a lozenge.
Black left-leaning box plots are used for the results ob-
tained with the MOLP (25); darkgray right-leaning ones
for those obtained with the MOLP (26).

With the M3-solver we used (Löhne 2012), average com-
putation time seems to increase exponentially as a function
of ∣K∣. Surprisingly, the number of extreme maximal domi-
nated coherent lower previsions is not a major factor. This
is illustrated by the number of these extreme points found
for the minimum and maximum computation times—put
in italics near the respective box plot whiskers—and the
maximum number of extreme points in the sample—listed
in italics at the top edge of the plot axis.

The M3-solver does compute all these extreme points, so
we suspect that it is highly inefficient for the task at hand.
Therefore we believe substantial efficiency gains can be
achieved by switching to an M4-solver, which we expect
to be output sensitive, i.e., to depend on the number of
extreme points. Nadir point calculation algorithms that do
not need to calculate all these extreme points (e.g., Alves
& Costa 2009) should provide a further increase in effi-
ciency. Because elicited lower previsions can be expected
to generally be closer to coherent than our randomly gener-
ated ones, we also expect them to generally dominate less
extreme points and thus, because of output sensitivity, be
faster to correct. We already observed this phenomenon for
randomly generated sure loss avoiding lower previsions.

5.4 Least Dominating Coherent Lower Prevision

For completeness’s sake, let us also have a look at upward
correction using the MOLP approach. Given an incoherent
lower prevision P, we consider the set of minimal pointwise
dominating coherent lower previsions; this is the solution
to the following MOLP:

minimize EP,

subject to ΛCEP ≤ αC and EP ≥ P.
(27)

Because of the Lower Envelope Theorem, there is only one
such EP, so we may replace this vector objective by the
scalar objective ∑g∈KEPg, reducing the problem to a plain
LP. This coherent lower prevision EP is the one least domi-

P
EP Q

nating P, to wit, its
natural extension
(cf. Walley 1991,
§3.1). This plain
LP method for ob-
taining it is illus-
trated on the right.

Again, we can use the H-representation (12) to formulate
an alternative to the MOLP (27):

minimize EP,

subject to AEPEP+Aµ µ ≤ b and EP ≥ P.
(28)

Thanks to the block structure of the constraint matrix, it is
straightforward to deduce some well-known facts:

i. It is necessary that P avoids sure loss for a solution
EP to exist (cf. right-hand side illustration above).

ii. For each gamble g in K, we can calculate the corre-
sponding natural extension component EPg separately
as max{g⊺µ ∶ P ≤K⊺µ ∧ µ ≥ 0 ∧ 1⊺µ = 1}.

These facts raise the currently still open question of whether
there exist specific classes of incoherent lower previsions P
for which the calculation of DP can be simplified, e.g., to
separate calculations for each component.

6 Conclusions

We hope that you are now convinced of the fact that the
availability of a finite, minimal linear constraints character-
ization of coherence opens doors for many new numerical
applications dealing with the set of coherent lower previ-
sions. In our application, downward correction of incoher-
ent lower previsions, we saw that it proved useful to keep
the running time of the inherently computationally complex
implementation of our proposed method a bit in check. We
determined that currently, sets of up to 5 gambles can be
dealt with sufficiently fast even for interactive applications.
In a domain where complex systems are often decomposed
into smaller ones linked in some network structure, this is
not overly restrictive.

We also hope that this paper has kindled your interest in
the application of multi-objective linear programming to
imprecise probability problems. We believe that beyond the
two applications of them presented in this paper, there are
bound to be more in our research field because of the com-
mon underlying assumption that incomparability should be
modeled, not avoided.

There are some unfinished strands in this paper:

i. Testing an efficient projection implementation (cf.
Kvasnica et al. 2006).

ii. Finding and testing a MOLP simplex solver (cf. M4)
and a nadir computation algorithm (cf. M2).

iii. Theoretically investigate whether DP can be calcu-
lated more efficiently if P satisfies some additional
conditions beyond being within bounds.

We hope these are picked up by us, or others, in the future.
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Abstract

The reliable analysis of interval data (coarsened data)
is one of the most promising applications of impre-
cise probabilities in statistics. If one refrains from
making untestable, and often materially unjustified,
strong assumptions on the coarsening process, then
the empirical distribution of the data is imprecise,
and statistical models are, in Manski’s terms, par-
tially identified. We first elaborate some subtle differ-
ences between two natural ways of handling interval
data in the dependent variable of regression models,
distinguishing between two different types of identi-
fication regions, called Sharp Marrow Region (SMR)
and Sharp Collection Region (SCR) here. Focusing on
the case of linear regression analysis, we then derive
some fundamental geometrical properties of SMR and
SCR, allowing a comparison of the regions and provid-
ing some guidelines for their canonical construction.
Relying on the algebraic framework of adjunctions of
two mappings between partially ordered sets, we char-
acterize SMR as a right adjoint and as the mono-
tone kernel of a criterion function based mapping,
while SCR is indeed interpretable as the correspond-
ing monotone hull. Finally we sketch some ideas on a
compromise between SMR and SCR based on a set-
domained loss function.

Keywords. partial identification, imprecise prob-
abilities, interval data, sharp identification regions,
coarse data, adjunctions, partially ordered sets, linear
regression model, best linear predictor, set-domained
loss function.

1 Introduction

The methodology of imprecise probabilities offers
powerful methods for reliable handling of coarse(ned)
data, see, e.g., the ISIPTA contributions by [18, 45,
41, 38, 42, 7, 20]. The term coarsened data, or epis-
temic data imprecision, is an umbrella term, com-
prising all situations where data are not observed in

the resolution intended in the subject matter context.
This means, there is a certain true precise value y ∈ Y
of a generic variable Y of material interest, but we
only observe a set A ⊇ {y}. An extreme special case
of coarse data are missing data, where the missingness
of value yi of unit i can be interpreted as having ob-
served the whole sample space Y. In the case where
A is an interval [y, y] for y, y ∈ R coarse data are
commonly called interval data.

Before turning to the formal framework, two issues
with fundamental importance for practical applica-
tions shall be recalled.
First of all, it must be stressed that the term ‘coarse’
is a relative term. Whether data are coarse or not
depends on the specified sample space, and therefore
on the subject matter context to be investigated. If,
for instance, the sample space is taken to consist of
some a priori specified ranges for income data, and
that is all what is needed, then data are not coarse,
while if precise income values are of interest, the data
are coarse.1

Secondly, it is important to emphasize that coarse
data typically are not just the result of sloppy re-
search, like an insufficient study design or improper
data handling. On the contrary, coarse data are an
integral part of data collection, in particular in social
surveys. Interval data arise naturally from the use of
categories in order to avoid refusals in the case of sen-
sitive questions, and are a means to model roughly
rounded responses (see, e.g., [24]). Coarsened cate-
gorical data are, for instance, produced by matching
data sets with not fully overlapping categories, are the
direct outcome of data protection by some anonymiza-
tion techniques (see, e.g., [13]), or may be produced

1Indeed, even unions of intervals may constitute precise
observations, for instance as the response to the question
‘When did you live in Munich?’, measured in years. Then
{[1986; 1991]∪ [1997; 2000]} is a precise observation in the sam-
ple space of all finite unions of closed intervals [a, b] with
a, b ∈ N+. (See in particular the distinction between conjunc-
tive and disjunctive random sets in [14, Section 1.4], from which
also this example is adopted.)
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by the combination of spaces with given marginals by
Frechèt bounds (see, e.g., [19]). Another prototypic
setting is the case of systematically missing data, aris-
ing from treatment evaluations in non-randomized de-
signs like observational studies.2

By confining themselves to precise probabilities, tradi-
tional statistical approaches to cope with coarse data
are inevitably forced to try to escape the imprecision
in the data eventually. An immediate way in the case
of interval data [y

i
, yi] for each unit i = 1, . . . , n in

the sample is to replace each interval by the corre-
sponding central value ẙi = (y

i
+ yi)/2, and then to

proceed with a standard analysis based on that fic-
titious sample. More sophisticated approaches add
complex, typically untestable assumptions, either to
explicitly model the coarsening process by a precise
model, or to characterize idealized situations where
the coarsening can be included in standard likelihood
and Bayesian inference without biasing the analysis
systematically.3

In recent years, awareness in statistics and economet-
rics has grown that such strong assumptions quite of-
ten cannot be justified by substantive arguments, and
thus the – too high – price for the seemingly precise
result of the statistical analysis is the loss of credibility
of the conclusions, and in the end consequentially the
practical relevance of the statistical analysis.4 In the
light of this, it is of particular importance to develop
approaches that reflect the underlying imprecision in
the data properly, resulting in potentially imprecise,
but reliable results. The fascinating insight, corrobo-
rated by a variety of applications mainly in economet-
rics (see the exemplary references below), is that in
many studies these results are still enough to answer
important substantive science questions, and if not,
the scientist is alerted that strong conclusions drawn
from the data may be mere artefacts.
Related approaches, considering all possible data
compatible with the observed set of values, have been
developed almost independently in different settings,
ranging from reliable computing and interval analysis
in engineering (e.g., [29]) and extensions of general-
ized Bayesian inference [10, 46] to reliable descriptive

2To evaluate effects of treatment or intervention A over
treatment B, in principle, it would be necessary to have in-
formation from a parallel universe, so-to-say, i.e. to know in
addition how the units treated with A would have reacted if
they had been given the treatment B and vice versa.
This question has in particular attracted intensive attention
in the partial identification literature in econometrics (see, for
instance, the survey [40] or the instructive case study [37].

3Most prominent is here Little and Rubin’s [22] classifica-
tion, distinguishing situations of missingness completely at ran-
dom (MCAR) or missing at random (MAR) from missing not
at random (MNAR) settings, where a systematic bias has to be
expected. This classification has been extended to coarsening
by [16].

4See Manski’s Law of Decreasing Credibility [23, p. 1].

statistics in social sciences ([32, Chapter 17f], [30]).
This cautious way to proceed is closely related to set-
based (profile-)likelihood approaches ([48, 7]) and to
the methodology of partial identification, in particu-
lar propagated by Manski (e.g., [23]) in econometrics,
and to systematic sensitivity analysis (e.g. [43]) in
biometrics, where a general framework for imprecise
data models, i.e. sets of observationally equivalent
statistical models, has been developed. In these mod-
els instead of single valued parameters one obtains
so-called identification regions, i.e. sets of all pa-
rameters compatible with the data. On the inferential
side, there has been important progress in the de-
velopment of appropriate confidence procedures (see,
e.g., [5, 27, 6]), and computational techniques have
maturated to the extent that routine use of basic pro-
cedures has become feasible (e.g., [8, 1, 39, 34]). As
a result, applied contributions are now rather com-
mon and are particularly influential in econometrics
and allied fields see, e.g., [28] for an analysis of income
poverty measures based on coarsened survey data, [21]
for a study of the German reform of unemployment
compensation based on register data and [26] for an
analysis of treatment effects in observational studies
with an illustration based on the National Longitudi-
nal Survey of Youth.

The paper is organized as follows. After some ba-
sic definitions (Section 2), we emphasize in Section 3
the distinction between different understandings and
goals of regression models, leading to two different
types of identification regions, called SMR and SCR
here. Section 4 formulates some basic geometrical
properties, while sections 5 applies an algebraic frame-
work for investigating mappings between partially
ordered sets. We recall the basic concepts needed
here, and explain them exemplary in the context of
Dempster-Shafer-Theory and by describing coherent
lower previsions as hulls. Then SMR and SCR are
characterized as the monotone kernel and monotone
hull of a criterion function based mapping, respec-
tively. Finally, Section 6 suggests another type of
identification regions that is based on a strict set-
valued perspective, relying on a loss function depend-
ing on sets of parameters, while Section 7 concludes.
Proofs for the propositions and additional illustra-
tions of the different identification regions can be
found in a homonymous technical report ([33]), that
is going to appear soon.

2 Basic Definitions

Let Θ be a parameter space and P := {Pθ | θ ∈ Θ} a
corresponding statistical model on a measurable space
(Ω,F) with the associated observable random vari-
ables X,Y,Y and the unobserved random variable Y .
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We are interested in the relationship between X and
Y , but we have no full information about Y , we only
know that the unobserved variable Y is related to the
observed Y and Y in the sense that Y fulfills a cer-
tain relation, for example P(Y ≤ Y ≤ Y) = 1 or
E(Y | X) ≤ E(Y | X) ≤ E(Y | X)5. In the sequel,
we assume the second condition with the additional
assumption that E(Y | x) and E(Y | x) are continu-
ous in x. With P we denote the unknown true model
and with E the corresponding expectations. The ex-
pectations for a model Pθ are denoted with Eθ. The
joint distribution of the random variables X,Y,Y,Y

under a model Pθ is denoted with F
X,Y,Y,Y
θ (or short

Fθ) and the joint distribution under the true model P
is denoted with FX,Y,Y,Y (or short F ). Analogously,
the distribution of a subset of random variables, eg.
{X,Y } is denoted with FX,Yθ and FX,Y respectively.
For arbitrary random variables like e.g. X,Z,Y,Y

we denote their joint distribution with FX,Z,Y,Y. Be-
cause Y is not observable, we do not have the full
information about Y , which generally leads to par-
tially identified models, which we define in the sequel:
Two parameters θ1, θ2 ∈ Θ are undistinguishable (i.e.
θ1 ∼ θ2) if the corresponding models Pθ1 and Pθ2 are
empirically undistinguishable, which means that the
distributions of the observable variables are the same.
A statistical model P is called point-identified, if
any two different parameters θ1 and θ2 are empiri-
cally distinguishable. Otherwise it is called partially
identified.

Example 1 The simple linear model with interval
outcomes: Θ = B × R with B = R2 the actually in-
teresting parameter space and R = RΩ × RΩ

≥0 × RΩ
≥0

describing the error-terms and the coarsening-process:
For θ = (β, (ε, δl, δu)) ∈ Θ the associated variables are
defined as Y = Xβ + ε, Y = Xβ + ε − δl and Y =
Xβ+ε+δu with ε, δl, δu measurable and ε with existing
conditional expectations E(ε | x) = 0. The coarsen-
ing process is modeled by the random variables δl and
δu that are nonnegative, which ensures Y ≤ Y ≤ Y.
By abuse of notation we identify the random variable
X with the matrix (1, X) to use matrix notations like
above, if useful. Furthermore, in the sequel we as-
sume X as a fixed random variable with support R
and therefore omit it in the parameter space Θ. It is
clear that this model is only partially identified. For
example ((β0, β1), (ε, 0, 1)) ∼ ((β0 + 1, β1), (ε, 1, 0)).
Moreover, the quotient space Θ/∼ is not of the form
Θ/∼ = B/∼B

× R/∼R
for some relations ∼B and

∼R, so we must factorize the whole space Θ and not
only the interesting part B to make the model point-
identified.

5This means ∀x : E(Y | x) ≤ E(Y | x) ≤ E(Y | x).

3 Two Types of Identification
Regions

There are two ideal type senses of what a statistical
model is and what it should render. One can assume
a statistical model as the exact true underlying proba-
bilistic structure, from which one only has to know all
details and then one knows the exact distributions of
all involved random variables and can make inferences
with this knowledge. In contrast one can see a sta-
tistical model not as a truth, but as a rough approx-
imation of truth and use it as a parsimonious tool to
predict for example future observations of some vari-
ables or to get a rough insight into the real underlying
structure that is actually more complex. As examples
for this differentiation one could see firstly the estima-
tion of the intercept and the slope of a linear model
and secondly the problem of finding the best linear
predictor in the sense of [2], which makes predictions
that are linear in the covariates, but the underlying
model needs not to be linear. The main difference is
here that in the first case we really assume a linear
model and rely on it, whereas in the second case we
use the linearity of the predictions only to have a par-
simonious model for predictions or explanations, but
we assume nothing about the true statistical model.
These views lead to different problem formulations,
which we want to state now as we need it in our
context. In order to efficiently tackle our goal, we
leave the statistical perspective and join Manski ([23,
p. 7]), who recommends that problems of identifica-
tion become much clearer when one firstly separates
non-identifiability from sample variation, and assumes
all distributions to be known for the analytic treat-
ment6 (later on then sample counterparts may be con-
structed in the usual way). In particular, we also as-
sume that the distribution of Y is known (and we have
no variables Y and Y) and later we generalize this to
the case of an unobserved Y , which leads to different
sharp identification regions that are then our objects
of interest. The first problem statement is:
Given the distribution FX,Y of (X,Y ), which is an

element of the class {FX,Yθ | θ ∈ Θ}, find all θ, such

that (X,Y ) ∼ FX,Yθ , which is equivalent to find all

θ with L(FX,Yθ , FX,Y ) = 0 for an arbitrary distance-
function L(·, ·) or a similar function, which is zero if
and only if both arguments are equal. Here we think
of a kind of loss function and introduce this equiva-
lent formulation to indicate the analogy to the second
problem formulation:
Given the distribution FX,Y , which is an element
of the class {FX,Yθ | θ ∈ Θ}, find all θ, such that

L(FX,Yθ , FX,Y ) is minimal. In contrast to the first

6The identification regions arising in this limit case are
called sharp identification regions.
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problem, this problem definition is also meaningful if
FX,Y /∈ {FX,Yθ | θ ∈ Θ}, i.e. if the model is not
correctly specified. If the model is correctly specified,
then both problems are often essentially the same in
the sense that for example for a linear model, the
BLUE-estimator and the best linear predictor (with
a quadratic loss-function) are solving different tasks,
but the parameter estimates are identical. The actual
problem is now that FX,Y is unknown. One part of
the problem is that also if we could observe Y , we
could not know the exact distribution of Y and so
we have to estimate it. In particular, we cannot de-
cide with certainty, if FX,Y is an element of the class
{FX,Yθ | θ ∈ Θ}, and so the two problem formulations
are moving together a little bit. The other part of
the problem is that the variable Y , we are actually
interested in, is not observable. As argued above for
the moment we only address this second part of the
problem and assume that we know the exact distribu-
tion of all observable variables. Later in section 5.2 we
also address the other part. If now Y is unobserved,
we can generalize the two problems by applying them
to all possible Y that are consistent with (Y,Y).This
leads to different regions of parameters that were pro-
posed in different papers: The region related to the
first problem was introduced slightly differently in [9]
and the other region was proposed as the sharp iden-
tification region for the best linear predictor in [2].

Definition 1 Let P = {Pθ | θ ∈ Θ} be a statisti-
cal model with the corresponding joint distributions
{FX,Yθ | θ ∈ Θ} and X,Y,Y given random variables.
The sharp marrow region (SMR) is defined as:

SMR = {θ ∈ Θ | E(Y | X) ≤ Eθ(Y | X) ≤ E(Y | X)}

Note that the Y in the definition is the Y coming from
the model Pθ, not the Y from the true model. If the
model is correctly specified (or if at least SMR 6= ∅),
this region can also be written as:7

SMR = argmin
θ∈Θ

[
min

Z∈E([Y,Y]|X)
L
(
FX,Yθ , FX,Z

)]

with an arbitrary loss function L. Here with E([Y,Y] |
X) we denote the set of all random variables Z ful-
filling E(Y | X) ≤ E(Z | X) ≤ E(Y | X). This
equivalent characterization of SMR is valid because a
parameter θ ∈ Θ is in SMR if and only if there exists
a Z ∈ E([Y,Y] | X) with FX,Yθ = FX,Z or equiva-

lently L(FX,Yθ , FX,Z) = 0. From the above represen-
tation of SMR we can see that SMR can be written
as the solution of a decision problem with a minimin
decision rule.

7Note that we use the set-valued definition of argmin.

The sharp collection region (SCR) is defined as:

SCR :=
⋃

Z∈[Y,Y]

argmin
θ∈Θ

L
(
FX,Yθ , FX,Z

)
.

With [Y,Y] we denote the set of all random variables
Y that lie between Y and Y for all ω ∈ Ω.

A first comparison of this two regions that emphasizes
the case of misspecification and interpretational prob-
lems for the sharp marrow region in this case can be
found in [31]: While the interpretation of the sharp
collection region as the collection of all best linear
predictors is clear, the interpretation of SMR seems
to be not so useful under misspecification, especially
if SMR is empty.8 From an empty SMR we can con-
clude, that the model is misspecified, but not more.
Furthermore in the above-mentioned paper the au-
thors make clear that a tight SMR “cannot be viewed
as an indicator that the underlying model contains a
lot of information about the true but partially identi-
fied parameter.”9

4 Geometrical Properties of
Identification Regions

From now on, we concentrate on the case of a
linear model like in example 1 and the classical
quadratic loss function. Since we are only inter-
ested in the components (β0, β1) of an element θ =
((β0, β1), (ε, δl, δu)) ∈ SMR, by abuse of notation, we
also denote the set {(β0, β1) | ((β0, β1), (ε, δl, δu)) ∈
SMR} as the sharp marrow region (analogously
for the sharp collection region). Then we have
SMR =

{
β ∈ B|E(Y | X) ≤ Xβ ≤ E(Y | X)

}
and

SCR = {argmin
β∈B

E((Xβ − Y )2) | Y ∈ [Y,Y]}.

Remark 4.1 The sharp marrow region is always a
subset of the sharp collection region, and this is the
reason for calling it sharp marrow region, it is the
marrow of all truly linear models that fit to some
Z ∈ [Y,Y]. In contrast, the sharp collection region
collects the best fitting parameters for every possible
Z ∈ [Y,Y].

It is easy to see that the sharp marrow region is convex
and closed. Furthermore, all convex, compact sets can
be represented as a sharp marrow region:

Proposition 4.1 10 Let I ⊂ R2 be a compact con-
vex set. Then there exist random variables Y,Y such
that SMR(Y,Y) = I, namely: Y = min{Xβ | β ∈
I}, Y = max{Xβ | β ∈ I}.

8But compare the remarks in the next to last paragraphs of
chapters 5.1 and 5.2.

9[31, p. 202].
10Proofs for all propositions are given in [33].
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Figure 1: SCR and SMR with unsmooth boundary

For the sharp collection region, the situation is more
complicated. To analyze this, we need some defini-
tions from geometry (cf. [47]):

Definition 2 The Minkowski sum

M =

n⊕

i=1

li =

{
n∑

i=1

pi

∣∣∣∣∣ pi ∈ li

}

of n line segments li ⊆ Rd is called a zonotope. A zono-
tope is a convex, compact and centrally symmetric polytope
with finite many extreme points and centrally symmetric
facets. A closed, centrally symmetric convex set Z ⊆ Rd

is called a zonoid if it can be approximated arbitrarily
closely by zonotopes (w.r.t. a metric, e.g. the Hausdorff
distance). For d = 2 the zonoids are exactly the closed,
centrally symmetric convex sets (see, e.g., [3]).

Proposition 4.2 Let E(Y),E(Y),E(Y ·X),E(Y ·X)
be finite and Var(X) 6= 0. Then the sharp collection
region is a zonoid.

Now, the question arises, if every zonoid can be rep-
resented as a sharp collection region. At first glance
this seems to be not the case. By looking at examples
of (estimates of) sharp collection regions, like that in
figure 1 one observes that this regions often have two
points on its boundary at which the boundary is not
smooth. Note that the situation for SMR is similar, if
X has finite or compact support, see figure 1. Fortu-
nately one can prove that every zonotope Z in general
position (and, by looking on suitable limit-processes,
also every zonoid) can be represented as a sharp col-
lection region if we define the distribution of X,Y and
Y in a certain way11. The last question is now, how
independently from each other the regions SMR and
SCR can be generated.

11The main difference to SMR is that there we could con-
struct regions for every arbitrary X with support R.

Proposition 4.3 Let I = SCR(Y∗,Y
∗
) ⊆ R2 be a

zonoid and E ⊆ SMR(Y∗,Y
∗
) an arbitrary compact

convex set. Then for every ε > 0 there exist random
variables Y,Y such that:

d(SCR(Y,Y), I) ≤ ε

d(SMR(Y,Y), E) ≤ ε,

where d is a metric on subsets of R2, e.g. the Haus-
dorff distance.

Proof: For ε > 0 define S ⊆ R such that the dis-

tance from any point x to S and the distance from x

to SC and P(X ∈ S) tends to zero as ε goes to zero.

Then set (Y,Y) to (Y∗,Y
∗
) if x ∈ SC and if x ∈ S

set (Y,Y) to the random variables (Z,Z) that gener-

ate E. Then SMR((Y,Y)) −→ SMR((Z,Z)) = E and

SCR((Y,Y)) −→ SCR((Y∗,Y
∗
)) = I.

5 An Algebraic View on
Identification Regions

In the next section, we want to look at SMR and
SCR as mappings. To analyze the algebraic structure
of these mappings, we need some facts about adjunc-
tions. Adjunctions arise in many contexts and often
make life a bit easier, see the next examples. For an
introduction to partially ordered sets and adjunctions
see, e.g., [11, 15].

Definition 3 Let (P,≤) and (Q,v) be partially or-
dered sets. A pair (f, g) of mappings f : P −→ Q and
g : Q −→ P is called adjunction, if:

∀p ∈ P∀q ∈ Q : p ≤ g(q) ⇐⇒ f(p) v q.

In this case, f is called left adjoint and g is called
right adjoint.

Lemma 5.1 Let (f, g) be an adjunction. Then the
following holds:
A1 g ◦ f is extensive and f ◦ g is intensive, i.e.:
∀p ∈ P, q ∈ Q : g(f(p)) ≥ p & f(g(q)) v q.

A2 f and g are order-preserving (monotone).

A3 f ◦ g ◦ f = f and g ◦ f ◦ g = g and thus f ◦ g and
g ◦ f are idempotent.

A4 From A1 - A3 it follows that g ◦ f is a closure
operator and f ◦ g is a kernel operator.12

A5 The adjoints f and g are determining each other
unambiguously.

A6 f preserves existing joins and g preserves existing
meets.

12A closure operator is a monotone, extensive and idempo-
tent mapping and a kernel operator is a monotone, intensive
and idempotent one.
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To illustrate the concept of adjunctions, we apply it
to two areas of the theory of imprecise probability.

Example 2 Dempster-Shafer-Theory13:
In [12] we have the multivalued mapping Γ : X −→ 2S

with which we can associate a set-domained version

Γ̃ : (2X ,⊆) −→ (2S ,⊆) : A 7→
⋃

a∈A
Γ(a).

Furthermore we have the operator

∗ : (2S ,⊆) −→ (2X ,⊆) :

T 7→ T∗ := {x ∈ X | Γ(x) ⊆ T}.

Then it is obvious that the pair (Γ̃, ∗) is an adjunc-

tion because both A ⊆ T∗ and Γ̃(A) ⊆ T are mean-
ing exactly that all a ∈ A are mapped to subsets of
T . From this, the ∞-monotonicity of a belief func-
tion B = P ◦ ∗ with P a probability-measure follows
immediately, since P is ∞-monotone and ∗ is meet-

preserving: B(
k⋃

i=1

Ti) = P ((
k⋃

i=1

Ti)∗) ≥ P (
k⋃

i=1

(Ti)∗)

≥ ∑
J 6=∅

(−1)|J|+1P (
⋂
i∈J

(Ti)∗)=
∑
J 6=∅

(−1)|J|+1P ((
⋂
i∈J

Ti)∗)

=
∑
J 6=∅

(−1)|J|+1B(
⋂
i∈J

Ti).

Furthermore, it is clear that also the composition of a be-
lief function and ∗ or another meet-preserving mapping is
∞-monotone.

Example 3 Lower Coherent Previsions14:
With (RL(Ω),≤) the set of all previsions that are de-
fined on all gambles and avoid sure loss, equipped
with the dominance relation P 1 ≤ P 2 : ⇐⇒ ∀X ∈
L(Ω) : P 1(X) ≤ P 2(X) and (2P(Ω),⊇) the set of all
nonempty sets of finitely additive probability-measures
on Ω with the ordinary superset relation, we can con-
struct the following adjunction:

f : (R(L(Ω),≤) −→ (2P(Ω),⊇) : P 7→ M(P )

g : (2P(Ω),⊇) −→ (RL(Ω),≤) : M 7→ PM

with M(P ) = {p ∈ P(Ω) | ∀X ∈ L(Ω) : p(X) ≥
P (X)}, where P(Ω) is the set of all finitely addi-
tive probability-measures and PM : L(Ω) −→ R :
X 7→ inf

p∈M
p(X). In this language, because of the

lower envelope theorem15, coherent lower previsions
are exactly the hulls16 of the closure operator g ◦ f ,
which maps a lower prevision that avoids sure loss
to its natural extension. It is now easy to see that
the natural extension of a prevision P is the lowest
coherent prevision that dominates P : If P 2 ≥ P is

13For an introduction, see [12] and [35].
14For an introduction, see [44].
15See [44, p. 134].
16Hulls are the images of a closure operator and similarly

kernels are the images of a kernel operator.

another coherent prevision that dominates P , then
it is a hull (g ◦ f)(Q) for some Q and with the
idempotence and the monotonicity of g ◦ f we have
P 2 = (g ◦ f)(Q) = (g ◦ f ◦ g ◦ f)(Q) ≥ (g ◦ f)(P ),
where the right hand side is the natural extension of
P .

5.1 SMR as a Right Adjoint

Proposition 5.2 Let (Y ,≤) be the set of pairs of
numeric random variables Y = (Y,Y), equipped with
the relation ≤ defined by

Y1 ≤ Y2 : ⇐⇒ E(Y1 | X) ≤ E(Y2 | X) &

E(Y1 | X) ≥ E(Y2 | X).

This means that if Y1 ≤ Y2, the observable vari-
ables (Y1,Y1) are more informative than (Y2,Y2)
or equally informative, because from (Y1,Y1) we can
learn more or the same about the conditional expec-
tations of the unobserved variable Y , we are actually
interested in. The mapping

SMR : (Y ,≤) −→ (2B ,⊆) :

(Y,Y) 7→ {β | E(Y |X) ≤ Xβ ≤ E(Y |X)}

is a right adjoint. The corresponding left adjoint is
the prediction-operator17:

PR : (2B ,⊆) −→ (Y ,≤) :

Γ 7→
(

inf
β∈Γ

Xβ, sup
β∈Γ

Xβ

)
.

Because SMR is a right adjoint, it has the properties
A1−A6. The monotonicity A2 means that SMR(Y)
is more informative if Y is more informative. The
idempotence A3 means that if we estimate, predict
and then estimate again, we get the same informa-
tion as if we had only estimated one time. Analo-
gously if we predict, estimate and then predict once
more, we get the same prediction as we would get, if
we predicted only once. This property is often satis-
fied by classical estimators, for example the classical
least squares estimator has an idempotent prediction
matrix. Because PR ◦SMR is a kernel operator, we
can now give a clear interpretation of SMR, which is
also valid in the misspecified case: The sharp marrow
region is the largest region for which the correspond-
ing predictions constitutes the largest inner approx-
imation of the conditional expectations18. This in-
terpretation may be not so useful in the misspecified
situation, but it is clearly stated.

17Here, the empty infimum is defined as ∞ and the empty
supremum is defined as −∞.

18An empty SMR means, that there is no inner approxima-
tion induced by the prediction of a set of parameters.
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The monotonicity is also shared by SCR, but SCR
is no right adjoint, since it is not meet-preserving,
because the intersection of two zonoids is generally
not a zonoid. Furthermore, generally only (SCR ◦
PR ◦ SCR)(Y) ⊃ SCR(Y) holds, which means that
we generally loose information if we predict and esti-
mate once more.

5.2 SMR and SCR as a Kernel and a Hull

In [9] a criterion function based identification region
is proposed. The criterion function (see Prop. 5.3)
is based on a generalization of the expected squared
errors to the expected squared minimal errors. The
proposed sharp identification region is the argmin of
this criterion function and it is very similar to SMR,
but it is not monotone. It shows up that SMR is the
highest lower and SCR is the lowest upper monotone
approximation of this region.

Definition 4 Let E : (P,≤) −→ (Q,v) be a map-
ping. The monotone hull of E is defined as:

H(E) : (P,≤) −→ (Q,v) : X 7→
∨

Y≤X
E(Y ).

The monotone kernel of E is defined as:

K(E) : (P,≤) −→ (Q,v) : X 7→
∧

Y≥X
E(Y ).

These set-valued mappings are both order-preserving.
Furthermore, the mapping E 7→ H(E) is a closure
operator and the mapping E 7→ K(E) is a kernel
operator, thus indeed H(E) is a hull and K(E) is
a kernel. In particular, H(E) is the lowest order-
preserving mapping that is higher than E. Analo-
gously, K(E) is the highest order-preserving mapping
that is lower than E.

Proposition 5.3 Let the criterion function
Q : B → R be defined as

Q(β) =

∫
(E(Y |x)− xβ)

2
+ +

(
E(Y |x)− xβ

)2
− dP(x)

=

∫
min

Y ∈[Y,Y]
(E(Y | x)− xβ)2dP(x).

Then the criterion function based mapping

EQ : (Y ,≤) −→ (2B ,⊆) :

(Y,Y) 7→ argmin
β∈B

Q(β)

is a source of SMR and SCR:

SMR = K(EQ) and SCR = H(EQ).

From all above, the region SMR seems to be (at least
in algebraic terms) a more satisfying region, but note
that this region assumes that the model is in fact lin-
ear, which is generally untestable in this context. But
the linearity assumption could be understood differ-
ently, firstly as an assumption on the true model and
secondly as something like a regularization or simpli-
fication method to avoid overfitting or to have a par-
simonious model. The first case points to the sharp
marrow region and the second seemingly to the sharp
collection region, but the parsimoniousness is decreas-
ing if we allow for sets of parameters β instead of a
single parameter and it is not a matter of course, if
the SCR, constructed as the union of all reasonable
best linear predictors, is still a useful model of the
data.19

The region SCR can be estimated from samples in a
consistent, monotone and nonpartial way. With non-
partial we mean that no pair y ≤ y of data would
lead to the empty set as the estimate for SCR. One
possibility is the estimator proposed in [2]. In con-
trast, also a nonempty SMR cannot be estimated in
such a way20. To see this, take a sample (y, y) =

(e−x
2

, e−x
2

), (z1, z1) = (0, y) ≥ (y, y) and (z2, z2) =

(y, 1) ≥ (y, y). If an estimator ˆSMR is consistent
and monotone then for n large enough it should sat-
isfy ˆSMR((y, y)) ⊆ ˆSMR((z1, z1))∩ ˆSMR((z2, z2)) ≈
{(0, 0)} ∩ {(1, 0)} = ∅. Furthermore SMR could not
be estimated robustly in the sense that if one has a
mixture in the sense of the proof of Proposition 4.3
then for ε small enough it is not clear what should
be the estimated SMR, because that part of the data
from the smaller region could be outliers or not, which
would lead to different regions.

6 An Identification Region Based on
a Set-Domained Loss Function

Now we try to establish a region, which could be un-
derstood as a compromise between SMR and SCR.
The idea here is that we look on loss functions that
are dependent on sets of parameters instead of sin-
gle parameters. So in a sense we take the fact seri-
ously that the region is a whole set that constitutes
an imprecise probability structure. We do not look
explicitly at every point of the set and then temporar-
ily forget that the envisaged point is only one point
of the set and maltreat it with a classical method.
Instead, we see the set as a whole and do not look

19In terms of parsimoniousness SMR is comparable to SCR
and in fact SMR sometimes describes the data better, e.g., if
Y = PR(Γ) for some Γ because then we have PR(SMR(Y)) =
Y but generally only PR(SCR(Y)) > Y.

20Note that the estimator proposed in [9] assumes a finite
support of X and is not monotone.
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into it too deeply. We will construct a distance func-
tion between the set of conditional expectations of
Y that cannot be refuted and the set of conditional
expectations that are predicted by a set Γ of param-
eters. Here we do not assume that the true model
is a linear one (if we would make this assumption,
then we would get the region SMR again). Since we
have to measure the distance between the two sets
A(Y) := {(x,E(Y | x)) | Y ∈ [Y,Y], x ∈ R} and
B(Γ) := {(x, xβ) | β ∈ Γ, x ∈ R}, we could use for
example the Hausdorff distance

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}

with some metric d of R2, which possibly takes the
distribution of X into account and weights the dis-
tance according to the density f(x). For a fixed x
we have the possible conditional expectations of Y
and the conditional expectations that are predicted
by the parameter set Γ. Thus, both point sets are
matched in a sense. Because the Hausdorff distance
does not match the points of the two sets but com-
pares all points of the two sets to each other, this dis-
tance seems to be a little bit counterintuitive. Thus,
we propose a slightly different matched distance:

dM (A,B) : =

∫ (
sup

(x,a2)∈A
a2 − sup

(x,b2)∈B
b2

)2

+

(
inf

(x,a2)∈A
a2 − inf

(x,b2)∈B
b2

)2

dP(x).

Now we can define a set-domained loss function as

LS(Y,Γ) = dM (A(Y),B(Γ))

and construct the sharp identification region for the
minimizers of the set-domained loss (short: sharp set-
loss region) SSR :=

⋃
argmin

Γ⊆B
LS(Y,Γ). Note that the

argmin is not always unique, so that we have to take
the union of all sets that minimizes LS . To compute
SSR one can look at the space K = {PR(Γ) | Γ ⊆ B}
of all pairs of random variables (Z,Z) that are pre-
dicted by some set Γ. Since the predicted variables
are only dependent on x, we treat them as functions
from R to R. The set K is then exactly the set of all
(Z,Z) satisfying ∀x3 /∈ [x1, x2] :

Z(x1) + (x3 − x1) · Z(x2)− Z(x1)

x2 − x1
∈ [Z(x3),Z(x3)] &

Z(x1) + (x3 − x1) · Z(x2)− Z(x1)

x2 − x1
∈ [Z(x3),Z(x3)].

That implies particularly that Z is convex and Z is
concave. The task is now to find a pair (Z∗,Z

∗
) ∈ K

that minimizes

∫
(Z(x)−Y(x))2 + (Z(x)−Y(x))2dP(x).

This problem is nothing else than the problem of find-
ing the projection of (Y,Y) on K and since Y is a
Hilbert space and K is a closed convex set, this pro-
jection is unique. The candidate for the sharp setloss
region is then SMR((Z∗,Z

∗
)). Because of (Z∗,Z

∗
) =

PR(Γ) for some Γ, we have PR(SMR((Z∗,Z
∗
)) =

PR(SMR(PR(Γ))) = PR(Γ) = (Z∗,Z
∗
), which

means that our region predicts exactly (Z∗,Z
∗
). Fur-

thermore, every other set that also predicts (Z∗,Z
∗
)

has to be a subset of our region and thus we have
SSR = SMR((Z∗,Z

∗
)). From the construction of

SSR it is also clear that the compositions PR ◦ SSR
and SSR ◦ PR are also idempotent. To estimate the
region SSR from a sample, we can analogously project
the pair of vectors (y, y) on the set of pairs of vectors

(z, z) satisfying ∀xk /∈ [xi, xj ] : zi +(xk − xi) zj − zi
xj−xi

∈
[zk, zk] & zi +(xk − xi)

zj − zi
xj−xi

∈ [zk, zk]. With θ =

(z1, . . . , zn, z1, . . . zn) this problem can be written as
the minimization of θ′Qθ+c′θ subject to Aθ ≥ 0 for a
(positive definite) matrix Q, a matrix A and a vector
c. To compute the solution, one can use for example
the algorithm proposed in [25]. To compute the final
set SMR((z∗, z∗)), one can use standard linear pro-
gramming techniques. The method can be robustified
by modifying the loss function, but then, the solu-
tion may be not unique anymore. The minimization
problem would get nonlinear, but the dimension of
the problem would be n, which is maybe still accept-
able21. Another idea is to allow only special sets of
parameters. Here especially sets of sets of parameters
that are closed under Minkowski convex-combinations
are interesting, because this would ensure the unique-
ness of the solution, because then the set of predic-
tions made by such sets is convex. Such sets of sets
are e.g. the set of all zonoids or the set of all zono-
topes that are generated by line-segments that have
a special angle. The minimization of LS is then still
tractable if the set of sets is parametrizable with a
not too high number of parameters. An advantage of
using special sets is that these sets are possibly better
interpretable, especially if one has a higher number
of covariates. For example an arbitrary high dimen-
sional convex point set represented by all its extreme
points is harder to figure out than a high dimensional
ellipsoid represented by its location and the direction
and spread of all main axes.

21Note that the naive robustification of SCR seems to be not
so easy, because one has to look at the robust estimates for
all y ∈ [y, y] and this is not as easy as the computation of the
image of [y, y] under a linear mapping.
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7 Concluding Remarks

We have worked out some differences between two
types of identification regions in regression analysis
under interval data, and discussed some of their prop-
erties. Indeed, SMR, relying so-to-say on the marrow
of the regression model, and SCR, taking in a col-
lection procedure all potential combinations of data
points equally seriously, can be characterized as the
monotone kernel and the monotone hull of a criterion
function based mapping.

Furthermore, we sketched an appealing, rigorously
set-based compromise, whose properties have still to
be investigated in more detail. Other topics of further
research include the additional inclusion of coarse co-
variates and an extension to generalized linear mod-
els. For generalized linear predictors in [36] a char-
acterization of the sharp collection region is already
given. If also covariates are interval-valued, the de-
scription of SCR becomes more complicated and a re-
formulation relying on roots of likelihood-based score-
functions seems promising.22 For the sharp marrow
region the crucial role the conditional expectation
E(Y |X) plays in the definition of SMR provides an
immediate, promising link. Another direction of fu-
ture research might be the analysis of models with
instrumental variables. For this case a sharp char-
acterization of SCR in terms of the support function
of the identified set as well as some asymptotics of
corresponding estimates can be found in [4].
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Two theories of conditional probability and non-conglomerability 

 
 
 

 
 
Abstract 
Conglomerability of conditional probabilities is 
suggested by some (e.g., Walley, 1991) as necessary for 
rational degrees of belief.   Here we give sufficient 
conditions for non-conglomerability of conditional 
probabilities in the de Finetti/Dubins sense.  These 
sufficient conditions cover familiar cases where P(⋅) is a 
continuous, countably additive probability.   In this 
regard, we contrast the de Finetti/Dubins sense of 
conditional probability with the more familiar account of 
regular conditional distributions, in the fashion of 
Kolmogorov.  
  
Keywords. Non-conglomerability,  conditional 
probability, κ-additive probability, regular conditional 
distribution. 
  
1 Introduction 
Consider a finitely, but not necessarily countably 
additive probability P(⋅) defined on a sigma-field of sets 
B, each set a subset of the sure-event Ω.  In other terms,  
<Ω, B, P> is a (finitely additive) measure space. 

We begin by reviewing the theory of conditional 
probability that we associate with de Finetti (1974) and 
Dubins (1975).   
 
Let B, C, D, E, F, G ∈  B, with B ≠ ∅ and  F ∩ G ≠ ∅.   
Definition 1.  A conditional probability P(⋅ | B) satisfies 
the following three conditions:  
(i) P(C ∪ D | B) = P(C | B) + P(D | B),   

whenever B ∩	  C	  ∩	  D =	  ∅; 
(ii) P(B | B) = 1.  
In order to regulate conditional probability given a non-
empty null event, i.e., one that itself may be of 
unconditional or conditional probability 0, we require the 
following. 
(iii) P(E	  ∩	  F	  |	  G)	  =	  P(E	  |	  F	  ∩	  G)P(F	  |	  G).	  
	  
Throughout, we follow the usual identification of 
unconditional probability with conditional probability 
given the sure-event,  P(⋅) = P(⋅ | Ω). 
 
 
 

 
 

 
This account of conditional probability is not the usual 
theory from contemporary Mathematical Probability, 
which we associate with Kolmogorov (1956).  That 
theory, instead, defines conditional probability through 
regular conditional distributions, as follows. 
 
Let A  be a sub-σ-field of B. 
Definition 2.  P(⋅ | A) is a regular conditional distribution 
[rcd] on B, given A provided that: 
1. For each ω ∈ Ω, P(⋅|A)(ω) is a countably additive 

probability on B. 
2. For each B ∈ B,  P(B| A)(⋅) is an A -measurable 

function. 
3. For each A ∈ A,   

P(A ∩ B)  =  ∫A P(B | A)(ω) dP(ω).  

That is, P(B| A) is a version of the Radon-Nikodym 
derivative of  P(⋅ ∩ B) with respect to P(⋅). 
 
Definition 3: An A-atom is the intersection of all 
elements of A that contain a given point ω of Ω. 
 
When P(A) > 0 and ω ∈ A ∈ A and A is an A-atom, then 

P(B | A)(ω) =  P(A ∩ B) / P(A). 
 
The theory of conditional probability that we use here 
differs from the received theory of Kolmogorovian 
regular conditional distributions in at least five ways: 
 
(1) The theory of regular conditional distributions 
requires that probabilities and conditional probabilities 
are countably additive. The theory of conditional 
probability from Definition 1 requires only that 
probability is finitely additive.  In this note we bypass 
this difference by exploring countably additive 
conditional probabilities. 

	  
(2) When P(A) = 0 and A is not empty, a regular 
conditional probability given A is relative also to a sub-
sigma field	  A	  	  ⊆	  B,	  where A	  ∈	  	  A.	  	  	  By contrast, in the 
theory of conditional probability, P( ⋅ | A), depends solely 
on the event A and not on any sub-field that embeds it.  
Example 2, below, illustrates this difference. 
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(3) Dubins (1975) establishes that for each set Ω there is 
a full conditional probability function, P(B|A), defined 
whenever A ≠ ∅ and B are elements of B, the powerset 
of Ω.  However, some countably additive probabilities do 
not admit regular conditional distributions relative to a 
particular sub-sigma field A	  	  ⊆	  B, even when each sigma-
field, A	  and	  B, is countably generated. The canonical 
example of a measure space that admits no rcd’s is 
obtained by extending the	  σ-‐field of Borel sets on [0,1] 
under Lebesgue measure, µ, with the addition of one 
non-measurable set.  
 
Denote the initial measure space by <[0,1], B,	  µ>.  A 
familiar maneuver allows an extension of B to a larger σ-
field of sets, B’, generated by adding one Lebesgue non-
measurable set to B, and an extension of µ to a countably 
additive probability µʹ′ over B’.  However, there is no rcd 
µʹ′(·|A)(ω)	  on	  B’	  given	  A when, e.g., A = B.  (See 
Halmos, 1950, p. 211; Billingsley, 1986, Exercise 33.13; 
Breiman, 1968, p.81; Doob, 1953, p. 624; or Loeve, 
1955, p. 370 for variations on this common theme.)   
Though, for each B ∈	  B, the extended measure space has 
Radon-Nikodym derivatives P(B |·) satisfying condition 
3, above, these resist assembly of pointwise probabilities 
into a countably additive probability distribution over B’ 
as required by condition 1.  	   
 
In our (2001, Corollary 1) we show that, quite generally, 
a measure space admitting rcd's can be extended to 
another measure space admitting rcd's if and only if the 
latter lies within the measure completion of the former.	  	  	  
In rejoinder to the existence problem, however, a 
sufficient condition for rcd’s to exist on B (given any sub 
σ-field A) is that B be isomorphic under a 1-1 measurable 
mapping to the σ-field of a random variable.  (See, 
Billingsley 1986, T.33.3; or  Breiman, 1968, T. 4.30.) 
 
(4) Blackwell (1955), Blackwell and Ryll-Nardzewski 
(1963) and Blackwell and Dubins (1975) introduce an 
additional constraint, propriety of an rcd, matching 
condition (ii) of de Finetti/Dubins’ theory of conditional 
probabilities. 
 
Definitions 4:  
• An rcd P(·|A)(ω) on B given A, is proper at ω   

if  P(A |A)(ω) = 1 whenever ω ∈ A ∈ A.   
• P(·|A)(ω) is improper at ω, otherwise. 
• P(·|A) is proper if P(·|A)(ω) is proper for each ω∈Ω. 

 
Definition 5: Say that a probability distribution is 
extreme if its range is the two point set {0,1}. 

 
Theorem 1 (Blackwell and Dubins, 1975) When B is a 
countably generated σ-field, no rcd on B given A is 

proper if there exists some extreme probability on A 
supported by no A-atom belonging to A. 
In other words, provided there exists even one extreme 
probability on A which is supported by none of its A-
atoms, then the sub-σ-field A is anomalous for all rcd’s 
on B given A in that they are improper, each and every 
one!   However, this result does not identify at how many 
points, ω, or how badly, the rcd is improper. The 
following result addresses that question. 

	  
Assume that A is an atomic sub-σ-field of B, with A-
atoms a.  Denote by a(ω) that A-atom containing the 
point ω. 

 
Theorem 2 (our 2001): Let P be an extreme probability 
on A that is not supported by any of its A-atoms.  If an 
rcd P(·|A)(ω) on B given A exists, there is one where 
P{ω: P(a(ω)|A)(ω) = 0} = 1.  And, if B is countably 
generated, then this rcd is unique.  

 
Theorem 2 asserts that when B is countably generated 
and the antecedent of Theorem 1 is satisfied, then almost 
surely with respect to P, the rcd’s on B given A are 
maximally improper, in two senses simultaneously:   
• The set of points where propriety fails has measure 1 

under P.   
• For P-almost all points ω, P(a(ω)|A)(ω) = 0 when 

propriety requires that P(a(ω)|A)(ω) = 1. 
The following Corollary applies Theorem 2 when 
conditioning on the sub-sigma field associated with de 
Finetti’s theorem on exchangeability. 
 
Let Ω = {0,1}ℵ0 ; let B = the Borel subsets of Ω; and let P 
be a symmetric probability, in the sense of Hewitt and 
Savage (1955) defined as follows.  Let T be an arbitrary 
finite permutation of the positive integers, i.e., a 
permutation of the coordinates of Ω that leaves all but 
finitely many places fixed.  For B ∈ B, given T, define 
the set T-1B  = {ω: T(ω) ∈ B}.   
 
Definitions 6:  
• P is called a symmetric probability if P(T-1B) = P(B), 

for each B ∈	  B	  and T.    
• If B = T-1B for all (finite) permutations T, B is called 

a symmetric event. 
	  

Let A be the sub-σ-field of B generated by the class T of 
all finite permutations of the coordinates of Ω, i.e., A is 
the σ-field of the symmetric events. A is atomic, with A-
atoms comprised by a countable set of sequences, each 
pair of sequences in the same atom differing by some 
finite permutation of its coordinates.  In all but two cases 
the A-atoms are countably infinite sets.  The two 
exceptions are the two constant sequences, which are 
singleton sets.	  	  
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Corollary (see our 2001).  Each rcd P(·|A)(ω) on B given 
A, for a symmetric probability P, satisfies  

P{ω: P(a(ω) | A)(ω) = 0)} = 1,  
provided that P(<0,0,0,…. >) = P(<1,1,1…. >) = 0. 
 
For additional related results see (Berti and Rigo, 2007) 
 
(5) Our focus in this paper is on a fifth feature that 
distinguishes the de Finetti/Dubins theory of conditional 
probability and the Kolmogorovian theory of regular 
conditional probability.  This aspect of the difference 
involves conglomerability of conditional probability 
functions.   
 

Let E ∈ B, let N be an index set and let π = {hν: ν ∈ N} 
be a partition of the sure event where the conditional 

probabilities, P(E | hν), are well defined for each ν ∈ N.   
 

Definition 7:  The conditional probabilities P(E | hν) are 
conglomerable in π provided that, for each event E ∈  B 
and arbitrary real constants k1 and k2,  

  if k1 ≤ P(E | hν) ≤ k2 for each ν ∈ N, then k1 ≤ P(E) ≤ k2. 
  

In our (1984) we show that if P is merely finitely additive 
(i.e., if P is finitely but not countably additive) with 
conditional probabilities that satisfy Definition 1, then P 
fails conglomerability in some countable partition.  That 
is, for each merely finitely additive probability P there is 
an event E, an ε > 0, and a countable partition π = {hn: n 
= 1, …}, where P(E) > P(E | hn) + ε  for each hn ∈ π.   
 
The following illustrates a failure of conglomerability for 
a merely finitely additive probability P in a countable 
partition π = {hn: n ∈ {1, 2, …}}, where each element of 
the partition is not null, i.e., P(hn) > 0, n = 1, 2, … .   
 
Then, apart from the requirement of countable additivity, 
both theories agree on the relevant conditional 
probabilities: P(E | hn) = P(E∩ hn)/P(hn) is well defined.  
Thus, the failure of conglomerability in this example is 
due to the failure of countable additivity, rather than to a 
difference in how conditional probability is defined. 
 
Example 1 (Dubins, 1975): Let Ω  = {(i, n): i ∈ {1, 2} 
and n ∈ {1, 2, …}} and let B  be the powerset of Ω .   
Let event E = {{1, n}: n ∈ {1, 2, …}} and events hn = 
{{1,n}, {2,n}}, n = 1, ... .  Observe that the hn form a 
partition: π = {hn: n ∈ {1, 2, …}}.   
Partially define the (unconditional) probability P by  

(a) P({(i, n)}) = 1/2n+1 if i = 1, n = 1, 2, ... 
(b) P({(i, n)}) = 0 if i = 2, n = 1, 2, ... 
(c) P(E) = 0.5.   

So P is countably additive given E, and strongly finitely 
additive given Ec.   (A finitely additive probability is 

strongly finitely additive if there is a countable partition 
of the sure event each of whose elements is null.) 
Clearly, P(hn) =  P({(1,n)}) + P({2,n)}) =  1/2n+1 > 0 for 
each n ∈ {1, 2, …}.   
But P is not conglomerable in π, as:     
P(E | hn) = P(E ∩ hn)/P(hn) = 1, for each n ∈ {1, 2, …}, 
whereas P(E) = 0. 5. Example 1   
In our (1996), we discuss this example in connection 
with the value of information.   
 
The non-conglomerability of Example 1 extends to a 
non-trivial IP class, P.  Let P be the set of all finitely 
additive conditional probabilities whose unconditional 
probabilities P(⋅) = P(⋅ | Ω) satisfy conditions (a), (b) and 
(c) of Example 1.  The class P is convex in the usual 
sense, applied to unconditional probabilities.  That is, 
assume P contains two finitely additive conditional 
probabilities P1(⋅ | ⋅) and P2(⋅ | ⋅) with unconditional 
probabilities, respectively, P1(⋅) and P2(⋅).  Let 0 ≤ x ≤ 1.  
Then there is a finitely additive conditional probability 
P3(⋅ | ⋅) in P whose unconditional probability P3(⋅)  
satisfies P3(⋅) =  xP1(⋅) + (1-x)P2(⋅).  The cardinality of P 

is 2|

|ℜ|
, where |ℜ| is the cardinality of the continuum.  

This follows as P includes all finitely additive 
probabilities P where P( ⋅ | Ec) is a non-principal 
ultrafilter probability on the positive integers and there 

are 2|

|ℜ|
-many such non-principal ultrafilters.)  Each P ∈ 

P fails conglomerability in π exactly as in Example 1.  
Hence, with respect to lower and upper unconditional 
and conditional probabilities, the IP-set P fails to be 
conglomerable in the partition π.  In Section 5 we give 
sufficient conditions for an IP set of countably additive 
probabilities to experience non-conglomerability in an 
uncountable partition. 
 
2  Non-conglomerable σ-additive probability 
The focus of this note is non-conglomerability for 
countably additive probabilities.  In the appendix to our 
(1986) we show that for a continuous, countably additive 
probability defined on the continuum, and assuming 
conditional probabilities that satisfy Definition 1 rather 
than regular conditional distributions, then non-
conglomerability results by considering continuum-many 
different partitions of the continuum.  These alternative 
partitions are generated by sets of equivalent (non-
linearly transformed) random variables. 
Conglomerability cannot be satisfied in all the partitions.    
 
Here we generalize that result to a large class of 
countably additive probabilities, P, that are not κ-additive 
for some uncountable cardinal κ, by identifying for each 
such P specific partitions where P fails to be 
conglomerable. 
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In the following presentation, let α, β, and γ be ordinals 
and λ and κ cardinals.  
Definitions 8:   
• A probability P is κ-additive if, for each increasing 

γ-sequence of measurable events, {Eα: α < γ ≤ κ}, 

where Eα ⊆ Eβ whenever α < β < γ , then 

P(∪α<γ Eα) = supα<γ P(Eα).  
That is, with γ ≤ κ, P is κ-additive provided that 
probability is continuous from below over γ-long 
sequences that approximate events from below.   
This definition agrees with the usual definition of 
countable additivity; let κ = ℵ0.   
 
• Say that P is not κ-additive when, for some event E 

and increasing γ-sequence that approximates E from 

below, P(∪α<γ Eα) > supα<γ P(Eα).    
• If P is κ-additive for each cardinal κ, then call P 

perfectly additive.   
 
Consider a countably additive probability P that is not κ-
additive for some cardinal κ.  Since the cardinals below a 
given cardinal form a well-ordered set, we consider the 
least cardinal κ for which P is not κ-additive.  And since 
we assume that P is countably additive, then κ is some 
uncountable cardinal – unless P is perfectly additive.  
Thus, assume that for an uncountable cardinal κ, P is not 
κ-additive but is λ-additive for each cardinal λ < κ.  
 
We make the following two structural assumptions on 
the measurable sets B.   
• We take the measure completion of P.  Each subset 

of a P-null event is measurable.   
That is, if E ∈ B with P(E) = 0 and F ⊆ E then F ∈ B.  
 
We require also that B includes sufficiently many events.  
• If E is not P-null and |E| = κ, then E can be 

partitioned into two measurable sets of the same 
cardinality 

That is, if P(E) > 0 then there exits E1, E2 ∈ B, E1∩E2 = 
∅, E1∪E2 = E, with |E1| = |E2|.  
Note that, given the first assumption, the second 
structural assumption can be satisfied in a variety of 
ways.  For example, assume that when E is a κ-sized 
non-null event, P(E) > 0, then there is a κ-sized, null sub-
event: There exists E1 ⊂ E, |E1| = κ, and P(E1) = 0.   
 
These two assumptions provide for a rich space of 
measurable events while stopping short of requiring P to 
be defined on a power set, which otherwise would 
require κ to be greater than a weakly inaccessible 
cardinal, by Ulam’s [1930] result for real-valued 
measurable cardinals.   
 

Here we identify a simple condition involving tiers of 
points that ensures P fails to be conglomerable in a 
partition of cardinality κ.   
Definition 9: A tier τ is a (measurable) set of points such 
that for each pair of points {ωi, ωj} ⊂ τ   (i≠j)  

0 < P({ωi}| {ωi, ωj}) < 1. 
 
Proposition:  Let P be σ-additive but not κ-additive (κ ≥ 
ℵ1), having conditional probabilities defined relative to 
non-empty sets in B, P(⋅ | B), and which satisfies the two 
structural assumptions on B identified above.  If there is 
an uncountable tier τ of points, |τ| ≥ κ with P(τ) > 0, then 
P fails to be conglomerable in a partition π with |π| = κ. 
 
Thus, rather than thinking that non-conglomerability is 
an anomalous feature of finite but not countably additive 
probabilities, and arises solely with finitely but not 
countably additive probabilities in countable partitions, 
here we argue for a different conclusion:  Let P(⋅ | ⋅) be a 
conditional probability according to Definition 1.  Non-
conglomerability of P’s conditional probabilities occurs 
in a partition whose cardinality |π| = κ matches the κ-
non-additivity of P. 
 
We summarize:  Let P be defined on a measurable space 
<Ω , B>, where B includes each of the points of the space, 

Ω  = {ωα: α < κ}, with α ranging over all ordinals less 
than κ.  That is, without loss of generality, assume Ω  has 
cardinality κ and where, if a measurable event E is null, 
i.e., whenever P(E) = 0, then B includes each subset of E, 
and where κ-sized non-null events can be split into two 
measurable κ-sized events.  Then if some tier of points is 
not null, P fails to be conglomerable in a partition of 
cardinality κ. 
  
Since P is not perfectly additive, it follows that κ is a 
regular cardinal: it has cofinality κ.  Otherwise, κ is 
singular with cofinality(κ) = λ < κ.   Then, using this λ-
sequence which is cofinal in κ, as P is λ-additive for each 
λ < κ, P would be κ-additive as well.  
 
3 Proof of the Proposition 
Suppose there exists a tier of points τ, |τ| = κ, with P(τ) > 
0.  Then P({ω}) = 0 for each ω ∈ τ, because P(τ) > 0 and 
P is λ-additive for each cardinal λ < κ.  Partition τ into 
two disjoint sets, T0 ∩ T1 = ∅ with T0 ∪ T1 = τ; each 
with cardinality κ, |T0| = |T1| = κ; and label them so that 
P(T0) ≤ P(T1) = d > 0.   

 
We identify a partition of cardinality κ where P fails to 

be conglomerable, which we write as π = {hα: α < κ} ∪ 

{hʹ′β: β < γ ≤ κ}, where {hα: α < κ} ∩ {hʹ′β: β < γ ≤ κ} = 
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∅,  and where P(T1 | h) < d/2 for each h ∈ π.  Possibly 

the second set, {hʹ′β: β < γ ≤ κ}, is empty, as we explain 
below.  Each element h ∈ π is a finite set.  Each element 
hα  contains exactly one point from T1, and some positive 
finite number of points from T0, selected to insure that 

P(T1 | h) < d/2.  If the second set, {hʹ′β: β < γ ≤ κ}, is not 

empty, each hʹ′β = {ωβ} is a singleton with ωβ ∈ Ω – T1.   

So, if {hʹ′β: β < γ ≤ κ} is not empty, then P(T1 | hʹ′β) = 0 

for each hʹ′β.  Next we establish the existence of such a 
measurable partition π. 
 
By the Axiom of Choice, consider a κ-long well ordering 

of T1, {ω1, ω2, …, ωβ, …} with ordinal indices 0 < β < 
κ.  Define π by induction.  As each of T0, T1 is a subset 
of the tier τ, consider the countable partition of T0 into 
sets  
ρ1,n = {ω ∈ T0: (n-1)/n  ≤  P({ω1} |{ω1, ω})  <  n/(n+1)} 
for n = 1, 2 …  .   
 
Observe that ∪n ρ1,n = T0.  Since |T0| = κ ≥ ℵ1, by the 
pigeon-hole principle, consider the least n* such that ρ1,n* 
is infinite.  Let U1 = {ω1,1, …, ω1,m} be m-many points 
chosen from ρ1,n*.   Note that P({ω1} | U1 ∪ {ω1}) ≤  
n*/(m+n*).   Choose m sufficiently large so that 
n*/(m+n*) < d/2.  Let h1 =  U1 ∪ {ω1}. 
 

For ordinals 1 < β < κ, define hβ, by induction, as 

follows.  Denoting T0,1 = T0, and let T0,β = T0 – 

(∪0<α<β hα).  Since, for each α, 0 < α < β, by 

hypothesis of induction hα is a finite set, then  

|∪0<α<β hα| < κ.  So, |T0,β| = κ.  Since T0,β is a subset of 

τ, just as above, consider the countable partition of T0,β 
into sets    

ρβ,n  = {w ∈ T0,β: (n-1)/n  ≤  P({ωβ} |{ωβ, ω})  < 
n/(n+1)}  for n = 1, 2, … .     Again, by the pigeon-hole 

principle, consider the least integer n* such that ρβ,n* is 

infinite.  Let Uβ = {ωβ,1, …, ωβ,m} be m-many points 

chosen from ρβ,n*.   Note that  

P({ωβ} | Uβ ∪ {ωβ}) ≤  n*/(m+n*).    
Choose m sufficiently large that n*/(m+n*) < d/2.   

Let hβ =  Uβ ∪ {ωβ}.  Observe that T1 ⊂ ∪0<β<κ hβ 

and that for each 0 < β < κ, P(T1 | hβ) < d/2.  In order to 
complete the partition π, consider a catch-all set with all 

the remaining points ωβ ∈ Ω − ∪0<β<κ hβ.  Note that 

each such ωβ  is not a member of T1, if any such points 

exist.  Add each such point {ωβ} = hʹ′β  as a separate 
partition element of π.  Thus, if there are any such points, 

P(T1 | hʹ′β) = 0 < d/2.    
 
Hence, P is not conglomerable in π as P(T1) = d > 0, yet 
for each h ∈ π, P(T1 | h) < d/2.◊ Proposition 
 
4 An Example of the Proposition 
Next, we illustrate the Proposition and with it also the 
difference (2) between the theory of conditional 
probability according to Definition 1 and the theory of 
regular conditional distributions. 
 
Example 2:  Let <Ω, B> be the measurable space of 
Lebesgue measurable subsets of the half-open unit 
interval of real numbers: Ω = [0,1) and B is its algebra of 
Lebesgue measurable subsets.  Let P be the uniform, 
countably additive probability with constant density 
function ƒ(ω) = 1 for each real number 0 ≤ ω < 1, and 
ƒ(ω) = 0 otherwise.  So P({ω}) = 0 for each ω ∈ Ω.  
Evidently P is not κ-additive, because κ = |Ω| = |ℜ|. 
 
Consider the uniform density function ƒ to identify 
conditional probability given finite sets as uniform over 
those finite sets, as well.  That is, when F = {ω1, …, ωk} 
is a finite subset of Ω with k-many points, let P( ⋅ | F) be 
the perfectly additive probability that is uniform on these 
k-many points.  These conditional probabilities create a 
single tier, τ = Ω, because P({ω1} |{ω1, ω2}) = 0.5 for 
each pair of points in Ω.  
 
Consider the two events E = {ω: 0 ≤ ω < 0.9} and its 
complement with respect to Ω, Ec = {ω: 0.9 ≤ ω < 1}, 
where P(E) = 0.9.  Let g be the 1-1 (continuous) map 
between E and Ec defined by g(ω) = 0.9 + ω/9, for ω ∈ 
E.  Consider the κ-size partition of Ω by pair-sets, π = 
{{ω, g(ω)}: ω ∈ E}.   By assumption, P({ω} | {ω, g(ω)}) 
= 1/2  for each pair {ω, g(ω)} ∈ π.  But then P is not 
conglomerable in π.◊Example 2 
 
The theory of regular conditional distributions treats the 
example differently. We continue Example 2 from that 
point of view.    
 
Example 2 (continued) Consider the measure space <Ω, 
B , P> as above.  Let the random variable X(ω)= ω, so 
that X ~ U[0,1), X has the uniform distribution on Ω.  In 
order to consider conditional probability given the pair of 
points {ω, g(ω)}, let   

g(X) = (X/9) + 0.9  if 0 ≤ X < 0.9 
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 g(X) =  9(X − 0.9)  if 0.9 ≤ X < 1. 
Define the random variable   

Y(ω)  = X(ω) + g(X(ω)) − 0.9. 
Observe that Y ~ U[0, 1.0).  Also, note that Y is 2-to-1 
between Ω and [0.0, 1.0).  That is Y = y entails that 
either ω = 0.9y or ω = 0.1(y + 9).   
 
Let the sub-sigma field A be generated by the random 
variable Y.  The regular conditional distribution relative 
to this sub-sigma field, P( B  | A)(ω), is a real-valued 
function defined on Ω that is A-measurable and satisfies 
the integral equation 

∫A P(B | A)(w) dP(ω) = P(A ∩ B)  
whenever A ∈ A and B ∈ B.  
 
In our case, then P[B | A](ω) almost surely satisfies:  

P(X = 0.9Y | Y)(ω) = 0.9 
and P(X = 0.1(Y + 9.0) | Y)(ω) =  0.1. 
Thus, relative to the random variable Y, this regular 
conditional distribution assigns conditional probabilities 
as if P({ω} | {ω, g(ω)}) = 0.9 for almost all pairs {ω, 
g(ω)} with 0 ≤ ω < 0.9.   However, just as in the Borel 
“paradox” (Kolmogorov, 1956), for a particular pair  
{ω, g(ω)}, the evaluation of P({ω} | {ω, g(ω)}) is not 
determinate and is defined only relative to which sub-
sigma field A embeds it.   
 
For an illustration of this last feature of the received  
theory of regular conditional distributions, consider a 
different pair of complementary events with respect to Ω.  
Let F = {ω: 0 ≤ ω < 0.5} and Fc = {ω: 0.5 ≤ ω < 1}.  So,  
P(F) = 0.5.   
 
Let  f(X) = 1.0 – X if  0 < X < 1. 
         =  0  if  X = 0. 
 
Analogous to the construction above, let  

Z(ω)  = |X(ω) – f(X(ω))|.   
So Z is uniformly distributed, Z ~ U[0, 1), and is 2-to-1 
from Ω onto [0, 1).  Consider the sub-sigma field A ʹ′ 
generated by the random variable Z.  Then the regular 
conditional distribution P( B  | A ʹ′)(ω), almost surely 
satisfies:  

P(X = 0.5 – Z/2 | Z ≠ 0 )(ω)  =  0.5 
and P(X = 0.5 + Z/2 | Z ≠ 0 )(ω)  =  0.5 
and for convenience,  

P(X = 0 | Z = 0) = P(X = 0.5 | Z = 0) = 0.5. 
 
However, g(.09) = .91 = f(.09) and g(.91) = .09 = f(.91).  
That is, Y = 0.1 if and only if Z = 0.82.  So in the 
received theory, it is permissible to have  

P(ω = .09 | Y = 0.1) = 0.9  
as evaluated with respect to the sub-sigma field 
generated by Y, and also to have  

P(ω = .09 | Z = 0.82}) = 0.5  

as evaluated with respect to the sub-sigma field 
generated by Z, even though the conditioning events are 
the same event.◊ Example 2 (continued) 

 
5   Non-conglomerability for an IP Bounded 
Density Ratio model 
Our focus in this note is on non-conglomerability for a 
single, σ-additive but non-κ-additive probability P that 
has conditional probabilities according to Definition 1, 
and where some non-null tier τ (i.e., P(τ) > 0) is 
composed of null points from Ω.  We highlight this case 
as we think it typifies how conditional probabilities given 
finite set of points are associated with familiar 
continuous statistical models.  Thus, we have 
demonstrated non-conglomerability in a particular 
partition for what we judge is the usual interpretation of 
conditional probabilities from a single continuous, 
countably additive probability distribution.   
 
The Proposition applies to each element of an IP model, 
when that model uses conditional probabilities from a 
countably additive, continuous probability that satisfy 
Definition 1.  This puts pressure, we think on those who 
(e.g., Walley, 1991) appear to require conglomerability 
in arbitrary partitions as a condition for coherent IP 
degrees of belief.  Here is a Corollary to the Proposition 
illustrating the point. 
 
Let P be a set of countably additive, but not κ-additive 
probabilities.  Assume each P ∈ P is defined on a 
common measurable space {Ω, B), where the points of Ω 
are the atoms of B, and where each P has conditional 
probabilities P(⋅ | ⋅) satisfying Defintion 1.  Assume that 
P satisfies the following Bounded Density Ratio [BDR] 
condition, which is a weakened variant of DeRobertis 
and Hartigan’s (1981) Density Ratio model: 
 
•  BDR There exist a set T ⊆ Ω where,  
(1) T can be partitioned into two sets T0, T1 with 	  

|T0| = |T1| = κ and Inf	  P	  ∈P[P(T1)]	  =	  d	  >	  0.	  	  

(2) For each pair, ωα ≠ ωβ	  ∈	  T,	  

Sup	  P	  ∈P	  [	  P({ωα}|{ωα,	  ωβ})	  ]	  	  <	  1	  
 
Note that the BDR condition requires only that the 
probability distributions that belong to P have bounded 
relative densities with respect to pairs of atoms from B.  
As a consequence of the BDR condition, with respect to 
each P ∈ P, the distinguished P-non-null set T belongs to 
one P-non-null tier.  
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Corollary: When P is an IP BDR model, then P fails to 
be conglomerable.  Specifically, there exits a κ-sized 

partition by finite sets, π = {hα: |hα| < ℵ!,  α < κ} where 

Sup h ∈ π, P∈P[ P(T1 | h) ]  <  d = Inf P∈P[ P(T1) ]. 
 
Proof: The proof of the Corollary parallels the proof of 
the Proposition, with one change. That difference is in 

the sets ρβ,n.  For the Corollary, denoting these by ρʹ′β,n, 
we define them inductively as follows.   
Let ρʹ′1,n = {ω ∈ T0:   

     (n-1)/n  ≤  Sup P∈P[P({ω1} |{ω1, ω})  <  n/(n+1)} 
for n = 1, 2, … .  By BDR(2), the sets {ρʹ′1,n: n = 1, 2, …} 
partition T0.    
 
Consider the least n* such that ρʹ′1,n* is infinite.  Let U1 = 
{ω1,1, …, ω1,m} be m-many points chosen from ρʹ′1,n*.   
Note that for each P ∈℘ P({ω1} | U1 ∪ {ω1}) ≤  
n*/(m+n*).   Choose m sufficiently large so that 
n*/(m+n*) < d/2.  Let h1 =  U1 ∪ {ω1}.   So,  

Sup P∈P [ P(T1 | h1) ]  ≤  d/2 

Define hβ, by induction, just as in the proof of the 

Proposition.  For β < κ, define T0,β = T0 – (∪0<α<β hα).  

Consider the countable partition of the set T0,β into sets   

ρʹ′β,n  = {ω ∈ T0,β:  

P(n-1)/n  ≤  Sup P∈P [ P({ωβ} |{ωβ, ω}) ]  <  n/(n+1)} 
for n = 1, 2, … .  The proof of the Corollary then follows 
the proof of the Proposition, resulting in the required 

partition π. ◊ Corollary    
 
6 Concluding Remarks 

	  
In a different paper (2012), we investigate the question of 
non-conglomerability for a single countably additive but 
κ-non-additive probability where no set of P-null points 
forms a P-non-null tier.  Though the mathematics for 
analyzing this case is rather different from the reasoning 
used in the Proposition presented here, we point the 
reader to some interesting features about tiers that we use 
to address this other case.   
 
Definition 10:  Consider the relation, ∼, of relative-non-
nullity on pairs of points in Ω.  That is, for two different 
points, ω1 ≠ ω2 they bear the relation ω1 ∼ ω2 provided 
that  
0 < P({ω1}| {ω1, ω2 }) < 1. 
We make ∼ into an equivalence relation by stipulating 
that, for each point ω, ω ν∼ ω.  
 
Next we state and prove an elementary fact. 

Fact:  ∼ is an equivalence relation. 
Proof:  Only transitivity requires verification.   Assume 
ω1 ∼ ω2 ∼ ω3.  That is, assume  
0 < P({ω1} | {ω1, ω2}), P({ω2}| {ω2, ω3}) < 1.   
Then by (iii) of Definition 1 for conditional probability:  
P({ω1}| {ω1, ω2, ω3}) =  

P({ω1}| {ω1, ω2}) P({ω1, ω2} | {ω1, ω2, ω3}).   
Also,   P({ω3}| {ω1, ω2, ω3}) =  

P({ω3} | {ω2, ω3}) P({ω2, ω3} | {ω1, ω2, ω3}).  
Now argue indirectly by cases. 
If  P({ω1} | {ω1, ω3}) = 0,  
then  P({ω1} | {ω1, ω2, ω3}) = 0  
and  P({ω1, ω2} | {ω1, ω2, ω3}) = 0,  
since, by assumption. P({ω1} | {ω1, ω2}) > 0.   
Then  P({ω2}| {ω1, ω2, ω3}) = 0 = P({ω2} | {ω2, ω3}), 
which contradicts	  	  ω2	  ∼	  ω3.	  	   
If  P({ω1} | {ω1, ω3}) = 1,  
then  0 = P({ω3} | {ω1, ω3}) = P({ω3} | {ω1, ω2, ω3}). 
Then  0 = P({ω2, ω3} | {ω1, ω2, ω3}),  
since  0 <  P({ω3}|  {ω2, ω3}).    
So,  0 = P({ω2}| {ω1, ω2, ω3}) = P({ω2} | {ω1, ω2}), 
which contradicts ω1 ∼ ω2.   
Hence 0 < P({ω1} | {ω1, ω3}) < 1, as required. ◊ Fact 

    
Thus, the equivalence relation ∼ partitions Ω into disjoint 
tiers τ of relative non-null pairs of points.  For each pair 
of points {ω1, ω2} that belong to different tiers, ωi ∈ τi  
(i = 1, 2), when τ1 ≠ τ2, then P({ω1} | {ω1, ω2}) ∈ {0,1}.     
If P({ω2} | {ω1, ω2}) = P({ω3} | {ω2, ω3}) = 1, then 
P({ω3} | {ω1, ω3}) = 1.  Thus, the tiers are linearly 
ordered by the relations ↑, ↓ defined as:   
Definitions 11:   
• τ1 ↑ τ2 if for each pair {ω1, ω2}, ωi ∈ τi (i = 1, 2), 

P({ω2 } | {ω1, ω2}) = 1.   
The reverse ordering also is linear.  We express this as  
• τ2 ↓ τ1 if for each pair {ω1, ω2}, ωi ∈ τi (i = 1, 2), 

P({ω2 } | {ω1, ω2}) = 1. 
That is, τ2 ↓ τ1 if and only if τ1 ↑ τ2.    
 
Next, consider the possibly empty set of P-non-null 
points.  Let τ* = {ω: P(ω) > 0).  Evidently, when ∅ ≠ τ* 
≠ τ, then τ*↓ τ, and τ* is the top element in the linear 
order of tiers.   
  
We note that this linear order of tiers plays an important 
role in Dubins (1975) proof of the existence of fully 
defined finitely additive conditional probabilities, i.e., 
where B is the powerset of Ω and P(B | A) is well-defined 
whenever ∅ ≠A, B are elements of B.  Also, it appears in 
both Levi’s (1980, §5.5) and Regazzini’s (1985) 
strengthened version of de Finetti’s criterion of 
coherence for conditional previsions.  Levi and 
Regazzini strengthen de Finetti’s coherence criterion for 
a called off gamble given a null event in order to have 
coherent conditional previsions that satisfy Definition 1.  
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Under additional structural assumptions about B, 
including measurability of the intervals of tiers formed 
under ↓, in our (2012) we extend the Proposition to 
include non-conglomerability for such cases as well.  
This permits us to conclude that the anomalous 
phenomenon of non-conglomerability is a result of 
adopting the de Finetti/Dubins theory of conditional 
probability instead of the rival Kolmogorovian theory of 
regular conditional distributions.  Non-conglomerability 
is not a result primarily of the associated debate over 
whether probability is allowed to be merely finitely 
additive rather than satisfying countable additivity.   
 
Restated, our conclusion is the observation that (subject 
to structural assumptions on the algebra B) even when P 
is λ-additive for each λ < κ, if P is not κ-additive and has  
conditional probabilities that satisfy Definition 1, then P 
will experience non-conglomerability in a κ-sized 
partition.  And then such conditional probabilities will 
not satisfy condition (3) of the theory of regular 
conditional distributions.    

On the other hand, regular conditional distributions avoid 
non-conglomerability by allowing conditional probability 
to depend upon a sub-sigma field, rather than being 
defined given an event.  And, occasionally, they avoid 
non-conglomerability by abandoning the requirement of 
Propriety, which is clause (ii) of Definition 1 of the de 
Finetti/Dubins theory of conditional probabilities.   

Evidently, some countably additive continuous IP models 
that use the theory of conditional probabilities associated 
with Definition 1 require non-conglomerability in 
specific, uncountable partitions.  We think this is a better 
alternative than using IP models with conditional 
probabilities based on the theory of regular conditional 
distributions.  In future work on IP models with 
conditional probabilities, we hope to address the 
following question:  
• With respect to a given IP model that use conditional 

probabilities, in the sense of Definition 1, in which 
partitions is non-conglomerability mandated? 
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Abstract

The proposition that conflict and ambiguity are dis-
tinct kinds of uncertainty remains debatable, al-
though there is substantial behavioral and some neu-
rological evidence favoring this claim. Recently for-
mal decisional models that combine ambiguity and
conflict have been proposed. This paper presents em-
pirical tests of four hypotheses and five models of un-
certainty judgments under ambiguity and conflict, via
comparisons between pairs of conflicting and ambigu-
ous interval estimates by a sample of 395 adults. The
main findings are as follows.

1. Human judges see conflict even in nested inter-
vals with identical midpoints and symmetrically
differing endpoints.

2. Identical envelopes of intervals may not be per-
ceived as equally conflictive. Moreover, sets of
intervals whose average widths are identical may
not be perceived as equally ambiguous.

3. Perceived degree of conflict does not necessarily
covary with the magnitudes of the differences be-
tween corresponding pairs of interval endpoints.
Indeed, a nested pair of intervals may be regarded
as more conflictive than a non-nested overlapping
pair whose pairs of endpoints differ identically to
the nested pair.

4. Judgments of degrees of conflict and ambiguity
both contribute independently to judgments of
overall uncertainty. However, judgments of am-
biguity and conflict appear to be positively cor-
related.

None of the models pass all empirical tests, but spe-
cific suggestions for improving the models are derived
from the findings.

Keywords. Uncertainty, ambiguity, conflict, judg-
ment, decision.

1 Introduction

Whether conflict and ambiguity are distinct kinds
of uncertainty remains an open question, as does
their joint impact on judgments of overall uncertainty.
There is behavioral evidence (Smithson 1999, Caban-
tous 2007, Cabantous et al. 2011, Baillon et al. 2012)
and some neurological evidence (Pushskarskaya et al.
2013) in favor of the notion that conflict and ambi-
guity are separate. However, there are generalized
probability frameworks that deal in sets of probabil-
ities, where this distinction appears unnecessary or
irrelevant.

Recently formal models of decision making under con-
flict and ambiguity have been proposed (Gajdos &
Vergnaud 2012) that include separate parameters to
represent orientations towards conflictive and ambigu-
ous uncertainties. Such models can differ in important
ways that are amenable to empirical tests by human
judges. In so doing, we must simultaneously inves-
tigate judges’ understandings of the terms “conflict”
and “ambiguity” and how those understandings trans-
late into judgments of uncertainty. Thus, this study
is in the genre of the literature on people’s numeri-
cal interpretations of verbal probability expressions.
Here, we shall examine simple comparisons between
interval estimates, where the intervals may or may not
overlap, and we will focus on four questions:

1. Do nested intervals (special case: identical mid-
points) imply no conflict?

2. Do identical envelopes of intervals imply equal
conflict and/or equal ambiguity? What about
identical interval averages?

3. Does conflict covary with the magnitudes of the
differences between corresponding pairs of inter-
val endpoints?

4. Do judgments of degrees of conflict and ambigu-
ity both contribute independently to judgments
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of overall uncertainty?

The rationale for questions 1-3 is that conventional
pooling rules for sets of quantitative estimates may
yield “yes” and “no” answers to these questions. For
example, two equally credible interval estimates [1, 7]
and [3, 5] may be averaged to yield a pooled interval
estimate [2, 6], the same result if both interval esti-
mates were identical intervals [2, 6]. So this example
could be interpreted as answering “yes” to questions
1 and the average interval version of 2.

A second example, two interval estimates [1, 5] and
[3, 7], also may be averaged to yield [2, 6]. This exam-
ple would seem to answer “yes” to question 3 when
we compare it to the first example, because in both
examples the magnitude of the difference between the
lower endpoints is 2 and so is the difference between
the upper endpoints. The same comparison also an-
swers “yes” to the identical envelopes version of ques-
tion 2. But now consider the pair of intervals [0, 4]
and [4, 8]. Averaging them yields [2, 6] again, despite
the fact that their lower and upper endpoints differ
by 4 instead of 2. Given that both intervals have the
same widths as those in the second example so they
are equally ambiguous, it would seem that the degree
of conflict does not covary with these differences and
this example says “no” to question 3.

A more risk-averse pooling rule that stipulates taking
the minimum of the lower endpoints and the maxi-
mum of the upper endpoints of equally credible inter-
val estimates says “no” to questions 1 and 2. Pooling
intervals [2, 6] and [3, 5] with this rule yields [2, 6], the
same result if both interval estimates were identical
intervals [2, 6]. Clearly the first pair of intervals is,
on average, less ambiguous than the second, so per-
haps the first pair has some degree of conflict whereas
the second identical pair, of course, does not. The
lesser ambiguity is then compensated by the greater
conflict to yield the same overall uncertainty in the
pooled interval. So we have “no” to questions 1 and
the identical envelopes version of question 2.

The rationale for question 4 stems from behavioral
evidence (Smithson 1999, Cabantous 2007 and Bail-
lon et al. 2012) and recent neurological evidence
(Pushkarskaya et al. 2013) that people treat uncer-
tainty arising from conflicting information as distinct
from uncertainty arising from ambiguity. Even grant-
ing this claim, it is not clear how people combine the
two kinds of uncertainty if asked to evaluate the over-
all uncertainty of a prospect.

Simple empirical tests of all four questions can be con-
structed by two-alternative forced-choice experiments
in conjunction with simple models incorporating each
hypothesis. In the next section we shall see that rea-

sonable models of ambiguity and conflict can be con-
structed to yield “yes” and “no” answers to questions
1-3.

2 Models

Suppose that K judges provide estimates of a quantity
of the form [pk1, pk2, . . . , pkJ ], where the pkj are order
statistics: pk1 < pk2 < . . . < pkJ . The simplest setup
of this kind, which we shall consider, has two judges,
each of whom provides a lower and upper estimate,
so that K = 2 and J = 2.

The kth judge’s assessment is ambiguous or vague in-
sofar as the pkj diverge in some sense from one an-
other, and we will consider functions A(pkj) to mea-
sure ambiguity. Likewise, judges’ assessments may
conflict with one another insofar as their assessments
differ in some sense from each other, and we will also
consider functions C(pkj) to measure conflict. Finally,
a decision maker (DM) who is given these judges’
assessments may have a subjective appraisal of the
combined uncertainty resulting from both ambiguity
and conflict that weighs these two uncertainty com-
ponents according to their relative aversiveness to the
DM. We will therefore investigate uncertainty func-
tions S(α, θ, C(pkj), A(pkj)) that are monotonically
increasing in C(pkj) and A(pkj), where α is the con-
flict weight and θ is the ambiguity weight.

2.1 Model Types

2.1.1 Variance Component Models

A natural uncertainty metric for both ambiguity and
conflict could be variance. Ambiguity effects on judg-
ments and decisions have been explained in terms of
variance (Rode et al. 1999), and conflict also has im-
plications for variability in outcomes. The ambiguity
of each judge’s estimates can be measured by

Ak =
J∑

j=1

(pkj − pk.)
2
/

J, (1)

so that the total ambiguity is just the within-judge
component of the variance of the pkj :

A =

K∑

k=1

Ak/K.

An intuitively plausible candidate for measuring con-
flict, then, is the between-judge variance component:

C1 =

K∑

k=1

(pk. − p..)
2
/

K (2)
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However, an alternative conflict measure is the vari-
ance among the order-statistics of the same rank:

C2 =

K∑

k=1

J∑

j=1

(pkj − p.j)
2

/
JK. (3)

I shall refer to the first model as variance component
model 1 (VC1) and the second as VC2. The conflict
function in equation 3 differs from that in equation 2
in an important way, because when pk. are identical
for all K judges, C1 = 0 whereas this is not true for
C2. Thus, VC1 predicts that a pair of interval esti-
mates with identical midpoints will not be perceived
as conflictive, whereas VC2 predicts that they will be.

A DM’s degree of concern or disutility about ambigu-
ity is represented by a weight, θ, that takes values in
the closed unit interval. Likewise, the DM’s degree of
concern about disagreement or conflict is represented
by a weight, α, whose domain also is the unit inter-
val. There are several ways these weights may be
employed to combine the ambiguity and conflict mea-
sures to construct a measure of overall uncertainty.
The simplest is a weighted sum:

S(α, θ, A, Cj) = θA + αCj , (4)

where j = 1, 2.

2.1.2 Distance Models

Distance models are related to variance models and
provide another potential metric for both ambiguity
and conflict. A distance model evaluates ambiguity
and conflict in terms of distances between order statis-
tics. The ambiguity of the kth judge can be expressed
as

Ak =
J∑

j1=1

J∑

j2=1

|pkj1 − pkj2 |n
/
J2 (5)

where n > 0 (n = 2 is the Euclidean special case). As
before, the total ambiguity then is simply

A =

K∑

k=1

Ak/K.

Conflict between the judges may be evaluated in two
ways. First, we may sum those differences over the
ranks and take the absolute value of that sum:

C1 = 2

K∑

k1=1

K∑

k2=k1+1

∣∣∣∣∣∣

J∑

j=1

(pk1j − pk2j)
n

∣∣∣∣∣∣

/
K (K − 1).

(6)

Second, we may sum the absolute differences between
pairs of order-statistics of the same rank:

C2 = 2

K∑

k1=1

K∑

k2=k1+1

J∑

j=1

|pk1j − pk2j |n
/

K (K − 1).

(7)
I shall refer to the first model as distance model 1
(D1) and the second as D2. As with the previous
pair of models, D1 predicts that a pair of interval es-
timates with identical midpoints will not be perceived
as conflictive, whereas D2 predicts that they will be.

As with the variance models, it is possible to combine
A and Cj in a weighted sum to produce an overall
evaluation of total uncertainty. The result is equa-
tion (4) with the weights expressing degrees of disu-
tility regarding ambguity and conflict, and the dis-
tance model versions of A and Cj substituted for the
variance models versions.

2.1.3 The Gajdos-Vergnaud Model

Gajdos and Vergnaud (2012) develop a model of de-
cision making under ambiguity and conflict based
on the Schmeidler-Gilboa (1989) maxmin framework.
For the sake of simplicity, I present only the two-
state, two-judge special case of their model, and mod-
ify their notation to be compatible with the notation
used for the other models in this paper. They in-
tended their model to apply to probability judgments;
here I extend it to judgments of magnitudes.

In the Gajdos-Vergnaud (GV) model, the α and θ
weights are used to modify the order statistics of each
judge. The θ parameter contracts the [pk1, pk2] inter-
val around its midpoint at a rate 1− θ, yielding lower
and upper bounds

πk1 = pk1(1 + θ)/2 + pk2(1 − θ)/2, (8)

πk2 = pk1(1 − θ)/2 + pk2(1 + θ)/2.

Gajdos and Vergnaud do not define an ambiguity
measure along the lines of those in this paper, but as
with the variance and distance models we may con-
struct one by summing the differences πk2 − πk1. It
can be shown that this ambiguity measure is identical
to the distance model’s ambiguity measure divided by
2 when n = 1.

The GV model treats α as contracting the pairs of
interval endpoints pkj and pmj around their mean at
the rate 1−α. Thus, the order statistics are modified
in the following way:

γkj = pkj(1 + α)/2 + pmj(1 − α)/2, (9)

γmj = pmj(1 + α)/2 + pkj(1 − α)/2.

Again, Gajdos and Vergnaud do not define a conflict
measure but one may be defined by summing the ab-
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solute values of the differences γkj − πmj . It can be
shown that this conflict measure is identical to the dis-
tance model’s C2 measure divided by 2 when n = 1.

If we evaluate overall uncertainty by summing the am-
biguity and conflict measures, clearly we obtain an un-
certainty measure identical to that in D2 when n = 1.
An alternative evaluation of overall uncertainty is sug-
gested by the maxmin decisional model incorporated
into the GV framework. In the development of the
GV decisional model, the order statistics are trans-
formed by one parameter and then those results are
transformed in turn by the second parameter, accord-
ing to equations (8) and (9). It is not difficult to show
that this procedure is commutative, so that if the α
transformation occurs before or after the θ transfor-
mation the result is the same. Thus, we may define
our alternative uncertainty measure by

S(α, θ, A, C) = maxk,j(γkj) − mink,j(γkj). (10)

As will be demonstrated, this measure does not be-
have identically to the measure for D2.

3 Method

Hypotheses and the models were tested via an online
experiment. The online study was reviewed and ap-
proved by the Australian National University Human
Research Ethics Committee. The participant sample
consisted of 508 North American adults (205 women,
189 men, 1 unspecified; with mean age = 39.95, sd
= 15.04), recruited through Qualtrics, of which 395
cases were found to be trustworthy data. Four com-
parisons between two pairs of estimates, {P1, Q1} and
{P2, Q2}, were used to test questions 1-3, their re-
sults also lending insight into question 4. Compar-
isons 2 and 3 test question 1, Comparisons 3 and 4
test question 2, and Comparisons 2-4 partially test
question 3. These comparisons are graphed in Figure
1. Participants were presented with both the graphs
and verbal statements of the estimate pairs. They
were asked to choose which pair of estimates exhib-
ited more agreement, which exhibited more ambigu-
ity, and which made them feel more uncertain about
the quantity being estimated.

There were two conditions, differing solely on the na-
ture of the estimate. In one condition they were told
that the estimates were experts’ predictions of the
change in global average temperature by the year 2040
(in degrees Celsius). In the other, they were told the
estimates were experts’ predictions of the change in
the value of the Australian dollar against the Amer-
ican dollar in the next 5 years (in US cents). Both
scenarios are fictitious, and participants were advised
of this in a debriefing at the end of the online sur-

0 2 4 6 8

Comparison 1

Dollar value increase (US cents)

Q2

P2

Q1

P1

0 2 4 6 8

Comparison 2

Dollar value increase (US cents)

Q2

P2

Q1

P1

0 2 4 6 8

Comparison 3

Dollar value increase (US cents)

Q2

P2

Q1

P1

0 2 4 6 8

Comparison 4

Dollar value increase (US cents)

Figure 1: Four Pairs of Judgments

vey. Neither of these scenarios is based on expert pre-
dictions. The global average temperature scenarios
actually are over-estimates of warming, according to
the IPCC (2007) report, and the estimates reported
therein do not disagree as much as the estimates in
some of these scenarios do. Genuine forecasts of cur-
rency fluctuations seldom range farther into the future
than 6 months to one year, and near-term predictions
for the Australian dollar’s exchange-rate against the
US dollar are mixed with some predicting a decline
and others predicting an increase. The goal here was
to provide identical numbers under the guise of very
different topics, to ascertain whether topics might in-
fluence perceptions of conflict or ambiguity. All of this
having been said, the topic of the estimates turned out
to make no significant difference to people’s choices,
so from here on these two conditions are ignored.

An example of the text of the first condition is pre-
sented here.

In this section, we want you to make
some judgments about estimates of the
increase in average temperature by the year
2040. You will be presented with two pairs
of estimates from refereed climate science
forecasts. We are interested in which pair
you think has the greatest uncertainty.
Expert P1: By 2040 global average tem-
perature will have increased by 2-6 degrees
Celsius
Expert Q1: By 2040 global average tem-
perature will have increased by 2-6 degrees
Celsius
Expert P2: By 2040 global average tem-
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perature will have increased by 2 degrees
Celsius
Expert Q2: By 2040 global average tem-
perature will have increased by 6 degrees
Celsius
Taken together, which pair of experts do
you think is in more agreement?
Taken together, which pair of experts do
you think is more vague?
Taken together, which pair of experts makes
you more uncertain about the temperature
increase?

The models presented in the previous section all agree
that in Comparison 1, {P1, Q1} is more ambiguous
and less conflictive than {P2, Q2}, and whether one is
rated as more uncertain overall depends on the mag-
nitudes of the α and θ parameters. For Comparison
2, all models agree that {P1, Q1} is more ambiguous
than {P2, Q2}, but GV, D2, and VC2 rate {P1, Q1}
as less conflictive than {P2, Q2} whereas D1 and VC1
rate them as equally conflictive. In Comparison 3
the models make the same predictions about conflict
as in Comparison 2, but while VC1 and VC2 rate
{P1, Q1} as less ambiguous than {P2, Q2}, GV, D1
and D2 rate them as equally ambiguous. Finally, for
Comparison 4, the models’ predictions regarding am-
biguity are the same as in Comparison 3, but D1 and
VC1 rate {P1, Q1} as more conflictive than {P2, Q2}
whereas GV, D2, and VC2 rate them as equally con-
flictive.

Overall uncertainty predictions from the models are
not determined for all four comparisons because they
may vary with the α and θ parameters. Nevertheless,
for every model at least two comparisons yield fixed
outcomes. In Comparison 2, GV, D1 and VC1 rate
{P1, Q1} as more uncertain than {P2, Q2}. In Com-
parison 3, all models except D1 rate {P1, Q1} as less
uncertain than {P2, Q2}; D1 rates them as equally un-
certain. In Comparison 4, GV amd D1 rate {P1, Q1}
as more uncertain than {P2, Q2}, VC1 amd DVC2
rate {P1, Q1} as less uncertain than {P2, Q2}, and D2
rates them as equally uncertain.

4 Results

4.1 Questions 1-3

Regarding question 1, in Comparisons 2 and 3 large
majorities of respondents chose the nested interval
pair as being more conflictive than the identical inter-
val pair. For Comparison 2, 83.8% made this choice
(95% confidence interval (CI) = [79.8%, 87.1%]); and
for Comparison 3, 87.6% made this choice (95% CI

= [84.0%, 90.5%]). These figures are similar to the
percentage choosing the two pointwise estimates in
Comparison 1 as more conflictive than the identical
intervals (84.3%). An unexpected finding was that in
Comparison 4, 61.5% chose the nested interval pair as
more conflictive than the non-nested, overlapping pair
(95% CI = [56.6%, 66.2%]). These results all strongly
suggest that nested interval estimates are perceived as
conflictive even when they have identical midpoints.

The finding regarding conflict in Comparison 4 also
addresses questions 2 and 3, indicating that neither
identical envelopes nor equal differences between pairs
of endpoints will ensure that pairs of estimates will be
regarded as equally conflicting. The finding for Com-
parison 3 demonstrates that identical average interval
widths for pairs of estimates also will not ensure that
they are perceived as equally conflicting.

Question 2 applied to ambiguity, on the other hand,
yielded mixed results. In Comparison 4, where the
pairs have identical envelopes, we cannot rule out
the possibility that respondents were evenly split
on which pair is the more ambiguous (95% CI =
[47.0%, 56.8%]). However, in Comparison 3 where
the average interval widths are the same for both
pairs, 78.0% chose the nonidentical pair of intervals
as more ambiguous than the identical pair (95% CI =
[73.6%, 81.8%]).

Question 3 also can be addressed via a test for
marginal homogeneity in the cross-classification of
Comparison 2 and 3 choices regarding conflict. In
Comparison 2 the first pair of intervals was chosen
as more agreeing by 83.8% of respondents and in
Comparison 3 87.6% chose the first pair. Because
the widths of the nested pair in Comparison 2 dif-
fer by less than those in Comparison 3 we should
indeed expect a higher percentage in Comparison 3.
However, a 95% CI for the paired difference yields
[−0.11%, 7.75%] so we fail to reject the null hypothe-
sis of no difference.

4.2 Overall Uncertainty and Question 4

Comparison 1 offers indirect corroboration of Smith-
son’s (1999) conflict aversion hypothesis, because
60.0% of respondents chose the pointwise pair of
disagreeing estimates as more uncertain than the
pair of agreeing interval estimates (95% CI =
[54.1%, 63.7%]). A similar percentage, 58.0%, chose
the nested pair of intervals in Comparison 2 as more
uncertain than the pair of agreeing interval esti-
mates (95% CI = [53.1%, 62.7%]), and a substantially
greater percentage, 76.7%, made the same choice in
Comparison 3 (95% CI = [72.3%, 80.6%]). Finally, in
Comparison 4 55.2% chose the nested pair of intervals
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as more uncertain than the overlapping pair (95% CI
= [50.3%, 60.0%]). These latter three findings indi-
cate that both perceived conflict and ambiguity may
be independently contributing to overall perceived un-
certainty.

A direct test of this (i.e., question 4) is a mixed lo-
gistic regression model utilizing the data from all four
comparisons. This model included main-effects terms
for comparisons, ambiguity and agreement (conflict),
with random effects for the latter two covariates.
A model with interaction terms did not improve fit
significantly (χ2(6) = 9.642, p = .141). Both the
agreement and ambiguity terms were significant in
the expected directions (z = −6.576, p < .0005 and
z = 12.568, p < .0005, respectively), the ambiguity
effect being nearly twice as large.

4.3 Model Performance

The performance of the five models can be evalu-
ated in two ways. First, we can simply assign each
a “pass” or “fail” grade for every prediction made by
each model regarding comparative conflict, ambiguity,
or uncertainty. Second, for ambiguity and conflict we
may use the differences between the scores each model
assigns to every relevant pair of estimates to predict
respondent choices via mixed logistic regressions.

Table 1 summarizes the “pass” or “fail” results. Only
Comparisons 2-4 are shown because all models passed
Comparison 1 on conflict and ambiguity and made
no determinate predictions for uncertainty. “P” indi-
cates that the model’s prediction is in accordance with
the empirical result; “F” indicates that the model’s
prediction is the opposite of the result; “N” that the
model’s prediction is equality whereas the result sug-
gests a difference; and “U” that the status of the
model’s prediction is undetermined by the result be-
cause the null hypothesis could not be rejected.

Table 1: Model Pass-Fail Results
Conflict Ambiguity Uncertainty

2 3 4 2 3 4 2 3 4
GV P P N U N P F P F
D1 N N F U N P F N F
D2 P P N U N P P N
VC1 N N F U P U F P F
VC2 P P N U P U P P

Beginning with the conflict results, models D1 and
VC1 fail three of the four comparisons because they
are the models predicting that pairs of intervals with
identical midpoints will not be considered to be con-
flicting. The other models pass three of the four com-
parisons. None of the models pass Comparison 4. The

ambiguity results are equivocal, with all models pass-
ing two comparisons and none performing markedly
better than the others. The uncertainty results also
are mixed. No model with a determinate prediction
passes Comparison 2, all but one pass Comparison 3,
and only one (VC2) passes Comparison 4.

We now turn to the mixed logistic regressions. The
D1 and VC1 models’ conflict scores for the five dis-
tinct pairs of estimates used in the comparisons are
proportional to one another, and the GV, D2 and
VC2 models’ conflict scores are proportional to one
another. So there are two mixed logistic regressions to
compare: The D1-VC1 and GV-D2-VC2 models. The
log-likelihood of the GV- D2-VC2 model is -1073.39
and, as might be expected, markedly higher than the
log-likelihood of the D1-VC1 model (-1083.40).

As with the conflict scores, the ambiguity scores for
the D1 and VC1 models are proportional to one an-
other and the ambiguity scores for the GV, D2 and
VC2 models are proportional to one another. The
The log-likelihoods of the GV- D2-VC2 and D1-VC1
models are fairly similar (-1336.76 and -1332.28 re-
spectively).

5 Discussion

The results strongly indicate that the answer to ques-
tion 1 is “no”, at least for the rather de-contextualized
comparisons used in this study. Even so, I urge cau-
tion regarding generalizability, having witnessed at
least one applied context (a consultancy with a bank-
ing organization) in which stakeholders decided that
nested estimates should not be considered as disagree-
ing. Other contextual factors could alter the answer
to this question. Fior example, it is plausible that if
one estimate is known to be based on a larger data
set than the other, nested intervals might not be taken
to indicate disagreement but instead attributed to the
different sizes of the data sets.

Likewise, the conflict comparison results suggest the
answer to question 2 is “no”. However, the ambiguity
comparisons are inconclusive regarding this question,
and further investigations will be required to ascer-
tain the conditions under which identical envelopes of
intervals confer equal ambiguity. As indicated above,
additional information about the basis for the esti-
mates could alter this outcome as well.

Question 3 also has been answered in the negative,
both in the failure to find a significant difference be-
tween choices in Comparisons 2 and 3, and in another
unexpected fashion. None of the models or pooling
rule considerations anticipated the finding in Com-
parison 4 that a nested pair of intervals would be re-
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garded as more conflictive than a non-nested overlap-
ping pair whose pairs of endpoints differed identically
to the nested pair. This finding begs for interpreta-
tion, and that will be addressed shortly.

The mixed logistic regression demonstrated that both
conflict and ambiguity choices made independent con-
tributions to predicting uncertainty choices between
pairs of estimates in the four comparisons. Moreover,
the type of comparison did not significantly moder-
ate the effect of either conflict or ambiguity. Thus,
respondents generally behaved as though they per-
ceived ambiguity and conflict as distinct contributors
to overall uncertainty.

Nonetheless, this result suggests another question,
namely whether ambiguity and conflict choices are
associated. In this sample, judgments of ambigu-
ity and agreement are strongly negatively related for
all four comparisons (i.e., ambiguity and conflict are
positively associated). That is, the odds of choosing
{P1, Q1} as the more ambiguous pair are higher if the
respondent also chose {P2, Q2} as the more agreeable
(and vice versa). The odds-ratios for Comparisons
1, 2, 3, and 4 are 2.90, 6.79, 14.13, and 22.84, re-
spectively. For Comparison 1 this finding is some-
what surprising because the pairs of estimates are
constructed so that one pair is clearly ambiguous and
the other clearly conflicting. It is not as surprising
for Comparisons 2 and 4 because there is no definite
majority view on which pair of estimates is the more
ambiguous in either comparison. However, it is un-
surprising for Comparison 3 because substantial ma-
jorities of respondents chose the second pair of esti-
mates, {P2, Q2}, as more ambiguous and the first pair
as showing more agreement.

The consistency of this relationship suggests that peo-
ple may regard conflict and ambiguity as entailing
one another: The greater the perceived conflict, the
greater the perceived ambiguity, and vice-versa. This
is not an irrational association to make, given that
there are situations where ambiguity can generate
conflict or conflict can generate ambiguity.

Table 2 displays the crosstabulations of the choices
for all four comparisons. The negative association
between the ambiguity and conflict choices is espe-
cially clear in Comparisons 2-4, where the major-
ity of respondents who have chosen {P1, Q1} as the
more agreeing pair also have chosen {P2, Q2} as the
more ambiguous, while the majority who have chosen
{P2, Q2} as the more agreeing have chosen {P1, Q1}
as the more ambiguous.

Finally, let us consider the issue of modeling conflict
and ambiguity jointly. Starting with ambiguity, as
mentioned earlier, none of the models were clearly su-

Table 2: Ambiguity-Agreement Association
Agreement

Ambig. {P1, Q1} {P2, Q2}
{P1, Q1} 173 47
{P2, Q2} 160 15 Comparison 1

{P1, Q1} {P2, Q2}
{P1, Q1} 129 52
{P2, Q2} 202 12 Comparison 2

{P1, Q1} {P2, Q2}
{P1, Q1} 52 35
{P2, Q2} 294 14 Comparison 3

{P1, Q1} {P2, Q2}
{P1, Q1} 57 133
{P2, Q2} 186 19 Comparison 4

perior to the others in predicting ambiguity choices.
The GV, D2 and VC2 models differ from the D1 and
VC1 models in their predictions for Comparisons 3
and 4, so that the first three pass Comparison 4 while
the latter two pass Comparison 3. Inspection of Ta-
ble 2 reveals that D1 and VC1 pass both Compar-
isons 3 and 4 for those people who chose the first
pair of intervals in each comparison as showing more
agreement. As mentioned above, in Comparisons 2-4
the majority choice of which pair is more ambiguous
switches depending on which pair is seen as showing
more agreement. The clear suggestion is to build and
test models of conflict and ambiguity assessment that
take this positive relationship into account.

Turning now to conflict, the GV, D2 and VC2 mod-
els perform markedly better than the D1 and VC1
models in predicting conflict choices because the latter
two models consider nested interval estimates as hav-
ing no conflict. However, none of the models passed
Comparison 4.

One interpretation of the respondents’ conflict choices
in Comparisons 2-4 is that some people may perceive
differences in interval widths as indicating disagree-
ment. Thus, the second pair of estimates in Compari-
son 4 is doubly penalized for conflict because the end-
points differ and so do the interval widths, whereas in
the first pair the endpoints differ by the same amounts
but the interval widths agree (i.e., the experts are
equally vague).

It is not difficult to amend the conflict models pre-
sented thus far to accommodate a penalty for differ-
ing vagueness. In the distance and variance compo-
nent models it simply amounts to adding a distance
measure and a variance component, respectively, that
accounts for differences in interval widths. Doing so
does not alter their predictions for any of the other
comparisons, so they now pass Comparison 4. More-
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over, their mixed logistic regression log-likelihoods are
markedly better than their original counterparts (-
1062.63 and -1064.75). The new models also present
novel predictions regarding other comparisons and
thus suggest specific tests of their validity. These will
be undertaken in future experiments.

Readers will have noticed that the estimate scenar-
ios in this study were considerably simplified, omit-
ting any information about how the experts arrived
at their estimates, the data on which the estimates
were based, the experts’ qualifications, and so on.
As mentioned earlier in this section, such informa-
tion can affect perceptions of conflict and ambiguity.
For instance, two differing estimates based on sep-
arate analyses of the same data set would be likely
to be percieved as a more striking conflict than the
same two estimates based on separate (but, say, equal-
sized) data sets. Likewise, knowledge of two experts’
prior (dis)agreements with one another on similar is-
sues could substantially influence perceptions of how
strong their current disagreement is. Examples of fac-
tors potentially affecting perceptions of ambiguity are
the amounts of evidence on which estimates are based
and the level of relevant expertise possessed by the
estimator. Finally, relevant perceiver characteristics
include tolerance of uncertainty, agreeableness, need
for closure, and prior alignment with one or another
expert’s position on issues relevant to the estimates.
There is considerable scope, therefore, for experimen-
tally investigating the effects of particular kinds of in-
formation and assessing the impacts of psychological
covariates on perceptions of conflict and ambiguity.
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Abstract

The standard alpha-factor model for common cause
failure assumes symmetry, in that all components
must have identical failure rates. In this paper,
we generalise the alpha-factor model to deal with
asymmetry, in order to apply the model to power
networks, which are typically asymmetric. For pa-
rameter estimation, we propose a set of conjugate
Dirichlet-Gamma priors, and we discuss how poste-
rior bounds can be obtained. Finally, we demonstrate
our methodology on a simple yet realistic example.

Keywords. robust, alpha-factor, failure, reliability,
Gamma, Dirichlet

1 Introduction

When modelling power networks, typically, the basic
event we are interested in are loss of so-called secu-
rity zones. A security zone makes up a collection of
components, so that if one component in the zone
fails, power in the whole zone is lost. Security zones
are typically bounded by circuit breakers, which allow
isolating consequences of faults.

An interesting problem occurs when faults in differ-
ent zones do not occur independently. For example,
power lines in adjacent zones often share transmission
towers. A landslide, for instance, can cause the tower
to collapse, affecting both zones simultaneously. It is
important that the frequency of such events is taken
into account, as otherwise the actual risk to the net-
work might be underestimated.

The standard literature for common cause failure
modelling assumes symmetry [5, 9], however, clearly,
for our purpose, security zones will typically not ex-
hibit symmetry, due to differences in layout, composi-
tion, and age of constituents. In this paper, we adapt
the approach of Troffaes et al. [9] to allow for asym-
metry.

In doing so, as opposed to existing methods [3, 4], we
enable a more data driven approach to network reli-
ability analysis. Specifically, we allow actual failure
data on the network—which is most informative, but
typically also very sparse—to be combined with say
national average failure rates—such data is typically
far more abundant, but also not necessarily as appli-
cable to the specific network at hand due to specific
local conditions which may be hard to model, let alone
to be quantified.

A key feature of our approach is built-in sensitiv-
ity analysis against ill-known parameters, following
[10, 7, 8, 9]. Following recent work on prior-data con-
flict [11, 12, 9], in this paper, we will focus on sen-
sitivity analysis in the so-called learning parameters
of the model, which essentially tells us how much we
should weigh network specific data against our prior
expectations informed by say national averages.

The paper is structured as follows. Section 2 de-
rives the mathematical model for dealing with com-
mon cause failures in asymmetric two component sys-
tems. Section 3 discusses the statistical problem of
how to estimate the parameters of the model. We
construct a likelihood for typical kinds of data avail-
able. We then propose a conjugate prior, which is
an independent product of a Dirichlet (or beta) prior
and two Gamma priors. Finally, we discuss how sen-
sitivity analysis can be performed to obtain posterior
bounds. Section 4 works through an actual example.
Section 5 concludes the paper.

2 Modelling Common Cause Failure
for Asymmetric Components

2.1 Two Component Model

In this discourse, a ‘component’ denotes any subsys-
tem, which, for the purpose of common cause analysis,
we do not subdivide any further. In particular, it does
not need to denote a separate electrical component of
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Figure 1: Markov chain for failure with instant repair.
The nodes show non-faulty zones.

the power network. For example, if we are merely
interested in the loss of security zones, a component
could be taken to be such security zone.

Let us call these components A and B. Now, follow-
ing the basic parameter model of Mosleh et al. [5]
(also see [9]), one traditional way to model common
cause failures is to attribute all failures to any of the
following three events:

• AI : independent failure of A

• BI : independent failure of B

• CAB : common cause failure of both A and B

These three events are assumed to be generated by
independent Poisson processes. For simplicity, in
this exposition, we assume that repair is immediate.1

Figure 1 depicts the corresponding continuous time
Markov chain, along with rates for all transitions.

Following standard notation in common cause failure
modelling, by qA1 we denote the rate of AI , by qB1 we
denote the rate of BI , and by q2 we denote the rate
of CAB . The subscript of the q denotes the number of
components involved (or is t for ‘total’, as in the next
paragraph). The superscript denotes the particular
component, and is required due to lack of symme-
try. For comparison, in the standard basic parameter
model, we would have qA1 = qB1 = q1.

A key challenge is that we do not observe these events
directly. Indeed, often, we have a good idea of the rate
at which each component fails, that is, we know

qAt = qA1 + q2 (1)

qBt = qB1 + q2 (2)

Additionally, we may have a fairly good idea of what
fraction α2 of faults is due to a common cause. The

1Note that, consequently, simultaneous failures due to inde-
pendent causes of the two components have probability zero.

fraction of faults not due to a common cause is α1 :=
1− α2.

For example, say that we have a sequence of 100 inde-
pendent observations in which a fault occurs, and say
that in exactly 18 of those observations, both com-
ponents failed. Then, to a good approximation, α2

would simply be 0.18. The parameters α1 and α2 are
called alpha-factors.

So, we have three observable quantities: qAt , qBt , and
α1—note that α2 = 1 − α1. From these, we need to
derive three model parameters: qA1 , qB1 , and q2. Here,
the only difference with the standard basic parame-
ter model in the literature is that we do not assume
qA1 = qB1 (and whence, also not that qAt = qBt ). This
difference may seem only very subtle, particularly for
the case where only two components are involved,
however, the consequent mathematical treatment is
notably different to merit a careful consideration, as
follows.

We can easily express α1 and α2 in terms of the above
parameters, once noted that a fraction of faults can
be written as a ratio of fault rates:

α1 =
qA1 + qB1

qA1 + qB1 + q2
(3)

α2 =
q2

qA1 + qB1 + q2
(4)

Now, consider the combination α1 + 2α2:

α1 + 2α2 =
qA1 + qB1 + 2q2
qA1 + qB1 + q2

=
qAt + qBt

qA1 + qB1 + q2
(5)

Consequently,

qA1 + qB1 + q2 =
qAt + qBt
α1 + 2α2

(6)

where the right hand side now consists of observable
quantities. Plugging this expression into our earlier
expression for α2, we find:

α2 =
q2(α1 + 2α2)

qAt + qBt
(7)

so, consequently:

q2 =
α2

α1 + 2α2
(qAt + qBt ) (8)

We recovered one of the model parameters. For the
other ones, simply use:

qA1 = qAt − q2 (9)

qB1 = qBt − q2 (10)
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2.2 Preliminary Example

To demonstrate the theory so far developed, we apply
it on a simple example. Athough in the following, the
probabilities are entirely made up, they are represen-
tative of typical power networks.

Suppose we have a collection of customers supplied
from two security zones, named A and B, where loss
of power in both zones will result in customer inter-
ruption. Suppose, for the sake of argument, that, on
average, per year, we observe 3 faults in zone A, and
5 faults in zone B. We also know that, from histor-
ical data, 15% of all faults in these zones results in
customer interruption. What is the rate at which we
lose customers?

Following the above model, we have:

qAt = 3 (11)

qBt = 5 (12)

assuming rates are expressed per year, and

α1 = 0.85 (13)

α2 = 0.15 (14)

Then, following the earlier analysis, we find that:

q2 =
α2

α1 + 2α2
(qAt + qBt ) (15)

=
0.15

0.85 + 2× 0.15
(3 + 5) = 1.043 (16)

The rate at which customer interruption occurs is ex-
actly q2 = 1.043, or about one per year. Note that we
can also derive the rate at which independent failures
occur:

qA1 = qAt − q2 = 3− 1.043 = 1.957 (17)

qB1 = qBt − q2 = 5− 1.043 = 3.957 (18)

3 Parameter Estimation from Data

An obvious challenge with our statistical model is that
we need to estimate the failure rates of each com-
ponent (or, security zone), as well as the fraction of
double failures. Information relating to these proba-
bilities can come from a variety of sources.

Two options present themselves:

1. Use historical failure data of single and double
failures in the network under study to estimate
the parameters qA1 , qB1 , and q2, directly, say using
maximum likelihood. A problem here is that,
typically, for one specific network, not very much
data may be available.

2. Use average nationwide failure rates qAt and qBt ,
along with average nationwide double failure
fraction α2. The methodology of Section 2.1 then
applies to find qA1 , qB1 , and q2. As there is far
more nationwide data available, one would hope
that this leads to more accurate estimates for qAt ,
qBt , and α2. A key problem here is that it is not
clear to what extent nationwide averages will also
apply to the specific network under study.

In this treatment, we use both sources of informa-
tion: aggregated nationwide failure probabilities for
components, obtained by averaging, as well as local
data specific to the location of interest. As already
mentioned, the latter sort of data is typically very
sparse, but at the same time also more informative,
as it can incorporate known information about indi-
vidual asset condition, age, location (e.g. exposure to
extreme weather, marine corrosion or industrial pol-
lution), level of utilisation and actual fault history.

We now propose a conjugate Bayesian model for deal-
ing with both types of data. Specifically, we use the
aggregated data to construct a prior, and then use
the likelihood of the local data to update this prior to
a posterior. From a likelihood perspective, the prior
simply represents pseudo counts, so effectively, we are
really simply adding local data to the nationwide data
to obtain a local prediction.

A key question is: how strong should the nationwide
data be weighed in comparison to the local data?
Or, phrased differently: how relevant do we believe
is the nationwide data for making predictions about
the local situation? In conjugate analysis [1], there is
a natural parameter which represents this subjective
judgement. What we will do is perform a sensitiv-
ity analysis against this parameter, very similar to
what is done in for instance the imprecise Dirichlet
model, or more generally, in the exponential family
[10, 6, 11, 12].

Observe that the expression for q2 in terms of the
alpha-factors α1, α2 and total failure rates qA1 , qB1
(Eq. (8)) can be written as a function of just the
alpha-factors, times a function of just the total fail-
ure rates. So, inspired by [9], for a joint prior, we use
an independent product of two Gamma distributions,
one on qAt and one on qBt , and a Dirichlet (or, beta)
distribution jointly on α1 and α2. We now elaborate
on this in the following sections.

3.1 Dirichlet Prior for Alpha-Factors

A natural way to estimate alpha-factors goes via a se-
quence of N observations, where n1 of those involved
single failures of either A or B (but not both), and
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the remaining n2 involved double failures of both A
and B. The corresponding likelihood is:

Pr(n1, n2 | α1, α2) =

(
N

n1

)
αn1
1 αn2

2 . (19)

A conjugate prior for the above likelihood is the
Dirichlet density (or, beta density, as we have only
two categories):

f(α1, α2 | s, t1, t2) ∝ αst1−11 αst2−12 (20)

with hyperparameters s > 0 and t1, t2 ∈ (0, 1) such
that t1 + t2 = 1. The posterior density is simply:

f(α1, α2 | n1, n2, s, t1, t2) ∝ αst1+n1−1
1 αst2+n2−1

2

(21)
By Eq. (8), we will need to find the posterior expec-
tation of

α2

α1 + 2α2
, (22)

where we remind the reader that α1 + α2 = 1, and
typically, α2 is expected to be small. As discussed in
great detail in [9], we can do so via Taylor expansion.
For example, with second order expansion:

E

(
α2

α1 + 2α2

∣∣∣∣n1, n2, s, t1, t2
)

(23)

≈ E(α2 − α2
2|n1, n2, s, t1, t2) (24)

=
n2 + st2
N + s

(
1− n2 + st2 + 1

N + s+ 1

)
(25)

using the well-known properties of the Dirichlet dis-
tribution (for example, see [9, Eq. (10)]); we remind
the reader that N = n1 +n2. For this approximation,
the absolute error is less than:

n2 + st2
N + s

n2 + st2 + 1

N + s+ 1

n2 + st2 + 2

N + s+ 2
. (26)

3.2 Gamma Prior for Total Failure Rates

To estimate total failure rates, assume we have ob-
served a component (A or B) for time T , during which
this component failed M times. The likelihood for the
failure rate qt of this component is then:

Pr(M | qt, T ) =
(qtT )M exp(−qtT )

M !
(27)

as we assumed a Poisson process. A conjugate prior
for this likelihood is the Gamma density:

f(qt | u, v) ∝ quv−1t exp(−qtu) (28)

with hyperparameters u > 0 and v > 0. The posterior
density is:

f(qt |M,T, u, v) ∝ quv+M−1t exp(−qt(u+ T )) (29)

By Eq. (8), of interest is the posterior expectation of
qt, which is simply:

E(qt |M,T, u, v) =
T

u+ T

M

T
+

u

u+ T
v. (30)

Considering this posterior expectation when T = 0,
we see that v represents a prior expectation for qt, and
considering this posterior expectation when T = u,
we see that u represents the time T needed before
the posterior starts to move away from this prior [9,
Sec. 3.2].

3.3 Full Analysis

Let us put everything together.

For the alpha-factors, suppose our prior expected frac-
tion of single failures is t1, and our prior fraction of
double failures is t2. Moreover, we observed n1 single
failures, and n2 double failures. We are rather un-
sure about how much weight to assign to the prior,
that is, we are unsure about the hyperparameter s.
Remember, in a likelihood interpretation of Bayesian
inference, s can be thought of the total pseudo count
assigned to the prior. Say, s ∈ [s, s]; for example,
with s = 0 and s = 5, we count the prior for no more
than five observations. As discussed in [9], it seems
quite sensible to perform a sensitivity analysis over s,
to properly cope with prior-data conflict.

For the total failure rates, suppose our prior expected
failure rates are vA and vB . Moreover, we observed
MA failures of component A during a time span of
T , and MB failures of component B during a time
span of T . For simplicity we take the observed time
spans for both components to be identical, as this is
the case for our application, but it could be relaxed
easily. Again, we are rather unsure about the hyper-
parameters uA and uB—for simplicity, we will also
take these to be equal: u := uA = uB (again this
could be relaxed easily). Here, u can be thought of
a pseudo observation time assigned to the prior. Say,
u ∈ [u, u]; for example, with u = 0 and u = 3, we
count the prior failure rates for no more than 3 years.

Consequently, by Eqs. (8), (25), and (30),

E(q2 | D) = inf
s∈[s,s]
u∈[u,u]

E(q2 | D, s, u), (31)

E(q2 | D) = sup
s∈[s,s]
u∈[u,u]

E(q2 | D, s, u). (32)

When we assume independence between the alpha-
factors and the total failure rates, the expectation de-
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composes into a product:

E(q2 | D, s, u)

=
n2 + st2
N + s

(
1− n2 + st2 + 1

N + s+ 1

)

× u(vA + vB) +MA +MB

u+ T
(33)

and

D := (n1, n2,M
A,MB , T, t1, t2, v

A, vB). (34)

Note that the optimization problem for s and u can
be solved through two independent optimisation prob-
lems, one in just s, and one in just u. For the optimi-
sation in u, due to the monotonicity of the objective
function, it suffices look at just u and u. The objec-
tive function in s is not always monotone (although
it often will be), but nevertheless numerical optimi-
sation is still quite easy. The example provides more
detail.

Note that bounds for the lower and upper posterior
expectations of qA1 and qB1 can be derived in a very
similar way, through Eqs. (9) and (10)—we leave this
to the reader.

4 Network Risk Example

4.1 Problem Description

Following is a generic double circuit reliability prob-
lem, based on an actual case study in the North-East
of England.

There are two unequal circuits. Circuit A has an
expected failure rate of 0.3856 per year, based on 2
transformers and 24.1 km of line and cable. Circuit B
has an expected failure rate of 0.3279 per year, based
on 1 transformer and 21.5 km of line and cable. No
adjustments have been made for asset condition. In
the past 12 years, circuit A has experienced 7 failures
in 12 years, and circuit B has experienced 4 failures
in 12 years. Of these failures, 3 were double failures.
For a group of 11 neighbouring (and similar) circuits,
there have been 38 failures, of which 24 were single
failures, and 14 were double failures—these 38 include
the circuit we are studying. On average, for a much
larger group of circuits at that voltage, but not neces-
sarily similar to the double circuit under study, about
18% of all failures are double failures.

4.2 Prior and Data

As global prior for the alpha-factors, we use the global
average: t1 = 0.82 and t2 = 0.18. It seems reasonable

to use neighbouring circuits to correct our prior in-
formation about the alpha-factors of our circuit: so
n1 = 24 and n2 = 14.

For the total failure rates, an expert provided us with
some prior expectations based on global averages of
failures for the particular components that make up
the circuits: vA = 0.3856 and vB = 0.3279. We have
MA = 7 failures during TA = 12 years of circuit A,
and MB = 4 failures during TB = 12 years of circuit
B.

All we need in addition is some assessment about s
(number of total failures needed before we start to
move away from the prior in the direction of the data
for alpha-factors) and u (time needed before starting
to move away from prior in direction of the data for
total failure rates). As discussed in Section 3.3, we
will perform a sensitivity analysis over intervals for
both s and u. Let us take s = [0, 15] and u = [0, 10],
which seem conservative yet reasonable given their
interpretation discussed earlier.

4.3 Posterior Bounds

We must solve the optimisation problems in Eqs. (31)
and (32), using Eq. (33). Let

f(s) :=
n2 + st2
N + s

(
1− n2 + st2 + 1

N + s+ 1

)
, (35)

e(s) :=
n2 + st2
N + s

n2 + st2 + 1

N + s+ 1

n2 + st2 + 2

N + s+ 2
, (36)

g(u) :=
u(vA + vB) +MA +MB

u+ T
. (37)

where e(s) represents a bound on the absolute error,
as f(s) is only an approximation (see Eq. (26)). With

f := inf
s∈[0,15]

f(s) f := sup
s∈[0,15]

f(s) (38)

e := sup
s∈[0,15]

e(s) (39)

and

g := inf
u∈[0,10]

g(u) = min
u∈{0,10}

g(u) (40)

g := sup
u∈[0,10]

g(u) = max
u∈{0,10}

g(u), (41)

where we used that g is a monotone function, we then
have that,2

E(q2 | D) ≥ (f − e)g (42)

E(q2 | D) ≤ (f + e)g (43)

2Instead of e, we could use e(arg infs∈[0,15] f(s)) and
e(arg sups∈[0,15] f(s)) to arrive at slightly better error bounds,
but in practice it makes little difference.
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By numerical optimisation, we find

f = 0.212 f = 0.227 e = 0.057 (44)

g = 0.824 g = 0.917 (45)

Concluding,

E(q2 | D) ≥ 0.128 (46)

E(q2 | D) ≤ 0.260 (47)

Note that the absolute error e is rather large in com-
parison to f and f—this is due to the fact that the
data reflects a rather high value for α2, and low order
approximations only work well when α2 is less than
0.1. Using instead a sixth order approximation (the
equations are very easy to compute, but rather long to
write down, see [9] for details; also note that the ap-
proximation scheme is designed for ease of computa-
tion at the expense of requiring the use of higher order
terms, and that more sophisticated techniques might
achieve this accuracy with fewer terms), we find:

f = 0.237 f = 0.266 (48)

e = 0.002 (49)

so, because e is quite small,

E(q2 | D) ≈ 0.194 (50)

E(q2 | D) ≈ 0.245, (51)

or in other words, we expect a double failure every
four or five years.

5 Conclusions

We have explored a model for dealing with common
cause failures in simple power networks, allowing data
from various sources to be merged into a meaningful
number, or range of numbers when robustness is at
stake.

We assumed immediate repair, which is clearly not
realistic. Non-immediate repair is typically modelled
through continuous time Markov chains [2, Chap-
ters 7–13], which have not yet received that much
attention in the imprecise literature. The other un-
realistic assumption is the Markov assumption itself,
although that assumption seems still pervasive in the
standard literature. In practice, failure rates are
rarely independent of the history of the system, so
the ability to build some level of non-stationarity into
the model would be desirable. Moreover, it is not en-
tirely clear how the typical simulation techniques that
deal with these issues can be made to work to achieve
a robust analysis over a range of parameters.

For more complex power networks, the model would
need to be extended to handle multiple components.
Although this is mathematically quite easy, difficulties
are to be expected with estimating parameters that
relate to common cause events, because there can be
many more ways in which multiple failures occur when
three or more components are involved. Some level of
symmetry between common cause events would likely
need to be accepted.

Another interesting question would be to investigate
how the analysis impacts decisions, say on asset re-
placement.
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Abstract
This paper reviews the temporal sure preference princi-
ple as a basis for inference over time. We reformulate the
principle in terms of desirability, and explore its implica-
tions for lower previsions. We report some initial results.
Specifically, we present a simple condition for consistency
of the temporal sure preference principle with any given
collection of assessments, and we derive various bounds
on the natural extension. We also discuss some of the tech-
nical difficulties encountered.

Keywords. updating, inference, temporal coherence, de-
sirability, lower prevision

1 Introduction

Probabilistic inference has two components, one static
and one dynamic. The static component is a descrip-
tion of probabilistic judgements now, where we are free
to make any allocations of uncertainty that we consider
to be appropriate, expressed, for example, through buying
and selling prices on appropriate gambles, subject only to
the constraints imposed by coherence over the collection
of uncertainty judgements, precise or imprecise, that we
choose now to make. The dynamic component describes
how these uncertainty statements may change over time,
as we receive further information, reflect further on the in-
formation that is currently available to us, and so forth.

Aspects of the dynamic component are expressed within
the static component, for example through conditioning
statements, which express our current buying and selling
prices given various called-off bets which describe condi-
tions under which the bets will or will not take place. Such
conditioning is informative for our future judgements, but
does not determine them, partly as our future experiences
will not be summarisable as the observation of member-
ship of a partition that we could specify in advance of
our inferences, partly because we are always free to re-
flect further on the information that we have already re-
ceived and change our judgements to those that we feel

are in closer accord with the prior evidence, and partly
because, in any case, there is nothing in the usual proba-
bilistic formalism that forces an equivalence between cur-
rent views on certain called-off bets, and actual future un-
certainty assessments about the relevant quantities. This
should not be seen as a failure of conditional reasoning
itself—indeed, conditional reasoning is still a perfectly
valid and extremely useful formalism for embedding the
dynamic features of inference strictly within our current
static judgements as to how such an inference might pro-
ceed.

At this point, perhaps we should note that one might in-
deed not care about modelling future beliefs, and take the
stance that all future decisions are fully determined solely
by current beliefs about those random variables that affect
these decisions. For example, normal form decision mak-
ing is precisely concerned with such scenario: if a sub-
ject makes all future decisions right now, only his current
beliefs count, and his future beliefs are completely irrel-
evant. In practice however, beliefs are revised over time,
and it is rarely the case that future beliefs, which will de-
termine future decisions, are determined solely on the ba-
sis of called-off bets with respect to current beliefs, say
through repeated application of Bayes theorem. Analyz-
ing our current beliefs about our future beliefs, as in this
paper, is thus important if we now wish to know how we
will act in the future based on the actual, but now still un-
certain, beliefs that we will hold in the future.

Temporal coherence is concerned with the careful descrip-
tion of the relationships between the static and dynamic
features of probabilistic reasoning. We do not know what
our future uncertainty judgements will be, but we may now
express views about them. These views are, themselves,
probabilistic. The basic questions that we must ask are:

(i) Are there any constraints that are reasonable to im-
pose on our current judgements about our future
judgements?

(ii) How may such constraints be exploited within the
general approach to inference?

(iii) How does the conventional approach to probabilistic

319



reasoning, via conditioning, fit into the actual tempo-
ral evolution of beliefs?

This paper is a modest initial exploration of a particular de-
velopment of such temporal reasoning, based on the work
of [3, 4] and summarised in [5]. In particular, we discuss
some of the implications of temporal reasoning for infer-
ence with coherent lower previsions. We will only explore
questions (i) and (ii).

The key concept in studying temporal coherence is the
so-called temporal sure preference principle, which estab-
lishes a link between certain future preferences and current
preferences, thereby allowing us to say something now
about our future beliefs.

In imprecise probability theory, preferences come about
as a very natural way of modelling beliefs, and it has been
argued that the concept of desirability, that is, which gam-
bles we (possibly marginally) prefer to the zero gamble,
forms one of the most elegant mathematical and philo-
sophical foundations for imprecise probability [10, 11, 9].

The traditional way of looking at updating in the subjec-
tive approach to imprecise probability goes by means of
conditioning, that is, looking at called-off gambles. For
instance, very recently, Zaffalon and Miranda [12] pro-
vided a justification for conditioning and conglomerabil-
ity, through temporal reasoning, in a setting where future
beliefs are assumed to be fixed now.

However, in practice, future subjective beliefs rarely re-
flect past called-off gambles, and in fact there is no com-
pelling reason for this to be so, simply because there is
no compelling reason for them to be fixed now. Indeed, it
seems far more natural to start out from the premise that
future beliefs are inherently random, which leads to a more
general theory, but of course we also risk it to be far less
tractable—interestingly, in the precise case, the general-
ity gained leads to updating rules which are far more effi-
cient than computing with called-off gambles, particularly
for large scale problems (for instance, see [1]). Having
preference, in the form of desirability, at its foundations,
imprecise probability is a natural candidate for temporal
coherence. We hope it might lead us, as in the precise
case, to say something meaningful now about future be-
liefs, in a way that updating is more flexible, more real-
istic, and potentially also numerically easier, than the tra-
ditional called-off gamble approach (i.e. the generalized
Bayes rule [9, Sec. 6.4]).

This paper is organised as follows. Section 2 briefly sum-
marises the main results that we need for lower previsions
and desirability. Section 3 reviews temporal coherence and
its main implications for previsions. Section 4 explores an
approach to temporal coherence for lower previsions. We
conclude in Section 5.

2 Lower Previsions and Desirability

Let Ω denote a possibility space. A gamble is simply a
bounded random quantity, and is mathematically repre-
sented by a real-valued function on Ω. We will denote
gambles by capital letters X , Y , . . . . The set of all gam-
bles on Ω is denoted by L(Ω). The set of all gambles on
Ω that are constant on elements of some partition A is de-
noted by L(A).

As mentioned in the introduction, we will take desirability
to be the basic concept, and will use it for studying the
implications of temporal coherence on lower previsions.
To keep the treatment as simple as possible, however, we
will restrict ourselves to sets of almost-desirable gambles
induced by lower previsions.

The following serves to fix the notation and conventions
used in the paper. It is assumed that the reader is famil-
iar with lower previsions and desirability. We refer to [9]
for much more information on the topic. In particular,
throughout the paper, we will use the properties of coher-
ent lower previsions extensively [9, Sec. 2.6.1].

Specifically, let E be a coherent lower prevision on L(Ω)
(without loss of generality, through natural extension [9,
Sec. 3.1]), that is, E satisfies:

C1 E(X) ≥ inf X

C2 E(X + Y ) ≥ E(X) + E(Y )

C3 E(λX) = λE(X)

for all X , Y ∈ L(Ω) and all λ ≥ 0. The upper prevision
E corresponding to E is defined as:

E(X) = −E(−X). (1)

By P(Ω) we denote the set of all coherent lower previsions
on L(Ω).

With E we can then associate a set of (almost) desirable
gambles:

D := {X ∈ L : E(X) ≥ 0}. (2)

For simplicity of exposition, when in the following we say
desirable, we really mean almost-desirable. The following
conditions are satisfied:

D1 if X ≥ 0 then X ∈ D,

D2 if supX < 0 then X 6∈ D,

D3 if X ∈ D and Y ∈ D then X + Y ∈ D,

D4 if λ ≥ 0 and X ∈ D then λX ∈ D, and

D5 if X + ε ∈ D for all ε > 0, then X ∈ D.
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Note that we can recover E from D through:

E(X) = sup{a ∈ R : X − a ∈ D} (3)

so in the following, we can use E and D interchangeably.

A lower prevision is called a prevision when it is self-
conjugate, that is, when E = E, in which case we simply
denote it by E. It is well known that previsions correspond
to expectation operators, and lower previsions correspond
to lower envelopes of expectation operators.

We will consider lower previsions at different points in
time—in fact, at just two points in time, 0 and t > 0.

By Ω we denote the possibility space at time 0: it rep-
resents our subjective judgement, now, about what events
are possible. Because Ω will include events involving fu-
ture beliefs, which we do not know, we emphasize that, in
general, a full specification of Ω is not possible.

We assume that we are able to specify a partition A of Ω
which generates all events relevant to the problem domain
at hand. Unlike Ω, the partition A is explicitly modelled,
and hence, represents the operational part of Ω. We as-
sume that our current assessments about the problem do-
main only involve gambles that are constant on the ele-
ments ofA, and we need not make any further assessments
about any other gambles, that is, we can specify a lower
prevision PA defined on some subset of L(A). In partic-
ular, we need not make any direct assessments about our
future beliefs—those will come in later through the tem-
poral sure preference principle.

We also assume the existence of a partition Bt of Ω, such
that exactly one of the elements of this partition will occur
at time t. We will not make any assumption about Bt, in
fact, operationally, it is usually impossible identify now
what Bt ought to be. One could consider an element of Bt
to be a possible possibility space at time t, thus elements
of Bt will be denoted by Ωt. For any ω ∈ Ω, by [ω]t
we denote the unique element Ωt of Bt that contains ω.
Perhaps we need to emphasize that we do not assume any
relationship between A and Bt. In particular, we do not
assume that, say, Bt refines A: this would mean that, at
time t, we would know which element A of A obtains,
and generally, of course this will not be the case.

By Et we denote our coherent lower prevision at time t—
its value is known to us at time t. So, E0 is our current
lower prevision, and embodies both our current assess-
ments PA concerning the problem domain at hand, as well
as any further principles taken into account, such as for
instance the temporal sure preference principle, which we
will discuss in detail later. However, Et is in fact a random
lower prevision now:1

Et(Ωt) ∈ P(Ωt) for any Ωt ∈ Bt, (4)
1Remember that P(Ωt) denotes the set of all coherent lower previ-

sions on L(Ωt).

whose value is only realised at time t.

When comparing gambles, as we will need to do further in
the paper, it is convenient that those gambles are expressed
with respect to the same possibility space. For this reason,
it is more convenient to consider Et as a mapping from Ω
to P(Ω):

Et(ω)(X) := Et([ω]t)(X|[ω]t
), (5)

for any ω ∈ Ω and X ∈ L(Ω). We will follow this con-
venient notation for the remainder of the paper. Note that
one may think of Bt as the partition generated by Et.

For any gamble X ∈ L(Ω), by Et(X) we denote the ran-
dom lower prevision of X at time t:

Et(X)(ω) := Et(ω)(X). (6)

Clearly, Et(X) ∈ L(Ω), and it is constant on the elements
of Bt.
Similarly, we writeDt for the set of desirable gambles cor-
responding to Et. So, Dt is a random set of gambles:

Dt : Ω→ ℘(L(Ω)) (7)

where

Dt(ω) := {X ∈ L(Ω): Et(ω)(X) ≥ 0}, (8)

and as with Et, the value of Dt is only realised at time t.2

Clearly, Dt is constant on the elements of Bt.

3 Temporal Coherence for Previsions

In this section, we review the existing theory of temporal
coherence for previsions.

3.1 Beliefs and Updating

By X , we denote a gamble whose value is unknown to
us. Of course, we may have present beliefs about X . We
assume that X is constant on the elements of the partition
A. Our present expectation for X is denoted by E0(X),
and our present variance for X is denoted by var0(X).
The subscript in E0 and var0 denotes time, where time 0
corresponds to the present.

AsX is unknown, we may try to learn aboutX by observ-
ing another random quantity, which we denote by Y : say
we actually observe the value of Y at time t > 0, whilstX
remains unknown to us at time t. Again, we assume that
Y is constant on the elements of the partition A—because

2We should note that Dt(ω), when defined as a subset of L(Ω) as
in Eq. (8), may not satisfy D5, however of course Dt(ω) will satisfy
D5 as a subset of L([ω]t). Also note that X ∈ Dt(ω) if and only if
I[ωt]X ∈ Dt(ω).
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we assumed that Y is known at time t, it will also be con-
stant on the elements of Bt. Here too, we may have present
beliefs about Y , such as its present expectation E0(Y ) and
present variance var0(Y ). In fact, we may hold present
beliefs about X and Y jointly, such as for instance the
present covariance betweenX and Y , which we denote by
cov0(X,Y ).

As mentioned, whilst the value of Y will be known at time
t, X remains unknown. Consequently, we may also con-
sider, now, our future beliefs about X . However, because
the future has yet to obtain, those future beliefs are uncer-
tain in themselves. In other words, Et(X) and vart(X),
the actual expectation and variance of X which represents
our beliefs about X at time t, are gambles in themselves,
whose values are only known to us at time t:

Et(X) : Ω→ R, vart(X) : Ω→ R. (9)

For example, we can think about our current beliefs
about our future beliefs, and could consider for in-
stance our present expectation and variance of these
gambles: E0(Et(X)), E0(vart(X)), var0(Et(X)), and
var0(vart(X)).

The general problem of updating might then be concerned
with answering the following questions. First, what should
be the relationship between:

• our current beliefs about Et(X),
• our current beliefs about X , and
• our current beliefs about Y ?

More challengingly, what should be the relationship be-
tween:

• our actual beliefs Et(X) about X at time t, and
• any updating rule for X as a function of Y ?

3.2 The Temporal Sure Preference Principle

In order to establish relationships between current and fu-
ture beliefs, we must impose conditions that go beyond
coherence at a single time point. These conditions should
be sufficiently weak and compelling to be widely applica-
ble, while leading to a meaningful account of inference.

Any principle which asserts that beliefs now are com-
pelling for beliefs in the future is, by its nature, uncon-
vincing, as we cannot know what future information we
may receive or what the outcome of our future reflections
may be. The converse, however, is that we may often view
our future beliefs as compelling for our current beliefs, as
all such future reflections and information will be taken
into account in such future judgements. In order for future
judgements to influence our current judgements, we must
know what such future judgements are. We therefore in-
troduce the notion of a sure prefererence, at a future time,
as one which we are now sure that we will hold at that
time.

It may seem unreasonable, now, to think that we hold any
such sure preferences. However, it so happens that we do
indeed hold many such, and recognising them explicitly,
and formalising their implications for our current judge-
ments, provides a natural account of temporal reasoning.
For this reason, Goldstein introduced the following princi-
ple (see [3], [4], [5, Sec. 3.5]):

Principle 1 (The Temporal Sure Preference Principle I).
For any gambles U ∈ L(Ω) and W ∈ L(Ω), if you have
a sure preference for U over W at future time t, then you
should not have a strict preference for W over U now.

It is useful to briefly reflect on what it means to have a sure
preference for U over W at future time t. Remember, at
future time t, an element Ωt of Bt obtains, and we hold be-
liefs Et(Ωt) ∈ P(Ωt)—for now these beliefs are assumed
to be precise. A sure preference means a preference re-
gardless of the outcome Ωt in Bt. So in other words, we
are sure to prefer U to W at time t whenever

Et(Ωt)(U |Ωt
) ≥ Et(Ωt)(W |Ωt

) for all Ωt ∈ Bt, (10)

or equivalently, whenever

Et(U)(ω) ≥ Et(W )(ω) for all ω ∈ Ω, (11)

where we use the notation introduced earlier in Eqs. (5)
and (6).

The temporal sure preference principle should be con-
sidered as a prescription for a particular domain of dis-
course, rather than as a fundamental condition for ratio-
nality. There are various reasons why, in a particular ap-
plication, it might not hold. For example, we might con-
sider that, at the future time, we could undergo personal-
ity changes which render our future judgements suspect
to us now (the Doctor Jekyll and Mister Hyde scenario).
More prosaically, we might just recognise situations where
our future judgements are likely to be less reliable than
our current judgements (for example, the problem of for-
getting). Therefore, the intention of the temporal sure
preference principle is that it should be viewed as a very
weak, and widely applicable principle, whose relevance
we should consider for the problem at hand. If we con-
sider the temporal sure preference principle applicable in
our problem, then we may draw on the strong implications
of the principle to provide an account of temporal coher-
ence for this situation. We know of no weaker alternative
principle that allows a similar account of the inferential
process, for the many applications where we will be will-
ing to assert temporal sure preference.

The aim of this section is to study this principle in terms of
desirability [10, 11, 9], whilst at the same time reviewing
the main well-known consequences of the temporal sure
preference principle for previsions, in order to provide a
good understanding of the ideas and techniques involved
before we move on to lower previsions in Section 4.
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If we take preference U � W to mean that U −W + ε
is desirable for all ε > 0 [9, Sec. 3.7.5, first paragraph],
and U � W to mean that U − W − ε is desirable for
some ε > 0 [9, Sec. 3.7.7, second paragraph], then it is a
trivial exercise to reformulate the above principle in terms
of desirability:3

Principle 2 (The Temporal Sure Preference Principle II).
For any gamble U ∈ L(Ω), if, for all ε > 0, U + ε is sure
to be desirable for us at future time t, then, for all ε > 0,
−U − ε should not be desirable for us now.

Perhaps it is useful to note already here that many varia-
tions of Principle 2 are possible. We will consider some
of those variations, which are all equivalent for previsions,
but which are no longer equivalent for lower previsions.

We give a quick proof of equivalence, which holds
generally—not just for sets of desirable gambles corre-
sponding to previsions, but for arbitrary sets of desirable
gambles; we do not even need to rely on coherence.
Proposition 3. Principles 1 and 2 are equivalent.

Proof. Suppose Principle 1 is satisfied. Suppose that, for all ε >
0, U + ε is sure to be desirable to us at future time t. This means
that, surely, U �t 0 at time t. Consequently, by Principle 1,
0 6�0 U now, or in other words, 0 − U − ε is not desirable now
for any ε > 0. In other words, Principle 2 is satisfied.

Conversely, suppose that Principle 2 is satisfied. Suppose that,
surely, U �t W at time t. This means that, for all ε > 0, U −
W +ε is surely desirable at time t. Consequently, by Principle 2,
for all ε, −U + W − ε is not desirable now. But this means
precisely that W 6�0 U , now. In other words, Principle 1 is
satisfied.

An obvious question at this point is: what kind of gambles
can be surely desirable at some future time t? Obviously,
any positive constant gamble would be, but that is hardly
useful, as we already know that these are desirable to us
now. For more interesting examples, consider cases where
U is a function of Et. For example, at time t, surely, the
gamble Et(X)−X+ ε is desirable for all ε > 0 (note that
at time t, Et(X) is a constant, whilst X is still a gamble).
The temporal sure preference principle then tells us that
the gamble −Et(X) +X − ε is not desirable to us now.

3.3 Implications

The next proposition, due to Goldstein [4, Theorem 1],
forms the basis for linking future beliefs about expecta-
tion and variance to current beliefs about expectation and
variance. The proof is short, and provides an excellent ex-
ample of how the temporal sure preference principle can
be invoked to make non-trivial statements about Et(X),
so we reproduce it below.

3The attentive reader will note that in Principle 2, we can actually take
desirability to be actual desirability, rather than almost-desirability.

Proposition 4. If Principle 2 is satisfied, then it must hold
that

E0((X − Et(X))2) ≤ E0((X − Y )2). (12)

where Y is surely known by time t.

Proof. Note that, for previsions, U �t W precisely when
Et(U)(ω) ≤ Et(W )(ω) for all ω ∈ Ω, and U 6�0 W precisely
when E0(U) ≤ E0(W ). Also, note that Et(U)(ω) = U(ω)
for any gamble U that is constant on the elements of Bt, such as
Et(X) and Y .

Consequently, for any ω ∈ Ω,

Et((X − Y )2 − (X − Et(X))2)(ω) (13)

= Et(−2XY + Y 2 + 2XEt(X)− Et(X)2)(ω) (14)

= −2Et(X)(ω)Y (ω) + Y 2(ω) + Et(X)2(ω) (15)

= (Et(X)(ω)− Y (ω))2 ≥ 0 (16)

where we have used the linearity of Et(ω). So, at time t,4

(X − Et(X))2 �t (X − Y )2. (17)

Whence, by Principle 2, now,

(X − Et(X))2 6�0 (X − Y )2, (18)

which yields the desired inequality.

Those readers familiar with the usual called-off argument
for conditional previsions may fear that we have, inad-
vertedly, relied on conglomerability of E0 to complete the
above argument. Perhaps, it is instructive to try follow this
misinterpretation to put such fears at rest. Indeed, in the
proof, we first show that, effectively,

(X − Y )2 − (X − Et(X))2 (19)

is desirable at time t. One might correctly, but confusingly,
understand that this means that the called-off gamble

IΩt

(
(X − Y )2 − (X − Et(X))2

)
(20)

is now desirable. In fact, it is sure to be desirable at time
t—if Ωt does not obtain, then it is zero and thus desir-
able, and if Ωt does obtain, then the reasoning in the proof
can be used to show that it is desirable as well—thus, by
the temporal sure preference, indeed, the called-off gam-
ble defined in Eq. (20) is desirable now. Then, assuming
conglomerability, we can glue all these called-off gam-
bles together to prove that the gamble in Eq. (19) is de-
sirable now. We simply emphasize here that the actual
proof works quite differently. In particular, the temporal
sure preference principle is only applied once, namely on
the gamble in Eq. (19): called-off gambles are never con-
sidered.

4It is interesting to compare Eq. (17) with the operational definition
of expectation of de Finetti [2], in which Eq. (17) is the definition of
Et(X), rather than a derived property.
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The proof of Proposition 4, and the above discussion, al-
ready hint at a slightly simpler version of the temporal sure
preference principle:

Principle 5 (The Temporal Sure Preference Principle III).
For any gamble U ∈ L(Ω), if U is sure to be desirable for
us at future time t, then U should be desirable for us now:

⋂

Ωt∈Bt

Dt(Ωt) =
⋂

ω∈Ω

Dt(ω) ⊆ D0. (21)

Proposition 6. Principle 5 implies Principle 2.

Proof. Assume that Principle 5 holds. If U + ε is sure to be
desirable at time t, for all ε > 0, then consequently, U + ε is
desirable now, for all ε > 0. If −U − δ would be desirable for
us now for some δ > 0, then U + δ/2− U − δ = −δ/2 would
be desirable as well, which would lead us to incur a sure loss, so
−U − δ cannot be desirable now for any δ > 0. In other words,
Principle 2 holds.

Proposition 7. If our set of desirable gambles corre-
sponds to a prevision, that is, if

D0 = {U : E0(U) ≥ 0} (22)

for some prevision E0, then Principle 5 is equivalent to
Principle 2.

Proof. Assume Principle 2 holds. If U is sure to be desirable at
time t, then obviously U + ε is also sure to be desirable at time
t, for all ε > 0. Consequently, −U − ε is not desirable now, for
all ε > 0, or in other words, E0(−U)− ε < 0 for all ε > 0. This
means that E0(U) ≥ 0, so U is desirable to us now.

In other words, for the remainder of this section, where we
are concerned with previsions only, we can assume Princi-
ple 5 without loss of generality. We will thus assume that
desirability is as in Eq. (22).

Proposition 4 has a number of very interesting conse-
quences:

Corollary 8. If Principle 5 is satisfied, then

E0(X − Et(X)) = 0. (23)

Proof. In Proposition 4, let Y := Et(X) + b where b ∈ R, and
take the minimum over b.

Note that Eq. (23) is very similar to the usual definition of
conglomerability as in for instance [9, p. 305, (C15)], so it
is worth emphasizing that Eq. (23) is not your usual con-
glomerability, because Et(X) is not necessarily obtained
through conditioning.

We can also say something about the expected future vari-
ance, that is, E0(vart(X)).

Corollary 9 (Adjusted Variance). If Principle 5 is satis-
fied, then it holds that:

var0(X − Et(X)) = E0(vart(X)) ≤ varY (X), (24)

with

varY (X) := var0(X)− cov0(X,Y )2

var0(Y )
, (25)

where Y is surely known by time t.

Proof. To prove the inequality in Eq. (24), take a+ bY for Y in
Proposition 4, and minimize over a and b.

Note that the usual formulation uses var0(X − Et(X)) only. It
is easy to see that this is E0(vart(X)), which seems easier to
interpret, and is also relevant for what comes later:

var0(X − Et(X)) = E0((X − Et(X)

− E0(X − Et(X)))2) (26)

and by Eq. (23) E0(X − Et(X)) = 0, so

= E0((X − Et(X))2) (27)

and again by Eq. (23) E0(·) = E0(Et(·)), so

= E0(Et((X − Et(X))2)) (28)

= E0(vart(X)). (29)

So, the temporal sure preference principle allows us to
quantify uncertainty about future variance.

In the proof of Corollary 9, the value for a+ bY where the
minimum is achieved is precisely the adjusted expectation:

Corollary 10 (Adjusted Expectation). If Principle 5 is sat-
isfied, then

Et(X) = EY (X) + St(X), (30)

where

EY (X) := E0(X) +
cov0(Y,X)

var0(Y )
(Y − E0(Y )), (31)

and

E0(St(X)) = 0, cov0(St(X),EY (X)) = 0. (32)

Proof. Take a + bY + cEt(X) for Y in Proposition 4, and do
the usual magic.

In other words, the temporal sure preference principle also
allows us to quantify a linear connection between observa-
tions and future beliefs.
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If Y is the indicator of some event E, then EY (X) =
E(X|E), that is, adjusted expectation coincides with con-
ditional expectation. So, Eq. (30) also provides an inter-
pretation of the relation between conditioning and our ac-
tual posterior expectation.

The above results are only an initial tasting of the realm
of possibilities. Of considerable interest is that the above
treatment generalises almost trivially to the multivariate
case.

4 Temporal Coherence for Lower
Previsions

Let us now investigate the implications of the temporal
sure preference principle for lower previsions.

4.1 The Temporal Sure Preference Principle for
Lower Previsions

In the context of desirability, it makes sense to adopt Prin-
ciple 5, for at least two reasons:

1. The principle seems reasonably compelling. Indeed,
if U is sure to be desirable for us at time t, then it
does not matter whether we accept it already now, or
whether we accept it only at time t: the gamble has
the same outcome either way.

2. We may use it as a production rule in natural exten-
sion.

By the second point, we mean the following. As men-
tioned in the introduction, we assume a partition A which
represents what we could call the operational part of Ω.
Specifically, all direct assessments of lower previsions
PA0 (Y ), which represent our beliefs now, concern gam-
bles Y ∈ L(A). In other words, our initial assessments
are embodied by a lower prevision PA0 which is defined on
a subset of L(A). We can then consider the natural exten-
sion of EA0 to all gambles L(A); let us denote that natural
extension by EA0 . It is different from E0, which embodies
our beliefs about PA0 but also those implied by the tempo-
ral sure preference principle. Indeed, under Principle 5, all
gambles V for which

Et(V )(ω) ≥ 0 for all ω ∈ Ω, (33)

or briefly, for which Et(V ) ≥ 0, are desirable now. Con-
sequently,

E0(U) = sup
α∈R

Y ∈L(A) : EA
0 (Y )≥0

V ∈L(Ω) : Et(V )≥0

{α : U − α ≥ Y + V } (34)

for any gamble U ∈ L(Ω).

Before we proceed investigating actual inferences from the
above expression for natural extension, we need to address

a few concerns. First, there is no guarantee that Principle 5
is consistent with our initial assessments PA0 . Eq. (34)
provides us with a means to verify this: we merely have
to check that E0(0) < +∞ [9, p. 123, ll. 4–7]. Secondly,
there is no guarantee that Principle 5 does not modify EA0
on L(A). Thirdly, this form of natural extension is inher-
ently non-constructive: it involves an operator Et about
which we have not specified much at all. The next propo-
sition answers the first two concerns. The last concern of
course remains, but nevertheless, we will show that we still
can derive something non-trivial about Et, just as in the
precise case discussed earlier.

Proposition 11. If, for every A ∈ A, there is an ΩAt ∈ Bt
such that

Et(Ω
A
t )(A) = 1, (35)

then Principle 5 is consistent with PA0 , and, for all X ∈
L(A),

E0(X) = EA0 (X). (36)

Proof. If we can prove Eq. (36), then consistency follows im-
mediately.

Consider any X ∈ L(A). Clearly, E0(X) ≥ EA0 (X). We now
prove the converse inequality. Indeed,

E0(X) = sup
α∈R

Y ∈L(A) : EA
0 (Y )≥0

V ∈L(Ω) : Et(V )≥0

{α : X − α ≥ Y + V } (37)

= sup
α∈R

Y ∈L(A) : EA
0 (Y )≥0

V ∈L(Ω) : Et(V )≥0

{
α : (∀A ∈ A) (38)

(
X(A)− α ≥ Y (A) + sup

ω∈A
V (ω)

)}
(39)

so, if we can show that supω∈A V (ω) ≥ 0 whenever Et(V ) ≥
0, then

≤ sup
α∈R

Y ∈L(A) : EA
0 (Y )≥0

{α : X − α ≥ Y } (40)

= EA0 (X). (41)

We are left to show that supω∈A V (ω) ≥ 0 whenever Et(V ) ≥
0. In fact, we will show that supω∈A∩ΩA

t
V (ω) ≥ 0, by con-

traposition. Note that Eq. (35) already implies that A ∩ ΩAt is
non-empty.

Suppose that supω∈A∩ΩA
t
V (ω) < 0, then there would be an

ε > 0 such that for all ω ∈ A ∩ ΩAt ,

V (ω) < −ε. (42)

Therefore, necessarily, also

Et(Ω
A
t )(V ) ≤ Et(Ω

A
t )(IAcV ) + Et(Ω

A
t )(−IAε) = −ε (43)

because Et(Ω
A
t )(Ac) = 0, so Et(Ω

A
t )(IAcV ) = 0, and

Et(Ω
A
t )(A) = 1, so Et(Ω

A
t )(−IAε) = −ε. But Eq. (43) con-

tradicts the assumption that Et(V ) ≥ 0.
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The consistency condition in Eq. (35) has a simple in-
terpretation: for every A ∈ A, we must allow for the
possibility that at time t, we will be certain that A has
obtained. Note that we only must logically allow for
this possibility—it may well have zero probability—so the
condition is really very weak.

We also immediately have the following important re-
sult, which effectively reformulates Principle 5 in terms
of lower previsions:5

Proposition 12. Principle 5 holds if and only if, for every
gamble U ∈ L(Ω),

inf
ω∈Ω

Et(U)(ω) ≤ E0(U). (44)

Proof. “only if”. Suppose Principle 5 holds. We could rely
on our expression for natural extension, Eq. (34), however it is
instructive to use only Principle 5 in the proof.

For any ε > 0, simply note that

U − Et(U) + ε ≤ U − inf
ω∈Ω

Et(U)(ω) + ε (45)

so U − infω∈Ω Et(U)(ω) + ε is sure to be desirable at time t,
because U − Et(U) + ε is. Consequently, we have that

E0

(
U − inf

ω∈Ω
Et(U)(ω) + ε

)
≥ 0 (46)

and because this holds for all ε > 0, we arrive at Eq. (44), after
using the constant additivity of E0.

“if”. Suppose Eq. (44) holds. Consider any gamble U ∈ L(Ω).
If U is sure to be desirable at time t, then Et(U)(ω) ≥ 0 for all
ω ∈ Ω. Consequently, by Eq. (44),

E0(U) ≥ inf
ω∈Ω

Et(U)(ω) ≥ 0 (47)

so U is desirable now. Principle 5 follows.

4.2 Implications

The treatment for previsions relied on the scoring defini-
tion of expectation, via Proposition 4. However, no proper
scoring rules exist for lower previsions [7]. We try to gen-
eralise Proposition 4 anyway. We do so in two ways: first
without scoring, and secondly using the relationship be-
tween expressions of the form (X − a)2, and lower and
upper variance—which is the closest notion to scoring we
have for lower previsions. There are certainly more ways
to go about it, but for this introductory paper, we will stick
to these two.

First, we derive the following imprecise counterpart of
Corollary 8.

Corollary 13. If Principle 5 is satisfied, then

E0(X − Et(X)) ≥ 0. (48)
5The attentive reader will note that the ‘only if’ part of the proof of

Proposition 12 remains valid, if in Principle 5, we take desirability to be
actual desirability, rather than almost-desirability.

Proof. By Eq. (44):

inf
ω∈Ω

Et(X − Et(X))(ω) ≤ E0(X − Et(X)). (49)

Now note that Et(X −Et(X))(ω) = 0 for all ω ∈ Ω, by coher-
ence of Et(ω).

Clearly, if we were to impose a conditioning interpreta-
tion, Eq. (48) corresponds to one of Walley’s conditions
for coherence [9, p. 303, (C11)].

Corollary 13 has a number of interesting immediate con-
sequences:

Corollary 14. If Principle 5 is satisfied, then

E0(X − Et(X)) ≤ 0, (50)

E0(Et(X)) ≤ E0(X) ≤ E0(Et(X)), (51)

E0(Et(X)) ≤ E0(X) ≤ E0(Et(X)). (52)

Proof. The first inequality holds by:

0 ≤ E0(−X − Et(−X)) = −E0(X − Et(X)). (53)

The second inequality holds because

E0(X − Et(X)) ≥ 0 (54)

=⇒ E0(X) + E0(−Et(X)) ≥ 0 (55)

=⇒ E0(X) ≥ E0(Et(X)) (56)

and

E0(−X − Et(−X)) ≥ 0 (57)

=⇒ E0(−X) + E0(Et(X)) ≥ 0 (58)

=⇒ E0(Et(X)) ≥ E0(X). (59)

The thrid one is proved similarly.

We can derive neither a lower bound on E0(Et(X)), nor
an upper bound on E0(Et(X)), for example, due to the
possibility of dilation [8].

Finally, let us see how far we can get with lower and upper
variance. We need the following lemma [9, p. 618, G2]:

Lemma 15. For every gamble X , there are previsions E1

and E2 in the credal set of E, such that for all a ∈ R:

var(X) := E((X − E1(X))2) ≤ E((X − a)2), (60)

var(X) := E((X − E2(X))2) ≤ E((X − a)2). (61)

In particular, for all a ∈ R, (X − a)2 − var(X) is desir-
able. Note that var(X) − (X − a)2 − ε is non-desirable,
however this does not help us very much—in fact, this
led us to investigate temporal sure preference also for
non-desirability, yet the resulting principle seems not very
compelling, and leads to serious issues.
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Proposition 16. If Principle 5 is satisfied, then

E0(vart(X)) ≤ E0((X − Y )2), (62)

E0(vart(X)) ≤ E0((X − Y )2). (63)

Proof. By definition of variance,

Et
(
(X − Y )2 − vart(X)

)
≥ 0 (64)

(remember that Y is a known constant at time t). Whence, by
Eq. (44), also

E0((X − Y )2 − vart(X)) ≥ 0. (65)

Concluding, by coherence,

E0((X − Y )2) ≥ E0(vart(X)), (66)

and
E0((X − Y )2) ≥ E0(vart(X)). (67)

Again, we cannot say anything about, say, E0(vart(X)).

As for adjusted lower expectation, if we are happy to
bound, say, the upper expectation of the future lower vari-
ance, by Eq. (63), any function Y of observed quantities
at time t which aims to minimize E0((X − Y )2) could
be a candidate. A good choice of function of course de-
pends on the optimisation problem, and an obvious stum-
bling block is that even already for a simple linear form,
say a+ bY , E0((X − (a+ bY ))2) cannot be written as a
function of the imprecise expectation and imprecise vari-
ance of X and Y . In other words, at this point, we seem to
get stuck, although there might be interesting and feasible
solutions for specific cases, for instance, using techniques
from imprecise regression.

5 Conclusion

We have discussed the temporal sure preference principle
in the context of desirability and lower previsions. We
found more than one way to generalise the temporal sure
preference principle to lower previsions, so we used the
simplest version, related directly to desirability.

We have identified an expression for natural extension un-
der the suggested temporal sure preference principle. We
then derived a simple condition, which guarantees consis-
tency of the temporal sure preference principle with prior
specifications, and which also guarantees that those prior
specifications are not modified by adopting the temporal
sure preference principle, so we can still use the usual
(non-temporal) form of natural extension for gambles as
far as our current beliefs are concerned.

We have also derived a host of bounds on lower and upper
expectations of future lower and upper expecations and

variances. In this initial investigation, a particular chal-
lenge which remains is to provide lower and upper bounds
on all future lower and upper expectations and variances.

An obvious next step would be to investigate possible up-
dating rules implied by the temporal sure preference prin-
ciple, for example using ideas from imprecise regression.
The optimisation problems involved do not appear to have
nice closed solutions in general, essentially due to the non-
linearity of the lower and upper previsions. It would be
very interesting to find non-trivial imprecise instances of
lower previsions where such updating rules could be cal-
culated explicitly. In this paper, we had an initial look at
linear updating rules and lower and upper variance, but of
course there might be many more ways to go about it.

Temporal reasoning without conditioning also raises in-
teresting questions about the need for a possibility space.
In fact, it is one of the premises of temporal reasoning
that we cannot specify in advance what the possibility
space ought to be. In the current paper, it serves only
as a mathematical construct to establish a clear link with
Walley’s [9] approach to lower previsions and desirabil-
ity. We might be better off simply ignoring the possibility
space entirely, and instead working with random quanti-
ties directly, following the approach of de Finetti [2] and
Williams [10, 11].

Finally, one might wonder, why not also introduce a prin-
ciple for temporal coherence concerning non-desirability:
say, if a gamble is surely non-desirable at a future time t,
should it also be non-desirable now? One can show that,
for previsions, this principle is equivalent to the usual tem-
poral sure preference principle.

However, for lower previsions, this is no longer so, and it
leads us to infer additional constraints. In fact, it leads to
additional constraints that are usually not satisfied in the
standard theory when updating is taken to be condition-
ing. We simply note here that temporal reasoning on non-
desirability seems far less compelling, certainly so un-
der the standard interpretation that non-desirability merely
means that we do not say whether we accept a gamble
or not. Here, a reject-accept approach to desirability [6]
might lead to a better treatment.
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Abstract

Often, in dynamical systems, such as farmer’s crop
choices, the dynamics is driven by external non-
stationary factors, such as rainfall, temperature, and
economy. Such dynamics can be modelled by a non-
stationary Markov chain, where the transition proba-
bilities are logistic functions of such external factors.
We investigate the problem of estimating the param-
eters of the logistic model from data, using conjugate
analysis with a fairly broad class of priors, to accom-
modate scarcity of data and lack of strong prior expert
opinions. We show how maximum likelihood methods
can be used to get bounds on the posterior mode of
the parameters.

Keywords. logistic regression, Markov chain, robust
Bayesian, conjugate, maximum likelihood, crop

1 Introduction

We wish to accurately model agricultural land use,
that is, to predict what crop is grown in any particular
field. Usually, farmers follow set patterns of succes-
sive yearly crop choices in order to preserve nutrients
in the soil. For example, they may have a 3 year cy-
cle, in which they, under normal circumstances, grow
wheat for two years, and then leave the field empty
for the third year. A very simple model for such crop
choices on any particular field is a Markov chain (see
for instance [4, 3]), where the state at time i is the
crop choice at year i. Such a model makes a simplify-
ing assumption, namely that crop choice in any given
year only depends on crop choice in the previous year.

However, crop choices are not only affected by crop
choices of the previous year(s): they are also affected
by various environmental and economical conditions.
In an earlier study, Luo [10] identified some of the
most important factors as rainfall, temperature, profit
margin, and soil type. To model the effect of these
variables on crop choice, in this paper, we propose a

logistic regression model for the crop choice transition
probabilities. For simplicity, in this paper, we only
investigate the impact of rainfall on a simple binary
crop choice: wheat, or something else. Generalisation
to more than one regressor and to more than two crop
choices will be the subject of another paper.

A key challenge with any regression model is to esti-
mate its parameters. First, following [5], we identify a
class of conjugate priors for our model. Next, we fol-
low a similar approach to that of the imprecise Dirich-
let model [13]: we identify a reasonably vacuous set of
conjugate priors, and calculate posterior bounds. A
benefit of this approach is that it can also incorporate
expert opinion, which will be very useful when study-
ing crop types that are uncommon, such as oats. Our
model is thus designed to handle situations in which
data is scarce and in which prior expert opinion may
be lacking.

The novel contributions of this paper are:

1. We present a first step at including imprecision in
non-stationary Markov chains influenced by non-
stationary random variables.

2. We propose a novel approach to imprecise logistic
regression, based on conjugate analysis.

3. The use of maximum likelihood methods for ap-
proximate Bayesian inference in logistic regres-
sion, to arrive at fast algorithms when dealing
with sets of priors, is new, even though relatively
obvious.

The paper is structured as follows. Section 2 intro-
duces the model. Section 3 describes the conjugate
prior and posterior distributions, discusses the param-
eters of the model and their interpretation. Section 4
explains how we can use sets of distributions to ob-
tain posterior bounds. Section 5 has an example. Sec-
tion 6 concludes the paper, and details future areas of
research.
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Figure 1: A Markov chain for crop rotations.

2 Logistic Model

We model crop rotations as a non-stationary Markov
chain, as depicted in Figure 1.

The model has two states: either our current crop is
wheat, which we denote as 1, or our current crop is
not wheat, denoted as 0. The transition probabili-
ties in the Markov chain only depend on the previous
crop grown and the rainfall—which is where the non-
stationarity comes from, as rainfall may change over
years. We denote this by:

πy(x) := P (Yi+1 = 1|Yi = y,Xi = x) (1)

for all y ∈ {0, 1} and x ∈ R, where Yi is the previ-
ous crop choice, and Xi is the rainfall recorded just
before the planting of crop Yi+1. Note that Xi is not
assumed to be part of the state space of the Markov
chain, and is simply a non-stationary random variable
influencing the transition probabilities.

The impact of rainfall on these transition probabilities
is typically either monotonically increasing, or mono-
tonically decreasing. Therefore, a logistic regression
model for πy(x) seems fairly reasonable:

πy(x) =
eαy+xβy

1 + eαy+xβy
. (2)

where αy and βy are parameters of the model.

For example, when it rains a lot, farmers are usually
more likely to grow wheat, if the previous crop grown
was also wheat; see Figure 2. To produce Figure 2,
we used maximum likelihood to fit a logistic regres-
sion curve to some actual data when the previous crop
grown was wheat—in fact, the data is shown in Ta-
ble 3 for y = 1, and will be explained further in the
paper. Note that the relationship is actually reversed
if the previous crop is not wheat (y = 0).

Also note that the data used here is quite limited, as
we used only 10 observations. In reality, wheat versus
non-wheat will not be an issue as wheat is a very com-
mon crop. However, some crop types, such as oats,
are very rare, and will suffer from scarcity of data.
For actual applications, our model will be appropri-
ate to handle such crop types specifically. Here, we
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Figure 2: Logistic regression of the probability of
growing wheat against rainfall, when the previous
crop grown was wheat.

chose wheat versus non-wheat because that data was
readily available, but of course other crop types will
be investigated in the future, including rare ones.

We also assume that we have some model for the re-
gressor X, say a probability density fγ(x) with pa-
rameter γ.

For further details about logistic regression, see for
instance [1].

3 Parameter Estimation

3.1 Data

We now wish to estimate the parameters of the model,
given some data. We have recorded crop transitions
and rainfall of a number of fields over a number of
years. Specifically, we have ny(x) observations where
the previous crop choice was y and rainfall was x—
obviously, ny(x) will be zero at all but a finite number
of x ∈ R. Of these ny(x) observations, the crop choice
was 1 in ky(x) cases.

Because we effectively have two separate logistic re-
gression models—one for y = 0 and one for y = 1—it
makes sense to split our data into two sets accord-
ingly. Table 1 tabulates the full data set. Table 2
tabulates the same data, but split according to the
value of y.
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current current
previous crop crop

crop rain total count
y x ny(x) ky(x)

1 46 1 0
0 52 1 0
0 38 1 1
1 30 1 1
1 37 1 0
...

...
...

...

Table 1: Crop rotation data.

previous
y = 0

current current
crop crop

rain total count
x n(x) k(x)

52 1 0
38 1 1
...

...
...

previous
y = 1

current current
crop crop

rain total count
x n(x) k(x)

46 1 0
30 1 1
37 1 0
...

...
...

Table 2: Crop rotation data split by y.

3.2 Likelihood

Our inspiration is the work by Chen and Ibrahim
[5], who propose a conjugate prior distribution of the
form:

exp

(
m∑

i=1

s
[
ti(α+ xiβ)− ln(1 + eα+xiβ)

]
)

(3)

where ~x = (x1, . . . , xm) are the observed locations of
the regressor, α and β are parameters of the logistic
model (as in Eq. (2)), and s and ~t are hyperparame-
ters. However, our notation is simpler if we work di-
rectly with the count functions ny(x) and ky(x) which
are defined for all x ∈ R, rather than having to enu-
merate over observed locations explicitly.

Specifically, in terms of ny(x) and ky(x), our likeli-
hood is:

Ly(αy, βy, γy|ny, ky) = py(ky|ny, αy, βy)f(ny|γ) (4)

where
f(ny|γ) =

∏

x∈R
fγ(x)ny(x) (5)

and

py(ky|ny, αy, βy)

=
∏

x∈R

(
ny(x)

ky(x)

)
πy(x)ky(x)(1− πy(x))ny(x)−ky(x).

(6)

The above products over x ∈ R are well defined: be-
cause ky(x) and ny(x) are zero at all but a finite num-
ber of x, all but a finite number of factors are equal
to one.

Because the likelihood is a product of a function of γ
and a function of (αy, βy), we can separate our infer-
ence procedure accordingly. In the following, we will
concern ourselves with inference about (αy, βy) only,
and leave inference about γ to another paper.

Note that we have subscript y everywhere. To keep
notation readable, we will drop it in the remainder of
this section. So, we can write:

p(k|n, α, β)

=
∏

x∈R

(
n(x)

k(x)

)
π(x)k(x)(1− π(x))n(x)−k(x) (7)

For conjugate analysis later, we rewrite this in canon-
ical form [2, p. 202, Definition 4.12], which, after some
manipulations, yields:

∝ exp

(∑

x∈R
k(x)(α+ xβ)− n(x) ln

(
1 + eα+xβ

)
)

(8)

up to a normalisation constant that is a function of x
only. The above sum over x ∈ R is well defined, be-
cause k(x) and n(x) are zero at all but a finite number
of x.

3.3 Conjugate Prior and Posterior

Following [5, p. 470, Eq. (6.1)], we can now simply
define a conjugate prior [2, p. 266, Proposition 5.4]
for logistic regression:

f0(α, β|s, t)

∝ exp

(∑

x∈R
s(x)

[
t(x)(α+ xβ)− ln

(
1 + eα+xβ

)]
)
,

(9)

where s and t are non-negative functions on R such
that s(x) = t(x) = 0 for all but a finite number of
x ∈ R, and 0 ≤ t(x) ≤ 1 for all x ∈ R.

Writing the posterior distribution down is a simple
task [2, p. 269, Proposition 5.5]. We simply multiply
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Eq. (8) and Eq. (9), to obtain:

f(α, β|k, n, s, t)
∝ f0(α, β|s, t)p(k, n|α, β) (10)

∝ exp

(∑

x∈R
(s(x)t(x) + k(x))(α+ xβ)

− (n(x) + s(x)) ln
(
1 + eα+xβ

)
)

(11)

It is clear the prior distribution and posterior distri-
bution are of the same family:

f(α, β|k, n, s, t) = f0(α, β|σ, τ) (12)

where

σ(x) := s(x) + n(x), and (13)

τ(x) :=
s(x)t(x) + k(x)

s(x) + n(x)
. (14)

We now study this family in a bit more detail.

3.4 Interpretation of Hyperparameters

A key problem we are faced with is the choice of prior
hyperparameters s(x) and t(x). Ideally we want a
direct interpretation of the parameters. Eqs. (13)
and (14) show that, as usual, the hyperparameters
can be interpreted as a prior virtual sample, with s(x)
observations at X = x, s(x)t(x) of which are wheat
(Yi+1 = 1). The implications of such specification
may however not be entirely clear to an expert, and
therefore it seems more appealing, at least to us, to
relate the hyperparameters to the prior predictive in-
stead, as is commonly done for the regular exponen-
tial family through a famous result by Diaconis and
Ylvisaker [6, Theorem 2].

To apply [6, Theorem 2], the number of parameters
must be equal to the dimension d of the space Rd in
which the hyperparameter t lives. Therefore, if we
relax the model by replacing α+xβ with an arbitrary
function θ(x)—i.e. if we were to drop the assumption
that π(x) has a logistic form—then [6, Theorem 2]
applies, and t(x) is precisely the prior prediction for
π(x) (see [5, Eqs. (2.4) and (2.5)]).

For our actual model, however, there are only two
parameters to estimate (α and β), but unfortunately,
the hyperparameter t effectively lives in Rd, where d is
the number of x where s(x) is non-zero. Specifically,
although we have conjugacy, it is very easy to see
that, in general, the prior predictive π̂0(x) is not equal
to the hyperparameter t(x), i.e. t(x) is not a prior
expectation for π(x), unless d = 2.

We can still arrive at some sort of interpretation for
t(x) as follows. Inspired by [6, Theorem 2], by the
usual properties of integration and densities:

∫∫

R2

∂

∂α
f0(α, β|s, t) dα dβ = 0 (15)

∫∫

R2

∂

∂β
f0(α, β|s, t) dα dβ = 0 (16)

These equations yield:
∑

x∈R
s(x)t(x) =

∑

x∈R
s(x)π̂0(x) (17)

∑

x∈R
xs(x)t(x) =

∑

x∈R
xs(x)π̂0(x) (18)

where

π̂0(x) := P (Yi+1 = 1|Yi = y,Xi = x, s, t) (19)

=

∫∫

R2

π(x)f0(α, β|s, t) dα dβ (20)

Note that we should write π̂0y(x) but we omit the
subscript y for ease of notation as usual.

These equations show that t(x) in some sense
‘matches’ π̂0(x), the more so for values of x where
s(x) is larger. Of course, for any given prior specifi-
cation of the function π̂0, even for fixed s, there will
be many different functions t that satisfy Eqs. (17)
and (18), so the choice of t(x) is not uniquely deter-
mined by our prior expectation about π(x).

As mentioned, there is however a special case where
the conditions of [6, Theorem 2] are satisfied, and so
where we do get a direct interpretation of t(x). This
occurs when there are only two points {x1, x2} where
s(x) is non-zero. In this case, Eqs. (17) and (18) do
have a unique solution, namely:

t(x1) = π̂0(x1) and t(x2) = π̂0(x2) (21)

regardless of s(x1) and s(x2) (of course, this also fol-
lows directly from [6, Theorem 2]). Whence, for sim-
plicity and interpretability, this is the case that we
will consider in practical examples later. In this case,
as we shall see, s(x1) and s(x2) also carry their usual
interpretation, in determining the speed by which our
posterior will move away from our prior.

4 Inference

4.1 Posterior Transition Probability

For inference, we are mostly interested in the posterior
transition probability:

π̂(x) := P (Yi+1 = 1|Yi = y,Xi = x, k, n, s, t) (22)

=

∫∫

R2

π(x)f(α, β|k, n, s, t) dα dβ (23)
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where it is worth recalling that π(x) is a non-linear
(logistic) function of α and β. Specifically, taking into
account our uncertainty about α and β as given by the
posterior, we are interested in evaluating Eq. (23).
The challenge now is the evaluation of the integral.
One option is to directly numerically integrate. How-
ever, as eventually, we want to use sets of distribu-
tions, this may not necessarily be the most sensible
route to take.

Therefore, we may prefer to rely on faster approxi-
mations of the integral. A first crude idea would be
to approximate the prior (Eq. (9)) by a multivariate
normal distribution; Chen and Ibrahim [5] mention
that for large sample sizes this approximation yields
the exact solution. Whilst the mean can be easily ap-
proximated through the mode, obtaining the covari-
ance structure is somewhat more difficult (a starting
point would be [5, Theorem 2.3]). Interestingly, there
are variational techniques for direct updating of the
mean and covariance structure [9], which means that
we would need to perform the multivariate normal
approximation only once, on the initial prior.

However, this approach still requires numerical inte-
gration. As just mentioned, when we move to sets
of priors, this might easily become computationally
intractable, as we will have to update, approximate,
and integrate, for every prior in the set. A more crude
but also much faster approximation would be to sim-
ply pretend that all probability mass is concentrated
at the mode of the posterior. It is relatively straight-
forward to show that the mode can be obtained by
solving the following system of non-linear equations
for α and β:

∑

x∈R
σ(x)τ(x) =

∑

x∈R
σ(x)π(x) (24)

∑

x∈R
xσ(x)τ(x) =

∑

x∈R
xσ(x)π(x) (25)

where it is again worth recalling that π(x) is a non-
linear (logistic) function of α and β. To obtain an ap-
proximate value for π̂(x), we simply plug in the solu-
tion (α∗, β∗) into the expression for π(x) (see Eq. (2)):

π̂(x) ≈ eα
∗+xβ∗

1 + eα∗+xβ∗ . (26)

Although this approximation is obviously horribly
crude, we note that in fact it corresponds to the max-
imum likelihood estimate, where the data has been
augmented with pseudo counts. Hence, it reflects cur-
rent practice quite well, and arguably even improves
it, by allowing for additional prior information to be
taken into account.

Solving a system of non-linear equations is non-trivial.
However, Green [8] provides a Newton Raphson al-
gorithm specifically for the maximum likelihood esti-
mate of logistic regression. We can essentially recy-
cle algorithms like these to find the mode, simply by
adding some pseudo counts to the data to reflect our
prior.

4.2 Sets of Prior Distributions

We now want to propose sets of prior distributions, in
a similar vein to Walley’s imprecise Dirichlet Model
[13]. In this section, we study the inferences resulting
from an arbitrary but fixed prior function for s(x),
namely:

s(x) :=

{
s if x ∈ X ,
0 otherwise,

(27)

for some finite set X ⊆ R, and an arbitrary set of
prior functions T for t(x). We explain how to calcu-
late posterior bounds based on this set of priors, and
the observed data. Practical choices for reasonably
vacuous sets of prior distributions will be discussed
further in Section 5.

4.3 Posterior Transition Probability Bounds

For the above choice of s(x), Eqs. (24) and (25) can
be written as:

s
∑

x∈X
(π(x)− t(x)) +

∑

x∈R
(n(x)π(x)− k(x)) = 0,

(28)

s
∑

x∈X
x(π(x)− t(x)) +

∑

x∈R
x(n(x)π(x)− k(x)) = 0.

(29)

If we can solve the above equations for all t ∈ T, then
we obtain a set Θ∗ of solutions (α∗, β∗), one solution
for each t ∈ T. Each member of Θ∗ corresponds to an
estimate of the posterior transition probability as in
Eq. (26). Whence,

π(x) ≈ inf
(α∗,β∗)∈Θ∗

eα
∗+xβ∗

1 + eα∗+xβ∗ , (30)

π(x) ≈ sup
(α∗,β∗)∈Θ∗

eα
∗+xβ∗

1 + eα∗+xβ∗ , (31)

are the desired lower and upper posterior approxima-
tions of the transition probability.

5 Example

As discussed in Section 3.4, there is a direct interpre-
tation of t(x) when X = {x1, x2}. We will explore
this case here.
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previous
y = 0

current current
crop crop

rain total count
x n(x) k(x)

18 1 1
68 1 1
24 1 1
19 1 1
99 1 0
16 1 0
20 1 0
119 1 0
102 1 0
87 1 1
17 1 0
29 1 0

previous
y = 1

current current
crop crop

rain total count
x n(x) k(x)

72 1 1
105 1 1
6 1 0

104 1 1
77 1 0
69 1 0
15 1 0
63 1 0
35 1 1
25 1 0

Table 3: Actual crop rotation data split by y.

We take a set of functions for t(x) and a constant s.
The most vacuous choice would be:

Tv = {t ∈ RR : t(x) = 0 when x /∈ X ,
0 < t(x) < 1 when x ∈ X} (32)

Solving the optimisation problem (Eqs. (30) and (31))
over Tv is rather involved. For a simple quick analy-
sis, we restrict ourselves to the extreme points of Tv,
namely:

T′v = {t ∈ RR : t(x) = 0 when x /∈ X ,
(t(x1), t(x2)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}} (33)

We will use data collected from actual fields to illus-
trate the ideas we have talked about. The data is
shown in Table 3. It consists of 22 observations of
crop transitions [12], and the corresponding rainfall
recorded in the month of planting for each crop [11].

Figure 3 shows π̂(x) for each element of T′v, where we
have specified s = 2, x1 = 30, and x2 = 80, and we
are looking at the model for y = 1. Each line corre-
sponds to one estimate. The grey region represents
the posterior estimates from the most vacuous set Tv
(we actually used a 21×21 grid over the unit square).
As can be seen π and π are very closely matched in
both cases (almost shockingly so!), so it seems very
reasonable to use only T′v instead of the full set Tv,
for ease of computation.

Note that the case t1 = 1, t2 = 0, goes against the
data, and corresponds to a non-natural shape for π
in this problem. Thus, Figure 3 also highlights the
importance of including constraints on π which follow
from prior expert opinion, for instance by removing
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Figure 3: π̂(x) based on Tv and T′v for y = 1.

those values from Tv for which π violates those con-
straints. A less vacuous prediction for larger values of
x would result. Of course, other techniques for learn-
ing under order constraints, which have been studied
for instance in the context of Bayesian network learn-
ing [7], could also have some potential here.

Our choice for x1 and x2 is also important. In Fig-
ure. 4, we use x1 = 10 and x2 = 100, which lean more
towards the extremes of the range of observations in x.
This changes our inferences quite substantially. The
largest impact is observed for the case t1 = 1, t2 = 0,
and as we just saw, removing such unnatural values
for t from Tv might be reasonable. In any case, this
also demonstrates the importance of choosing x1 and
x2 sensibly, particularly under the vacuous model Tv.
For example, a sensible choice would be to take for x1

the first quartile and for x2 the third quartile, of the
observations in x (or of our prior distribution for x).

The inference also depends on the the value of s. As
in the imprecise Dirichlet model, smaller values of s
produce tighter bounds, as seen in Figure. 5.

6 Conclusion

In this paper, we proposed a new model for land use,
which aims to properly capture epistemic uncertainty
about crop rotations, in an interpretable, robust, and
efficient way. Thereby, we presented a first step at in-
cluding imprecision in non-stationary Markov chains
influenced by non-stationary random variables.

In a nutshell, starting from earlier work by Chen and
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Figure 4: The impact of changing x1 and x2.

0 50 100 150 200
Rain

0.0

0.2

0.4

0.6

0.8

1.0

T
ra
ns
it
io
n
pr
ob
ab
ili
ty

s = 1

s = 2

s = 3

Figure 5: 3 different sets of π̂(x) for different values
of s.

Ibrahim [5], we proposed a new model for imprecise
logistic regression, using sets of conjugate prior dis-
tributions for a generalised linear model with logis-
tic link function, to get bounds on the probability of
growing wheat as a function of rainfall.

We investigated the interpretation of the hyperparam-
eters of the model, which turns out to be somewhat
non-trivial, unless the model is constrained in a very
specific way.

We care about robustness, because typically, for cer-
tain rare crop types, only a small amount of data is
available. This results in posterior probabilities which
are highly sensitive to prior specifications. By using
sets of priors, our approach allows us to draw accu-
rate robust inferences even from near-vacuous prior
knowledge about crop rotations.

Due to the non-linearity of our model, one might fear
that the updating process is highly complicated. We
proposed the use of maximum likelihood methods for
approximate Bayesian inference, effectively via data
augmentation, to arrive at fast algorithms when deal-
ing with sets of priors. Much to our surprise, it turns
out that using the set of extreme points in our prior
specifications still captures the posterior bounds ex-
tremely well. We suspect that this is due to the mono-
tonicity of the link function.

An obvious weakness of our analysis is the use of the
posterior mode as a very crude approximation to the
actual posterior expectation. However, the other op-
tions for evaluating the posterior expectation are com-
putationally far more complex, making a robust anal-
ysis over sets of parameter values infeasible, at least
in our initial attempts. Nevertheless, the use of the
posterior mode corresponds quite well to current prac-
tice: a standard technique for estimating the parame-
ters in logistic regression goes by maximum likelihood
estimation, and the posterior mode can be interpreted
as such.

Concerning the actual crop modelling, this work is
still in its infancy. We have yet to judge the effects
of the simplifying assumptions we have made, and we
still need to assess the validity of our model. We plan
to use the posterior bounds in conjunction with a pre-
dictive model for rainfall, to make predictions about
future crop distributions. We also plan to extend the
model to deal with multiple crop choices (i.e. more
than just wheat) and multiple regressors (i.e. not just
rainfall, but also economic factors).
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Abstract

We extend probabilistic computational tree logic for
expressing properties of Markov chains to imprecise
Markov chains, and provide an efficient algorithm for
model checking of imprecise Markov chains. Thereby,
we provide a formal framework to answer a very wide
range of questions about imprecise Markov chains, in
a systematic and computationally efficient way, whilst
at the same time improving and simplifying model
checking for a fairly broad class of Markov decision
processes.

Keywords. imprecise Markov chain, model checking,
parse tree, logic, computation

1 Introduction

In a nutshell, model checking [2] is a model-based
technique which automates the verification of the re-
liability of a system. To do so, firstly we need a spec-
ification of the system model, and secondly a spec-
ification of system properties. The system is then
deemed reliable if the model satisfies those properties.
Model checking can be performed manually, for in-
stance through peer review, however, for larger mod-
els, this can take a lot of time and can cost a lot
of money. Moreover, peer review typically does not
catch all errors. Therefore, there is a strong need for
automating the model checking process.

Interestingly, in model checking literature, a lot of
work has been done for so-called Markov decision pro-
cesses—these are Markov chains where the transition
probabilities depend on non-deterministic choices,
about which we are completely vacuous, and so in
fact they are quite closely related to imprecise prob-
ability [4, 13, 14, 11, 12].1 Indeed, so-called impre-
cise Markov chains have been studied by many au-
thors. Hartfiel [7, 6] proposed Markov set-chains mod-

1In operations research, the term Markov decision process
has an entirely different meaning.

els, where transition matrices form matrix intervals.
He does not connect his work with imprecise prob-
ability formally, but uses several methods similar to
those developed in imprecise probability theory. An-
other more recent case where interval probabilities are
involved in the study of Markov chains, outside the
formal theory of imprecise probability, is described in
[8]. In that work, the interval probabilities are formed
by abstraction of a precise Markov chain, that is by
merging states. Also this model could be seen as an
imprecise Markov chain. A more formal connection
between Markov chains and interval probabilities was
established by Kozine and Utkin [9], and generalised
by Škulj [10] and De Cooman et al. [5]. In [5], lower
and upper expectation operators are used instead of
sets of probabilities, leading to simpler calculations
and more elegant proofs. We follow their approach as
well.

In this paper, we investigate model checking tech-
niques for imprecise Markov chains. Although, the-
oretically, these models can already be checked using
existing techniques for Markov decision processes [2,
Sec. 10.6] [1], in this paper we follow [5] and restrict
ourselves to a very special type of Markov decision
process, namely those imprecise Markov chains for
which bounds on transition probabilities can be cal-
culated simply by means of linear programming.

Indeed, imprecise Markov chains can be formally con-
nected to Markov decision processes as follows: the
extreme points of the set of transition probabilities in
the imprecise Markov chain correspond to the set of
actions in the Markov decision process. Existing tech-
niques for Markov decision processes require the set
of actions to be finite. Interestingly, in our approach,
the set of extreme points is not required to be finite,
as our model checking algorithm does not depend on
the cardinality of the set of extreme points. A sec-
ond advantage of our approach is that we express our
algorithm directly in terms of constraints (lower and
upper expectations), rather than in terms of extreme
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points or, actions, if you like. This is computationally
much more efficient than model checking algorithms
which work with actions directly, because it is well
known that the number of extreme points is usually
much greater than the number of constraints required
to describe the same set (for example, see [3]). Even in
those cases where the number of constraints is larger,
one can still use the extreme points to calculate lower
and upper expectations, whence our approach never
does worse than existing algorithms which use actions
directly.

From the model checking perspective, this paper con-
tributes algorithms that are potentially much faster
than traditional methods for Markov decision pro-
cesses, in essence because we can circumvent sets of
probabilities, and instead focus on the constraints.
The algorithm is also simpler, and resembles much
more closely the one for precise Markov chains. From
the imprecise probability perspective, the contribu-
tion of this paper is the development of a formal
framework to answer a very wide range of questions
about Markov chains in a computationally efficient
way. In doing so, we put various existing results from
the literature about imprecise Markov chains into a
common framework.

This paper is structured as follows. Section 2 reviews
the existing theory of model checking for Markov
chains. Section 3 explains how the logic and model
checking algorithm can be adapted to suit imprecise
Markov chains. Section 4 has an example. We con-
clude in Section 5.

2 Model Checking for Markov Chains

Before we move on to imprecise Markov chains, in this
section, we briefly review the standard model checking
framework for Markov chains [2, Chapter 10]. For
simplicity, in this paper, we will restrict ourselves to
finite state discrete time Markov chains.

2.1 Model Specification: Transitions,
Labelling, Paths, Probabilities

Definition 1 (Markov Chain) A (finite state, dis-
crete time) Markov chain consists of:

• a finite set of states S,

• an initial probability P0(s) for all s ∈ S, and

• transition probabilities P(s, t) for all (s, t) ∈ S2.

For specifying properties of Markov chains, it is useful
to introduce labels as well:

Definition 2 (Labelling) Consider a finite set of
atomic propositions AP . A labelling of states is then
simply a mapping L : S → ℘(AP ) which associates a
set of atomic propositions with every state.

An atomic proposition is just a convenient way to
specify a subset of states. For example, in a reliability
problem, we could have

AP = {system working, system broken}, (1)

with states of the Markov chain labelled accordingly.
In more advanced problems, it is sometimes conve-
nient to allow each state to carry more than one
atomic proposition. A trivial labelling is L(s) = {s}
for every s ∈ S; this is what we will usually assume,
unless otherwise stated.

The digraph of a Markov chain is a graph where each
state is represented by a vertex, and each possible
transition (P(s, t) > 0) is an edge—this is the picture
we generally draw for a Markov chain.

A path is then simply an infinite sequence of states on
the digraph:

π = s0s1s2 · · · ∈ SN. (2)

The trace of a path is its induced sequence of labels:

trace(s0s1s2 · · · ) = L(s0)L(s1)L(s2) · · · ∈ ℘(AP )N.
(3)

A cylinder set is a set of paths with a common prefix:

cyl(s0s1 · · · sn) = {s0s1 · · · snsn+1sn+2 · · · :
sn+1sn+2 · · · ∈ SN}. (4)

For example, the set of paths starting from state s is
the cylinder set

cyl(s) = {s0s1s2 · · · ∈ SN : s0 = s}. (5)

Cylinder sets play a central role in Markov chains be-
cause these are the sets for which we can very easily
calculate their probability:

Pr(cyl(s0s1 · · · sn)) = P0(s0)

n−1∏

i=0

P(si, si+1). (6)

Also of interest is the probability of a cylinder set
conditional on knowing the initial state s0:

Pr(cyl(s0s1 · · · sn) | s0) =

n−1∏

i=0

P(si, si+1). (7)
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state formula meaning
s � true always satisfied
s � a a ∈ L(s)
s � ¬Φ not s � Φ
s � Φ ∧Ψ s � Φ and s � Ψ
s � PJ(φ) Pr(s � φ) ∈ J
path formula meaning
π �©Φ π[1] � Φ
π � Φ∪∪∪Ψ ∃j ≥ 0:(

(∀0 ≤ k < j : π[k] � Φ)
and π[j] � Ψ

)

π � Φ∪∪∪ ≤nΨ ∃0 ≤ j ≤ n :(
(∀0 ≤ k < j : π[k] � Φ)
and π[j] � Ψ

)

Table 1: Semantics of state and path formulas.

2.2 Property Specification: Probabilistic
Computation Tree Logic

A formal and very useful way of specifying properties
of Markov chains goes via probabilistic computation
tree logic, where we distinguish between two types of
properties:

1. Properties of states of the system:

s � Φ if state s satisfies state formula Φ. (8)

2. Properties of paths of the system:

π � φ if path π satisfies path formula φ. (9)

State formulas are denoted by upper case greek letters
Φ, Ψ, and so on. Path formulas are denoted by lower
case greek letters φ, ψ, and so on.

State and path formulas Φ and φ are taken from a
grammar with the following syntax:

Φ ::= true | a | Φ1 ∧ Φ2 | ¬Φ | PJ(φ)
(10)

φ ::=©Φ | Φ∪∪∪Ψ | Φ∪∪∪ ≤nΨ (11)

where © (“next”) and ∪∪∪ (“until”) operators must be
directly preceded by a PJ operator. The semantics, or
meaning, of these formulas is summarized in Table 1,
where

Pr(s � φ) = Pr({π ∈ cyl(s) : π � φ} | s) (12)

and π[i] = si for π = s0s1 · · · . The usual operators
can be derived from the above ones:

Φ ∨Ψ := ¬((¬Φ) ∧ (¬Ψ)) Φ or Ψ (13)

♦Φ := true∪∪∪ Φ eventually Φ (14)

�Φ := ¬(♦(¬Φ)) always Φ (15)

as well as bounded versions ♦≤n and �≤n of ♦ and
�, implication, exclusive or, equivalence, and so on.

For a non-trivial example of a state formula, consider
a system modelled by a Markov chain whose states are
labelled with atomic propositions taken from AP =
{working,broken} = {w, b}. The property

s � P[0.99,1]

(
♦≤20

(
w ∧ P[0,0.01](w ∪∪∪ ≤10b)

))
(16)

is then satisfied when, starting from state s, with
probability at least 0.99, within 20 steps, the system
reaches a working state, from which the probability
that the system breaks down within the next 10 steps
is less than 0.01. Model checking provides an auto-
mated method for verifying any such formula.

Before we move on to the algorithm, one technical
issue that arises is is whether PJ(φ) is well defined, or
more specifically, whether the probability Pr(s � φ)
(see Eq. (12)) exists. The key observation is:

Theorem 1 For every state s and every path formula
φ,

{π ∈ cyl(s) : π � φ} (17)

is a countable union of cylinder sets.

The above theorem, along with the fact that the prob-
ability specification in Eqs. (6) and (7) can be ex-
tended to a σ-field containing all countable unions of
cylinder sets, imply that Pr(s � φ) exists; see for in-
stance [2, Lemma 10.39] for a proof of Theorem 1.

2.3 Model Checking: Automated Algorithm

The central question we aim to answer is: given a
state s and a state formula Φ, does s satisfy Φ? In a
nutshell, the algorithm works as follows:

• traverse the parse tree of Φ, visiting all subformu-
las, starting at the leaves of the tree and working
back to its root,

• at each subformula Ψ, calculate set of states
which satisfy Ψ

Sat(Ψ) = {s′ ∈ S : s′ � Ψ}, (18)

• check that s ∈ Sat(Φ).

Figure 1 shows the parse tree of the formula on the
right hand side of Eq. 16, and Figure 2 demonstrates
how we evaluate Sat through the parse tree.
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P[0.99,1](♦≤20•)

∧

w P[0,0.01](• ∪∪∪ ≤10•)

w b

Figure 1: Parse tree of the formula on the right hand
side of Eq. 16.

(i) P[0.99,1](♦≤20•)

∧

w P[0,0.01](• ∪∪∪ ≤10•)

B := Sat(w) C := Sat(b)

(ii) P[0.99,1](♦≤20•)

∧

D := Sat(w) E := Sat(P[0,0.01](B ∪∪∪ ≤10C))

(iii) P[0.99,1](♦≤20•)

F := Sat(D ∧ E)

(iv) Sat(P[0.99,1](♦≤20F ))

Figure 2: Evaluating Sat through the parse tree.

Effectively, we calculate Sat(Ψ) by applying the fol-
lowing formulas recursively:

Sat(true) = S (19)

Sat(a) = {s ∈ S : a ∈ L(s)} (20)

Sat(Φ ∧Ψ) = Sat(Φ) ∩ Sat(Ψ) (21)

Sat(¬Φ) = S \ Sat(Φ) (22)

Sat(PJ(φ)) = {s ∈ S : Pr(s � φ) ∈ J} (23)

where

Pr(s �©Φ) = P(s,Sat(Φ)) =
∑

t∈Sat(Φ)

P(s, t) (24)

and, under certain regularity conditions,

Pr(s � Φ∪∪∪Ψ) = lim
n→∞

Pr(s � Φ∪∪∪ ≤nΨ). (25)

Note that there are efficient ways to determine Pr(s �
Φ ∪∪∪ ≤nΨ) for large n. There are also methods for
evaluating Pr(s � Φ ∪∪∪ Ψ) directly, under arbitrary
conditions; for details we refer to [2, pp. 761–762].

Thus, the only probability we yet have to evaluate
is Pr(s � Φ ∪∪∪ ≤nΨ). Let C := Sat(Φ) and B :=
Sat(Ψ), and for simplicity assume a trivial labelling
L(s) = {s}, so we can write Pr(s � C ∪∪∪ ≤nB) for
Pr(s � Φ∪∪∪ ≤nΨ).

• If s ∈ B then Pr(s � C ∪∪∪ ≤nB) = 1.

• Otherwise, if s 6∈ C then Pr(s � C ∪∪∪ ≤nB) = 0.

• Otherwise, s ∈ C \B, and

Pr(s � C ∪∪∪ ≤nB) = Pr∗(s �©nB) (26)

= Pn
∗ (s,B) (27)

=
∑

t∈B
Pn
∗ (s, t) (28)

where Pr∗ and P∗ denotes the probabilities associated
with the modified Markov chain where all states, ex-
cept those in C \B, have been made absorbing. There
are many efficient ways to evaluate the n-step transi-
tion probability matrix Pn

∗ (s, t).

3 Model Checking for Imprecise
Markov Chains

3.1 Model Specification: Credal Sets and
Upper Transition Operator

Definition 3 (Imprecise Markov Chain) A (fi-
nite state, discrete time) imprecise Markov chain con-
sists of:
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• a finite set of states S,

• an initial credal set P0 on S, specified through
linear constraints on P0(·), and

• a transition credal set PPP(s) for each s ∈ S, spec-
ified through linear constraints on P(s, ·).

The sensitivity interpretation is that, at each step,
the transition is described by P(s, ·) ∈ PPP(s) but we
do not know which element.

Clearly, this model is not the most general one.
Firstly, it has separately specified rows [10], that is,
a separate model for transitions from each state. Sec-
ondly, it features non-stationarity (in the sensitivity
interpretation), as the actual transition probabilities
may change from step to step, and are only con-
strained to belong to their credal set at each step.
These assumptions make the model computationally
tractable, and almost as easy to work with as precise
Markov chains. Indeed, it turns out that for most
calculations of typical interest, we can entirely ignore
the credal sets, and instead work with a single opera-
tor that can be evaluated through linear programming
[5, 10].

Indeed, for typical calculations, we are interested in
lower and upper probabilities of events, or more gen-
erally, lower and upper expectations of random quan-
tities. Let L(S) denote the set of all random quanti-
ties, also called gambles, on S. Gambles are denoted
by lower case letters f , g, and so on.

For instance, we could be interested in the lower and
upper expectation of a gamble f on the next state,
given the current state s:

Definition 4 (Transition Operators) The opera-
tors T: L(S) → L(S) and T: L(S) → L(S) defined
by

(T(f))(s) := min
P(s,·)∈PPP(s)

∑

t∈S
P(s, t)f(t), (29)

(T(f))(s) := max
P(s,·)∈PPP(s)

∑

t∈S
P(s, t)f(t), (30)

are called the lower and upper transition operators.

A key point is that calculation of T(f) and T(f) is
efficient. In fact, once we have specified the linear
constraints that determine the credal sets PPP(s) for
each s ∈ S, Eqs. (29) and (30) can be evaluated via
linear programming [11, Chapter 3]. Many interesting
characteristics of the imprecise Markov chain can be
derived just from T [5]. To ease notation, we will
often write Tf for T(f).

More generally, we might be interested in the lower
and upper expectations of gambles on the state after

exactly n steps, given the current state s. For in-
stance, what is the upper probability of ending up in
B ⊆ S after exactly n steps? Let us use the usual
notation for the indicator gamble of a set B:

IB(s) :=

{
1 if s ∈ B,
0 if s 6∈ B. (31)

Clearly, (TIB)(s) is the desired upper probability for
n = 1. By marginal extension [11, Sec. 6.7.2], it fol-
lows that T(TIB))(s) is the desired upper probability

for n = 2; we will use the notation T
2
IB for T(TIB).

Similarly, by (T
n
IB)(s), we denote the desired upper

probability for arbitrary n, found by repeated appli-
cation of T.

Definition 5 (n-Step Transition Operators)
The operators Tn : L(S)→ L(S) defined by

(Tnf)(s) =

{
(T(Tn−1f))(s) if n > 1

(Tf)(s) if n = 1
(32)

is called the n-step lower transition operator, and

(T
n
f)(s) =

{
(T(T

n−1
f))(s) if n > 1

(Tf)(s) if n = 1
(33)

is called the n-step upper transition operator.

For model checking, we will use the notation

Tn(s,B) := Tn(IB)(s) (34)

T
n
(s,B) := T

n
(IB)(s) (35)

to denote the lower and upper probability of ending
up in B given that we started in s.

3.2 Property Specification: Imprecise
Probabilistic Computation Tree Logic

The syntax and semantics of state and path formulas
is as before, with only two differences.

First, for simplicity, here, we will exclude ∪∪∪ from our
logic, to avoid technical issues with countable unions
of cylinder sets resulting from the ∪∪∪ operator. The©
and ∪∪∪≤n operators pose no problem. Consequently,
we can impose an upper bound on the number of
steps, after which we are no longer interested in the
Markov chain, so all sets and partitions involved can
be assumed to have finite cardinality. In this way,
we avoid a host of technical problems. Problems in-
volving infinite horizon require additional considera-
tions and will therefore be tackled elsewhere. In any
case, for practical applications, time-bounded proper-
ties will often be sufficient.
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Secondly, and more crucially, we need to use a differ-
ent semantics for P:

s � PJ(φ) (36)

will mean that

[Pr(s � φ),Pr(s � φ)] ⊆ J (37)

where

Pr(s � φ) := Pr({π ∈ cyl(s) : π � φ} | s) (38)

Pr(s � φ) := Pr({π ∈ cyl(s) : π � φ} | s) (39)

and the right hand sides denote the lower and up-
per expectations corresponding to natural extension
[13, 14] [11, Sec. 8.1], where the Markov condition is
expressed through epistemic irrelevance [5].

3.3 Model Checking: Automated Algorithm

Again, the central question is: given a state s and
a state formula Φ, does s satisfy Φ? It is easy to see
that we can implement an algorithm exactly as before,
namely by evaluating Sat throughout the parse tree.

The non-trivial differences are:

Pr(s �©Φ) = T(s,Sat(Φ)) (40)

and

Pr(s � Φ∪∪∪ ≤nΨ)

=





1 if s ∈ Sat(Ψ)

0 if s 6∈ Sat(Φ) ∪ Sat(Ψ)

Tn∗ (s,Sat(Ψ)) if s ∈ Sat(Φ) \ Sat(Ψ)

(41)

where the ∗ denotes the imprecise Markov chain with
all states outside Sat(Φ) \Sat(Ψ) being made absorb-
ing:

(T∗f)(s) =

{
(Tf)(s) if s ∈ Sat(Φ) \ Sat(Ψ),

f(s) otherwise.
(42)

The formulas for upper expectations are trivially sim-
ilar.

4 Example

Consider a Markov chain with the set of states S =
{s1, s2, s3, s4} and the lower and upper transition
probabilities:

L =




1 0 0 0
1
3

1
6

1
4 0

0 1
4

1
6

1
4

0 0 1
4

1
2


 , (43)

U =




1 0 0 0
7
12

5
12

1
2 0

0 7
12

1
2

7
12

0 0 1
2

3
4


 , (44)

that is,

PPP(si) = {P(si) : L(si) ≤ P(si) ≤ U(si)} (45)

where L(si) is the ith row of L, and U(si) is the ith
row of U . As mentioned, the corresponding transi-
tion operators T and T can be efficiently evaluated
through linear programming.

We are interested in verifying the property:

s2 � P[0.9,1]

(
♦≤2

(
P[0.4,1]

(
(s2 ∨ s3)∪∪∪ ≤6s1

)))
(46)

that is, starting from s2, with probability at least 0.9,
in at most two steps we end up in a state from which,
with probability at least 0.4, we end up in s1 in at
most 6 steps without visiting s4.

To answer the above question, we start with evaluat-
ing:

Sat(s2 ∨ s3) = {s2, s3} and Sat(s1) = {s1}. (47)

Next, we need:

Sat
(
P[0.4,1]

(
{s2, s3} ∪∪∪ ≤6{s1}

))
(48)

Clearly, s1 belongs to the set because:

Pr({s2, s3} ∪∪∪ ≤6{s1} | s1)

= Pr({s2, s3} ∪∪∪ ≤6{s1} | s1) = 1, (49)

and s4 does not belong to the set because:

Pr({s2, s3} ∪∪∪ ≤6{s1} | s4)

= Pr({s2, s3} ∪∪∪ ≤6{s1} | s4) = 0, (50)

For s2,

Pr({s2, s3} ∪∪∪ ≤6{s1} | s2) = T6
∗(s2, {s1}) (51)

= 0.4809 (52)

Pr({s2, s3} ∪∪∪ ≤6{s1} | s2) = T
6

∗(s2, {s1}) (53)

= 0.8685 (54)

so s2 belongs to the set, as [0.4809, 0.8685] ⊆ [0.4, 1].
For s3,

Pr({s2, s3} ∪∪∪ ≤6{s1} | s3) = T6
∗(s2, {s1}) (55)

= 0.1415 (56)

Pr({s2, s3} ∪∪∪ ≤6{s1} | s3) = T
6

∗(s2, {s1}) (57)

= 0.5934 (58)
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so s3 does not belong to the set, as [0.1415, 0.5934] 6⊆
[0.4, 1]. Concluding,

Sat
(
P[0.4,1]

(
{s2, s3} ∪∪∪ ≤6{s1}

))
= {s1, s2}. (59)

Whence, finally, we need to calculate

Sat
(
P[0.9,1](true∪∪∪ ≤2{s1, s2})

)
. (60)

In fact, to verify Eq. (46), we only need to determine
whether s2 belongs to this set. Clearly it does, be-
cause

Pr(true∪∪∪ ≤2{s1, s2} | s2)

= Pr(true∪∪∪ ≤2{s1, s2} | s2) = 1, (61)

and obviously {1} ⊆ [0.9, 1].

5 Conclusion

We have provided a model checking algorithm for
imprecise Markov chains that is equally easy as the
corresponding algorithm for precise Markov chains.
Rather surprisingly, the same bag of tricks from the
precise case can be used for the imprecise case.

An interesting open problem is the evaluation of Φ∪∪∪Ψ,
where there is no bound on number of steps. Intu-
itively, it seems obvious that we can do this by evalu-
ating Φ∪∪∪≤nΨ for large enough n. How large should n
be? When is convergence guaranteed? Are there also
generally applicable direct methods as in the precise
case? We may also need to deal with the technical
issue of dealing with a countable number of partitions
to express the Markov condition, a case which is not
handled by Walley’s theory [11, Sec. 8.1], but covered
by Williams’s approach [13, 14].

Finally, there are additional optimisation tricks pos-
sible for precise Markov chains (see for instance [2,
Sec. 10.1.1, Remark 10.17]). Even though these
are somewhat technical, it would be interesting to
see whether we can recycle such tricks for imprecise
Markov chains as well.
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[10] Damjan Škulj. Discrete time Markov chains with
interval probabilities. International Journal of
Approximate Reasoning, 50(8):1314–1329, 2009.
doi:10.1016/j.ijar.2009.06.007.

[11] Peter Walley. Statistical Reasoning with Impre-
cise Probabilities. Chapman and Hall, London,
1991.

[12] K. Weichselberger. Elementare Grundbe-
griffe einer allgemeineren Wahrscheinlichkeit-
srechnung I — Intervallwahrscheinlichkeit als
umfassendes Konzept. Physica, Heidelberg, 2001.
In cooperation with Thomas Augustin and An-
ton Wallner.

ISIPTA ’13: Model checking for imprecise Markov chains 343



[13] Peter M. Williams. Notes on conditional pre-
visions. Technical report, School of Math. and
Phys. Sci., Univ. of Sussex, 1975.

[14] Peter M. Williams. Notes on conditional pre-
visions. International Journal of Approximate
Reasoning, 44(3):366–383, 2007. doi:10.1016/

j.ijar.2006.07.019.

344 Matthias C. M. Troffaes & Damjan Skulj



8th International Symposium on Imprecise Probability: Theories and Applications, Compiègne, France, 2013
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Abstract

This paper is about a generalization of ensemble
methods for regression which are based on variants
of the basic AdaBoost algorithm. The generaliza-
tion of these regression methods consists in restrict-
ing the unit simplex for the weights of the instances
to a smaller set of weighting probabilities. The pro-
posed algorithms cover the standard AdaBoost-based
regression algorithms and standard regression as spe-
cial cases. Various imprecise statistical models can be
used to obtain the restricted set of probabilities. One
advantage of the proposed algorithms compared to the
basic AdaBoost-based regression methods is that they
have less tendency to over-fitting, because the weights
of the hard instances are restricted. Finally, some sim-
ulations and applications also indicate a better per-
formance of the proposed generalized methods.

Keywords. Regression, AdaBoost, algorithm,
linear-vacuous mixture model, Kolmogorov–Smirnov
bounds.

1 Introduction

Regression modeling is one of the main problems in
applied statistics. Roughly speaking, the aim is to
estimate a function f : X → Y, where X ⊂ Rm with
m ∈ N and Y ⊂ R, from a finite set of noisy sam-
ples (x1, y1), . . . , (xn, yn) ∈ X × Y for some n ∈ N. A
large number of regression methods were developed
in the last decades, many of which are based on the
minimization of a risk functional defined by a certain
loss function and by the probability distribution of the
data (see, e.g., [9, 18, 21]). In practice, the estimated
function is obtained by minimizing the so-called em-
pirical risk (possibly regularized), the sum of the loss
values for the given data points divided by n, which
can be interpreted as the risk functional associated
with the empirical distribution of the data. The em-
pirical distribution can be represented as the point
p̂ = (n−1, . . . , n−1) in the unit simplex with n ver-

tices denoted by S(1, n). In this paper, we focus on
this kind of regression methods within the proposed
algorithms, because it is very easy to incorporate in-
dividual weights for the instances, which is a core el-
ement of the algorithms we want to generalize. The
weighted estimates can simply be interpreted as min-
imizers of the risk functional associated with another
discrete probability distribution p = (p1, . . . , pn) of
the data than the empirical distribution p̂.

A very popular approach to regression is the ensemble
methodology. The popularity of ensemble methods
for regression stems from success of boosting meth-
ods for classification, in particular, of the well-known
AdaBoost (Adaptive Boosting) algorithm proposed
by [5]. AdaBoost is a general purpose boosting al-
gorithm that can be used in conjunction with many
different learning algorithms to improve their perfor-
mance. The basic scheme of the AdaBoost algorithm
for classification is the following: Initially, a standard
classifier is estimated, assigning identical weights to
all examples, then, in each of a previously fixed num-
ber of iterations, the weights of all misclassified ex-
amples are increased, while the weights of correctly
classified examples are decreased, before again com-
puting a classifier accounting for the unequal weights
of the instances. Thus, with each step, the classifier
focuses more and more on the difficult examples of the
training data set, thereby improving the classification
accuracy. The final result obtained by AdaBoost is
a weighted majority vote of the classifiers of each it-
eration, which has a better prediction performance
than each of the individual classifiers alone. Detailed
reviews of boosting methods can be found, e.g., in
[1, 3, 12, 14].

One of the first boosting algorithms for regression
is the so-called AdaBoost.R2 proposed in [2], where
real-valued residuals replace the 0–1 misclassification
errors in the evaluation of the estimates. However,
the base regression estimates are evaluated by the
weighted average of the absolute values of the resid-
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uals scaled to [0, 1], which is a similar error measure
to the misclassification rate. Up to the recent years,
many more boosting methods for regression have been
developed, a recent survey is provided in [13]. In con-
trast to most of the ensemble-based algorithms us-
ing the weighted average of base regression estimates
as their final regression functions, [11] analyzed the
choice of the weighted median and proposed the cor-
responding algorithm called MedBoost. The author
proved boosting-type convergence of the algorithm
and gave clear conditions for the convergence of the
robust training error. Another interesting boosting
scheme for regression problems is proposed in [17],
where a threshold value for the residuals is introduced
to transform the real-valued errors back to the 0–1 er-
rors, which directly fit into the AdaBoost algorithm
for classification. This adaptation of the AdaBoost
algorithm is called AdaBoost.RT and its properties
were further investigated in [15].

A common feature of these boosting algorithms is that
they iteratively search for a discrete probability dis-
tribution of the training data such that the regression
error is minimized. The adapted weighting probabili-
ties may be arbitrary points in the unit simplex. This
can lead to over-fitting, when too large weights are
assigned to a few hard-to-learn examples. There are
different approaches to deal with this problem. One
way of overcoming the problem of over-fitting in the
context of regression is the so-called shrinkage regu-
larization, where the weights of the base regression
estimates are reduced, and thus, the learning rate of
the boosting algorithm (see, e.g., [7]). Another inter-
esting approach is based on restricting the weights,
e.g., by fixing a maximum size of the weights a priori.
In this paper, we follow this idea but we propose to
use imprecise statistical models like the linear-vacuous
mixture model or the Kolmogorov–Smirnov bounds to
restrict the set of weighting probabilities. To modify
the boosting algorithms accordingly, we replace the
adaption of the instances’ weighting probabilities with
the updating of weights in the convex linear combina-
tion of the extreme points of the restricted set. Thus,
we here present a general tool for modifying available
boosting algorithms and for constructing a number of
new ensemble-based methods which avoid the prob-
lem of over-fitting.

In the following two sections, we propose the corre-
sponding modifications of two popular boosting al-
gorithms: AdaBoost.R2 introduced in [2] and Ad-
aBoost.RT proposed in [17]. Section 4 reviews suit-
able imprecise probability models to obtain the re-
stricted set of weighting probabilities. Finally, we
present the results of simulations based on synthetic
data and on real data.

2 AdaBoost.R2 and its modification

At first, we modify the AdaBoost.R2 algorithm pro-
posed in [2]. The scheme of this boosting algorithm
for regression is presented as Algorithm 1. Given a

Algorithm 1 AdaBoost.R2

Require: Maximum number of iterations T and
training data set Z.

Ensure: α(t) and f̂ (t) for all t ∈ {1, . . . , T};
set t← 1 and p(t) ← (n−1, . . . , n−1);
repeat

estimate f̂ (t) using weighting probabilities p(t);
compute D(t) ← maxj∈{1,...,n} |yj − f̂ (t)(xj)|;
compute normalized errors for all i ∈ {1, . . . , n}:
ê
(t)
i ← |yi−f̂(t)(xi)|

D(t) ;

calculate the overall error of f̂ (t):

ε(t) ←∑n
i=1 p

(t)
i ê

(t)
i ;

if ε(t) > 0.5 then
T ← t− 1;

end if
compute contribution of f̂ (t) to the final result:

α(t) ← ln
(

1−ε(t)
ε(t)

)
;

adapt weights for all i ∈ {1, . . . , n}:
p
(t+1)
i ← p

(t)
i exp

(
−α(t)(1− ê(t)i )

)
;

normalize p(t+1) to be a proper distribution;
t+ +

until t > T
normalize α(1), . . . , α(T ) such that

∑T
t=1 α

(t) = 1;

compute regression function f̂ ←∑T
t=1 α

(t)f̂ (t).

training data set Z = {(x1, y1), . . . , (xn, yn)} and a
regression method which is suitable for weighted es-
timation, the algorithm requires a maximum number
of iterations T ∈ N to be chosen a priori. Then, the
iteration index t is set to one and the weighting prob-

abilities p
(1)
i are set to n−1 for all i ∈ {1, . . . , n}. (Al-

ternatively, the vector p(1) could be randomly selected
from the unit simplex S(1, n).) In each iteration step

t ∈ {1, . . . , T}, a regression function f̂ (t) is estimated
using the weights p(t). In contrast to AdaBoost for
classification, where the estimated classifiers are eval-
uated by their average misclassification error, the re-
gression estimates are evaluated on the basis of the ab-
solute residuals |yi−f̂ (t)(xi)| with i ∈ {1, . . . , n}. Yet,
to obtain an overall error measure similar to the mis-
classification rate, the absolute residuals are divided
by the maximum value D(t) such that the weighted

sum ε(t) of the normalized residuals ê
(t)
1 , . . . , ê

(t)
n lies

in the interval [0, 1]. If ε(t) > 0.5, we exit the loop
and use only the first t − 1 regression estimates to
determine the final result. In the context of classifi-
cation this is a sensible stopping criterion, because it
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means that classifiers with an error rate higher than
50% may not contribute to the combined result. How-
ever, in the regression context the usefulness of this
stopping criterion is less clear. Here, it corresponds
to stopping the iterations when the situation arises,
where the average normalized residual is larger than
50% of the maximum absolute residual. If ε(t) ≤ 0.5,
the overall error is used to determine the contribution
α(t) of the estimated function f̂ (t) in the combined re-
sult f̂ . Furthermore, the weighting probabilities of the
instances are adapted by the formula:

p
(t+1)
i = p

(t)
i exp

(
−α(t)(1− ê(t)i )

)

for all i ∈ {1, . . . , n}. Thus, the weights of examples
with relatively large residuals are increased, while the
others are decreased. As the last step within each

iteration, we normalize (p
(t+1)
1 , . . . , p

(t+1)
n ) to obtain a

proper weighting distribution where
∑n
i=1 p

(t+1)
i = 1.

Finally, when the loop is ended, the α(1), . . . , α(T ) are
adjusted such that

∑T
t=1 α

(t) = 1 and the combined

result f̂ =
∑T
t=1 α

(t)f̂ (t) is determined.

According to the adaption rule, the distribution of
weighting probabilities p can be an arbitrary point
in S(1, n) including its vertices. Indeed, as already
shown for the basic AdaBoost algorithm in [5], the
weighting probabilities of the examples tend to con-
centrate on instances which have large residuals com-
pared with the other data points and may be outliers.
Hence, the regression function will be estimated by
taking mainly these hard-to-learn examples into ac-
count. The obtained estimated function will perform
well on these extreme data points but may perform
rather poor on the other examples. This property is
called over-fitting, because the out-of-sample predic-
tion performance of such a regression estimate may
be very bad, as the actual functional relation is bet-
ter reflected by the neglected examples.

Let us now consider a set P of probability distri-
butions, which is a subset of the unit simplex, i.e.,
P ⊂ S(1, n). We assume that P is convex, i.e., it
is produced by finitely many linear constraints. This
implies that it is totally defined by its extreme points

q(k) = (q
(k)
1 , . . . , q

(k)
n ) for all k ∈ {1, . . . , r} with r ∈ N.

Thus, every probability distribution p ∈ P can be rep-
resented as

p =

r∑

k=1

λkq
(k),

where λ = (λ1, . . . , λr) is a vector of weights such that∑r
k=1 λk = 1.

The core idea of the modification of AdaBoost.R2 we
propose here is to adapt the weights in λ instead of up-
dating directly p. This does not mean that the weight-
ing distribution p is not updated in the iterations, but

it changes only within the set P and through adap-
tion of λ. For the weights λ1, . . . , λr there are no
additional restrictions, they move freely in the unit
simplex having r vertices denoted by S(1, r). Thus, in
the scheme of the modified algorithm presented as Al-

gorithm 2, we replace p(t) with
∑r
k=1 λ

(t)
k q(k). Instead

of initializing p(1) with the empirical distribution, we
set λ(1) = (r−1, . . . , r−1). (Alternatively, the vector
λ(1) could be randomly selected from S(1, r)). When

Algorithm 2 Imprecise AdaBoost.R2

Require: Maximum number of iterations T , training
data set Z and extreme points q(1), . . . , q(r) of P.

Ensure: α(t) and f̂ (t) for all t ∈ {1, . . . , T};
set t← 1 and λ(1) ← (r−1, . . . , r−1);
repeat

compute the vector of weighting probabilities:

p(t) ←∑r
k=1 λ

(t)
k q(k);

estimate f̂ (t) using weighting probabilities p(t);
compute D(t) ← maxj∈{1,...,n} |yj − f̂ (t)(xj)|;
compute normalized errors for all i ∈ {1, . . . , n}:
ê
(t)
i ← |yi−f̂(t)(xi)|

D(t) ;
compute error portions for all k ∈ {1, . . . , r}:
ε̂
(t)
k ←

∑n
i=1 ê

(t)
i q

(k)
i ;

calculate the overall error of f̂ (t):

ε(t) ←∑r
k=1 λ

(t)
k ε̂

(t)
k ;

if ε(t) > 0.5 then
T ← t− 1;

end if
compute contribution of f̂ (t) to the final result:

α(t) ← ln
(

1−ε(t)
ε(t)

)
;

adapt weights for all k ∈ {1, . . . , r}:
λ
(t+1)
k ← λ

(t)
k exp

(
−α(t)(1− ε̂(t)k )

)
;

normalize λ(t+1) such that
∑r
k=1 λ

(t+1)
k = 1;

t+ +
until t > T
normalize α(1), . . . , α(T ) such that

∑T
t=1 α

(t) = 1;

compute regression function f̂ ←∑T
t=1 α

(t)f̂ (t).

we substitute p(t) in the formula of the overall error
measure of the t-th regression estimate, we obtain the
following representation:

ε(t) =

n∑

i=1

ê
(t)
i p

(t)
i =

n∑

i=1

ê
(t)
i

r∑

k=1

λ
(t)
k q

(k)
i =

r∑

k=1

λ
(t)
k ε̂

(t)
k ,

where ε̂
(t)
k =

∑n
i=1 ê

(t)
i q

(k)
i can be interpreted as the

contribution of the k-th extreme point to the aver-
age normalized residual. It corresponds to the mean
value of the normalized residuals with respect to the
discrete distribution q(k) ∈ P. Moreover, the above
representation unveils a nice characteristic of the pro-
posed modification of the algorithm. In fact, it implies
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that the n examples are transformed to r ≥ n virtual
data points (i.e., the extreme points) with associated

residuals ε̂
(t)
k and weights λ

(t)
k for all k ∈ {1, . . . , r}.

From this interpretation, it is straightforward to
derive the updating rule to obtain the weights

λ
(t+1)
1 , . . . , λ

(t+1)
r . In the same way as the weighting

probabilities of the data are adapted in Algorithm 1,
we increase the weights of those extreme points with

large errors ε̂
(t)
k and vice versa. Hence, we simply

adapt the updating rule given in AdaBoost.R2 and
update the weights of the extreme points by

λ
(t+1)
k = λ

(t)
k exp

(
−α(t)(1− ε̂(t)k )

)

for all k ∈ {1, . . . , r}. The λ
(t+1)
1 , . . . , λ

(t+1)
r are also

normalized to fulfill the condition
∑r
k=1 λ

(t+1)
k = 1.

Note that the obtained weighting probability distri-
bution p(t+1) again belongs to the set P because it
is a convex linear combination of the corresponding
extreme points.

Let us now consider the special case where we do not
have additional information, and thus, P = S(1, n).
In this case, there are r = n extreme points corre-
sponding to the vertices of the unit simplex, e.g., for
k = 1 we have q(1) = (1, 0, . . . , 0). Then, p(t) =

(λ
(t)
1 , . . . , λ

(t)
n ) and the k-th extreme point mean er-

ror ε̂
(t)
k = ê

(t)
k for all t ∈ {1, . . . , T}. Hence, we get

the following updated weights for all k ∈ {1, . . . , n}:

λ
(t+1)
k = p

(t)
k exp

(
−α(t)(1− ê(t)k )

)
= p

(t+1)
k ,

which coincide with those obtained in AdaBoost.R2.
This implies that the proposed algorithm is a gener-
alization of the standard AdaBoost.R2 and covers it
as the special case where the set of weighting proba-
bilities is not restricted.

The proposed Imprecise AdaBoost.R2 algorithm has
several positive features in comparison with the stan-
dard AdaBoost.R2. As the number of extreme points
of P is always larger than or equal to the number of
examples, the modified algorithm can have a larger
number of parameters to adjust. In this case, the
weighting probabilities can be adapted in finer steps
within the set P. Furthermore, when we have only a
few examples, the overall errors ε(t) of the f̂ (t) with
t ∈ {1, . . . , T} can only be determined with much un-
certainty due to the high variance of the estimates. As
a result, the weights may change very quickly and the
algorithm may become unstable. The proposed mod-
ification of the AdaBoost.R2 algorithm is less affected
by this problem if P is a proper subset of S(1, n), be-
cause in this case the weights cannot be too large and
hence neither the differences between the weighting

probabilities of an instance in two subsequent itera-
tion steps. Finally, any set of discrete probabilities
defined by linear constraints can be used in the algo-
rithm. This allows to introduce any prior information
of this kind about the training data. In Section 4, we
discuss a selection of imprecise statistical models to
derive P, but in principle it can be any convex subset
of S(1, n). Moreover, it is possible to further gener-
alize the proposed Imprecise AdaBoost.R2 algorithm
and allow the set P to be changed in every iteration
step according to some rule, for instance, by means of
Bayesian updating.

3 Threshold AdaBoost algorithm and
its modification

In this section, we consider the AdaBoost.RT algo-
rithm introduced in [15]. This algorithm is based on
the idea that the training examples can be classified
into two classes by comparing the accuracy of the pre-
dicted values with a predefined relative error thresh-
old. Then, the evaluation of the regression estimates
f̂ (t) within the iterated loop of the algorithm can be
done on the basis of the average misclassification er-
ror like in the basic AdaBoost algorithm for binary
classification. Algorithm 3 outlines the scheme of the
AdaBoost.RT algorithm.

In contrast to the normalized absolute residuals of Ad-
aBoost.R2, here the regression errors ê

(t)
1 , . . . , ê

(t)
n are

given by the absolute values of the relative residuals,
for each t ∈ {1, . . . , T}. These residuals are compared
to a threshold value τ ∈ R≥0. The corresponding ex-
amples are considered as misclassified if their residual
exceeds τ and as correctly classified otherwise. Thus,
as in AdaBoost for classification, each estimated func-
tion f̂ (t) is evaluated by its overall misclassification

rate ε(t) =
∑
{i:ê(t)i >τ} p

(t)
i . Furthermore, the weights

are updated according to a rule depending on τ . The
weights associated with examples with small relative
residuals are decreased, while those of the examples
considered as misclassified remain constant. By nor-

malizing p
(t+1)
1 , . . . , p

(t+1)
n to obtain a probability dis-

tribution, the weighting probabilities of the misclassi-
fied examples are, in fact, increased.

An important feature of the algorithm is that it does
not stop when the overall error rate ε(t) is greater
than 0.5. In AdaBoost.RT it is not necessary to ex-
plicitly state a stopping criterion, because the com-
putation scheme for the weights α(t) of the regression
estimates in the combined result implies that poor es-
timates are almost neglected and vice versa. That

is, if ε(t) is high, so is β(t) =
(
ε(t)
)l

for some l ∈ N,

and thus, α(t) = − ln
(
β(t)

)
will be very small com-
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Algorithm 3 AdaBoost.RT

Require: Maximum number of iterations T , training
data set Z, threshold τ and power coefficient l.

Ensure: α(t), β(t) and f̂ (t) for all t ∈ {1, . . . , T};
set t← 1 and p(t) ← (n−1, . . . , n−1);
repeat

estimate f̂ (t) using weighting probabilities p(t);
compute relative errors for all i ∈ {1, . . . , n}:
ê
(t)
i ←

∣∣∣yi−f̂
(t)(xi)
yi

∣∣∣;
calculate the overall error rate of f̂ (t):

ε(t) ←∑
{i:ê(t)i >τ} p

(t)
i ;

compute β(t) ←
(
ε(t)
)l

;

compute contribution of f̂ (t) to the final result:
α(t) ← − ln

(
β(t)

)
;

adapt weights for all i ∈ {1, . . . , n} by:

if ê
(t)
i ≤ τ then

p
(t+1)
i ← p

(t)
i β(t);

else
p
(t+1)
i ← p

(t)
i ;

end if
normalize p(t+1) to be a proper distribution;
t+ +

until t > T
normalize α(1), . . . , α(T ) such that

∑T
t=1 α

(t) = 1;

compute regression function f̂ ←∑T
t=1 α

(t)f̂ (t).

pared to better estimates of other iterations. In [15]
it is also argued that even if ε(t) > 0.5 for some of
the estimates in the ensemble, the final output of the
ensemble-based algorithm is better than that of a sin-
gle regression estimate. That is why AdaBoost.RT
does not have a stopping rule like the AdaBoost.R2
algorithm, although it would fit the framework of this
algorithm very well, as the evaluation is based on a
pseudo misclassification error rate.

In spite of the virtues of AdaBoost.RT, it has the
shortcoming that the threshold must be selected a
priori, because the performance of the algorithm is
sensitive to τ . If τ is too low, then it is generally
very difficult to get a sufficient number of correctly
predicted examples. Furthermore, the standard Ad-
aBoost.RT algorithm has the same tendency to over-
fitting as the AdaBoost.R2 algorithm due to the too
large set of weighting probabilities. In order to over-
come this disadvantage, we propose a modified version
of AdaBoost.RT where the set of weighting probabil-
ities is restricted to the convex set P with extreme
points q(k) = (q

(k)
1 , . . . , q

(k)
n ) with k ∈ {1, . . . , r}. The

scheme of the modified AdaBoost.RT is presented as
Algorithm 4. Again, we can interpret the proposed
modification as replacing the n training data with r
virtual examples (i.e., the extreme points of P) with

residuals ε̂
(t)
k and weights λk for all k ∈ {1, . . . , r}.

Then, the overall error rates ε(t) are obtained as∑
{k:ε̂(t)k >τ} λ

(t)
k .

Algorithm 4 Imprecise AdaBoost.RT

Require: Maximum number of iterations T , train-
ing data set Z, threshold τ , power coefficient l and
extreme points q(1), . . . , q(r) of P.

Ensure: α(t), β(t) and f̂ (t) for all t ∈ {1, . . . , T};
set t← 1 and λ(1) ← (r−1, . . . , r−1);
repeat

compute the vector of weighting probabilities:

p(t) ←∑r
k=1 λ

(t)
k q(k);

estimate f̂ (t) using weighting probabilities p(t);
compute relative errors for all i ∈ {1, . . . , n}:
ê
(t)
i ←

∣∣∣yi−f̂
(t)(xi)
yi

∣∣∣;
compute error portions for all k ∈ {1, . . . , r}:
ε̂
(t)
k ←

∑n
i=1 ê

(t)
i q

(k)
i ;

calculate the overall error rate of f̂ (t):

ε(t) ←∑
{k:ε̂(t)k >τ} λ

(t)
k ;

compute β(t) ←
(
ε(t)
)l

;

compute contribution of f̂ (t) to the final result:
α(t) ← − ln

(
β(t)

)
;

adapt weights for all k ∈ {1, . . . , r} by:

if ε̂
(t)
k ≤ τ then

λ
(t+1)
k ← λ

(t)
k β(t);

else
λ
(t+1)
k ← λ

(t)
k ;

end if
normalize λ(t+1) such that

∑r
k=1 λ

(t+1)
k = 1;

t+ +
until t > T
normalize α(1), . . . , α(T ) such that

∑T
t=1 α

(t) = 1;

compute regression function f̂ ←∑T
t=1 α

(t)f̂ (t).

Let us again consider the special case without addi-
tional information about the weighting probabilities,
and thus, P = S(1, n) with r = n vertices. Then, for

all t ∈ {1, . . . , T} we obtain p(t) = (λ
(t)
1 , . . . , λ

(t)
n ) and

λ
(t+1)
k = p

(t+1)
k for all k ∈ {1, . . . , n}, while the k-th

extreme point mean error is given by ε̂
(t)
k = ê

(t)
k and

ε(t) =
∑
k:ε̂

(t)
k >τ

p
(t)
k . Hence, also the standard Ad-

aBoost.RT algorithm is a special case of its proposed
modification.

4 Imprecise statistical models

In this section, we briefly review a selection of impre-
cise statistical models which can be used to determine
the set of weighting probabilities P ⊂ S(1, n). In par-
ticular, we consider two different imprecise neighbor-
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hood models around the empirical distribution p̂ of
the training data and one statistical approach derived
from the Kolmogorov–Smirnov test. Every imprecise
neighborhood model is characterized by a common pa-
rameter ν, which in some cases can be interpreted as
the (subjective) probability that the elicited probabil-
ity distribution p is incorrect. Further interpretations
of the parameter ν are, for example, as the size of
possible errors in p or the amount of information on
which the model is based.

4.1 The linear-vacuous mixture model

The linear-vacuous mixture or imprecise ν-
contaminated models produce the set P(ν, p) of prob-
abilities π = (π1, . . . , πn) such that πi = (1−ν)pi+νbi
for some ν ∈ [0, 1] and for all i ∈ {1, . . . , n}, where
p = (p1, . . . , pn) is the elicited probability distribution
and (b1, . . . , bn) can be any probability distribution in
S(1, n). The set P(ν, p) is a convex subset of the unit
simplex; it coincides with S(1, n) when ν = 1, while
P(ν, p) = {p} if ν = 0. For p = p̂ = (n−1, . . . , n−1),
the set P(ν, p̂) has r = n extreme points qk ∈ S(1, n)
with k ∈ {1, . . . , n}, which are all of the same form:
the k-th element is given by (1 − ν)n−1 + ν and the
other n − 1 elements are equal to (1 − ν)n−1. For
example, the extreme point q2 is given by the vector

q2 =

(
1− ν
n

,
1− ν
n

+ ν, . . . ,
1− ν
n

)
.

4.2 The pari-mutuel model

Another imprecise neighborhood model is the im-
precise pari-mutuel model [22, Subsection 3.3.5], for
which the set of probability distributions is defined as

PP (ν, p) = {π ∈ S(1, n) : πi ≤ (1+ν)pi ∀ i ∈ {1, . . . , n}},

where ν ∈ [0,+∞) and p = (p1, . . . , pn) is the elicited
distribution. The set P(ν, p) consists of all probability
distributions π such the weighting probabilities of the
points do not exceed a constant multiple of the proba-
bilities given by the distribution p. The set P(ν, p) can
also be obtained from PP (ν, p) by reflecting P(ν, p)
about the point p. Lower and upper probabilities of
the i-th point are given by max {0, (1 + ν)pi − ν} and
min{(1+ν)pi, 1}, respectively. The difference between
the upper and lower probabilities is ν, as long as pi is
far enough from 0 or 1.

When we consider the empirical distribution p̂ =
(n−1, . . . , n−1) as the elicited distribution, the ex-
treme points of the set PP (ν, p̂) depend on the chosen
parameter ν as expressed in the following proposition.

Proposition 1 Let z1, . . . , zn with n ∈ N be a set of
univariate data and let PP (ν, p̂) be the set of proba-

bilities according to a pari-mutuel neighborhood model
around the empirical distribution p̂ = (n−1, . . . , n−1)
of the data for some ν ∈ [0,+∞).

(1) If ν ≤ (n− 1)−1, then the set PP (ν, p̂) has r = n
extreme points qk ∈ S(1, n) with k ∈ {1, . . . , n},
which are of the following form: the k-th element
is given by (1 + ν)n−1 − ν and the other n − 1
elements are equal to (1 + ν)n−1.

(2) If (n− 1)−1 < ν < (n− 1), then the set PP (ν, p̂)
has r = s

(
n
s

)
extreme points, where s ∈ N and it

is defined by the inequality

1

n− s+ 1
≤ 1 + ν

n
≤ 1

n− s .

The extreme points have the same form: n − s
elements have value (1 + ν)n−1, there is one ele-
ment given by 1−(n−s)(1+ν)n−1, and the other
s− 1 elements are equal to zero.

(3) If ν ≥ (n− 1), then PP (ν, p̂) = S(1, n).

The third part of this proposition is obvious, because
in this case the upper probabilities of all points are
equal to one. The proofs of parts (1) and (2) can be
found in [19, Propositions 1 and 3].

4.3 Kolmogorov–Smirnov bounds

A statistical approach to constructing bounds for the
set of weighting probabilities can be derived from con-
fidence bounds for the probability distribution of the
data. Such confidence bounds can be obtained by in-
verting the so-called Kolmogorov–Smirnov test.

Let F denote the cumulative distribution function as-
sociated with the unknown probability measure P of
some univariate data z1, . . . , zn with n ∈ N and F̂n
their empirical cumulative distribution function. The
Kolmogorov–Smirnov test is a nonparametric test for
the null hypothesis that z1, . . . , zn have been gen-
erated by some particular distribution F0. As test
statistic the supremum vertical distance of F̂n and F0

is considered. It can be shown that the distribution
of this test statistic under the null hypothesis is inde-
pendent of F0. The quantiles kn,1−γ of the test dis-
tribution are available in tables for a certain range of
sample sizes and some different test levels γ ∈ (0, 1).
For large n, the quantiles can be approximated by
a simple formula. The null hypothesis is rejected at
level γ ≥ PF0(||F̂n − F0||∞ > kn,1−γ) if the observed
supremum distance given by

max
1,...,n

max

{
i

n
− F0(z(i)), F0(z(i))−

i− 1

n

}
,
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where z(1) ≤ z(2) ≤ . . . ≤ z(n), is larger than kn,1−γ .
By considering all distribution functions such that the
test does not reject the null hypothesis at the chosen
γ, we obtain a 1 − γ confidence band for F which is
of the form

C1−γ = {F ′ : Fn(z) ≤ F ′(z) ≤ Fn(z) ∀z},

with

Fn(z) = max{F̂n(z)− kn,1−γ , 0} and

Fn(z) = min{F̂n(z) + kn,1−γ , 1}.

As the quantiles of the exact test distribution are not
available for all sample sizes and all test levels, sev-
eral modifications of the above confidence band have
been suggested, replacing kn,1−γ by an upper approx-
imation dn,1−γ , e.g., the upper bounds provided by
the so-called Dvoretzky–Kiefer–Wolfowitz inequality,
resulting in more conservative but easy-to-compute
confidence bands for F . Therefore, we use dn,1−γ
as the general notation in the following, but refer to
the limiting functions Fn(z) and Fn(z) of all confi-
dence bands of the above type (with dn,1−γ instead
of kn,1−γ) as Kolmogorov–Smirnov bounds. See [23,
Section 2] and [10, Subsection 8.9.3] for more details.

It has been shown in [20] that it is possible to derive a
set of probability mass functions PK(γ) corresponding
to the confidence band for the cumulative distribution
function of the type C1−γ . The set PK(γ) is a convex
subset of S(1, n) with s

(
n
s

)
extreme points, where s ∈

N is determined from the condition

ndn,1−γ < s ≤ 1 + ndn,1−γ .

Every extreme point has s− 1 elements of size 0, one
element with the value (s−ndn,1−γ)(n(1−dn,1−γ))−1,
and n− s elements of size (n(1− dn,1−γ))−1.

5 Numerical experiments

To study how well the proposed algorithms may solve
practical problems, we conduct several numerical ex-
periments. Thereby, we use weighted Support Vec-
tor Regression (SVR, see, e.g., [16, 18]) with absolute
loss function and Gaussian kernel as regression esti-
mator within the algorithms and we determine the
set of weighting probabilities by means of the linear-
vacuous mixture model. We make different simula-
tions to study the impact of the choice of ν on the
performance of the proposed regression methods, be-
fore we apply them to analyze two data sets from the
UCI Machine Learning Repository [4].

From each of the (synthetic or real) data sets we ran-
domly select two distinct subsets: a training data set

of n examples to learn the model, and a test data set
of ntest instances to evaluate the performance of the
algorithms. For the synthetic data, the performance
is assessed by two measures: the square roots of the
Mean Square Prediction Error (RMSPE) and of the
average Residual Sum of Squares (RRSS), which are
defined by

RMSPE =

√∑ntest

i=1 (f(xi)− f̂(xi))2

ntest
and

RRSS =

√∑ntest

i=1 (yi − f̂(xi))2

ntest
,

respectively, where f denotes the true function, f̂ is
the function estimated by one of the proposed algo-
rithms, and f̂(xi) is the predicted value of yi for each
i ∈ {1, . . . , ntest}. Both measures are computed on
the basis of the test data set in each simulation run.
As usual, the RMSPE and RRSS values are finally
averaged over the simulation runs. The smaller the
values of these average error measures are, the better
the corresponding regression method. Regarding the
numerical examples analyzing real data the RMSPE
cannot be computed, because the true function f is
unknown. Hence, in this case, we only compare the
overall RRSS obtained from repeatedly drawing train-
ing and test data sets. Furthermore, since the main
purpose of the numerical examples is to show the ap-
plication of the methods to simple and illustrative
problems, the hyperparameters are not optimized.

5.1 Synthetic data

The aim of analyzing synthetic data is to investigate
how the parameter ν of the linear-vacuous mixture
model introduced in the previous section influences
the performance of the regression methods based on
the modified boosting algorithms. Therefore, we con-
duct the simulations for five different choices of ν,
namely ν ∈ {0, 0.25, 0.5, 0.75, 1}. Recall that, when
ν = 1 then P = S(1, n), and thus, we have the stan-
dard basic boosting algorithm on the one extreme of
the ν range, whereas P = {p̂} for ν = 0, which re-
duces the modified boosting algorithms to the stan-
dard SVR with identical weights of examples.

In our simulations, we consider two different kinds
of data sets. The first is generated according to the
following setup. In each of 40 runs, we generate 200
examples (xj , yj) ∈ R2 for all j ∈ {1, . . . , 200} by

xj = 0.02(j − 1)− 2 and

yj = exp(−x2j ) + 0.5ηj ,

where ηj is a random number drawn from the uni-
form distribution on the interval [−1, 1]. Similar data
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Table 1: Performance of the modification of Ad-
aBoost.R2 by different ν

ν RRSS RMSPE
0.0 0.456 0.344
0.25 0.428 0.311
0.5 0.427 0.31
0.75 0.435 0.32

1 0.443 0.329

Table 2: Performance of the modification of Ad-
aBoost.R2 by different ν adding the asymmetric noise

ν RRSS RMSPE
0.0 0.835 0.437
0.25 0.704 0.373
0.5 0.717 0.378
0.75 0.726 0.374

1 0.749 0.39

sets have been used, e.g., in [8]. From these 200 data
points, we randomly draw a training data set and a
distinct test data set. The number of training exam-
ples is n = 10 and the number of testing examples
ntest = 60. We then apply one of the proposed re-
gression methods to the training data and obtain an
estimate f̂ of the function f . Here, we set the num-
ber of iterations in the boosting algorithms to T = 20
and consider ν ∈ {0, 0.25, 0.5, 0.75, 1}. Finally, we
compute the performance measures.

As a variant of this synthetic data set, we consider
also an asymmetric noise. In contrast to the above
case, we here generate the random errors according to
the following rule: for all j ∈ {1, . . . , 200}, we draw
a random number aj ∈ [0, 1], then ηj is drawn from
[−1, 1] if aj < 0.7 and from the interval [0, 4] if aj ≥
0.7. All random numbers are generated according to
uniform distributions on the corresponding intervals.

Table 1 shows the performance measures RRSS and
RMSPE for the modified AdaBoost.R2 algorithm by
different values of the parameter ν. We observe that
the proposed regression method achieves the best re-
sults when the linear-vacuous model with ν = 0.5 is
used to restrict the set of weighting probabilities. Ta-
ble 2 shows the results for the data set with asym-
metric errors. Here, the best results are achieved
for ν = 0.25. The additional asymmetric noise pro-
duces some kind of outliers which the standard Ad-
aBoost.R2 tends to fit too well, because these points
are assigned high weights. As the proposed modi-
fication of the algorithm restricts these weights, the
problem of over-fitting is avoided.

Let us now analyze the simulation results for the

Table 3: Performance of the modification of Ad-
aBoost.RT by different ν

ν RRSS RMSPE
0.0 0.465 0.364
0.25 0.409 0.295
0.5 0.408 0.288
0.75 0.411 0.293

1 0.424 0.311

Table 4: Performance of the modification of Ad-
aBoost.RT by different ν adding the asymmetric noise

ν RRSS RMSPE
0.0 0.837 0.458
0.25 0.71 0.345
0.5 0.723 0.336
0.75 0.723 0.356

1 0.727 0.377

modification of AdaBoost.RT algorithm. By using
the same initial data as for the modification of Ad-
aBoost.R2, we get the performance measures for the
same scenarios. The case of the symmetric errors is
shown in Table 3 and the situation with the addi-
tional asymmetric noise is presented in Table 4. For
the analyses, we set the threshold to τ = 0.5 and
l = 2 (see Algorithm 4). Also for the modified Ad-
aBoost.RT, the values of ν implying the best perfor-
mance of the algorithm in the first and second er-
ror scenarios are ν = 0.5 and ν = 0.25, respectively.
Furthermore, we observe that the modification of Ad-
aBoost.RT slightly outperforms the modification of
AdaBoost.R2 in both data settings.

Hence, in the analyses of the first synthetic data set,
the proposed modifications of the AdaBoost-based al-
gorithms perform better than the original ones, cor-
responding to ν = 1, and better than the standard
SVR, corresponding to ν = 0. In addition to the
above analyses, we will consider another synthetic
data set, which is the well-known data set Fried-
man#1 [6]. In each of 40 simulation runs we generate
200 examples of 10 independent variables, which are
uniformly distributed in the interval [0, 1]. Only 5
of these 10 variables are selected randomly and then
used to produce the values of the output variable for
all j ∈ {1, . . . , 200} in the following way:

yj = 10 sin(πxj,1xj,2)+20(xj,3−0.5)2+10xj,4+5xj,5+ηj ,

where ηj is a random variable drawn from a standard
normal distribution. Here, we used 20 training exam-
ples and 40 test examples.

The RRSS and RMSPE measures obtained by us-
ing the modification of AdaBoost.R2 are shown in
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Table 5: Performance of the modification of Ad-
aBoost.R2 for Friedman#1 data by different ν

ν RRSS RMSPE
0.0 3.12 2.8
0.25 3.08 2.74
0.5 3.06 2.72
0.75 3.07 2.723

1 3.09 2.75

Table 6: Performance of the modification of Ad-
aBoost.RT for Friedman#1 data by different ν

ν RRSS RMSPE
0.0 3.12 2.8
0.25 3.08 2.75
0.5 2.96 2.63
0.75 2.98 2.63

1 3.07 2.71

Table 5 and the results for the modification of Ad-
aBoost.RT with τ = 0.1 and l = 2 are given in Table
6. Here again, we find that the modification of the
AdaBoost.RT algorithm attains slightly lower average
errors than the regression method based on the mod-
ification of AdaBoost.R2. The value ν = 0.5 implies
the best performance of both generalized algorithms,
but here we observe that they outperform standard
boosting only with higher values of ν.

5.2 Real data

In addition to the simulations, we evaluate the per-
formance of the proposed regression methods by ana-
lyzing two publicly available data sets from the UCI
Machine Learning Repository [4]: Slump Test [25],
and Concrete [24]. The Slump Test data set contains
103 data points. There are seven input variables char-
acterizing the slump flow of concrete and three output
variables in the data set. Here, we use only the third
output variable: 28-day compressive strength. In the
Concrete Data Set there are 1 030 data points charac-
terizing the concrete compressive strength as a highly
nonlinear function of age and ingredients which in-
clude cement, blast furnace slag, fly ash, water, etc.
There are eight input variables and one output vari-
able, namely the concrete compressive strength.

We analyze both data sets with the proposed
algorithms, again for different choices of ν ∈
{0, 0.25, 0.5, 0.75, 1} and with T = 20. To evaluate
the average residual error measure RRSS we perform
a cross-validation with 40 repetitions, where in each
run, we randomly select n = 40 training data and
ntest = 40 test data. The results of the computations
are given in Table 7 for the modified AdaBoost.R2

Table 7: RRSS for the UCI data sets by using Ad-
aBoost.R2 with different ν

ν 0 0.25 0.5 0.75 1
Slump Test 9.08 8.79 8.75 8.85 9.08
Concrete 27 16.7 16.6 16.8 17

Table 8: RRSS for the UCI data sets by using Ad-
aBoost.RT with different ν

ν τ 0 0.25 0.5 0.75 1
Slump Test 0.08 9.14 8.74 8.51 8.48 8.75
Concrete 0.3 32.1 16.8 16.9 17.1 17.1

method and in Table 8 those for the generalized Ad-
aBoost.RT algorithm with l = 2. The obtained figures
confirm the results of the simulations and indicate a
superior fit of the proposed regression methods for
ν ∈ {0.25, 0.5, 0.75}. Thus, if the mixture probability
ν is neither too small nor too big both modified al-
gorithms perform better in terms of RRSS than their
basic counterparts, which correspond to ν = 1.

The results of the numerical examples indicate that
the value of ν does indeed affect the performance of
the proposed algorithms. Hence, in a practical set-
ting, the choice of this parameter should be made
very carefully, e.g., on the basis of a cross-validation
scheme.

6 Conclusion

We proposed the generalizations of two ensemble-
based boosting algorithms for regression where the
unit simplex for the weights of the instances is re-
stricted to a smaller set of weighting probabilities.
This smaller set is obtained by imprecise statistical
models like, e.g. the linear-vacuous mixture model.
The modified algorithms are more flexible and tend
less to over-fitting. Numerical experiments further
indicate that among the extreme cases (recall that for
ν = 0 it corresponds to standard SVR and for ν = 1
to the basic boosting algorithm), the standard Ad-
aBoost algorithms are always at least as good as the
standard SVR and often much better. Moreover, we
found that both modified algorithms perform better
than their standard counterparts, if the mixture prob-
ability ν is neither too small nor too big. The core idea
behind the presented modifications could be adapted
to deal with imprecise data, too, as the imprecise data
induce a set of compatible probability distributions.
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Abstract

This paper is the first attempt to introduce the oper-
ator of composition, already known from probability,
possibility and evidence theories, also for credal sets.
We prove that the proposed definition preserves all
the necessary properties of the operator enabling us
to define compositional models as an efficient tool for
multidimensional models representation. Theoretical
results are accompanied by numerous illustrative ex-
amples.

Keywords. Credal sets, graphical models, condi-
tional independence.

1 Introduction

In the second half of 1990’s a new approach to efficient
representation of multidimensional probability distri-
butions was introduced with the aim to be alterna-
tive to Graphical Markov Modeling. This approach is
based on the following idea: multidimensional distri-
bution is composed from a system of low-dimensional
distributions by repetitive application of a special op-
erator of composition, which is also the reason why
the models are called compositional models. In several
papers, in which the properties of the operator and
models were studied [4, 5, 6], it was shown (among
others) that these models are, in a way, equivalent
to Bayesian networks. Roughly speaking, any multi-
dimensional distribution representable by a Bayesian
network can also be represented in the form of a com-
positional model, and vice versa.

Later, this compositional models were introduced also
in possibility theory [12, 13] (here the models are pa-
rameterized by a continuous t-norm) and a few years
ago also in evidence theory [8, 9]. In all these frame-
works the original idea is kept, but there exist some
slight differences among them, as we shall see later.

Although Bayesian networks and compositional mod-
els represent the same class of distributions, they do

not make it in the same way. Bayesian networks
use conditional distributions whereas compositional
models consist of unconditional distributions. Nat-
urally, both types of models contain the same in-
formation but while some marginal distributions are
explicitly expressed in compositional models, it may
happen that their computation from a correspond-
ing Bayesian network is rather computationally ex-
pensive. Therefore it appears that some of computa-
tional procedures designed for compositional models
are (algorithmically) simpler than their Bayesian net-
work counterparts.

Furthermore, the research concerning relationship be-
tween compositional models in evidence theory and
evidential networks [14] revealed probably a more im-
portant thing. Even though any evidential network
(with proper conditioning rule and conditional inde-
pendence concept) can be expressed as a composi-
tional model, if we do it in the opposite way and
transform a compositional model into an evidential
network, we realize, that the model is more imprecise
than the original one. It is caused by the fact that
conditioning increases imprecision, and as it is typical
not only for evidence theory, but also for other impre-
cise probability frameworks, compositional models in
more general frameworks than evidence theory (e.g.
for credal sets) seem to be worth-studying.

The goal of this paper is to show that the operator
of composition can also be introduced for credal sets.
Moreover, we will show that it keeps the basic prop-
erties of its counterparts in other frameworks, and
therefore it will enable us to introduce compositional
models for multidimensional credal sets.

The contribution is organized as follows. In Section 2
we summarize basic concepts and notation. Definition
of the operator of composition is introduced in Sec-
tion 3, where also its basic properties can be found,
while Section 4 is devoted to more advanced proper-
ties. Finally, in Section 5 we introduce the concept
of so-called perfect sequences and demonstrate their
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importance.

2 Basic Concepts and Notation

In this section we will recall basic concepts and nota-
tion necessary for understanding the contribution.

2.1 Variables and Distributions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be
a system of variables, each Xi having its values in a
finite set Xi and XN = X1 ×X2 × . . . ×Xn be the
Cartesian product of these sets.

In this paper we will deal with groups of variables
on its subspaces. Let us note that XK will denote a
group of variables {Xi}i∈K with values in

XK =×i∈KXi

throughout the paper.

Having two probability distributions P1 and P2 of XK

we say that P1 is absolutely continuous with respect
to P2 (and denote P1 � P2) if for any xK ∈ XK

P2(xK) = 0 =⇒ P1(xK) = 0.

This concept plays an important role in the definition
of the operator of composition.

2.2 Credal Sets

A credal setM(XK) about a group of variables XK is
defined as a closed convex set of probability measures
about the values of this variable.

In order to simplify the expression of operations with
credal sets, it is often considered [10] that a credal set
is the set of probability distributions associated to the
probability measures in it. Under such consideration
a credal set can be expressed as a convex hull of its
extreme distributions

M(XK) = CH{ext(M(XK ))}.

Consider a credal set about XK , i.e. M(XK). For
each L ⊂ K its marginal credal set M(XL) is ob-
tained by element-wise marginalization, i.e.

M(XL) = CH{P ↓L : P ∈ ext(M(XK))}, (1)

where P ↓L denotes the marginal distribution of P on
XL. If the above introduced notation (1) cannot be
used (e.g. to avoid misunderstandings), then we use
M(XK)↓L, or simply M↓L, instead.

Having two credal sets M1 and M2 about XK and
XL, respectively (assuming that K,L ⊆ N), we say

that these credal sets are projective if their marginals
about common variables coincide, i.e. if

M1(XK∩L) =M2(XK∩L).

Let us note that if K and L are disjoint, thenM1 and
M2 are projective, as M(X∅) = 1.

Besides marginalization we will also need the opposite
operation, called vacuous extension. Vacuous exten-
sion of a credal set M(XL) about XL to a credal set

M(XK) =M(XL)↑K

(L ⊂ K) is the maximal credal set about XK such
that M(XK)↓L =M(XL).

Example 1 Let

M(X1) = CH({[0.2, 0.8], [0.4, 0.6]})

be a credal set about variable X1. Its vacuous exten-
sion M(X1X2) is then

M(X1X2) = CH({[0.2, 0, 0.8, 0], [0, 0.2, 0.8, 0],

[0.2, 0, 0, 0.8], [0, 0.2, 0, 0.8],

[0.4, 0, 0.6, 0], [0, 0.4, 0.6, 0],

[0.4, 0, 0, 0.6], [0, 0.4, 0, 0.6]}),

since evidently

M(X1X2)↓{1} = CH({[0.2, 0.8], [0.4, 0.6]}),

as desired.

To show, that it is also maximal let us suppose,
that there exists a credal set M′(X1X2) containing
M(X1X2) and M(X1) =M′(X1). Then M′(X1X2)
must contain at least one p = (p1, p2, p3, p4) /∈
M(X1X2). Nevertheless, it means, that either p1 +
p2 < 0.2 or p1 + p2 > 0.4 (from which analogous
inequalities for p3 + p4 follow). Therefore, p↓{1} /∈
M(X1) and M(X1X2) is maximal. ♦

The concept of absolute continuity of probability
distributions can be generalized for credal sets in
the following way. M1(XK) is absolutely continu-
ous with respect to M2(XK), if P1 � P2 for any
P1 ∈M1(XK) and P2 ∈M2(XK).

Evidently, it is not the only way how to generalize the
concept of absolute continuity to credal sets. It can be
done e.g. using lower previsions (but the definitions
are not equivalent), nevertheless, the above-presented
definition is more suitable for our purpose, as we shall
see in the next section.
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2.3 Strong Independence

Among numerous definitions of independence for
credal sets [2] we have chosen strong independence,
as it seems to be most appropriate for multidimen-
sional models.

We say that (groups of) variables XK and XL (K and
L disjoint) are strongly independent with respect to
M(XK∪L) iff (in terms of probability distributions)

M(XK∪L) (2)

= {P1 · P2 : P1 ∈M(XK), P2 ∈M(XL)}.

Again, there exist several generalizations of this no-
tion to conditional independence, see e.g. [10], but
since the following definition is suggested by the au-
thors as the most appropriate for the marginal prob-
lem, it seems to be a suitable concept also in our case,
since the operator of composition can also be used as
a tool for solution of a marginal problem, as shown
(in the framework of possibility theory) e.g. in [13].

Given three groups of variables XK , XL and XM

(K,L,M be mutually disjoint subsets of N , such that
K and L are nonempty), we say that XK and XL are
independent on the distribution [10] given XM under
global set M(XK∪L∪M ) (in symbols K ⊥⊥ L|M [M]1

iff

M(XK∪L∪M ) = {(P1 · P2)/P
↓M
1 : P1 ∈M(XK∪M ),

P2 ∈M(XL∪M ), P ↓M1 = P ↓M2 } .

This definition is a generalization of stochastic condi-
tional independence: if M(XK∪L∪M ) is a singleton,
then alsoM(XK∪M ) andM(XL∪M ) are (projective)
singletons and the definition collapses into definition
of stochastic conditional independence.

3 Operator of Composition and Its
Properties

Now, let us start considering how to define compo-
sition of two credal sets. Consider two index sets
K,L ⊂ N . At this moment we do not put any re-
strictions on K and L; they may be but need not be
disjoint, one may be subset of the other. We even
admit that one or both of them are empty.

In order to enable the reader the understanding of this
concept, let us first present the definition of composi-
tion for precise probabilities [4]. Let P and Q be two
probability distributions of (groups of) variables XK

and XL. Then

(P . Q)(XK∪L) =
P (XK) ·Q(XL)

Q(XK∩L)
,

1If there is no doubt, we will omit [M].

whenever P (XK∩L) � Q((XK∩L). Otherwise, it re-
mains undefined.

Let M1 and M2 be credal sets about XK and XL,
respectively. Our goal is to define a new credal set,
denoted by M1 .M2, which will be about XK∪L
and will contain all of the information contained in
M1 and as much as possible of information of M2

(for the exact meaning see properties (ii) and (iii) of
Lemma 1). The required properties are met by the
following definition.

Definition 1 For two arbitrary credal sets M1 and
M2 about XK and XL, a composition M1 .M2 is
defined by one of the following expressions:

[a ] if M1(XK∩L) =M2(XK∩L), then

(M1 .M2)(XK∪L)

= {(P1 · P2)/P
↓K∩L
2 : P1 ∈M1(XK),

P2 ∈M2(XL), P ↓K∩L1 = P ↓K∩L2 },

[b ] ifM1(XK∩L) 6=M2(XK∩L), andM1(XK∩L)�
M2(XK∩L), then

(M1 .M2)(XK∪L)

= {(P1 · P2)/P
↓K∩L
2 : P1 ∈M1(XK),

P2 ∈M(XL)}),

[c ] otherwise

(M1 .M2)(XK∪L) =M1(XK)↑K∪L.

From point [b] of the definition one can see the im-
portance of the definition of absolute continuity in the
way presented in et the end of Section 2.2. Exactly
this definition enables us to define the composition of
two credal sets correctly.

The following lemma presents basic properties pos-
sessed by this operator of composition.

Lemma 1 For arbitrary two credal setsM1 andM2

about XK and XL, respectively, the following proper-
ties hold true:

(i) M1 .M2 is a credal set about XK∪L.

(ii) (M1 .M2)(XK) =M1(XK).

(iii) M1 .M2 =M2 .M1

⇐⇒ M1(XK∩L) =M2(XK∩L).
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Proof.

(i) To prove that M1 .M2 is a credal set about
XK∪L we have to distinguish cases [a] and [b]
from [c]. In cases [a] and [b] it is enough to
show that any P ∈ M1 .M2 is a probability
distribution on XK∪L. But it is obvious, as any
P ∈ (M1 .M2) is obtained via formula for com-
position of probability distributions (cf. e.g. [4]).
In case [c] it is obvious too, asM1 .M2 is a vac-
uous extension of an credal set about XK to a
credal set about XK∪L.

(ii) Again, we have to make the proof separately. If
(M1 .M2)(XK∪L) is obtained via [c], then the
equality follows directly from the definition of
vacuous extension. In cases [a] and [b] marginal-
ization of a credal set is element-wise (as men-
tioned in the preceding section), therefore, anal-
ogous to the proof of (i) it is enough to prove

that
(

(P1 · P2)/P ↓K∩L2

)↓K
= P1 for any P1 ∈

M1(XK) and P2 ∈ M2(XL). But it immedi-
ately follows from the results obtained for precise
probabilities (see e.g. [4]).

(iii) First, let us assume that

(M1 .M2)(XK∪L) = (M2 .M1)(XK∪L).

Then also its marginals must be identical, partic-
ularly

(M1 .M2)(XK∩L) = (M2 .M1)(XK∩L).

Taking into account (ii) of this lemma we have

(M1 .M2)(XK∩L)

=
(

((M1 .M2)(XK∪L))
↓K
)↓K∩L

= ((M1 .M2)(XK))
↓K∩L

= (M1(XK))
↓K∩L

=M1(XK∩L)

and similarly

(M2 .M1)(XK∩L) =M2(XK∩L),

from which the desired equality immediately fol-
lows.

Let, on the other hand, M1(XK∩L) =
M2(XK∩L). In this case [a] of Definition 1 is
applied and for any distribution P of (M1 .
M2)(XK∪L) there exist P1 ∈ M1(XK) and

P2 ∈ M2(XL) such that P ↓K∩L1 = P ↓K∩L2 and

P = (P1 · P2)/P ↓K∩L2 . But simultaneously (due

to projectivity) P = (P1 · P2)/P ↓K∩L1 , which is
an element of (M2 .M1)(XK∪L). Hence

(M1 .M2)(XK∪L) = (M2 .M1)(XK∪L),

as desired. ut

Let us now illustrate the application of the operator
of composition and its properties by three examples.
The first shows what happens when K ∩ L = ∅.

Example 2 Let

M1(X1) = CH{[0.2, 0.8], [0.7, 0.3]}

and

M2(X2) = CH{[0.6, 0.4], [1, 0]}
be two credal sets about X1 and X2, respectively.
Then, as mentioned above,M1(X1) andM2(X2) are
projective, and thereforeM1 .M2 is obtained via [a]
in Definition 1:

(M1 .M2)(X1X2) (3)

= {[0.7− 0.5α− 0.28β + 0.2αβ,

0.28β − 0.2αβ,

0.3 + 0.5α− 0.12β − 0.2αβ,

0.12β + 0.2αβ], α, β ∈ [0, 1]},

which is nothing else than strong independence prod-
uct of M1(X1) and M2(X2). The extreme points of
M1 .M2 are

[0.12, 0.08, 0.48, 0.32], [0.2, 0, 0.8, 0], (4)

[0.42, 0.28, 0.18, 0.12], [0.7, 0, 0.3, 0],

nevertheless

(M1 .M2)(X1X2)

6= CH{[0.12, 0.08, 0.48, 0.32], [0.2, 0, 0.8, 0],

[0.42, 0.28, 0.18, 0.12], [0.7, 0, 0.3, 0]},

as e.g.

[0.41, 0.04, 0.39, 0.16]

∈ CH{[0.12, 0.08, 0.48, 0.32], [0.2, 0, 0.8, 0],

[0.42, 0.28, 0.18, 0.12], [0.7, 0, 0.3, 0]},

but [0.41, 0.04, 0.39, 0.16] 6∈ M1 .M2. ♦

It is evident, that one would obtain the same result by
application of the formula in [b] (if he/she omits the
fact that the condition M1(XK∩L) 6= M2(XK∩L) is
not fulfilled), as triviallyM1(XK∩L))�M2(XK∩L).
Nevertheless, these two cases must be distinguished
in general case, as can be seen from the following two
examples.

Let us note that in the examples that follow we will
prefer to use extreme points of credal sets (4) to their
general form (3), as it seems to be more convenient if
we want to compare e.g. the resulting credal sets (or
their marginals).
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Example 3 Let

M1(X1X2)

= CH{[0.2, 0.8, 0, 0], [0.1, 0.4, 0.1, 0.4],

[0.25, 0.25, 0.25, 0.25], [0, 0, 0.5, 0.5]},

and

M2(X2X3)

= CH{[0.5, 0, 0.5, 0], [0.2, 0.3, 0.2, 0.3],

[0.3, 0.3, 0.2, 0.2], [0, 0.6, 0, 0.4]},

be two credal sets about variables X1X2 and X2X3,
respectively. These two credal sets are not projec-
tive, as M1(X2) = CH{[0.2, 0.8], [0.5, 0.5]}, while
M2(X2) = CH{[0.5, 0.5], [0.6, 0.4]}. Therefore [b] of
Definition 1 should be applied:

(M1 .M2)(X1X2X3)

⊆ CH{[0.2, 0, 0.8, 0, 0, 0, 0, 0],

[0.08, 0.12, 0.32, 0.48, 0, 0, 0, 0],

[0.1, 0, 0.4, 0, 0.1, 0, 0.4, 0],

[0.04, 0.06, 0.16, 0.24, 0.04, 0.06, 0.16, 0.24],

[0.1, 0.1, 0.4, 0.4, 0, 0, 0, 0],

[0, 0.2, 0, 0.8, 0, 0, 0, 0],

[0.05, 0.05, 0.2, 0.2, 0.05, 0.05, 0.2, 0.2],

[0, 0.1, 0, 0.4, 0, 0.1, 0, 0.4],

[0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0],

[0.1, 0.15, 0.1, 0.15, 0.1, 0.15, 0.1, 0.15],

[0, 0, 0, 0, 0.5, 0, 0.5, 0],

[0, 0, 0, 0, 0.2, 0.3, 0.2, 0.3]

[0.125, 0.125, 0.125, 0.125,

0.125, 0.125, 0.125, 0.125],

[0, 0.25, 0, 0.25, 0, 0.25, 0, 0.25],

[0, 0, 0, 0, 0.25, 0.25, 0.25, 0.25],

[0, 0, 0, 0, 0, 0.5, 0, 0.5]}.

If we, despite this fact, try to apply [a] of Defini-
tion 1, we will realize that only probability distribu-
tions P1 and P2 from M1(X1X2) and M2(X2X3),

respectively, with marginal P
↓{2}
i = [0.5, 0.5] are pro-

jective, and therefore we obtain only a subset of
(M1 .M2)(X1X2X3), namely a subset of

CH{[0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0],

[0.1, 0.15, 0.1, 0.15, 0.1, 0.15, 0.1, 0.15],

[0, 0, 0, 0, 0.5, 0, 0.5, 0],

[0, 0, 0, 0, 0.2, 0.3, 0.2, 0.3]},

which does not keep the first marginal in contrary to
(M1 .M2)(X1X2X3), as can easily be checked. ♦

Example 4 LetM1(X1X2) be as in previous exam-
ple and

M2(X2X3) = CH{[0.2, 0, 0.3, 0.5], [0, 0.2, 0, 0.8],

[0.5, 0, 0.5, 0], [0.2, 0.3, 0.2, 0.3]},

be a credal set about variables X2X3. Contrary to the
previous example these two credal sets are projective,
as

M1(X2) = CH{[0.2, 0.8], [0.5, 0.5]} =M2(X2),

therefore [a] of Definition 1 should be applied:

(M1 .M2)(X1X2X3)

⊆ CH{[0.2, 0, 0.3, 0.5, 0, 0, 0, 0],

[0, 0.2, 0, 0.8, 0, 0, 0, 0],

[0.1, 0, 0.15, 0.25, 0.1, 0, 0.15, 0.25],

[0, 0.1, 0, 0.4, 0, 0.1, 0, 0.4],

[0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0],

[0.1, 0.15, 0.1, 0.15, 0.1, 0.15, 0.1, 0.15],

[0, 0, 0, 0, 0.5, 0, 0.5, 0],

[0, 0, 0, 0, 0.2, 0.3, 0.2, 0.3]},

If, instead of it, one used [b] of the same definition,
he/she would arrive to the credal set containing in
addition the following extreme points

[0.2, 0, 0.8, 0, 0, 0, 0, 0],

[0.08, 0.12, 0.32, 0.48, 0, 0, 0, 0],

[0.1, 0, 0.4, 0, 0.1, 0, 0.4, 0],

[0.04, 0.06, 0.16, 0.24, 0.04, 0.06, 0.16, 0.24],

[0.25, 0, 0.09375, 0.15625, 0.25, 0, 0.09375, 0.15625],

[0, 0.25, 0, 0.25, 0, 0.25, 0, 0.25],

[0, 0, 0, 0, 0.5, 0, 0.1875, 0.3125],

[0, 0, 0, 0, 0, 0.5, 0, 0.5].

Although both of these composed credal sets keep the
first marginal, as can easily be checked, they differ
form each other as concerns the second marginal: the
correctly composed credal set keeps it, while the other
has much bigger marginal, containing in addition the
following extreme points:

[0.2, 0, 0.8, 0], [0.08, 0.12, 0.32, 0.48],

[0.5, 0, 0.1875, 0.3125], [0, 0.5, 0, 0.5]. ♦

Unfortunately, the definition is not elegant, neverthe-
less, its basic properties are satisfied and, as we shall
see later, it holds also for other properties necessary
for the introduction of compositional models.
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4 Further Properties

As said in the Introduction, the operator of compo-
sition was originally introduced in (precise) proba-
bility theory. Nevertheless, any probability distribu-
tion may be viewed also as a singleton credal set (i.e.
credal set containing a single point). One would ex-
pect that the operator of composition we have intro-
duced in this contribution coincides with the proba-
bilistic one if applied to singleton credal sets. And it
is the case, as can be seen from the following lemma.

Lemma 2 Let M1 and M2 be two singleton
credal sets about XK and XL, respectively, where
M1(XK∩L) is absolutely continuous with respect to
M2(XK∩L). Then (M1 .M2)(XK∪L) is also a sin-
gleton.

Proof. Let us suppose thatM1.M2 is not a singleton,
i.e. it contains at least two different points. Due to
the condition of absolute continuity both these points
can be expressed in the form

P i = P i1 · P i2/(P i2)↓K∩L.

As P 1 6= P 2, it is evident that either P 1
1 6= P 2

1 or
P 1
2 /(P

1
2 )↓K∩L 6= P 2

2 /(P
2
2 )↓K∩L (and therefore also

P 1
2 6= P 2

2 ), or both. In any case, it is a contradic-
tion as both credal setsM1 andM2 are singletons. ut
The reader should however realize that the definition
of the operator of composition for singleton credal sets
is not completely equivalent to the definition of com-
position for probabilistic distributions. They equal
each other only in case that the probabilistic version is
defined. This is ensured in Lemma 2 by assuming the
absolute continuity. In case it does not hold, the prob-
abilistic operator is not defined while its credal version
introduced in this paper is always defined (analogous
to evidential operator of composition). Nevertheless,
in this case, the result is not a singleton credal set.
We shall illustrate it by a simple example.

Example 5 Let

M1(X1X2) = {[0.25, 0.25, 0.25, 0.25]},

and
M2(X2X3) = {[0.5, 0.5, 0, 0]},

be two singleton credal sets about variables X1X2 and
X2X3, respectively. Let us compute M1 .M2. As
M1(X2) = {[0.5, 0.5]}, while M2(X2) = {[1, 0]}, it is
evident, that M1 is not absolutely continuous with
respect to M2. Therefore we have via [c] of Defini-
tion 1:

(M1 .M2)(X1X2X3) =M1(X1X2)↑{1,2,3}

which is evidently not a singleton any more.

Let us remark that (M2 .M1)(X1X2X3), in contrast
to (M1 .M2)(X1X2X3), is a singleton credal set

(M2 .M1)(X1X2X3)

= {[0.25, 0.25, 0, 0, 0.25, 0.25, 0, 0]},

because M2(X2) is absolutely continuous with re-
spect to M1(X2). ♦

From this example one can see that the operator of
composition is not commutative. The following ex-
ample demonstrates that this operator is neither as-
sociative.

Example 6 Let

M1(X1) = CH{[0.2, 0, 8], [0.7, 0.3]}

and
M2(X2) = {[0.5, 0.5]}

be two credal sets about X1 and X2, respectively, and

M3(X1X2) = CH{[1, 0, 0, 0], [0, 1, 0, 0]

[0, 0, 1, 0], [0, 0, 0, 1]}.

Then M1 .M2 is obtained via [a] in Definition 1:

(M1 .M2)(X1X2)

= CH{[0.1, 0.1, 0.4, 0.4], [0.35, 0.35, 0.15, 0.15]},

due to Definition 1 and (M1 .M2) .M3 =M1 .M2

according to property (2) of Lemma 1. On the other
hand

(M2 .M3)(X1X2)

= CH{[0.5, 0.5, 0, 0], [0.5, 0, 0, 0.5]

[0, 0.5, 0.5, 0], [0, 0, 0.5, 0.5]},

via [c] of Definition 1. Now, computing M1 . (M2 .
M3) we obtain again via [c] of Definition 1

(M1 . (M2 .M3))(X1X2)

= CH{[0.2, 0, 0.8, 0], [0.2, 0, 0, 0.8],

[0, 0.2, 0.8, 0], [0, 0.2, 0, 0.8],

[0.7, 0, 0.3, 0], [0.7, 0, 0, 0.3]

[0, 0.7, 0.3, 0], [0, 0.7, 0, 0.3]},

which evidently differs from (M1 .M2) .M3. ♦

The following theorem reveals the relationship be-
tween strong independence and the operator of com-
position. It is, together with Lemma 1, the most
important assertion enabling us to introduce multi-
dimensional models.
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Theorem 1 Let M be a credal set about XK∪L with
marginals M(XK) and M(XL). Then

M(XK∪L) = (M↓K .M↓L)(XK∪L) (5)

iff
(K \ L) ⊥⊥ (L \K)|(K ∩ L). (6)

Proof. Let us suppose that (5) holds. SinceM1(XK)
and M2(XL) are projective, [a] of Definition 1 is ap-
plied and therefore

M(XK∪L)

= {(P1 · P2)/P
↓K∩L
2 : P1 ∈M(XK),

P2 ∈M(XL), P ↓K∩L1 = P ↓K∩L2 }).

To prove (6) means to find for any P fromM(XK∪L)
a pair of projective distributions P1 and P2 from
M(XK) and M(XL), respectively, such that P =
(P1 · P2)/P1

↓K∩L. But due to condition of projectiv-
ity, M(XK∪L) consists of exactly this type of distri-
butions.

Let on the other hand (6) be satisfied. Then any
P from M(XK∪L) can be expressed as conditional
product of its marginals, namely

P = (P ↓K · P ↓K)/P ↓K∩L,

P ↓K ∈M(XK) and P ↓L ∈M(XL). Therefore,

M(XK∪L)

= {(P ↓K · P ↓K)/P ↓K∩L : P ↓K ∈M1(XK),

P ↓L ∈M2(XL))},

which concludes the proof. ut

5 Compositional models

In this section we will consider repetitive application
of the operator of composition with the goal to create
a multidimensional model. Since the operator is nei-
ther commutative nor associative we have to specify in
which order the low-dimensional credal sets are com-
posed together. To make the formulae more transpar-
ent we will omit parentheses in case that the operator
is to be applied from left to right, i.e., in what follows

M1 .M2 .M3 . . . . .Mn−1 .Mn

= (. . . ((M1 .M2) .M3) . . . . .Mn−1) .Mn.

Furthermore, we will always assume Mi be a credal
set about XKi .

The reader familiar with some papers on probabilistic,
possibilistic or evidential compositional models knows
that one of the most important notions of this theory
is that of a so-called perfect sequence, which will be
now introduced also for credal sets.

Definition 2 A generating sequence of credal sets
M1, M2, . . . ,Mn is called perfect if

M1 .M2 = M2 .M1,

M1 .M2 .M3 = M3 . (M1 .M2),

...

M1 .M2 . . . . .Mn = Mn . (M1 . . . . .Mn−1).

It is evident that the necessary condition for perfect-
ness is pairwise projectivity of low-dimensional credal
sets. However, the following example demonstrates
the fact that it need not be sufficient.

Example 7 Let M1(X1) and M2(X2) as in Exam-
ple 2 and let M3(X1, X2) be defined as follows:

M3(X1, X2)

= CH{[0.1, 0.1, 0.5, 0.3], [0.2, 0, 0.8, 0],

[0.4, 0.3, 0.2, 0.1], [0.7, 0, 0.3, 0]}.

It is evident, thatM1,M2 andM3 are pairwise pro-
jective, as

M3(X1) = CH{[0.2, 0.8, ], [0.7, 0.3]} =M1(X1)

and

M3(X2) = CH{[0.6, 0.4, ], [1, 0]} =M2(X2)

and M1 and M2 are trivially projective, as already
mentioned above. But they do not form a perfect
sequence, as

(M1 .M2 .M3)(X1X2) = (M1 .M2)(X1X2),

whose extreme points are in (4), while

(M3 . (M1 .M2))(X1X2) =M3(X1X3),

which is different. ♦

Therefore a stronger condition, expressed by the fol-
lowing assertion, must be fulfilled.

Lemma 3 A generating sequence M1,M2, . . . ,Mn

is perfect iff the pairs of credal sets Mj and (M1 .
. . . .Mj−1) are projective, i.e. if

Mj(XKj∩(K1∪...∪Kj−1))

= (M1 . . . . .Mj−1)(XKj∩(K1∪...∪Kj−1)),

for all j = 2, 3, . . . , n.

Proof. This assertion is proved just by a multiple
application of assertion (3) of Lemma 1:
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M1 .M2 =M2 .M1

⇐⇒ M1(XK2∩K1) =M2(XK2∩K1),

M1 .M2 .M3 =M3 . (M1 .M2)

⇐⇒ (M1 .M2)(XK3∩(K1∪K2))

=M3(XK3∩(K1∪K2)),

...

M1 .M2 . . . . .Mn =Mn . (M1 . . . . .Mn− 1)

⇐⇒ (M1 . . . . .Mn−1)(XKn∩(K1∪...∪Kn−1))

=Mn(XKn∩(K1∪...∪Kn−1)). ut

From Definition 2 one can hardly see what are the
properties of the perfect sequences; the main one is
expressed by the following characterization theorem,
which, hopefully, also reveals why we call these se-
quences perfect.

Theorem 2 A generating sequence of credal sets
M1,M2,. . . ,Mn is perfect iff all the credal sets from
this sequence are marginal to the composed credal set
M1 .M2 . . . . .Mn:

(M1 .M2 . . . . .Mn)(XKj
) =Mj(XKj

),

for all j = 1, . . . ,m.

Proof. The fact that all credal sets Mj from per-
fect sequenceM1,M2,. . . ,Mn are marginals of (M1.
M2 . . . . .Mn) follows from the fact that (M1 . . . . .
Mj) is marginal to (M1 . . . . .Mn) (due to (ii) of
Lemma 1) and Mj is marginal to

Mj . (M1 . . . . .Mj−1) =M1 . . . . .Mj .

Suppose now that for all j = 1, . . . , n, Mj are
marginal assignments to M1 . . . . .Mn. It means
that all the assignments from the sequence are pair-
wise projective, and that each Mj is projective with
any marginal assignment of M1 . . . . .Mn, and con-
sequently also with M1 . . . . .Mj−1. So we get that

Mj(XKj∩(K1∪...∪Kj−1))

= (M1 . . . . .Mj−1)(XKj∩(K1∪...∪Kj−1))

for all j = 2, . . . , n, which is equivalent, due to
Lemma 3, to the fact that M1,M2, . . . ,Mn is per-
fect. ut
The following (almost trivial) assertion, which brings
the sufficient condition for perfectness, resembles as-
sertions concerning decomposable models.

Theorem 3 Let a generating sequence of pairwise
projective credal sets M1,M2, . . . ,Mn be such that

K1,K2, . . . ,Kn meets the well-known running inter-
section property:

∀j = 2, 3, . . . , n ∃`(1 ≤ ` < j)

such that Kj ∩ (K1 ∪ . . . ∪Kj−1) ⊆ K`.

Then M1,M2, . . . ,Mn is perfect.

Proof. Due to Lemma 3 it is enough to show that
for each j = 2, . . . , n credal setMj and the composed
credal setM1.. . ..Mj−1 are projective. Let us prove
it by induction.

For j = 2 the required projectivity is guaranteed
by the fact that we assume pairwise projectivity of
all M1, . . . ,Mn. So we have to prove it for gen-
eral j > 2 under the assumption that the asser-
tion holds for j − 1, which means (due to Theo-
rem 2) that all M1,M2, . . . ,Mj−1 are marginal to
M1 . . . . .Mj−1. Since we assume that K1, . . . ,Kn

meets the running intersection property, there exists
` ∈ {1, 2, . . . j−1} such that Kj ∩ (K1∪ . . .∪Kj−1) ⊆
K`. Therefore (M1 . . . . .Mj−1)(XKj∩(K1∪...∪Kj−1))
and M`(XKj∩(K1∪...∪Kj−1)) are the same marginals
of M1 . . . . .Mj−1 and therefore they have to equal
to each other:

(M1 . . . . .Mj−1)(XKj∩(K1∪...∪Kj−1))

=M`(XKj∩(K1∪...∪Kj−1)).

However we assume that Mj and M` are projective
and therefore also

(M1 . . . . .Mj−1)(XKj∩(K1∪...∪Kj−1))

=Mj(XKj∩(K1∪...∪Kj−1)),

as desired. ut
It should be stressed at this moment that running in-
tersection property of K1,K2, . . . ,Kn is a sufficient
condition which guarantees perfectness of a generat-
ing sequence of pairwise projective assignments. By
no means this condition is necessary as it will be
shown in the following example.

Example 8 Simple example is given by two credal
sets M1 and M2 from Example 7 about X1 and X2,
respectively, and the third credal set M̃3 =M1.M2.
Considering sequenceM1,M2,M̃3, it is evident that
K1 = {1},K2 = {2},K3 = {1, 2} do not meet the
running intersection property. And yet the sequence
M1,M2,M̃3 is perfect because all the credal sets are
marginal (or equal) to M1 .M2 . M̃3. Let us note
that if we chose instead of M̃3 any other credal set
M3 about X1X2 different from M̃3 = M1 .M2,
e.g. that from Example 7 the generating sequence
M1,M2,M3 would not be perfect any more. ♦

362 Vejnarova Jirina



Therefore we can see that perfectness of a sequence
is not only a structural property connected with the
properties of K1,K2, . . . ,Kn but depends also on spe-
cific values of the respective basic assignments.

As said already in the introduction, in precise prob-
ability framework any multidimensional distribution
representable by a Bayesian network can also be rep-
resented in the form of a perfect sequence, and vice
versa. For more details the reader is referred to
[7], where also an algorithm for transformation of a
perfect sequence of probability distributions into a
Bayesian network can be found.

Recently we have found out, that in evidence theory
transformation from evidential network to a compo-
sitional model is exactly the same as in precise prob-
ability framework, but the opposite process is a bit
different — it may happen that resulting model ex-
pressed by evidential network is less precise than that
the compositional model [14].

At present we do not know too much about the re-
lationship between compositional models of multidi-
mensional credal sets and credal networks. We con-
jecture it will be similar to the evidential framework.
But it is only a conjecture, the research is just at the
beginning. Nevertheless, to clarify this relationship is
our first goal.

6 Conclusions

Graphical Markov Models were designed to enable de-
scription of real-life problems by probabilistic models.
This is because problems of practice lead to multidi-
mensional models, where the number of dimensions is
expressed rather in hundreds than in tens. Inspired
by the original probabilistic approach the paper is the
first attempt to build up compositional models of mul-
tidimensional credal sets as an alternative to Graphi-
cal Markov Models with imprecision.

We have defined credal set operator of composition
manifesting all the main characteristics of its proba-
bilistic pre-image. Even more, there is one point in
which the credal set operator of composition is supe-
rior to the probabilistic one (similarly to the operator
in the evidential framework): thanks to the ability of
credal sets to model total ignorance, the operator of
composition is for credal sets always defined, which is
not the case in the (precise) probabilistic framework.

In the paper we have proved the basic properties of
the operator (including the relationship to strong in-
dependence) necessary for the introduction of compo-
sitional models and their most important special case,
perfect sequence models.

Naturally, there are still many open problems to be
solved. The most important one is a design of efficient
computational procedures for this type of models. At
this moment we know very little about similarities
and differences between the described compositional
models and other multidimensional models such as
[1, 3, 11], as well as about the relation between the
compositional models developed for credal sets and
those introduced in possibility [12, 13] and evidence
[8, 9] theories.
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multidimensional models by operators of compo-
sition: current state of art. Soft Computing, 7
(2003), pp. 328–335.
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[12] J. Vejnarová, Composition of possibility mea-
sures on finite spaces: preliminary results. In:
Proc. of 7th International Conference on Infor-
mation Processing and Management of Uncer-
tainty in Knowledge-based Systems IPMU’98, (B.
Bouchon-Meunier, R.R. Yager, eds.). Editions
E.D.K. Paris, 1998, pp. 25–30.
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Abstract
We model practical certainty in the language of accept
& reject statement-based uncertainty models. We present
three different ways, each time using a different nature of
assessment: we study coherent models following from (i)
favourability assessments, (ii) acceptability assessments,
and (iii) indifference assessments. We argue that a state-
ment of favourability, when used with an appropriate back-
ground model, essentially boils down to stating a belief
of practical certainty using acceptability assessments. We
show that the corresponding models do not form an in-
tersection structure, in contradistinction with the coher-
ent models following from an indifferenc assessment. We
construct embeddings of classical propositional logic into
each of our models for practical certainty.

Keywords. Imprecise probabilities, accept & reject sta-
tement-based uncertainty models, classical propositional
logic, strong belief structure.

1 Introduction

In classical propositional logic, a subject who is certain of
the truth of some propositions, or equivalently, of the oc-
currence of the corresponding events, models this by giv-
ing his set of certain events—or true propositions. In this
paper, we investigate to what extent classical propositional
logic can be embedded in accept and reject statement-
based uncertainty models [9]. The embedding is not per-
fect, therefore we speak of practical uncertainty. The lan-
guage of the uncertainty models used is rich enough to en-
compass the different approaches of Walley and de Finetti.
In order to obtain more insight in these approaches, we
study three different types of assessments.

The first type of assessments fits well into Walley’s ap-
proach to defining lower previsions, and focusses on strict
preference. The second type appears to be weaker, as it
focusses on weak preference, but we show that the dif-
ference essentially does not matter: the derived coherent
models from both types of assessments are the same. The

third and last type of assessments is more in line with de
Finetti’s approach to defining previsions, and focusses on
indifference.

Because strong belief structures [2] have nice properties,
we investigate whether the derived coherent models con-
stitute such structures. It turns out that only the coherent
models derived from the third type of assessments do.

The basic concepts are introduced in Section 2. In the sub-
sequent three sections, we study three different ways of
modelling practical certainty. We start with favourability
assessments in Section 3, and study the consequences of
the rationality requirements of No Confusion, Deductive
Closure and No Limbo. We proceed with acceptability
assessments in Section 4, where we also investigate the
connection with the models of the previous section. The
last type of assessments—those based on indifference—
are discussed in Section 5. In Section 6, we find the cor-
responding coherent lower prevision models, and we in-
vestigate when they are coherent. We make the link with
(strong) belief structures in Section 7. Finally, in Sec-
tion 8, we embeds classical propositional logic into the
models introduced in this paper.

2 Notations and concepts

We consider a subject who is uncertain about the value of
a variable X that takes values in the—not necessarily finite
but non-empty—possibility space X . We want to model
this subject’s beliefs about the value that X assumes.

2.1 Events and sets of events

An event is a subset of X , or equivalently, an element
of the power set P := {A : A⊆X }: the collection of all
events. A non-empty subset C of P is called a filter base
if it is closed under finite intersections (closed under con-
junction): if both A and B are elements of C , then also
A∩B ∈ C . A filter base C is called proper if addition-
ally /0 /∈ C . A non-empty subset F of P is called a filter
if: (i) F is closed under finite intersections, and (ii) F
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is increasing (closed under modus ponens): if A ∈F and
A⊆ B, then also B ∈F . A filter F is called proper if ad-
ditionally /0 /∈F , or equivalently, F 6= P . We denote the
set of all proper filters by F. A proper filter U is called an
ultrafilter if either A ∈U or Ac ∈U for all events A. We
denote the set of all ultrafilters by U.

As an example, consider a filter base C , then the set
{A ∈P : (∃B ∈ C )B⊆ A} is a filter—the filter generated
by the filter base C . It is proper if and only if the filter
base C is.

2.2 Gambles and sets of gambles

A gamble f is a bounded real-valued function on the pos-
sibility space X . It is interpreted as an uncertain reward
f (X). If the value of the variable X turns out to be x, it
results in a—positive or negative—payoff f (x), expressed
in units of some predetermined linear utility scale. The set
of all gambles on X is denoted by L .

We can compare two gambles f and g in L . We write
f ≥ g if f (x) ≥ g(x) for all x in X . For example, f ≥ 0
if f is nowhere negative, and we then say that f is non-
negative. The subset L≥0 of L is the set of all non-
negative gambles. We write f > g if f ≥ g and f 6= g. For
example, f < 0 if f is nowhere positive—so f ≤ 0—and
f (x) < 0 for at least one x in X , and we then say that f
is negative. The subset L<0 of L is the set of all negative
gambles. We write f m g if inf( f − g) > 0. For example,
f l 0 if sup f < 0, meaning that the gamble f is negative
and bounded away from zero. The subset Ll0 of L is the
set of all such gambles. We write f Bg if f (x)> g(x) for
all x in X . For example, f B0 if f is everywhere (strictly)
positive, and we then say that f is point-wise positive. The
subset LB0 of L is the set of all such gambles.

We also introduce a number of operations on sets of
gambles K ,K ′ ⊆ L . The first is the Minkowski
sum K + K ′ := { f + g : f ∈K ,g ∈K ′}. The positive
scalar hull K := {λ f : λ ∈ R>0, f ∈K } is the collec-
tion of all positive multiples of gambles in K , where we
use the notation R>a for the set of real numbers (strictly)
greater than the real number a. The positive linear hull
posiK is the collection of all positive linear combinations
of gambles in K :

posiK :=
{ n

∑
k=1

λk fk : n ∈ N,λk ∈ R>0, fk ∈K

}
,

where we use the notation N for the set of natural numbers
(positive integers). Observe that

posi(K ∪K ′) = posiK
∪posiK ′∪ (posiK + posiK ′). (1)

We call a set K a cone if posiK = K .

2.3 Accept & reject statement-based uncertainty
models

In order to have greater flexibility in expressing beliefs,
we use the framework and language of accept & reject
statement-based uncertainty models, as introduced and de-
scribed in detail by Quaeghebeur et al. [9]. In contrast with
the slightly older and more common framework of sets of
desirable gambles [1, 4, 13], where the subject gives only
one set of gambles, in this framework a subject is supposed
to give two sets: a set of acceptable gambles A�⊆L , and
a set of rejected gambles A≺ ⊆L . An assessment is then
represented by A = 〈A�;A≺〉. Following the discussion
in Ref. [9], a subject’s accepting a gamble f implies a com-
mitment for him to engage in the following transaction: (i)
the actual value x of the variable X is determined, and (ii)
the subject gets the—possibly negative—payoff f (x). On
the other hand, the subject’s rejecting a gamble implies
that he excludes it from being accepted.

From an assessment, one can derive other types of state-
ments. For any gamble f ∈A' := A�∩−A�, the subject
accepts both f and its negation − f . We say that he is in-
different about f , and A' is his set of indifferent gambles.
For any f ∈AB := A�∩−A≺, the subject accepts f and
rejects its negation − f . We say that he finds f favour-
able, and AB is his set of favourable gambles. These are
the gambles that the subject strictly prefers to 0, which is
the interpretation that is usually given to desirable gambles
[1, 4]. Finally, gambles in the set A^ := L \ (A�∪A≺)
are called unresolved. For unresolved gambles no accept
or reject statement has been made.

3 Modelling practical certainty using
favourability

3.1 Assessment

If a subject is practically certain that a proposition is true,
or that the corresponding event A occurs, we will first
take this to mean that he finds any gamble of the form
IA− 1 + ε , with ε ∈ R>0, favourable.1 Here IA is the in-
dicator of the event A, which assumes the value 1 on A (if
the proposition is true) and 0 elsewhere. Finding IA−1+ε
favourable means: (i) the transaction that yields ε if A oc-
curs and ε − 1 otherwise, is accepted, and (ii) the trans-
action that yields −ε if A occurs, and 1− ε otherwise, is
rejected (excluded from being accepted). The first assess-
ment means that the subject accepts to bet on A at odds
ε/(1− ε), and the second that he excludes accepting a bet
against A at odds (1− ε)/ε . So our subject accepts to bet
on A at all odds, and rejects betting against A at any odds.

A subject can be practically certain about a number of

1Actually, it is enough to look at ε ∈ (0,1), because for ε ≥ 1, IA−
1 + ε ∈L≥0 already belongs to the background model; see further on.
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events. We collect the events he is practically certain about
in the set T ⊆P . So his initial assessment is:

A = 〈AB;−AB〉
with AB = {IA−1 + ε : A ∈T ,ε ∈ R>0} . (2)

Even before an assessment is given, some gambles can
be presumed to be accepted and others to be rejected.
Such a priori assumptions can be captured by positing a
background model S . In the context of favourability as-
sessments, it follows from the discussion in Ref. [9, Sec-
tion 5] that it is convenient to use the following back-
ground model:

S = 〈L≥0;L<0〉 ,
so we take for granted that all non-negative gambles
should be accepted, and all negative gambles should be
rejected—be excluded from being accepted. The back-
ground model S is an instance of a favour-indifference
model [9, Section 4.3], meaning that it fulfils the two con-
ditions −S≺ ⊆S� and S� = SB∪S'.

We use B := A ∪S = 〈AB∪L≥0;−AB∪L<0〉 to de-
note the smallest assessment that includes both the sub-
ject’s assessment A and the background model S .

Clearly, we will have to impose conditions on the set T
of events that the subject is practically certain to occur. To
give just one example, suppose T = P , then the subject
is practically certain about the occurrence of every event
and of its complement, which—as we shall see—is not a
rational belief. The conditions we impose on the set T
follow from three rationality criteria, described in full de-
tail in Ref. [9]. In the next three sections, we discuss these
rationality criteria and the resulting requirements on T .

3.2 Deductive closure

That we are working with a linear utility scale for rewards
has certain consequences. If the gambles f and g are ac-
ceptable, then so should be f + g, and λ f , with λ ∈ R>0.
These two observations are summarised in the deductive
extension extD:

extD B := 〈posiB�;B≺〉 ,
and we call an assessment D deductively closed if
extD D = D . This leads us to the first rationality criterion:
assessments should be deductively closed.
Proposition 1. The positive linear hull of B� is given
by posiB� = L≥0 ∪L m

T , where we use the notations
L m

T := { f ∈L : (∃B ∈ CT ) inf( f |B)> 0},2 inf( f |B) :=
inf{ f (x) : x ∈ B} and

CT :=
{ n⋂

k=1

Ak : n ∈ N,Ak ∈T

}
(3)

2We let inf( f | /0) be +∞ everywhere.

is the collection of all finite intersections of elements of
T . Note that posiB� 6= L if and only if /0 /∈ CT , mean-
ing that T has the intuitively appealing finite intersection
property.

Proof. We infer from Eq. (1) that posi(AB∪L≥0) = posiAB∪
L≥0∪ (posiAB +L≥0). Since 0 ∈L≥0, we see that posiAB +
L≥0 ⊇ posiAB, and therefore posi(AB ∪ L≥0) = L≥0 ∪
(posiAB +L≥0). A gamble f belongs to posiAB +L≥0 if and
only if there are n ∈ N, λ1, . . . ,λn ∈ R>0, A1, . . . ,An ∈ T and
ε1, . . . ,εn ∈ R>0 such that

f ≥
n

∑
k=1

λk(εk− IAc
k
).

By an appropriate choice of the λk > 0 and the εk ∈ (0,1), the
lower bound in the inequality above can be made arbitrarily low
(negative) provided that

⋂n
k=1 Ak = /0, and only then. This shows

that /0 ∈ CT ⇔ posiAB +L≥0 = L . So let us assume that /0 /∈
CT .

Consider any gamble f in posiAB +L≥0, then there are n ∈ N,
λ1, . . . ,λn ∈ R>0, A1, . . . ,An ∈ T and ε1, . . . ,εn ∈ R>0 such
that f ≥ ∑n

k=1 λk(εk − IAc
k
), and therefore inf( f |⋂n

k=1 Ak) ≥
∑n

k=1 λkεk > 0.

Conversely, if inf( f |⋂n
k=1 Ak) =: δ > 0 for some n ∈ N and

A1, . . . ,An ∈ T , then let all λk > λ := δ − inf f ≥ 0 and all
εk := δ

nλk
> 0, so

n

∑
k=1

λk(εk− IAc
k
)≤ I⋂n

k=1 Ak
δ + I⋃n

k=1 Ac
k
(δ −λ )

= I⋂n
k=1 Ak

δ + I⋃n
k=1 Ac

k
inf f ≤ f ,

meaning that f ∈ posiAB +L≥0.

For notational convenience, we define L l
T :=−L m

T .

The set CT , as defined in Eq. (3), satisfies all the require-
ments for a filter base. It is called the filter base generated
by the set T .

The deductively closed extD B is not yet “perfect enough”:
for it to be a so-called model, we need to further impose
the criteria of No Confusion and No Limbo.

3.3 No Confusion

Given the interpretation attached to an accept and to a
reject statement, there should be no gambles in the set
(extD B)G := (extD B)�∩ (extD B)≺: a gamble cannot be
accepted and rejected at the same time. This observation
leads us to the second rationality criterion: deductively
closed assessments need to have

No Confusion: (extD B)G = /0.

The following proposition gives the conditions to be im-
posed on T in order to have No Confusion.
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Proposition 2. The deductively closed assessment extD B
has No Confusion if and only if T satisfies the finite in-
tersection property:

⋂n
k=1 Ak 6= /0 for all n ∈ N and all

A1, . . . ,An ∈T , or equivalently, /0 /∈ CT .

Proof. extD B has No Confusion if and only if L m
T ∩−AB = /0,

L≥0 ∩−AB = /0, L m
T ∩L<0 = /0 and L≥0 ∩L<0 = /0. The

last intersection is obviously empty, and the condition for the
third one to be empty is clearly that /0 /∈ CT , taking into account
Prop. 1.

The second intersection L≥0∩−AB is empty if and only if IAc−
ε � 0 for all events A in T and all ε ∈ R>0, which is equivalent
with /0 /∈T .

The first intersection is non-empty if and only if there are A ∈
T and B ∈ CT such that inf(IAc − ε|B) > 0 for some ε ∈ R>0,
or equivalently, such that B∩A = /0. This tells us that the first
intersection is empty if and only if

(∀A ∈T )(∀B ∈ CT )B∩A 6= /0,

which is equivalent with /0 /∈ CT .

Because of its form, CT is a filter base. Moreover, No
Confusion is equivalent to CT being a proper filter base:
in addition to CT being closed under finite intersections, it
cannot contain the empty set. From now on, we consider
only proper filter bases CT , or equivalently, sets T that
satisfy the finite intersection property.

3.4 No Limbo

For extD B to be a model, besides being deductively closed
and having No Confusion, it also needs to satisfy a third
and last rationality criterion: it must have No Limbo.

To see what this means, consider any deductively closed
assessment D = 〈D�;D≺〉 with No Confusion. At this
point, all the gambles in D^ = L \ (D� ∪D≺) are unre-
solved, and can therefore in principle still be accepted or
rejected. But it is proved in Ref. [9, Corollary 6] that the
gambles in the so-called limbo

(
D≺− (D�∪{0})

)
\D≺, (4)

which is a subset of D^, cannot be made acceptable
without creating Confusion. In other words, these are the
unresolved gambles that have exactly the same effect as
gambles in D≺: if we considered them as acceptable too,
the resulting assessment would have Confusion. So they
are still in an unresolved state, but if we want to avoid Con-
fusion, there is nothing for it: we must also reject them.

Starting from the deductively closed assessment D with
No Confusion, additionally rejecting the gambles that are
in its limbo results in its reckoning extension extM:

extM D :=
〈
D�;D≺∪

(
D≺−D�

)〉
, (5)

and we say that a deductively closed assessment D without
Confusion has No Limbo if and only if extM D = D , or
equivalently, if and only if the set in Eq. (4) is empty.

We end up with M := extM extD B, a model that is de-
ductively closed and has No Limbo and No Confusion; see
Ref. [9, Prop. 7] for details. We call it a coherent model.
The next proposition characterises M , where the notation
emphasises the set of favourable gambles.

Proposition 3. The coherent model M = extM extD B is
given by M = 〈MB∪{0};−MB〉, with

MB := L m
T ∪L>0.

Proof. The proof for the set of acceptable gambles M� fol-
lows from Prop. 1, (extM D)� = D� and L≥0 = L>0 ∪ {0}.
Taking into account Eq. (5) and Prop. 1, the set of rejected
gambles is given by M≺= B≺∪

(
B≺− (L≥0∪L m

T )
)

= B≺−
(L≥0 ∪L m

T ), where we used the fact that 0 ∈ L≥0. Because
A≺∪L<0 = A≺∪L<0, it follows that

M≺ = (A≺∪L<0)− (L≥0∪L m
T )

=
(
A≺−L≥0

)
∪
(
A≺−L m

T

)

∪ (L<0−L≥0)∪
(
L<0−L m

T

)
.

(6)

We first prove that L<0∪L l
T ⊆M≺. Observe that L<0⊆A≺∪

L<0 ⊆ (A≺ ∪L<0)− (L≥0 ∪L m
T ) = M≺, where the last in-

clusion holds because 0 ∈L≥0. To show that also−L m
T ⊆M≺,

use the next Lem. 1 to see that −L m
T = (−L m

T ) +L<0, and by
Eq. (6), this is a subset of M≺.

Next, we prove that L<0 ∪L l
T ⊇M≺. We prove that each of

the four terms of the union of Eq. (6) is a subset of L<0 ∪L l
T .

To do so, it is useful to remark that

L l
T = posi(A≺+L≤0)⊇ posiA≺ ⊇A≺. (7)

For A≺ −L≥0, use Eq. (7) to infer that A≺ ⊆ −L m
T , so

A≺ −L≥0 ⊆ −L m
T −L≥0 = −L m

T , where the equality fol-
lows from Lem. 1. For A≺ −L m

T , use Eq. (7) to obtain
A≺−L m

T ⊆−L m
T −L m

T =−L m
T , where the equality follows

from the fact that −L m
T is a cone. Since L<0−L≥0 = L<0,

it only remains to consider the last term: use Lem. 1 to find that
L<0−L m

T =−L m
T .

Lemma 1. For any collection of events T ⊆P that sat-
isfies the finite intersection property, L m

T = L m
T +L>0 =

L m
T +L≥0.

Proof. Since 0 ∈L≥0, we have L m
T ⊆L m

T + L≥0, and since
L>0 ⊆L≥0, also L m

T +L>0 ⊆L m
T +L≥0. The proof is com-

plete if we can prove that L m
T + L≥0 is also included in both

L m
T and L m

T + L>0. Consider any gamble f ∈ L m
T + L≥0,

so there are g ∈ L and B ∈ CT such that δ := inf(g|B) > 0
and f ≥ g. This means that also inf( f |B) > 0, and therefore
f ∈L m

T . Also, consider the gamble h := δ/2IB + gIBc < f . Be-
cause inf(h|B) = δ/2 > 0, it follows that h ∈L m

T and therefore
f = h +( f −h) ∈L m

T +L>0.

368 Arthur Van Camp & Gert de Cooman



To summarise, we started out with the assessment A of a
subject who is practically certain of the occurrence of all
events in T , and added the background model S , leading
to a larger assessment B = A ∪S . Using deductive and
reckoning extension, and by imposing restrictions on T ,
namely that T has the finite intersection property, we ad-
ded acceptable as well as rejected gambles to end up with
the coherent model M = extM extD B. Prop. 3 guarantees
that, as was the case for the initial assessment of Eq. (2),
the coherent model M is fully determined by the set of
favourable gambles

MB = { f ∈L : (∃B ∈ CT ) inf( f |B)> 0}∪L>0,

leaving aside the always indifferent zero gamble. Because
M is a coherent model, we call this set MB a coherent
set of favourable gambles. In this model M , 0 is the
only indifferent gamble: M' = M� ∩−M� = {0}, and
M is an instance of a favour-indifference model, because
−M≺ ⊆M� and M� = MB∪M'.

3.5 Finding all practically certain events

We now ask ourselves whether the inference procedure de-
scribed above, which allowed us to infer from the set of fa-
vourable gambles AB the larger set of favourable gambles
MB, bears any relationship to inference in classical pro-
positional logic? Which are the other events, besides the
ones in T , that the inference procedure tells us our sub-
ject, if he is rational, should also be practically certain of?

As we have suggested above, a subject who is certain
about an event A expresses this as finding favourable the
gambles of the form −IAc + ε , with ε ∈ R>0. We denote
the corresponding set of favourable gambles by A A

B :=
{−IAc + ε : ε ∈ R>0}. The question therefore becomes:
for which events A is the set A A

B a subset of MB? As
the gambles in A A

B are, for ε small enough, positive only
on A, the answer to this question is immediate:

A A
B ⊆MB⇔ (∃B ∈ CT )B⊆ A.

This tells us that the subject should be practically certain
of all events in the filter generated by T :

FT := {A ∈P : (∃B ∈ CT )(B⊆ A)} .

This is a proper filter provided that /0 /∈ CT . Also observe
that L m

T = { f ∈L : (∃B ∈FT ) inf( f |B)> 0}.
Any filter is a set-theoretic counterpart of a collection of
propositions that is deductively closed (closed under con-
junction and modus ponens), and the generated filter cor-
responds to the deductive closure of a set of propositions,
in classical propositional logic. We see that on our specific
interpretation of it—or semantics for it—the logic of prac-
tical certainty has the same basic machinery as classical

propositional logic. In simple terms: if someone is prac-
tically certain that both the events A and B occur, it is reas-
onable to be practically certain of A∩B; and if someone is
practically certain that the event A occurs, then it is reas-
onable to be practically certain of every event B⊇ A.

Our argument goes further than that, because it also allows
us to infer which gambles a subject should find favourable
if he is practically certain that all events in T occur: all
gambles in MB, which are the gambles that are strictly
positive, or that have a strictly positive return, bounded
away from zero, on some practically certain event.

4 Modelling practical certainty using
acceptability

When a subject is practically certain that an event A oc-
curs, we have taken this to mean, in Section 3, that he
finds favourable every gamble of the form −IAc + ε , with
ε ∈ R>0. Here, we repeat the same reasoning with a
weaker assessment of acceptability, rather than favourabil-
ity: if a subject is practically certain that an event A occurs,
we now take this to mean that he finds every gamble of the
form−IAc +ε , with ε ∈R>0, acceptable. With T the col-
lection of events he is practically certain of, his assessment
is therefore:

A − := 〈{−IAc + ε : A ∈T ,ε ∈ R>0} ; /0〉 .

We make the same a priori assumptions summarised in the
background model S = 〈L≥0;L<0〉, leading to the smal-
lest background-including assessment B− = A −∪S .

In the next proposition, we determine the relationship
between M− = extM extD B− and M , and show that the
(apparently) weaker acceptability assessment leads to the
same conclusions.3

Proposition 4. Using deductive extension we obtain
extD B− =

〈
L≥0∪L m

T ;L<0
〉
. This deductively closed

assessment has No Confusion if and only if T satisfies the
finite intersection property. The corresponding coherent
model is M− = extM extD B− = M .

Proof. The argument is analogous to, but less involved than,
that in the proofs of Props. 1–3.

5 An alternative way of modelling practical
certainty using indifference

Williams [15] and Walley [12] define a lower prevision p
for a gamble f as a supremum acceptable buying price:

3The equivalence between the implications of favourability and ac-
ceptability assessments does not hold in more general cases. As an ex-
ample, consider the background model 〈L≥0; /0〉. Then the conclusions
from every non-empty favourability assessment differs from the corres-
ponding acceptability assessment.
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the highest price p such that f − p + ε is acceptable—or
equivalently as it turns out, favourable—for all ε > 0. In
the previous sections, we have used an approach with a
very similar flavour to account for practical certainty: the
supremum acceptable buying price for (the indicator of) a
practically certain event is 1.

The approach that Bruno de Finetti [5, 7] follows in de-
fining the (precise) prevision p for a gamble f , is rather
different:4 it is the unique number p such that the subject
is indifferent between the uncertain f and the fixed p, or
equivalently, between f − p and 0.

We therefore also propose an alternative way of model-
ling practical certainty, more along the lines of de Finetti’s
approach to previsions: we model a subject’s practical cer-
tainty of the occurrence of an event A by an assessment of
indifference between IA and 1, or equivalently, between
IAc and 0. This amounts to a statement of acceptability
for both IAc and its negation −IAc . But, since IAc ≥ 0,
and since we will use L≥0 as a background model for ac-
ceptability, meaning that all non-negative gambles are a
priori assumed to be acceptable (see further on), we need
only explicitly state the acceptability of−IAc . This assess-
ment is stronger than the corresponding one in the previ-
ous sections: here the subject actually accepts the gamble
−IAc , whereas before he only accepted gambles of the
form −IAc + ε , with ε ∈ R>0.

If our subject is practically certain of every event in the
collection T ⊆P , this leads to the (indifference) assess-
ment:

A ′ := 〈{−IAc : A ∈T } ; /0〉 .
Before, we used the background model S = 〈L≥0;L<0〉.
The nature of an indifference assessment no longer allows
us to use S as background model, as this would lead to
difficulties: since −IAc ∈L<0 if Ac 6= /0, in order to avoid
No Confusion, the set T can only contain the trivial cer-
tain event X .5 For this reason, we propose a slightly more
conservative background model:

S ′ = 〈L≥0;LC0〉 ,

where we take for granted that all non-negative gambles
should be accepted, and all gambles that are point-wise
(strictly) negative should be rejected:

LC0 := { f ∈L : (∀x ∈X ) f (x)< 0} .

We use B′ := A ′∪S ′ =
〈
A ′
�∪L≥0;LC0

〉
to denote the

smallest assessment that includes both the subject’s indif-
ference assessment A ′ and the background model S ′.

In this section, due to page limitations, and because the
reasoning uses similar arguments to the ones in Section 3,
we will omit the proofs.

4For an extensive discussion of the difference between the two ap-
proaches, we refer to Refs. [9] and [11].

5See also the discussion in Ref. [9, Section 5].

As before, in order to obtain a coherent model, we have to
impose rationality conditions on the set T of practically
certain events, which we explore next.

5.1 Deductive closure

The first rationality criterion states that we have to accept
every gamble that can be deduced from B′�: the deductive
closure is extD B′ =

〈
posiB′�;B′≺

〉
.

Proposition 5. The positive linear hull of B′� is

posiB′� = L ≥
T := { f ∈L : (∃B ∈ CT )IB f ≥ 0} ,

with CT defined as in Eq. (3). Note that posiB′� 6= L if
and only if /0 /∈ CT .

Compared with posiB�, posiB′� contains more gambles:
those gambles f that are non-negative on an event B in
CT , but for which inf( f |B) is zero.

5.2 No Confusion

The second rationality criterion requires that the deduct-
ively closed assessment extD B′ should have No Confu-
sion. This leads to the same condition on T as before in
Section 3:

Proposition 6. The deductively closed assessment extD B′

has No Confusion if and only if T satisfies the finite inter-
section property, or equivalently, if /0 /∈ CT .

As in Section 3, the second rationality criterion turns CT

into a proper filter base. From now on, we will assume CT

to be proper.

5.3 No Limbo

The final rationality criterion of No Limbo leads us to
apply the reckoning extension extM to the deductive ex-
tension extD B′ with No Confusion, leading to a coherent
model M ′ := extM extD B′.

Proposition 7. The coherent model M ′ is given by M ′ =〈
M ′
�;M ′

≺
〉
, with M ′

� = L ≥
T and M ′

≺ =−L B
T = L C

T :=
{ f ∈L : (∃B ∈ CT )(∀x ∈ B) f (x)< 0}.

The corresponding set of favourable gambles M ′
B is:

M ′
B = M ′

�∩−M ′
≺ = L ≥

T ∩L B
T = L B

T

= { f ∈L : (∃B ∈ CT )(∀x ∈ B) f (x)> 0} .

5.4 Finding all practically certain events

As in Section 3.5, we ask ourselves whether, in addition to
the events in T , the criteria of rationality allow the subject
to infer the practical certainty of more events. Since, here,
we are modelling practical certainty via indifference, we
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look at the indifferent gambles M ′
' in the coherent model

M ′, and our subject is practically certain about an event
A precisely when he is indifferent about IAc , meaning that
−IAc (in addition to IAc ) belongs to his inferred set of in-
different gambles M ′

' = M ′
�∩−M ′

�.

So let us look for an expression for M ′
'. This set contains

the gambles for which there are B and B′ in CT such that
both IB f ≥ 0 and IB′ f ≤ 0. Since CT is closed under finite
intersections, we find that

M ′
' = { f ∈L : (∃B ∈ CT )IB f = 0}

= { f ∈L : (∃B ∈FT )IB f = 0} ,

and therefore also

−IAc ∈M ′
'⇔ (∃B ∈ CT )Ac∩B = /0⇔ A ∈FT .

This tells us that the subject can be practically certain of
all events A in the proper filter FT generated by T , as
in Section 3.5. Here too, our approach allows us to say
even more: the subject should regard as favourable all
gambles that are (strictly) positive on some practically cer-
tain event, and be indifferent about any gamble that is zero
on some practically certain event.

6 Coherent lower prevision and coherent
lower probability

6.1 Coherent lower prevision

With every set of favourable gambles we can associate a
lower prevision P and an upper prevision P. Lower previ-
sions (or lower expectation functionals) P as wel as upper
previsions (or upper expectation functionals) P are real-
valued functionals defined on L . Given any set of favour-
able gambles D , then the corresponding lower prevision P
and upper prevision P are defined by:

P( f ) := sup{µ ∈ R : f −µ ∈D} and

P( f ) := inf{µ ∈ R : µ− f ∈D} for every f in L .

If the defining set of favourable gambles is coherent, then
we call P and P coherent. Since P( f ) =−P(− f ) for every
f ∈ L , lower and upper previsions contain the same in-
formation, and we focus on lower previsions.

Let us calculate the coherent lower prevision correspond-
ing with MB. For any gamble f , P( f ) is the supremum µ
such that f −µ is an element of MB, or equivalently, it is
the supremum µ such that

µ < f or (∃B ∈ CT )µ < inf( f |B).

This tells us that P( f ) is the maximum of inf f and
supB∈CT

inf( f |B). Since the latter number is never smaller

than the former, we conclude:6

P( f ) = sup
B∈CT

inf( f |B) = sup
B∈FT

inf( f |B).

To make explicit the proper filter of events CT we are us-
ing, we denote this lower prevision also as PFT

. Observe
that PFT

is coherent if and only if CT is a proper filter
base.

Using a similar argument as above, it follows that the
lower prevision P′ corresponding with the set of favour-
able gambles M ′

B is the supremum µ such that (∃B ∈
CT ) inf( f |B) > µ , whence P′( f ) = supB∈CT

inf( f |B) =
P( f ) for every gamble f ∈L . This tells us that, regard-
less of whether we formulate practical certainty using fa-
vourability or indifference assessments, we end up with
the same corresponding coherent lower prevision.

6.2 Coherent lower probability

With every lower prevision P, we can associate a lower
probability Q. A lower probability Q is a real-valued set
function defined on P . Given a lower prevision P, then
the corresponding lower probability Q is defined by:

Q(A) := P(IA) for each event A in P .

If the defining lower prevision is coherent, then the corres-
ponding lower probability is called coherent as well.

We look at the lower probability RFT
corresponding with

the lower prevision PFT
. For any event A, the lower prob-

ability RFT
(A) equals supB∈CT

inf(IA|B). Since inf(IA|B)
is 1 if B⊆ A and 0 otherwise, we have:

RFT
(A) =

{
1 if (∃B ∈ CT )B⊆ A
0 otherwise.

=

{
1 if A ∈FT

0 otherwise.

This lower probability is coherent because PFT
is. This

tells us that the subject is willing to bet at all odds on the
occurrence of every event A ∈FT . For all other events,
he has no commitment whatsoever: he is only willing to
bet on these other evens at zero odds. Compare this with
the discussion in Sections 3.5 and 5.4.

Conversely, an event A for which the upper probability is
zero—which means that the subject is willing to bet at all
odds against the occurrence of A—reflects practical cer-
tainty that A does not occur. For an event A, the upper
probability RFT

(A) equals infB∈CT
sup(IA|B), which is

zero iff A ∈ I := {Bc : B ∈T }. This ideal7 of subsets
I is the set of events the agent is practically certain will
not occur.

6This lower prevision constitute a particular case of the so-called filter
maps, see [3].

7The notion of an ideal is the dual notion of a filter: an ideal I is a
subset of P that is closed under finite unions (A∪B∈I when A,B∈I )
and decreasing (if A ∈I and B⊆ A, then also B ∈I ).
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7 Connection with strong belief structures

7.1 Strong belief structures

For this section, we will need some extra notation. We call
A the collection of all the assessments—with or without
Confusion: A = {〈D�;D≺〉 : D�,D≺ ⊆L }. Assess-
ments in A can be partially ordered by set inclusion ⊆:
with two assessments D and D ′ in A, we write D ⊆D ′ if
and only if D� ⊆D ′� and D≺ ⊆D ′≺. The corresponding
partially ordered set is denoted by (A,⊆).

Not all assessments in A are of interest; we can restrict
our attention to some generic subclass of models M ⊆ A.
This M inherits the partial order ⊆ from A. We call M̂
the set of maximal, or undominated, models in M: M̂ :=
{D ∈M : (∀D ′ ∈M)(D ⊆D ′⇒D = D ′)}. In contra-
distinction with A, where Â = {〈L ;L 〉} is its top (and
unique maximal element), the family of models M may
have no, one or multiple maximal elements.

We are interested in whether the structure (A,M,⊆) is a
strong belief structure [2], meaning that it satisfies the fol-
lowing four criteria:

S1. (A,⊆) is a complete lattice: for any subset B of A,
its supremum supB and its infimum infB with re-
spect to the order ⊆ exist. Here the component-wise
union operator

⋃
plays the role of supremum and the

component-wise intersection operator
⋂

that of in-
fimum.

S2. (M,⊆) is a (component-wise) intersection structure,
meaning that M is closed under arbitrary non-empty
infima: for any non-empty subset B ofM, infB ∈M.

S3. The partially ordered set (M,⊆) has no top.

S4. The partially ordered set (M,⊆) is dually atomic:
M̂ 6= /0 and D = inf

{
D ′ ∈ M̂ : D ⊆D ′

}
if D ∈M.

A structure (A,M,⊆) that satisfies requirements S1–S3 is
called a belief structure. The relevance of the additional
requirement S4 is that the maximal coherent models can
be used to construct any coherent model. We want to in-
vestigate whether the coherent models encountered in Sec-
tions 3 and 5 constitute strong belief structures.

7.2 Favourability of acceptability assessments

We consider the family of models for practical certainty
following from favourability or acceptability assessments,
as described in Sections 3 and 4:

C :=
{〈

L m
F ∪L≥0;L l

F ∪L<0
〉

: F ∈ F
}
.

For this family C, it is not difficult to show by means of a
counterexample that (A,C,⊆) does not constitute a strong
belief structure: it is not even a belief structure as it viol-
ates requirement S2.

7.3 Indifference assessments

We consider the family of models for practical certainty
following from indifference assessments, as described in
Section 5:

C′ :=
{〈

L ≥
F ;L C

F

〉
: F ∈ F

}
.

The elements of C′ are the coherent models identified in
Prop. 7, and to make explicit which filter we are using,
we denote them by M ′ (F ) =

〈
M ′
�(F );M ′

≺(F )
〉

:=〈
L ≥

F ;L C
F

〉
. In contrast with the structure considered in

Section 7.2, (A,C′,⊆) is a strong belief structure.

Proposition 8. (A,C′,⊆) is a strong belief structure.

Proof. We have to prove that (A,C′,⊆) fulfils the requirements
S1–S4. S1 is fulfilled thanks to [9, Section 2.6]. S2 is fulfilled
thanks to the next Lem. 2. For S3, consider Lem. 4 and take
into account that the set of maximal elements of F is the set of
ultrafilters U, so C′ has no top. S4 is fulfilled thanks to Lem. 4
and the Ultrafilter Theorem [10].

Lemma 2. (C′,⊆) is an intersection structure.

Proof. Consider an arbitrary non-empty subset B⊆ C′. We can
describe B using a family of filters Fi, i∈ I with a non-empty in-
dex set I 6= /0: B = {M ′ (Fi) : i ∈ I}. We now have to prove that
infB ∈ C′, or equivalently, that

⋂
i∈I M ′ (Fi) ∈ C′, since tak-

ing infima corresponds to taking component-wise intersections.
Consider any gamble f , then:

f ∈
⋂

i∈I
M ′
�(Fi)⇔ (∀i ∈ I)(∃Bi ∈Fi)(∀x ∈ Bi) f (x)≥ 0

⇔ (∃B ∈
⋂

i∈I
Fi)(∀x ∈ B) f (x)≥ 0.

For the second equivalence the converse implication is trivial.
The direct implication holds because it follows that (∀x ∈⋃

i∈I Bi) f (x) ≥ 0 and
⋃

i∈I Bi belongs to all F j, j ∈ I. By the
next Lem. 3,

⋂
i∈I Fi is a proper filter. Using a completely similar

argument leads to a similar conclusion for the rejected gambles⋂
i∈I M ′

≺(Fi).

The proof of Lem. 2 tells us more than thatC′ is closed un-
der arbitrary non-empty intersections; it also tells us how
to find the filter that is associated with this intersection:

⋂

i∈I

M ′ (Fi) = M ′
(⋂

i∈I

Fi

)
. (8)

Lemma 3. Given a non-empty family of proper filters Fi,
i ∈ I, F :=

⋂
i∈I Fi ∈ F.

Proof. Since /0 /∈Fi, also /0 /∈F . Because X ∈Fi for every
i∈ I, also F 6= /0. Furthermore, let A,B∈F , meaning that A,B∈
Fi for every i ∈ I. Then also also A∩B ∈ Fi for every i ∈ I,
what tells us that A∩B ∈ F , meaning that F is closed under
conjunction. Finally, let A ∈ F and B ⊇ A. Then B ∈ Fi for
every i ∈ I, whence B ∈F , meaning that F is increasing.
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Lemma 4. The partially ordered sets (C′,⊆) and (F,⊆)
are order isomorphic, meaning that there is a bijection φ
from C′ to F such that M ′ (Fk) ⊆M ′ (F`) if and only if
φ (M ′ (Fk))⊆ φ (M ′ (F`)) for all M ′ (Fk) ,M

′ (F`) ∈
C′.

Proof. Consider the map φ from C′ to F defined by
φ (M ′ (F )) := F . φ is clearly injective and surjective, and
therefore a bijection. We then have to prove for all Fk,F` ∈ F
that M ′ (Fk) ⊆M ′ (F`) if and only if Fk ⊆ F`. The ‘if’ is
immediate from the definition of the Fi. For the ‘only if’, start
with M ′ (Fk)⊆M ′ (F`), and focuss on the accepted gambles.
It follows that M ′

�(Fk) ⊆M ′
�(F`). This is equivalent with

(∀Bk ∈Fk)(∃B` ∈F`)B` ⊆ Bk. Since F` is increasing, it fol-
lows that Fk ⊆F`.

8 Embedding classical propositional logic
into models for practical certainty

We want to formally embed classical propositional lo-
gic into our framework. Since, in contradistinction with
the models following from favourability assessments, the
models that follow from indifference assessments consti-
tute an intersection structure, this embedding is easier for
the latter models.

8.1 Indifference assessments

Eq. (8) and Lem. 4 tell us that that language of proper fil-
ters is interchangeable with the language of models fol-
lowing from indifference assessments as far as modelling
practical certainty is concerned.

8.2 Favourability assessments

Since the partially ordered set (C,⊆) is no intersection
structure, there is no counterpart to Eq. (8):

⋂

i∈I

M (Fi)⊇M

(⋂

i∈I

Fi

)
,

where M (F ) :=
〈
L m

F ∪L≥0;L l
F ∪L<0

〉
∈ C, but the

converse inclusion does not generally hold. Despite of this
observation, Prop. 9 guarantees that we can still find an
embedding of the set of filters F into C.

Proposition 9. Consider a coherent set of favourable
gambles DB derived from a coherent model that includes
the background model S and take any collection of
events A ⊆ P such that MB (A ) ⊆ DB. Let F :=
{B ∈P : (∀ε ∈ R>0)− IBc + ε ∈DB}, then

(i) F ∈ F; (ii) MB (F )⊆DB; (iii) A ⊆F .

Proof. Due to [9, Prop. 8 (iii)], DB is a cone, and SB ⊆ DB.
This guarantees, by the way, that we can always find such A : if

DB = SB, use A = {X }. No Confusion guarantees that L≤0
and DB are disjoint, ensuring that /0 /∈F . Since ε ∈ DB for all
ε ∈ R>0, we see that X ∈F , ensuring that F 6= /0. Consider
two events A,B ∈F , then both −IAc + ε1 and −IBc + ε2 ∈ DB
for all ε1,ε2 ∈ R>0, so also ε1 + ε2 − IAc − IBc ∈ DB. From
this, we infer ε1 + ε2− IAc − IBc ≤ ε1 + ε2− I(A∩B)c ∈ DB for
all ε1,ε2 ∈ R>0, so A∩B ∈ F , meaning that F is closed un-
der finite intersections. Consider an event A ∈ F and B ⊇ A,
then −IAc +ε ∈DB for all ε ∈R>0. Because −IAc ≤−IBc , also
−IBc + ε ∈ DB, so B ∈F , meaning that F is increasing. This
proves (i).

For (ii), consider any gamble f ∈ MB (F ). Then there is
some B ∈ F such that inf( f |B) =: δ > 0, and it follows that
f ≥ IBc inf f + IBδ = IBc γ + δ , where γ := inf( f )− δ ≤ 0. Be-
cause of the definition of F and taking into account that DB is a
cone that includesR>0, {−λ IBc + ε : λ ∈ R≥0,ε ∈ R>0}⊆DB,
hence f ∈DB.

For (iii), consider any event B ∈ A . Then −IBc + ε ∈MB (A )

because inf(−IBc + ε|B)> 0. Since MB (A )⊆DB by assump-
tion, then also −IBc + ε ∈DB, which tells us that B ∈F .

9 Conclusions

We have shown that the language of accept & reject
statement-based uncertainty models is well-suited for de-
scribing practical certainty about the validity of some pro-
positions, or the occurrence of the corresponding events.
We have studied three different ways of translating such
beliefs of practical certainty into this language, each time
modelled by a different type of assessment. All three types
formulations lead to the same logical inferences: a collec-
tion of events the subject is practically certain of must be
closed under conjunction and modus ponens. This conclu-
sion can be drawn as well by calculating the corresponding
coherent lower probability: it is formulated in terms of a
filter. We concluded with the result that the collection of
coherent models following from the latter type of assess-
ments constitute a strong belief structure, and we found a
belief embedding of classical propositional logic into all
our models for practical certainty.

Future goals include deriving belief expansion and belief
revision operators in the language of sets of favourable
gambles, inspired by the ideas in [2].
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Abstract
This paper introduces a new type of statistical model:
the interval-valued linear model, which describes the
linear relationship between an interval-valued out-
put random variable and real-valued input variables.
Firstly, we discuss the notions of variance and covari-
ance of set-valued and interval-valued random vari-
ables. Then, we give the definition of the interval-
valued linear model and its least square estimation, as
well as some properties of the least square estimation.
Thirdly, we show that, whereas the best linear unbi-
ased estimation does not exist, the best binary linear
unbiased estimator exists and it is just the least square
estimator. Finally, we present simulation experiments
and an application example regarding temperature of
cities affected by their latitude, which illustrates the
application of our model.

Keywords. Interval-valued linear model, least
square estimation, best binary linear unbiased esti-
mation, Dp metric.

1 Introduction

Traditional statistical models have played a signifi-
cant role in a wide range of areas. However, in real
life situations, many problems cannot be handled by
traditional statistical models due to imperfectness of
data. Therefore, specialized statistical techniques are
needed. In many practical cases, we often have to face
a particular kind of imperfect data: interval-valued
data (e.g., [8], [9] and [13]).

Interval-valued data may represent uncertainty or
variability. In the former case, the interval data
represent incomplete observations, i.e., we just know
the true data belong to a range (an interval), rather
than the precise values. For example, assume that
researchers test the service life of a group of prod-
ucts, such as light bulbs. Since testing time is very
long, they cannot stay in the laboratory at any time.

They could come to the laboratory to see how many
bulbs are burnt out every two or three hours. Then,
the data regarding service life of bulbs they get are
interval-valued. In contrast, in the variability case,
an interval is not interpreted as a set containing a
single true value, but the observation themselves are
interval-valued. For instance, a weather forecast typ-
ically provides the highest and lowest temperature of
the next day, which is an interval including almost
all the useful information about tomorrow’s tempera-
ture. This interval reflects variability of temperature
of one day.

The linear model is probably the simplest and most
common statistical model. It describes a random out-
put variable determined by a few input variables and
an error term in a linear way. In this paper, we con-
sider the situation in which observations are interval-
valued, i.e., the random variable is an interval-valued
random variable, which is determined by real-valued
variables in a linear way. This interval-valued linear
model could play a significant role in dealing with im-
perfect data, e.g., to investigate how (interval-valued)
temperature is impacted by (point-valued) intensity
of solar radiation, air pressure, latitude of location ,
or the statistical relationship between interval-valued
service life of light bulbs and point-valued properties
of materials used in making bulbs.

Interval-valued random variables are a special kind of
set-valued random variables, whose values are com-
pact convex subsets of the real line R1. Since we
have at our disposal many results on the theory of
set-valued random variables (e.g., [16], [17] and [26]),
this is a suitable framework to tackle the problem ad-
dressed in this paper. For a long time, however, there
has been only a few works to discuss the variance
and covariance of set-valued random variables, since
the difference between two sets is difficult to define
and the hyperspace (e.g., the space of all intervals)
is not linear with respect to addition and multiplica-
tion. Vital [21] studied the metric for compact convex

375



sets via the support functions. In 2005, Yang and Li
[24], Yang [25] investigated the dp metric for sets and
the Dp metric in the space of set-valued random vari-
ables; they proposed to use the Dp metric to define
the variance and covariance of set-valued and interval-
valued random variables, which proved to be a good
approach to deal with this problem. In Chapter 5 of
[25], Yang also built a linear regression model with
interval-valued regression coefficients. The underly-
ing space in [24] and [25] is Rd. In 2008, Blanco et
al. [4] defined the dK-variance for interval-valued ran-
dom variables with underlying space R1, which is a
special case of [24] and [25].

Some other works about interval-valued and set-
valued statistical models are as follows. Tanaka
and Lee [19] introduced the interval linear regres-
sion model, which is not based on the interval-
valued random variable framework, and estimated the
coefficients using a quadratic optimization method.
Blanco-Fernandez et al. [5] and Sinova et al. [18] inves-
tigated the linear relationship between two interval-
valued random variables, considering the input vari-
able as two real-valued random variables (center and
radius of the interval). They gave the least square es-
timation of the coefficients under the d2 metric of in-
tervals. Blanco-Fernandez et al. [6] studied the strong
consistency and asymptotic distributions of the least
square estimator. Beresteanu and Molinari [3] in-
vestigated inference for partially observed models via
the asymptotic approach; they supposed the obser-
vations to be uncertain and proposed an estimation
method for the real-valued parameters. Hsu and Wu
[14] investigated interval-valued time series and gave
three evaluation criteria of estimation and forecast ef-
ficiency for interval-valued time series. Wang and Li
[22] introduced a new type of interval-valued time se-
ries (the interval autoregressive time series model) and
proposed methods for parameter estimation and fore-
casting based on the evaluation criteria in [14]. Wang
and Li [23] investigated set-valued and interval-valued
stationary time series, based on the definition of vari-
ance and covariance of set-valued and interval-valued
random variables introduced in [24] and [25].

In this paper, we start with the set-valued frame-
work and consider the interval-valued random vari-
able as a special case of set-valued random variable.
We then introduce the interval-valued linear model
and its least square estimation, prove its unbiased-
ness and discuss the best binary unbiased estimation.
Treating an interval-valued random variable as two
separate point-valued random variables (the left- and
right-endpoints of the interval, or the center and ra-
dius of the interval) is deemed to be unreasonable.
One reason is that it is quite easy to obtain estima-

tion or forecast results such that the left-endpoint is
larger than the right-endpoint or the center is neg-
ative, because these two linear models are unrelated.
In this paper, we also show the limitation of using two
separate linear models in terms of forecast efficiency
via a simulation experiment.

The organization of this paper is as follows. In Section
2, we define the variance and covariance of set-valued
random variables based on the dp metric for sets and
the Dp metric for interval-valued random variables.
In Section 3, we introduce the interval-valued linear
model and its least square estimator (LSE), prove the
unbiasedness of this LSE and give the covariance ma-
trix of this estimator. In Section 4, we show that the
best linear unbiased estimation does not exist in gen-
eral, but the best binary linear unbiased estimation
(BBLUE) exists and is unique, and the BBLUE is just
the LSE. In Section 5, we present a simulation study
to show the methodology, and illustrate the efficiency
of estimations introduced in Sections 3 and 4. We
then present another simulation experiment to com-
pare our model with using two separate linear models.
Finally, in Section 6, we use the interval-valued lin-
ear model to investigate the relationship between city
temperature and latitude. This example also shows
how this model can be used to deal with some prac-
tical problems.

Due to page limitation, we have to omit all the proofs
of theorems in Sections 3 and 4 in this paper.

2 Variance and Covariance of
Set-Valued Random Variables

2.1 dp Metric between Sets

In this section, we assume that (Ω,A, P ) is a prob-
ability space, (X , ‖ · ‖X ) is a Banach space, K(X )
is the family of all nonempty closed subsets of X and
Kkc(X ) is the family of all nonempty compact convex
subsets of X .
For any A,B ∈ K(X ), λ ∈ R, define

A+B = {a+ b : a ∈ A, b ∈ B},

λA = {λa : a ∈ A}.
If A,B ∈ Kkc(X ), then A+B ∈ Kkc(X ).

For each A ∈ Kkc(X ), the support function is defined
by

s(x∗, A) = sup{x∗(a) : a ∈ A}, x∗ ∈ X ∗,

where X ∗ is the dual space of X , i.e., the set of
all bounded linear functionals on X . For example,
if X = R1, X ∗ = R1. Take an interval [a, b] with
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0 ≤ a < b, x ∈ R1, then s(x, [a, b]) =

{
bx, x ≥ 0
ax, x < 0

.

Regarding the support function, we have the following
properties:

s(x∗, A+B) = s(x∗, A) + s(x∗, B),

s(x∗, λA) = λs(x∗, A), λ ≥ 0.

For 1 ≤ p < ∞, take A,B ∈ Kkc(X ). We define the
metric dp on Kkc(X ) ([1], [16], [24]) by

dp(A,B) =



∫

S∗

|s(x∗, A)− s(x∗, B)|pdµ




1/p

,

where S∗ is the unit sphere of X ∗, i.e., S∗ = {x∗ ∈
X ∗ : ‖x∗‖X∗ = 1}, µ is a measure on (X ∗,B(X ∗)).
Remark 2.1. If X = R1, then Kkc(R1) = {[a, b] :
−∞ < a ≤ b < ∞} is the family of all intervals on
R1. If A1 = [a1, b1] = (c1; r1), A2 = [a2, b2] = (c2; r2),
where ci = (ai+bi)/2 and ri = (bi−ai)/2 for i = 1, 2,
then

A1 +A2 = [a1 + a2, b1 + b2] = (c1 + c2; r1 + r2)

kA1 = (kc1; |k|r1)

and

dp(A1, A2) = [|a2 − a1|p + |b2 − b1|p]1/p
= [|(c2 − c1)− (r2 − r1)|p

+|(c2 − c1) + (r2 − r1)|p]1/p.

2.2 Dp Metric Space of Set-Valued Random
Variables

A set-valued mapping F : Ω → K(X ) is called a set-
valued random variable (e.g., [11], [16]) if, for each
open subset O of X , F−1(O) ∈ A, where F−1(O) =
{ω ∈ Ω : F (ω) ∩ O 6= ∅} and ∅ is the empty set.
Any two set-valued random variables are considered
identical if F1(ω) = F2(ω) for almost every ω ∈ Ω
(for short, denoted by "a.s.(P )").

Let U [Ω,Kkc(X )] denote the family of set-valued ran-
dom variables taking values in Kkc(X ).

TheDp metric with respect to set-valued random vari-
ables is defined by

Dp(F1, F2) = [E(dpp(F1(ω), F2(ω)))]1/p,

where F1, F2 ∈ U [Ω,Kkc(X )] ([24]).

Remark 2.2. If X = R1, U [Ω,Kkc(R1)] is the fam-
ily of all interval-valued random variables. For Fi ∈
U [Ω,Kkc(R1)], Fi(ω) = [fi(ω), gi(ω)] = (ci(ω); ri(ω)),
where fi(ω), gi(ω) are random variables and fi(ω) ≤

gi(ω), and ci(ω) = (fi(ω) + gi(ω))/2, ri(ω) = (gi(ω)−
fi(ω))/2, i = 1, 2. By the definition of Dp, we have

Dp(F1(ω), F2(ω))

= [E|f2(ω)− f1(ω)|p + E|g2(ω)− g1(ω)|p]1/p
= [E|(c2(ω)− c1(ω))− (r2(ω)− r1(ω))|p

+E|(c2(ω)− c1(ω)) + (r2(ω)− r1(ω))|p]1/p.

Let Lp[Ω,Kkc(X )] = {F : E[‖F‖pdp ] < +∞, F ∈
U [Ω,Kkc(X )]}. Then we have the following theorem:

Theorem 2.1. (Lp[Ω,Kkc(Rd)], Dp) is a complete
metric space for each 1 ≤ p <∞. [24]

2.3 Variance and Covariance of Set-Valued
Random Variables

The expectation of set-valued random variable F was
introduced by Aumann [2].

Definition 2.1. For each integrable bounded set-
valued random variable F , which means sup{‖f‖ :
f ∈ F} has finite expectation, the Aumann integral
of F , denoted by E[F ], is defined by

E[F ] =

{∫

Ω

fdP : f ∈ SF
}
,

where SF = {f : f(ω) ∈ F (ω) a.s.(P ), and f is
integrable} is called the selection of set-valued ran-
dom variable F ,

∫
Ω
fdP is the usual Bochner integral.

The properties of the expectation of set-valued ran-
dom variables have been discussed in [11] and [16].

However, since the space of subsets of X is not a lin-
ear space with respect to the addition and multipli-
cation, the minus between two sets is difficult to de-
fine. Thus, extending the important notions of vari-
ance and the covariance to set-valued random vari-
ables is not a trivial task. Yang and Li [24] proposed
to define variance and covariance using the Dp metric
on U [Ω,Kkc(Rd)], based on the fact that the support
function of sets is subtractive. Later, Wang and Li
[23] extended these definitions to the more general
space U [Ω,Kkc(X )].
Definition 2.2. For each set-valued random variable
F ∈ U [Ω,Kkc(X )], the variance of F , denoted by
Var(F ), is defined as

Var(F ) = [D2(F,E(F ))]2

= E





∫

S∗

[s(x∗, F (ω))− s(x∗, E(F (ω)))]2dµ



 .

For two set-valued random variables F1, F2 ∈
U [Ω,Kkc(X )], the covariance of F1 and F2, denoted
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by Cov(F1, F2), is defined as

Cov(F1, F2)

= E

{∫

S∗

[s(x∗, F1(ω))− s(x∗, E(F1))]

[s(x∗, F2(ω))− s(x∗, E(F2))]dµ

}
.

The correlation coefficient of F1 and F2, denoted by
ρ(F1,F2), is defined as

ρ(F1, F2) =
Cov(F1, F2)√

Var(F1) ·Var(F2)
.

The variance, covariance and correlation coefficient of
set-valued random variables have the following prop-
erties. The proofs of Theorem 2.3-2.6 can be found in
[23].
Theorem 2.2. The variance Var(F ) of F ∈
U [Ω,Kkc(X )] has the following properties:

(1) Var(C) = 0 for any constant C ∈ Kk(X ).

(2) Var(aF ) = a2Var(F ) for any a ≥ 0.

(3) Var(F1 +F2) = Var(F1)+2Cov(F1, F2)+Var(F2).

(4) (Chebyshev Inequality) P (d2(F,E(F )) ≥ ε)) ≤
Var(F )/ε2, for any ε > 0.
Theorem 2.3. The covariance Cov(F1, F2) of
F1, F2 ∈ U [Ω,Kkc(X )] has the following properties:

(1) Cov(aF1, F2) = Cov(F1, aF2) = aCov(F1, F2) for
any a ≥ 0.

(2) Cov(F1 + F2, F3) = Cov(F1, F3) + Cov(F2, F3),
Cov(F1, F2 + F3) = Cov(F1, F2) + Cov(F1, F3).
Theorem 2.4. For any two interval-valued random
variables X1(ω) = [a1(ω), b1(ω)] = (c1(ω); r1(ω))
and X2(ω) = [a2(ω), b2(ω)] = (c2(ω); r2(ω)), where
ci(ω) = (ai(ω) + bi(ω))/2 is the center and ri(ω) =
(bi(ω)− ai(ω))/2 is the radius of Xi(ω), i = 1, 2, the
following equalities hold:

Cov(X1(ω), X2(ω))

= Cov(a1(ω), a2(ω)) + Cov(b1(ω), b2(ω))

= 2Cov(c1(ω), c2(ω)) + 2Cov(r1(ω), r2(ω)).

Theorem 2.5. The correlation coefficient ρ of
F1, F2 ∈ U [Ω,Kkc(X )] has the following properties:

(1) |ρ| ≤ 1.

(2) If F1 and F2 are independent, then ρ = 0.

(3) ρ(F1, F2) = 1 if and only if F2 + λE(F1) =
E(F2) + λF1, a.s.(P ), ρ(F1, F2) = −1 if and only
if F2 + λF1 = E(F2) + E(λF1), a.s.(P ), where λ =√

Var(F2)/Var(F1).

Remark 2.3. For an interval-valued random variable
F ∈ U [Ω,Kkc(R1)], denoted as F (ω) = [f(ω), g(ω)] =
(c(ω); r(ω)), where f(ω), g(ω) are real-valued ran-
dom variables and f(ω) ≤ g(ω), c(ω) = (f(ω) +
g(ω))/2, r(ω) = (g(ω) − f(ω))/2, by the definition of
Aumann integral and variance of set-valued random
variables, we have

E(F (ω)) = [E(f(ω)), E(g(ω))] = (E(c(ω));E(r(ω)))

and

Var(F(ω))

= E(|f(ω)− E(f)|2) + E(|g(ω)− E(g)|2)

= E(|c(ω)− E(c)− (r(ω)− E(r))|2)

+E(|c(ω)− E(c) + (r(ω)− E(r))|2).

For interval-valued random variables F1, F2 ∈
U [Ω,Kkc(R1)],

Cov(F1(ω),F2(ω))

= E(|f1(ω)− E(f1)||f2(ω)− E(f2)|)
+E(|g1(ω)− E(g1)||g2(ω)− E(g2)|)

= E(|c1(ω)− E(c1)− (r1(ω)− E(r1))|
|c2(ω)− E(c2)− (r2(ω)− E(r2))|)
+E(|c1(ω)− E(c1) + (r1(ω)− E(r1))|
|c2(ω)− E(c2) + (r2(ω)− E(r2))|).

3 Interval-Valued Linear Model and
Least Square Estimation

In this section, we consider an interval-valued linear
model with the following general form

E(y) = Xβ, (1)

where y = (y1, y2, · · · , yn)T is an n × 1 vector of
interval-valued observations, X = (xij)

n,p
i=1,j=1 is an

n × p design matrix, β = (β1, β2, · · · , βp)T is a p × 1
interval-valued parameter vector.

Definition 3.1. If (yi;xi1, xi2, · · · , xip), i =
1, 2, · · · , n is a sample of interval-valued linear model
(1), the least square estimator of unknown parameters
β is the estimator which minimizes d2(y,Xβ).

By the definition of the dp metric, we have

d2
2(y,Xβ)

=

n∑

i=1

d2
2(yi, xi1β1 + xi2β2 + · · · ,+xipβp)
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=

n∑

i=1

[
(cyi − xi1cβ1

− · · · − xipcβp
)

−(ryi − |xi1|rβ1 − · · · − |xip|rβp)
]2

+

n∑

i=1

[
(cyi − xi1cβ1 − · · · − xipcβp)

+(ryi − |xi1|rβ1
− · · · − |xip|rβp

)
]2

= 2

n∑

i=1

[
(cyi − xi1cβ1

− · · · − xipcβp
)2

+(ryi − |xi1|rβ1
− · · · − |xip|rβp

)2
]
,

where cA, rA represent the center and radius of inter-
val A, respectively. This is a quadratic function of
cβ1

, · · · , cβp
, rβ1

, · · · , rβp
and d2

2(y,Xβ) ≥ 0, so there
exists a minimum value, which satisfies

∂d2
2(y,Xβ)

∂cβj

= 0,
∂d2

2(y,Xβ)

∂rβj

= 0, j = 1, 2, · · · , p,

that is




n∑
i=1

(cyi − xi1cβ1
− · · · − xipcβp

)(−xij) = 0

n∑
i=1

(ryi − |xi1|rβ1 − · · · − |xip|rβp)(−xij) = 0,

j = 1, 2, · · · , p. Rewriting these equations in matrix
form, we get:

{
XT cy = XTXcβ
|X|T ry = |X|T |X|rβ , (2)

where |X| = (|xij |)n,pi=1,j=1.

From the above discussions, we have the following the-
orem.

Theorem 3.1. If rank(X) = rank(|X|) = p, the
least square estimator for the interval-valued linear
model (1), denoted as β̂LS, is unique, and

β̂LS = ((XTX)−1XT cy; (|X|T |X|)−1|X|T ry). (3)

Furthermore, we can obtain the following theorems.

Theorem 3.2. The LSE β̂LS is an unbiased estima-
tor of β.

Theorem 3.3. If E(y) = Xβ, rank(X) =
rank(|X|) = p and Cov(cy) = σ2

1In, Cov(ry) = σ2
2In,

then the covariance matrix of β̂LS is

Cov(β̂LS) = 2σ2
1(XTX)−1 + 2σ2

2(|X|T|X|)−1.

4 Best Linear Unbiased and Binary
Linear Unbiased Estimation

4.1 Best Linear Unbiased Estimation

Given n interval-valued data from the interval-valued
linear model (1), yi = [ayi , byi ] = (cyi ; ryi), i =
1, 2, · · · , n, the best linear unbiased estimator is a lin-
ear combination of y1, y2, · · · , yn

β̂j = λj1y1 + λj2y2 + · · ·+ λjnyn
.
= λTj y, (4)

j = 1, 2, · · · , p, and the estimation is unbiased, that
is,

E(β̂j) = βj .

Assume βj = [aβj
, bβj

] = (cβj
; rβj

). By (1) and (4),
we have

E(β̂j) = λTj E(y)

= λTj (Xcβ ; |X|rβ) = (λTj Xcβ ; |λj |T |X|rβ),

where |λj | = (|λj1|, |λj2|, · · · , |λjn|)T . Therefore we
obtain

E(β̂) = (ΛXcβ ; |Λ||X|rβ), (5)

where Λ =




λT1
λT2
...
λTp


 =




λ11 λ12 · · · λ1n

λ21 λ22 · · · λ2n

· · · · · · · · · · · ·
λp1 λp2 · · · λpn




and |Λ| =




|λ11| |λ12| · · · |λ1n|
|λ21| |λ22| · · · |λ2n|
· · · · · · · · · · · ·
|λp1| |λp2| · · · |λpn|


 .

On the other hand, since β̂ is unbiased, we get

E(β̂) = (cβj
; rβj

). (6)

Therefore, by (5) and (6), we have

ΛX = Ip, |Λ||X| = Ip. (7)

Unfortunately, the solution of (7) does not exist in
general. For the case p > 1, consider the interval-
valued linear regression model as an example:

E(y) = β1 + β2X2,

where X2 = (x12, x22, · · · , xn2).

Let Λ =

(
λ11 λ12 · · · λ1n

λ21 λ22 · · · λ2n

)
and X =

(
1 1 · · · 1
x21 x22 · · · x2n

)T
, then the second equation

of (7) is
n∑

i=1

|λ1i| = 1,

n∑

i=1

|λ1i||x2i| = 0,
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n∑

i=1

|λ2i| = 0,

n∑

i=1

|λ2i||x2i| = 1.

It is obvious that these equations are contradictory.

For the case p = 1, E(y) =




x11

x21

...
xn1


β1, then (7)

becomes
n∑

i=1

λ1ixi1 = 1,

n∑

i=1

|λ1i||xi1| = 0.

Therefore, a linear unbiased estimator exists if and
only if xi1 ≥ 0, i = 1, 2, · · · , n.

4.2 Best Binary Linear Unbiased Estimation

From the above discussions, we know that, for the
interval-valued linear model (1), the best linear un-
biased estimation does not exist in general, which is
a major difference with the traditional linear model.
However, for the interval-valued linear model, we
could introduce another notion: the binary best lin-
ear unbiased estimation, which has some interesting
statistical properties.
Definition 4.1. The binary linear combination of
interval-valued data yi = [ayi , byi ] = (cyi ; ryi), i =
1, 2, · · · , n with coefficients ki, li (li ≥ 0) is defined
as

n∑

i=1

(kicyi ; liryi) =

(
n∑

i=1

kicyi ;

n∑

i=1

liryi

)
.

Definition 4.2. An estimator of an interval-valued
parameter is called binary linear estimator, if it is
a binary linear combination of interval-valued obser-
vations. Assume θ̂ is a binary linear estimator of
interval-valued parameter θ, if θ̂ is unbiased and for
any binary linear unbiased estimator θ∗ of θ,

Var(θ∗) ≥ Var(θ̂),

θ̂ is called best binary linear unbiased estimator of θ,
denoted as BBLUE.

If θ is a p × 1 vector of interval-valued parame-
ter, Var(θ∗) ≥ Var(θ̂) in this definition means that
Cov(θ∗)− Cov(θ̂) is a nonnegative definite matrix.
Theorem 4.1. If E(y) = Xβ, rank(X) =
rank(|X|) = p and Cov(cy) = σ2

1In, Cov(ry) = σ2
2In,

then the least square estimator β̂LS is the unique
BBLUE.
Theorem 4.2. If E(y) = Xβ, rank(X) =
rank(|X|) = p and Cov(cy) = σ2

1In, Cov(ry) = σ2
2In,

then for for all α ∈ Rp, αT β̂LS is the unique BBLUE
of αTβ.

Figure 1: Points indicate 100 observations and the
two lines represent the interval-valued linear regres-
sion function: y = [1.06, 2.02] + [1.66, 2.32]x.

5 Simulation Results

5.1 Test of Estimation Efficiency

In this section, we illustrate the interval-valued linear
regression model by simulation. Let β1 = [1, 2] =
(1.5; 0.5), β2 = [1.7, 2.3] = (2; 0.3) and

yi = β1 + xiβ2 + εi

= (1.5 + 2xi + cεi ; 0.5 + 0.3xi + rεi),

i = 1, 2, · · · , n, where cεi , rεi are N(0, 0.32) normal
independent random variables, so that E(yi) = β1 +
E(xi)β2. Therefore, we have

Ey = E




y1

y2

...
yn


 =




1 x1

1 x2

...
...

1 xn




(
β1

β2

)
= X

(
β1

β2

)
.

Firstly, we let the quantity of observations n be 100,
xi = 0.5 + 0.01i, i = 1, 2, · · · , 100. In one experi-
ment, we get a least square estimator β̂LS of β1, β2.
Figure 1 shows the simulation experiment, in which
β̂LS = ([1.06, 2.02], [1.66, 2.32])T . In Figure 1, the
points show the simulated data yi(xi) = [1, 2] +
[1.7, 2.3]xi + εi , xi = 0.5 + 0.01i, i = 1, 2, · · · , 100
and the two lines represent the interval-valued lin-
ear regression function computed by LSE (3): y =
[1.06, 2.02] + [1.66, 2.32]x.

We repeated this experiment 1000 times, aver-
age value of β̂

(1)
LS was [0.9959131, 1.996367] =

(1.49614; 0.5002269), with a sample mean square
error (sample MSE) equal to 0.0442. The aver-
age value of 1000 β̂

(2)
LS was [1.706118, 2.300196] =
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Table 1: Average value and sample MSE of β̂(1)
LS .

mean value of β̂(1)
LS sample MSE of β̂(1)

LS

n=100 [0.9959131,1.996367] 0.0442
n=200 [1.002874,1.995194] 0.0236
n=300 [1.002542,2.006844] 0.0154

Table 2: Average value and sample MSE of β̂(2)
LS .

mean value of β̂(2)
LS sample MSE of β̂(2)

LS

n=100 [1.706118,2.300196] 0.0446
n=200 [1.705211,2.299007] 0.0220
n=300 [1.699598,2.295972] 0.0142

(2.003157; 0.297039) with a sample MSE is 0.0446.
Here the sample mean square error of β is defined

by 1
1000

1000∑
i=1

d2
2(β, β̂LS).

Then we let the quantity of observations n be 200 and
300. Regarding X, we let

xi = 0.5 + 0.01i, i = 1, 2, · · · , 100,

xi = xi−100, i = 101, 102, · · · , 200,

xi = xi−200, i = 201, 202, · · · , 300.

Similarly, we obtained estimators of β̂(1)
LS , β̂

(2)
LS by the

same method. The results are presented in Tables 1
and 2, which give the average value and the sample
MSE of 1000 estimators of β̂(1)

LS (real value is [1, 2])
and β̂(2)

LS (real value is [1.7, 2.3]) respectively. We can
see that the sample MSE decreases as the number of
observations increases.

5.2 Comparison with Other Models

When handling the point-valued input and interval-
valued output data, an easy and intuitive solution is to
fit the left- and right-endpoints (or the center and the
radius) of the interval-valued data to two point-valued
linear model, respectively (e.g., [5],[14] and [18]). As
a matter of fact, it is easy to see these two meth-
ods are equivalent. As already mentioned in the in-
troduction, a drawback of using two separate point-
valued linear model is that it is possible to obtain an
inter-valued estimation or forecast result such that the
left-endpoint is larger than the right-endpoint (or the
radius is negative). In this section, we present the
advantage of our model from another view via a sim-
ulation experiment: comparing the efficiency of the
forecast.

We generated the data in the same way as in Section
5.1 with β1 = [1, 2] = (1.5; 0.5), β2 = [1.7, 2.1] =
(1.9; 0.2) and

yi = β1 + xiβ2 + εi, (8)

in which xi = (−3 : 0.05 : 6) and cεi , rεi areN(0, 0.12)
independent random variables.

We then obtained the parameter estimation using
the least square estimation for interval-valued linear
model (3): β̂LS = ([0.9979, 2.0062], [1.7017, 2.1000])T ,
and the regression function

y = [0.9979, 2.0062] + [1.7017, 2.1000]x. (9)

In a second step, we fit (ayi , xi) and (byi , xi), where
ayi and byi are the left- and right-endpoints of yi, us-
ing two traditional point-valued linear models. Using
the least square estimation for the traditional linear
model, we obtain two fitted lines with equations:

{
ay = 0.6398 + 1.8061x
by = 2.3642 + 1.9956x.

(10)

Finally, we generated some new data from (8) and
use (9) and (10) to forecast the output respectively.
Letting xi = (−3 : 0.2 : 6), we put xi back to (8),
we obtain the (real) interval-valued output yi, i =
1, 2, · · · , 46. Then, we substitute xi = (−3 : 0.2 : 6)
back to (9) and (10) and obtain the forecasts of
yi, i = 1, 2, · · · , 46 using the interval-valued LS es-
timation (denoted by ỹi) and two endpoints point-
valued LS estimation (denoted by ŷi), respectively.

The MSE of ỹi was 1
46

46∑
n=1

dw2 (ỹi, yi) = 0.0352 and the

MSE of ŷi was 1
46

46∑
n=1

dw2 (ŷi, yi) = 0.1290. The box

plots in Figure 2 show the median, the 25th and 75th
percentiles and the extreme data points of the 46 fore-
casts using interval-valued linear model and using two
separate linear models. Since the data are randomly
generated, the above procedure (from data generation
to forecast) is repeated 30 times, so that mean values
of the MSEs of the forecasts may be computed, which
are 0.0388 (using the interval-valued LS estimation)
and 0.1321 (using two endpoints point-valued LS es-
timation). Obviously, we can see that the interval-
valued linear model is better in the sense that it has
smaller forecasting error.

6 Application to Real Data

In this section, we use the interval-valued linear model
to investigate the relationship between temperature
and latitude. The data we gather are the highest and
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Figure 2: Box plots of forecasts results using
interval-valued linear model (left) and left- and right-
endpoints point-valued linear models (right).

Table 3: Temperatures and latitudes of 15 European
cities on 14-th of August, 2012.

City Latitude (◦)
Highest
Temp.
(◦C)

Lowest
Temp.
(◦C)

Athens 38 24 34
Madrid 40.4 19 31
Istanbul 41 23 30
Roma 41.9 23 33

Marsaille 43.3 19 31
Geneve 46.25 13 28
Paris 48.8 19 26
Brussel 50.8 14 25
London 51.5 14 21
Berlin 52.5 13 23
Moscow 55.75 14 24

Stockholm 59.3 12 20
St. Petersburg 59.9 13 22

Bergen 60.4 14 20
Reykjavik 64 11 17

Figure 3: Temperatures (in the form of interval) of
15 European cities. Each line segment represents the
temperature interval of a city.

the lowest temperatures of 15 cities in Europe on 14-
th of August, 2012, as shown in Table 3 and Figure
3.

Suppose that temperature (interval-valued, y) and
latitude (real-valued, x) follow the interval-valued lin-
ear model (1), that is

E(yi) = β1 + xiβ2, i = 1, 2, · · · , 15.

By least square estimation (3), which is also the best
linear unbiased estimation by Theorem 4.1, we can get
estimators of β1, β2. The linear relationship between
temperature y and latitude x is

y = [39.03− 0.45x, 56.01− 0.60x],

which is also shown in Figure 4. From Figure 4, we
can see that, as latitude increases the temperature
decreases, and the daily difference in temperature also
tends to decrease.

7 Conclusions

The linear model, which describes a random variable
determined by a few variables and error in a linear
way, plays an important role in statistics. However, in
the real world, there are also a great deal of phenom-
ena that are better described by an interval-valued
random variable determined by a few real-valued ran-
dom variables, e.g., temperature, stock price, service
life of a kind of products. The relation between the
interval-valued data and a few real-valued data can
sometimes be expressed by a linear model. Therefore,
we need a new type of statistical model to describe
this kind of relation. In this paper, we introduced
such a statistical model: the interval-valued linear
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Figure 4: Data and linear relationship of temper-
ature and latitude of 15 cities in Europe on 14-
th of August, 2012. The two lines mean interval-
valued linear regression function y = [39.03196 −
0.451684x, 56.00954− 0.6037982x].

model, which considers interval-valued observations
determined by real-valued variables in a linear way.

Interval-valued random variables are a special kind of
set-valued random variables, whose values are com-
pact convex subsets of R1. In this paper, we investi-
gated the theory in the general set-valued framework
first, before focusing on the interval-valued random
variables, in order to obtain some theoretical results
in a wider range. In particular, we recalled the defini-
tion of variance and covariance of set-valued random
variables based on the dp metric of sets and the Dp

metric of interval-valued random variables. We then
introduced the interval-valued linear model and its
least square estimation (LSE), proved the unbiased-
ness of the LSE and gave the covariance matrix of
this estimator. We also showed that the best linear
unbiased estimation does not exist in general, but the
best binary linear unbiased estimation (BBLUE) ex-
ists and is unique, and the BBLUE is just the LSE.
The performances of this estimator were illustrated
using simulation experiments, and compared to those
of the simple approach that consists in fitting two
separate linear models using the endpoints of out-
put intervals. The obtained results suggest that our
approach yields better forecasting performance. Fi-
nally, we gave an example of the interval-valued lin-
ear model explaining how temperature is related by
latitude. This short example shows how our model
can be used and what type of practical problem can
be solved using the interval-valued linear model.
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Geometries of Inference
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Abstract

Inferential processes, having to do with the closeness of models to data, lend themselves to geometric ideas.
There are several geometries that are relevant to probability models, and one must avoid the temptation to
attribute features of one geometry to another, but to keep in mind the images appropriate to the task at hand.

A probability measure can be represented as an expectation, i.e., a linear functional on random variables. The
set of all probability measures thus inherits a linear structure, and can be viewed as a convex subset of the
linear space (a simplex in the finite-dimensional case). Walley’s lower prevision [4] can be represented as the
infimum of a convex subset of this larger set. To define a geometry, a linear structure also needs a distance. The
appealing Euclidean norm does not adequately describe the distance concepts that are appropriate to inferential
problems.

Kullback-Leibler divergence [2], while lacking the properties of a norm (or even a metric), is an inferentially
meaningful measure of distance between probability measures since it is the expectation of a log-likelihood ratio.
It is appealing to quantify the imprecision of a lower prevision by the information diamger—i.e., the supremum
of Kullback-Leibler divergences—of the set of probability measures. This diameter, however, would be infinite
if the measures in the set have different null events.

Walley’s imprecise Dirichlet model [5] and the imprecise exponential family models of Quaeghebeur and
de Cooman [3] are based on a convex set of hyperparameters for prior distributions of the model parame-
ters, which are then modified by Bayesian updating. Upper and lower previsions of future observations can
then be described geometrically in terms of tangent planes to the hyperparameter set. This interpretation is
complicated for other predictands, or for models outside the class discussed by Diaconis and Ylvisaker [1].

The various issues are illustrated graphically by reference to 2 × 2 contingency tables.

Keywords. Exponential family, information geometry,
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Abstract

Frequently, belief functions [12] usually contain an internal conflict. Based on Hájek-Valdés algebraic analysis of
belief functions [10], a unique decomposition of a belief function into its conflicting and non-conflicting part was
introduced at ISIPTA’11 symposium for belief functions defined on two-element frame of discernment [3]. This
contribution studies the conditions under which such a decomposition exists for belief functions (BFs) defined
on three-element frame. For all necessary basic notions, illuminative figures, and references see [3].

When combining belief functions, a more complicated conflict often appears. Commonly used interpretation of
the sum of conflicting masses m∩⃝(∅) as a conflict between BFs is not correct. The problem of this interpretation
was mentioned by Almond in 1995 [1], further by Liu [11], but the nature of the conflict has not been captured.

In [2, 7, 8], new ideas concerning interpretation, definition, and measurement of conflicts of BFs were introduced.
An important difference between conflicts between BFs and internal conflicts of single BFs was pointed out;
further, a conflict between BFs was distinguished from the difference/distance between BFs. When analyzing
mathematical properties of the three approaches to conflicts of BFs from [2], there appears a possibility of
expression of a BF Bel as Dempster’s sum of non-conflicting BF Bel0 with the same plausibility decisional
support as the original BF Bel has and of indecisive BF BelS which does not prefer any of the elements of
frame of discernment.

As only structures are described in the introduction to generalization of Hájek-Valdés analysis of BFs [5, 6],
this study begins with an effort to make a generalization of Hájek-Valdés operation −(a, b) = (b, a) and of the
important homomorphism f : (D0, ⊕,−, 0, 0′) −→ (S, ⊕, −, 0) given by f(a, b) = (a, b) ⊕ −(a, b), where ⊕ is
Demspter’s rule of combination.

Considering function ’−’ as transposition (permutation) of bbms of elements of the frame of discernment, we
have f(a, b) = (a, b) ⊕ (b, a) as Dempster’s sum of all permutations of bbms of Bel = (a, b) on Ω2. Analogously
we can define f(Bel) =

⊕

π∈Π3

π(Bel)

where Π3 is the set of all permutations of bbms of elements of Ω3: Π3 = {π123, π213, π231, π132, π312, π321},
i.e., f(a, b, c, d, e, f ; g) =

⊕
π∈Π3

π(a, b, c, d, e, f ; g) = (a, b, c, d, e, f ; g) ⊕ (b, a, c, d, f, e; g) ⊕ (b, c, a, f, d, e; g) ⊕
(a, c, b, e, d, f ; g) ⊕ (c, a, b, e, f, d; g) ⊕ (c, b, a, f, e, d; g). It was proven that this is really homomorphism
f : D3 −→ S of Dempster’s semigroup D3 to its subsemigroup S = ({(a, a, a, b, b, b; 1 − 3a − 3b)},⊕).

Having this, a series of open questions appears which are related to relation of this generalization of f to the
partial generalization using −Bel0 constructed via group G3 of Bayesian BFs on Ω3 from [3], see the updated
schema of decomposition on Fig. 2. Further, the necessity of analysis of SPl, i.e., of subsemigroup of general
indecisive belief functions, see Fig. 1, has appeared. Besides these new open questions, a partial positive result
was reached: a unique decomposition for special classes of quasi Bayesian BFs.

Keywords. Belief function, Dempster-Shafer theory, Dempster’s semigroup, conflict between belief functions,
uncertainty, non-conflicting part of belief function, conflicting part of belief function.
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Figure 1: SPl — subsemigroup of gen-
eral indecisive belief functions. Figure 2: Updated detailed schema of a decomposition of

BF Bel.
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[10] P. Hájek and J. J. Valdés. Generalized algebraic foundations of uncertainty processing in rule-based expert
systems (dempsteroids). Computers and Artificial Intelligence 10 (1): 29–42, 1991.

[11] W. Liu. Analysing the degree of conflict among belief functions. Artificial Intelligence 170: 909–924, 2006.

[12] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, New Jersey, 1976.

ISIPTA ’13: A Step Towards a Conflicting Part of a Belief Function on Three-element Frame of Discernment
389





8th International Symposium on Imprecise Probability: Theories and Applications, Compiègne, France, 2013
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Abstract

In reliability theory an engineering system is given together with its limit state function g : X ⊆ Rn → Y ⊆ R :
x→ y = g(x) where x = (x1, . . . , xn) ∈ X is a vector of basic variables (such as material properties, loads, etc.)
and where g(x) ≤ 0 means failure of the system. Then the probability pf of failure of the system is obtained by

pf = P (g(X) ≤ 0) =

∫

X

χ(g(x) ≤ 0)fX(x) dx (1)

where fX is the joint density function of the random variables X = (X1, . . . , Xn) and where χ is the indicator
function. In the case of scarce information about the values of the basic variables x and the behavior of the
system it is neither sufficient to model the uncertainty of x by a single probability density fX nor to describe the
system’s reliability by a single deterministic limit state function g. A better way to model the uncertainty of the
basic variables and the uncertainty in the limit state function is to use sets of probability measures (credal sets)
which will result in upper probabilities pf of failure. In our approach we parameterize the limit state function
by additional parameters z = (z1, . . . , zm) ∈ Z ⊆ Rm using a function h : X × Z → Y : (x, z) → h(x, z) where
h(x, z) ≤ 0 again means failure. Then a function gz : X→ Y : x→ gz(x) = h(x, z) is one of the available limit
state functions specified by a parameter value z. Both the basic variables x and these new additional parameters
z are uncertain which means that we are not only uncertain in the choice of the values of the basic variables but
also in the choice of an appropriate limit state function gz. In [1] we assumed that the corresponding random
variables X and Z are always independent and discussed the meaning of different notions of independence for
sets of probability measures in the context of limit state functions. Such an assumption may be too restrictive,
especially in cases where the preference we have for some limit state functions gz may change with the values
of the basic variables x.

As an extension of [1] the poster presentation is devoted to parameter dependent uncertainty in limit state
functions. Our starting point is the formula pf =

∫
X

∫
Z
χ(h(x, z) ≤ 0)fZ|x(z) dz fX(x) dx for the probability

of failure with conditional density fZ|x of Z given x. We extend the probability of failure pf to a mapping

pf (a, b) =

∫

X

∫

Z

χ(h(x, z) ≤ 0)f
Z|x
b(x)(z) dz fXa (x) dx (2)

depending on parameters where a = (a1, . . . , ana) ∈ A ⊆ Rna are the parameters of the density function fXa
describing the uncertainty of the basic variables. The parameters b depend here on the basic variables x which
means that b is a function b : X → B ⊆ Rnb : x → b(x) = (b1(x), . . . , bnb

(x)) which provides parameter
values b1(x), . . . , bnb

(x) to the densities of Z|x for given x while in [1] b did not depend on x because of the
independence of X and Z. In a next step a and b are assumed to be uncertain and sets or random sets are used
to describe their uncertainty which leads to sets of probability measures for the random variables X and Z|x
and to upper probabilities pf of failure. Further we will present an alternative approach using uncertain random
fields defined on the set of basic variables to describe the uncertainty of the limit state function.

Keywords. Upper probability of failure, limit state functions, credal sets, parameterized probability measures.
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Abstract

In this research we take the first steps towards approaching the (distributional version of) Little’s Law [1, 5, 6]
from an imprecise-probabilistic point of view. We examine the law for a discrete-time, single-server queue
where the arrivals and the servicing (departures) happen according to imprecise Bernoulli processes: forward
irrelevant arrivals [3, 4] occur at each discrete time point with probability interval [a, a] and, similarly, forward
irrelevant departures occur at each discrete time point with probability interval [d, d]. Arrivals and departures
are assumed to be epistemically independent [8].

We make two additional assumptions regarding the properties of the queue as well. The first one is that upon
arriving, an item needs to remain in the queue till served. And secondly, departure is characterised by the FIFO
(first in first out) property. These assumptions allow us to get closer to the distributional version of the Little’s
Law, as we can use them to relate (at any time point) the distribution of the size of the queue with the time
spent in the queue.

We present our results using the framework of coherent lower and upper previsions [8]. Our main result is a
relation between the lower (and upper) prevision of the waiting time Dt of the last item in the queue and the
lower (and upper) prevision of the number Lt of items in the queue at any given time point t. More specifically,
at any time t, we get P (Lt) = dP (Dt) and P (Lt) = dP (Dt). As a consequence, we find that this result also holds
when, rather than forward irrelevance, we impose more stringent independence assumptions on the departure
process, such as epistemic independence [7, 8], or strong independence [2].

We also address some questions related to the limit behaviour of the queuing system. What does the (imprecise)
stationary distribution of the number of items look like? How can we use our main result above to derive the
stationary distribution of the waiting time? And finally, how is this stationary behaviour influenced by the
arrival process?

Keywords. Little’s Law, Bernoulli processes, coherent lower (and upper) previsions, forward irrelevance,
epistemic independence.
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Abstract

Credal networks are graph-based multivariate statistical models where irrelevance assessments between sets of
variables are concisely described by means of an acyclic directed graph whose nodes are identified with variables.
Here we focus on categorical variables [Cozman, 2000]. A credal network encodes a set of Markov conditions:
the non-descendant non-parents of any variable are irrelevant to it once the value of the parents is known. The
complete specification of a credal network requires the quantification of local conditional credal sets, closed and
convex sets of conditional probability distributions [Levi, 1980]. Credal networks represent a joint credal set
over all variables in the model, and thus allow for the distinction of randomness and ignorance, and facilitate the
elicitation of the parameters from experts [Antonucci et al., 2007, Antonucci et al., 2009, Piatti et al., 2010].

To fully characterize the credal set induced by a credal network we need to settle on the concept of irrelevance
adopted, and thus on the semantics of the arcs in the graph. The most commonly used concepts in the
literature are strong independence and epistemic irrelevance. The former states that two variables X and Y
are strongly independent if the joint credal set of X,Y can be regarded as originating from a number of precise
models in each of which the two variables are stochastically independent. Strong independence is closely related
to the sensitivity analysis interpretation of credal sets, which regards an imprecise model as arising out of
partial ignorance of a precise one [Antonucci and Piatti, 2009, Zaffalon and Miranda, 2009]. A variable X is
epistemically irrelevant to a variable Y if observing X does not affect our beliefs about Y . In other words,
by making an epistemic irrelevance assessment, we are stating that our beliefs about Y do not change after
receiving information about X [Walley, 1991].

Usually, credal networks are used to compute tight bounds on the expectation of some variable conditional on
the value of some other variables, a task we call predictive inference. The complexity of this task varies greatly
according to the topology of the underlying digraph and the irrelevance concept adopted. For instance, the 2U
algorithm of [Fagiuoli and Zaffalon, 1998] can solve the problem in polynomial time if the digraph is a polytree,
variables are binary and strong independence is assumed. When instead epistemic irrelevance is adopted,
no analogous polynomial-time algorithm for the task is known. On the other hand, [de Cooman et al., 2010]
developed a polynomial-time algorithm for predictive inferences in epistemic trees, that is, credal trees under
epistemic irrelevance. No such algorithm is known to exist under strong independence.

The aim of this work is to present the following three new contributions that appeared in [Mauá et al., 2013], and
to report on the current state of knowledge of the theoretical computational complexity of predictive inference
in credal networks, as summarized in Table 1 (new results appear in boldface).

• Epistemic irrelevance and strong independence induce the same upper and lower predictive probabilities
for the last (in topological order) hidden node in HMM-like credal trees. This implies that we can use the
algorithm of [de Cooman et al., 2010] for credal trees under epistemic irrelevance to compute tight bounds
on the posterior expectation of the last hidden node also under strong independence.

• Predictive inferences under strong independence in credal trees are NP-hard even if all variables are ternary,
which shows that is unlikely that polynomial-time algorithms for these networks exist, in striking difference
with the case of epistemic irrelevance.

395



Table 1: Summary of the computational complexity of predictive inference in credal networks.

Model Strong Epistemic
HMM P P
Tree NP-hard P

Polytree NP-hard NP-hard

General NPPP-hard NPPP-hard

• Predictive inference in networks where root nodes are vacuous and the remaining ones are precise is invariant
to the irrelevance concept used. This in turn implies that the task in credal polytrees under epistemic
irrelevance is NP-hard, even if all variables are at most ternary, as this is the case under strong independence
unless all variables are binary [Fagiuoli and Zaffalon, 1998, de Campos and Cozman, 2005].

Keywords. Credal networks, graphical models, epistemic irrelevance, strong independence, coherent lower
prevision, credal sets.
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Abstract

Given a random number X, a probability box or p–box (FX , FX) is a couple of cumulative distribution functions
(cdfs) s.t. FX ≤ FX [1, 4]. Here and in what follows, we impose no continuity property on any cdf, which is
therefore a dF-coherent probability (a finitely, not necessarily σ-additive precise probability) on the monotone
family of events D1 = {Ax|x ∈ R} ∪ {∅,Ω}, Ax = (X ≤ x),∀x ∈ R. A p–box therefore naturally extends to an
imprecise probability framework the description of uncertainty about X by means of a cdf.

In this note we investigate properties of the generalisation of p–boxes, suited to describe couples (X,Y ) of
random numbers and to be called bivariate p–boxes. We focus on analogies between bivariate p–boxes and
traditional joint distribution functions, and on how bivariate p-boxes may be obtained from marginal uncertainty
judgements.

Definitions. Given (X,Y ), let Ax,y = (X ≤ x ∧ Y ≤ y). A map F : D2 = {Ax,y : x, y ∈ R} ∪ {∅,Ω} → [0; 1]
is standardized if F is non–negative, componentwise non–decreasing, F (∅) = 0, F (Ω) = 1. Later on, we shall
also write F (x, y) instead of F (Ax,y). (F , F ) is a bivariate p–box if each of F , F is standardized and F ≤ F .
(F , F ) is a coherent p–box (a p–box that avoids sure loss (ASL)) iff, further, both F and F are jointly coherent
(ASL) [5], lower and upper respectively, probabilities on D2. We say that F , F are jointly coherent (ASL)
when the lower probability P defined as P (Ax,y) = F (x, y) on S = {Ax,y|x, y ∈ R}, P (Acx,y) = 1 − F (x, y) on
S− = {Acx,y|x, y ∈ R} is coherent (ASL) on S ∪ S−.

A first major difference between coherent bivariate and univariate p–boxes is that F , F need not be dF-coherent
precise probabilities. This clearly depends on the structure of D2, an only partially ordered set unlike D1, but
there are relationships with 2–monotonicity too:

Proposition 1 Let P be a 2–monotone lower probability on some lattice L ⊃ D2, and P its conjugate (hence,
2–alternating) upper probability.

a) If F is the restriction of P , F is dF-coherent [3].

b) If F is the restriction of P , it is not necessarily dF-coherent, while its corresponding upper tail function is.

c) Conversely, if (F , F ) is given and F , F are jointly dF-coherent, the natural extension of (F , F ) is not
necessarily 2–monotone.

As well-known, a joint cdf F is characterised by some conditions, including a rectangle inequality F (x2, y2) −
F (x1, y2)−F (x2, y1)+F (x1, y1) ≥ 0, ∀x1 ≤ x2, y1 ≤ y2. With a p-box (F , F ), we have four rectangle inequalities:

[R1] F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1) ≥ 0

[R2] F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1) ≥ 0

[R3] F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1) ≥ 0

[R4] F (x2, y2)− F (x1, y2)− F (x2, y1) + F (x1, y1) ≥ 0.
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These inequalities interact variously with coherence or ASL of either a p–box (F , F ) or its components F , F ,
taken separately:

Proposition 2 a) [R1]÷[R4] are necessary for coherence of (F , F ).

b) Neither of them is, in general, necessary for ASL of (F , F ); F (being standardized) always avoids sure loss,
while F avoids sure loss if [R2] holds.

c) In the case that X, Y are both two–valued, [R1]÷[R4] are also sufficient for coherence of (F , F ), while [R1]
is necessary and sufficient for (F , F ) to be ASL.

An important situation originating bivariate p–boxes is when marginal cdfs for X and Y are given, and there
is uncertainty about the kind of interaction between X and Y . More generally, we may think that marginal
p-boxes (FX , FX), (FY , FY ) are assessed for X and Y . Then, under these assumptions,

Proposition 3 Let C be a set of copulas. Define the bivariate p–box (F , F ) as F (x, y) =
infC∈C C(FX(x), FY (y)), F (x, y) = supC∈C C(FX(x), FY (y)). Then (F , F ) is coherent.

While the above proposition may be viewed as a sort of imprecise counterpart of Sklar’s Theorem [2], in the
part ensuring that a certain function (copula) of two univariate cdfs returns a joint distribution having the given
cdfs as marginals, it has to be stated that the correspondence breaks down on the reverse side, when wishing
to view any bivariate p–box as depending on its arguments through a function (not necessarily a copula or
subcopula) of its marginals. This is in general not possible, outside some special cases.

Fréchet upper and lower bounds also play a very important role in obtaining joint p–boxes from marginal ones,
even in the n–variate case. In fact,

Proposition 4 a) Given F1, F2, . . . , Fn (marginal cdfs, for X1, X2, . . . , Xn respectively), the lower Fréchet
bound FL(x1, x2, . . . , xn) = max(F1(x1) +F1(x2) + . . .+Fn(xn))− n+ 1, 0) is a coherent lower probability
(also dF-coherent, as well–known [2], when n = 2).

b) Given the n marginal p–boxes (F 1, F 1), . . . , (Fn, Fn), their natural extension on Dn = {X1 ≤ x1 ∧ . . . ∧
Xn ≤ xn|x1, . . . , xn ∈ R} ∪ {∅,Ω} is the n–dimensional p–box (FL, F

U
), where FL(x1, x2, . . . , xn) =

max(F 1(x1)+F 2(x2)+. . .+Fn(xn))−n+1, 0), while F
U

(x1, x2, . . . , xn) = min(F 1(x1), F 2(x2), . . . , Fn(xn))
is the Fréchet upper bound (which is dF–coherent, ∀n).

Keywords. P–boxes, coherent lower/upper probabilities, rectangle inequalities, copulas, Fréchet bounds.
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Abstract

This contribution addresses stochastic PDEs with random set coefficients. A typical example is the elliptic PDE

− div
(
A(x) grad u(x)

)
= f(x)

where the excitation and the coefficient matrix are given by any of the following: (a) a random field (a stochastic
process with respect to the spatial variable); (b) a random set; (c) a random field whose parameters are random
sets; (d) a combination thereof. As soon as random sets and stochastic processes are involved, the solution u is
a set-valued process. The question arises in what sense it can be viewed as a random set.

For a stationary, Gaussian random field A it suffices to specify the expectation values µ ≡ E(A(x)) and the
autocovariance function C(ρ) = COV(A(x), A(y)) which then depends only on the distance ρ = |x − y|. As a
starting point, we consider a parametrized autocovariance function of the form C(ρ) = σ2 exp

(
− |ρ|/L

)
with

the field variance σ2 and the correlation length L as parameters. A useful feature of this type of random field
is that it can be obtained as solution to the Langevin equation, Wt denoting Wiener process,

dXt = − 1
LXt +

√
2
L σ dWt, X0 ∼ N (0, σ2). (1)

A random set is a map X which assigns to every ω from a probability space (Ω, Σ, P ) a subset X(ω) of a target
space E such that the upper inverses X−(B) = {ω ∈ Ω : X(ω) ∩ B ̸= ∅} are measurable for every Borel subset
B of E. An important tool is the fundamental measurability theorem that states (if E is a Polish space) the
equivalence of the defining measurability property of X−(B) for Borel, open, and closed subsets B as well as
the equivalence with the existence of a Castaing representation. A set-valued random variable such that X−(B)
is measurable for every open set B is called Effros-measurable. Starting from a random field whose correlation
length, e.g., is an interval, the assignment

ω → {AL(x, ω) : L ∈ [L,L]},

where x is a point in space and AL(x, ω) is a realization at point x of the field with correlation length L,
defines a random set. It is the purpose of this contribution to present a proof of this fact. Thanks to the
representation (1), the continuity of the map L → AL(x, ω) can be derived from the results of [1, 2]. From
there, a Castaing representation can be immediately obtained, which leads to the Effros measurability; the
fundamental measurability theorem completes the argument. The methods will be demonstrated at the hand
of a numerical example, employing polynomial chaos expansion as a computational device.
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Abstract

We consider the solution uc of the stochastic wave equation in three space dimensions

∂2t uc − c2∆uc = Ẇ uc : Ω→ S ′
(
R4
)

denoting by Ẇ the white noise with support in [0,∞)×R3. It is a generalized stochastic process on a probability
space (Ω,Σ, µ). A suitable choice for Ω is the space of tempered distributions S ′(D).

Modelling the parameter c as an interval means to investigate the function

X : Ω→ P
(
S ′
(
R4
))

ω 7→ {uc(ω), c1 ≤ c ≤ c2}

In this contribution we show that X fulfils the Borel measurability condition

X−(B) := {ω ∈ Ω : X(ω) ∩B 6= ∅} ∈ B (Ω) ∀B ∈ B
(
S ′
(
R4
))

and therefore is a random set in the general sense of Molchanov [1].
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