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Preface

The FEighth International Symposium on Imprecise Probability: Theories and Applications is held in Compiegne,
France, 2-5 July 2013.

The ISTPTA meetings are a primary forum for presenting and discussing advances in imprecise probability
and are organized once every two years. The first meeting was held in Gent in 1999, followed by meetings
in Ithaca (Cornell University), Lugano (IDSIA), Pittsburgh (Carnegie Mellon University), Prague, Durham
(UK) and Innsbruck. In the decade since the first meeting, imprecise probability has come a long way, which
is reflected by the wide range of topics presented at the 2013 meeting, but particularly also in the increased
presence of imprecise probability in journals and at other conferences.

As with previous ISIPTA meetings, the program only contains plenary sessions. In total, 38 papers are
presented by a short talk and a poster, which guarantees ample time for discussion. The papers are included
in these proceedings and are also available on the SIPTA webpage (www.sipta.org). Submitted papers have
undergone a high quality reviewing process by members of the Program Committee, ensuring the quality of the
presented research results.

To provide a platform for preliminary ideas and challenging applications for which the research is not
yet completed, poster-only presentations have been introduced at ISIPTA’09 and the initiative pursued in
ISIPTA’11. We continue with this tradition; short abstracts of these poster-only presentations are included in
the proceedings and are available on the SIPTA webpage.

As with previous ISIPTA meetings, a wide variety of theories and applications of imprecise probability are
presented. New application areas and novel ways for dealing with limited information prove the increasing
success of imprecise probability.

Most participants having a good knowledge of the basics of imprecise probabilities, the two introductory
tutorials introducing have been scheduled the day before the start of the conference. We thank Thierry Denceux
and Matthias Troffaes for preparing and presenting tutorials on Belief functions and imprecise probabilities,
respectively.

Invited talks are intended to present both recent developments in selected fields and topics that are related
but not directly linked to the main topics of ISTPTA. We thank Alessio Benavoli (Switzerland) for preparing
and presenting the talk Pushing Dynamic Estimation to the Extremes: from the Moon to Imprecise Probability,
Linda van der Gaag (Netherlands) for preparing and presenting the talk Recent Advances in Sensitivity Analysis
of Bayesian Networks, Christophe Labreuche (France) for preparing and presenting the talk Robustness in
Multi-Criteria Decision Making and its relation with Imprecise Probabilities and Jean-Marc Tallon (France) for
preparing and presenting the talk Ambiguity and ambiguity attitudes in economics.

During the conference two prizes are awarded: the Best Poster Award, sponsored by Springer-Verlag, and
the IJAR Young Researcher Award, granted by the International Journal of Approximate Reasoning.

We believe that, in the fourteen years since ISIPTA’99, imprecise probability has found a solid place in
research on uncertainty quantification and related fields. Because applications are increasing, both in number
and success, we are optimistic about the future impact of imprecise probability. We think that the current
format of ISIPTA is successful, and we hope that all participants will find the meeting pleasant, informative,
and beneficial. We hope that ISIPTA’13 provides a good platform to present and discuss work, and also leads
to new ideas and collaborations.

Finally, we wish to thank several people for their support. We thank Thomas Fetz and Matthias Troffaes
for their precious advices, inherited from the organization of past ISIPTAs. We thank Serafin Moral for his
extensive and expert help in managing the system supporting the conference website.

We thank the members of the Program Committee for their excellent reviewing activities. Special thanks
also to the Local Organizing Committee, in particular, to Nathalie Alexandre and Cécile Poncin for their help.

vii
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We thank all our sponsors for their support and help in organizing this conference.

Finally, we thank all who have contributed to the success of ISIPTA’13, be it by submitting their research
results, presenting them at the conference, or by attending sessions and participating in discussions. We hope
that these proceedings will convey the state of the art of imprecise probability, raise interest and contribute to
the further dissemination of the fascinating ideas of this active and highly relevant research field.

Fabio Cozman
Thierry Denoceux
Sébastien Destercke
Teddy Seidenfeld

Compiegne, France
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Inclusion/exclusion principle for belief functions

Christelle Jacob?

jacob@isae.fr

Felipe Aguirre'

felipe.aguirre @utc.fr

Abstract

The inclusion-exclusion principle is a well-known prop-
erty of set cardinality and probability measures, that is
instrumental to solve some problems such as the evalua-
tion of systems reliability or of uncertainty over Boolean
formulas. However, when using sets and probabilities con-
jointly, this principle no longer holds in general. It is there-
fore useful to know in which cases it is still valid. This
paper investigates this question when uncertainty is mod-
elled by belief functions. After exhibiting necessary and
sufficient conditions for the principle to hold, we illustrate
its use on some applications, i.e. reliability analysis and
uncertainty over Boolean formulas. !

1 Introduction

Probability theory is the most well-known approach to
model uncertainty. However, even when the existence of
a single probability is assumed, it often happens that the
distribution is partially known, in which case one is forced
to use a selection principle (e.g., maximum entropy [13])
to work within probability theory. This is particularly the
case in the presence of severe uncertainty (few samples,
imprecise or unreliable data, ...) or when subjective be-
liefs are elicited. Many authors claim that in situations in-
volving imprecision or incompleteness, uncertainty can-
not be modelled faithfully by a single probability, and they
have proposed frameworks to properly model such uncer-
tainty: possibility theory [11], belief functions [16], impre-
cise probabilities [17], info-gap theory [3], ...

A known practical drawback of belief functions and of
other imprecise probabilistic theories is that their manipu-
lation can be computationally more demanding than prob-
abilities. Indeed, the fact that belief functions are more
general than classical probabilities prevents the use of

! HEUDIASYC, UMR 7253. Université de Technologie de Compiégne.
Centre de Recherches de Royallieu. 60205 COMPIEGNE, France

2 Institut supérieur de I’aéronautique et de 1’espace (ISAE) 10, avenue E.
Belin - Toulouse

3 Institut de Recherche en Informatique de Toulouse (IRIT), ADRIA

Sébastien Destercke!
sebastien.destercke @utc.fr

Mohamed Sallak!
mohamed.sallak @utc.fr

Didier Dubois’
dubois @irit.fr

some properties that hold for the latter but not for the
former. This is the case, for instance, of the well known
and useful inclusion-exclusion principle (also known as
the sieve formula or Sylvester-Poincaré equality).

Given a space 2, a probability measure P over this space
and a collection @y = {Ay,...,Ay|A; € 2"} of measur-
able subsets of 2, the inclusion-exclusion principle states
that

PUA) = Y (—DHP(ruesA) (D)
I Caty

where |.7| is the cardinality of .#. This equality allows
to easily compute the probability of U?_;A;. This princi-
ple is used in numerous problems, including the evaluation
of the reliability of complex systems when using minimal
paths.

In this paper, we investigate in Section 2 necessary and
sufficient conditions under which a similar equality holds
for belief functions. Section 3 then studies how the re-
sults apply to the practically interesting case where events
A; and focal sets are Cartesian products. Section 4 then
shows that such conditions are met for specific events of
monotone functions, and applies this result to the reliabil-
ity analysis of multi-state systems. Finally, Section 5 com-
putes the belief and plausibility of Boolean formulas ex-
pressed in normal forms.

2 General Additivity Conditions for Belief
Functions

After introducing notations, Section 2.2 provides general
conditions for families of subsets for which the inclusion-
exclusion principle holds for belief functions. We then in-
terest ourselves to the specific case where focal sets of be-
lief functions are Cartesian products of subsets.

2.1 Setting

A mass distribution [16] defined on a (finite) space 2" is a
mapping m : 2% — [0,1] from the power set of 2" to the
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unit interval such that m(0) =0 and Y pc o m(E) = 1. A
set E that receives a strictly positive mass is called focal
set, and the set of focal sets of m is denoted by .%,,. From
the mapping m are usually defined two set-functions, the
plausibility and the belief functions, respectively defined
forany A C 2" as

Pi(A) =Y, m(E), @)
ENAZ0
Bel(A) =) m(E)=1—PI(A°). 3)
ECA

They are such that Bel(A) < PI(A). The plausibility func-
tion measures how much event A is possible, while the
belief function measures how much event A is certain. In
the theory of evidence [16], belief and plausibility func-
tions are interpreted as confidence degrees not necessarily
related to probabilities. However, the mass distribution m
can also be interpreted as the random set corresponding
to an imprecisely observed random variable [8], in which
case Bel, Pl can be interpreted as probability bounds in-
ducing a convex set & (Bel) such that

P(Bel) = {P|VA,Bel(A) < P(A) < PI(A)}

is the set of all probabilities bounded by Bel and PI. Note
that, since Bel and P! are dual (Bel(A) = 1 — PI(A)), we
can concentrate on one of them. A distribution m can be
seen as a probability distribution over sets, and in this
sense it captures both probabilistic and set-based mod-
elling: any probability p can be modelled by a mass m
such that m({x}) = p(x) and any set E can be modelled
by the mass m(E) = 1.

Consider now a collection of events o, =
{A1,...,A4]JA; C 2"} of subsets of 2" and a mass
distribution m from which can be computed a belief
function Bel. Usually, we have the inequality [16]

Bel(U_ A;) > Y (=) Bel(naerA) (@)
I C oty

that is to be compared to Eq. (1). Belief functions are said
to be n-monotonic for any n > 0. Note that we can assume
without loss of generality that for any i, j, A; € A; (other-
wise A; can be suppressed from Equation 4), that is there
is no inclusion between the sets of <7,. If Equation 4 be-
comes an equality, we will say that the belief is additive
for collection 7, or «7,-additive for short.

2.2 General necessary and sufficient conditions

In the case of two events A; and A, none of which
is included in the other one, the basic condition for the
inclusion-exclusion law to hold is that focal sets included
in A UA; should only lie (be included) in A; or A;. In-
deed, otherwise, if 3E € A; and E A, with m(E) > 0,

then

Bel(AjUAp) > m(E) + Bel(Ay) + Bel(Ay) — Bel(A] NA)
> Bel(A1) +Bel(A2) - Bel(A1 ﬂAz).

So, one must check that .%,, satisfies:
Fun 2019 = 7,0 (241 u2%)

where 2€ denote the set of subsets of C. So, one must
check that VE € .%,, such that E C A; UA», either E C A;
or E C A, or equivalently

Lemma 1. A belief function is additive for {A1,A,} if and
only if VE C Aj UA; such that (A|\A2) NE £ 0 and (As\
A})NE #0thenm(E) =0.

Proof. Immediate, as E overlaps A| and A, without being
included in one of them if and only if (A \A2)NE # 0
and (Az\Al)ﬂE#@. O

This result can be extended to larger collections of sets
y,n > 2 in quite a straightforward way

Proposition 1. %,  satisfies the  property
Ty N 20U — 0 (24 UL u2M) if and only
IfVE C (A\U...UA,), if E € %, then BA;,A; such that
(A,'\Aj)ﬂE 7£(Z)and (Aj\Ai)ﬂE 75 0.

Proof. FyN2MY-An = 7, 0 (241U, U2%)

if and only if AE € 7, N (2414 (241U u24))
ifand only if AE C (A U...UA,),E € %, such that Vi =
1,...,n,E ,@A,’

if and only if i # j,E € Fw,E L ALE A, ENA; #

0,ENA; #0
if and only if Ai # j,E € %, with (A;\A;)NE # 0 and
(Aj\Ai)ﬂE#O O

So, based on Proposition 1, we have:
Theorem 2. The equality
Bel(U A) = Y (D MBel(nyue ) (5)
I Cay

holds if and only if VE C (A1 U...UA,), if m(E) > 0, then
EA,’,AJ' such that (A,‘ \A]) NE 75 0 and (Aj \Al) NE 7é 0.

Theorem 2 shows that going from .@%-additivity for 2
given sets to .o7,;-additivity is straightforward, as ensuring
,-additivity comes down to checking the additivity con-
ditions for every pair of subsets in 7.

Note that by duality one also can write a form of inclusion-
exclusion property for plausibility functions:

PINL B = Y (—1)7IHPI(UgesB)  (6)
I CRBy

for a family of sets %, = {A; : A; € <, } where <7, satisfies
the condition of Proposition 1.
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3 When focal sets are Cartesian products

In this section, we investigate a practically important sub-
case where focal sets and events A;,i = 1,...,n are Carte-
sian products. That is, we assume that 2~ = 2l x.. . x
2P .= 2P is the product space of finite spaces 2/,
i=1,...,D. We will call the spaces 2" dimensions. We
will denote by X; the value of a variable (e.g., the state of a
component, the value of a propositional variable) on 2.

Given A C .2, we will denote by A’ the projection of A
on 2. Let us call rectangular a subset A C .2 that can
be expressed as the Cartesian product A = Al x ... x AP
of its projections (in general, we only have A C A! x ... x
AP for any subset A). Note that a rectangular subset A is
completely characterized by its projections.

In the following we study the additivity property for fam-
ilies 7, containing rectangular sets only, when the focal
sets of mass functions defined on 2 are also rectangular
(to simplify the proofs, we will also assume that all rectan-
gular sets are focal sets). Note that, in practice, assuming
sets of .o to be rectangular is not very restrictive, as in the
finite case, any set A C 2 can be decomposed into a union
of rectangular subsets.

3.1 Two sets, two dimensions

Let us first explore the case n = 2 and D = 2, that is
b = {A1,A} with A; = Al x A? for i = 1,2. The main
idea in this case is that if A} \ A, and A, \ A; are rectangu-
lar with disjoint projections, then .@%-additivity holds for
belief functions and this is characteristic.

Lemma 2. If A and B are rectangular and have disjoint
projections, then there is no rectangular subset of AUB
overlapping both A and B

Proof. Consider C = C! x C? overlapping both A and B.
So there is a' x a*> € ANC and b' x b?> € BNC. Since C is
rectangular, a' x b? and b' x a® € C. However if C CAUB
then a' x b*> € AUB and either b*> € A% or a! € B'. Since
a' € A" and b* € B? by assumption, we reach a contradic-
tion since projections are not disjoint. [

We can now study characteristic conditions for additivity
for belief functions on two sets:

Theorem 3. Additivity applied to <o = {A,A,} holds for
belief functions if and only if one of the following condition
holds

1. AjNAY=ATNA3 =0

2. A} C Aé and A% - A% (or changing both inclusion di-
rections)

2 1 . el e 21 e ‘o' o
X3 X3 P
[
1 ..
x%« . o . x%, R
[
- |
N | R S
1 1 1 1 1 1 1 1
X Xy X3 Z X Xy X3 z
Ay - As

2 2
_x3 = ] L) ] _x3 = [} [} ]
21 (oS 21, . .
X2 ( \ 2
| 1
2 2 e
x] + ‘\:771777./‘ x] + . :777.41
1 1 1 1 1 1 1
X X X3 Z X X X3 z
) ——— A,

Figure 2: Situations not satisfying Theorem 3

Proof. First note that inclusions of Condition 2 can be
considered as strict, as we have assumed A;,A; to not be
included in each other (otherwise the result is trivial).

< 1.:1f AlNAl = A3NA =0, A) and A; are disjoint,
as well as their projections. Then by Lemma 2 additivity
holds for belief functions on any two sets.

< 2.: A} C A} and A3 C A} implies that A; \ A, = A] x
(A2\A2) and A5\ A = (A} \ Al) x A3. As they are rectan-
gular and have disjoint projections, Lemma 2 applies.

= 1.: Suppose A NA, = 0 with A} NA} # 0. Then (A} N
Al) x (A2 UA3) is rectangular, not contained in A; nor Ay
but contained in A| UA3, so additivity does not hold.

= 2.:Suppose A} C A} but A3 # A?. Again, (Al NAL) x
(A2UA3) = Al x (A7 UA3) is rectangular, neither con-
tained in A nor A; but contained in A} UA5. O

Figure 1 and 2 show various situations where conditions
of Theorem 3 are satisfied and not satisfied, respectively.

3.2 The multidimensional case

We can now proceed to extend Theorem 3 to the case
of any number D of dimensions. However, this extension
will not be as straightforward as going from Lemma 1 to
Proposition 1, and we need first to characterize when the
union of two disjoint singletons is rectangular. We will call
such rectangular unions minimal rectangles. A singleton is
a degenerated example of minimal rectangle.

Lemma3. Leta={a'} x...x{a®}andb={b'} x...x
{bP} be two distinct singletons in & . Then, aUb forms a
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minimal rectangle if and only if there is only one i € [1,D]
such that a' # b

Proof. =:If a' # b’ for only one i, then aUb = {a'} x
...x{d b’} x...{aP} is rectangular.

<: Consider the case where singletons differ on two com-
ponents, say a! # b! and a® # b?, without loss of general-
ity. In this case,

aUb={{a'} x {a*} x {a®} x ... x {dP},
{b'} x {b*} x {a®} x ... x {a®}}.

The projections of aUb on dimensions 1 and 2 of 2~ are
{a',b'} and {a?,b} respectively, {a'} for i > 2. Hence,
the Cartesian product of the projections of a U b is the set
{a',b"} x {a®,b?*} x {a*} x ... x {aP}. Tt contains ele-
ments notin aUb (e.g. {a'} x x{b?} x {a’} x ... x {a"}).
Since a U b is not characterised by its projections on di-
mensions Z;, it is not rectangular, and this finishes the
proof. O

As mentioned before, any set can be decomposed into rect-
angular sets, and in particular any rectangular set can be
decomposed into minimal rectangles. Let us now show
how Theorem 3 can be extended to D dimensions.

Theorem 4. Additivity holds on <fh = {A1,A,} for belief
functions if and only if one of the following condition holds

1 Elqdistinct p.q € {1,...,D} such that AY NAS = ATn
A5=0

2. Vie{l,...,D} either A} C Al or A5 C A}

Proof. Again, we can consider that there are at least two
distinct p,q € {1,...,D} such that inclusions A} C A and
A% c A? of Condition 2 are strict, as we have assumed
A1,A; to not be included in each other (otherwise the re-
sult is trivial).

< 1.: Any two singletons a; € Aj and a; € A, will be such
that @} € A} and d), € A, must be distinct for i = p,q since
AP NAS = ATN AT = 0. Thus it will be impossible to create
minimal rectangles included in A; UA», and therefore any
rectangular set in it.

<« 2.: Let us denote by P the set of indices p such that
Al AY and by Q the set of indices ¢ such that AT C Af.
Now, let us consider two singletons a; € A; \ Ay and
ay € Ay \ Ay. Then

e Jp € P such that af € A} \ A}, otherwise a; is in-
cluded in A1 NAp

e Jg € Q such that a? € A%\ A{, otherwise a5 is in-
cluded in A NA,

but since af € A? and a € AL by definition, a; and a, must
differ at least on two dimensions, hence one cannot form a
minimal rectangle not in A; NA;.

= 1: Suppose Aj NAy = 0 with AT NA% £ 0 only for q.
Then the following rectangular set contained in A; UA»

(AlnAd) x - x (AT nAT) x (A7UAd)
x (AT nATt) . x (AP nAD) 7

is neither contained in A nor A;, so additivity will not
hold.

= 2.: suppose Aj NA, # 0 and AY Z A, AY 2 A% for some
q. Again, the set (7) is rectangular, neither contained in A}
nor A, but contained in A UA». O

Using Proposition 1, the extension of <7,-additivity to D-
dimensional sets is straightforward:

Theorem 5. Additivity holds on <fy = {Ay,...,An} for
belief functions if and only if, for each pair A;,A;, one of
the following condition holds

1. A distinct p,q € {1,...,D} such thatAfﬂA? =AIN
AT=0

2. VEe{l,...,D} either Af C AY or A% C A]

3.3 On the practical importance of rectangular focal
sets

While limiting ourselves to rectangular subsets in .2¢ is not
especially restrictive, the assumption that focal sets have
to be restricted to rectangular sets may seem restrictive (as
it is not allowed to cut any focal set into smaller rectan-
gular subsets without redistributing the mass). However,
such mass assignments on rectangular sets are found in
many practical situations:

e such masses can be obtained by defining marginal
masses m' on each space 2%, i =1,...,D and then
combining them under an assumption of (random set)
independence [7]. In this case, the joint mass m as-
signs to each rectangular set E the mass

D . .
m(E) = []m'(E). )

i1

Additionally, computing belief and plausibility func-
tions of any rectangular set A becomes easier in this
case, as

Bel(A) = ]Q[Beli(Ai), PI(A) = ]Q[Pl"(Af), )
i=1 i=1

where Bel i, Pl are the measures induced by m';
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e as all we need is to restrict masses to product events,
we can also consider cases of unknown independence
or of partially known dependence, as long as this
knowledge can be expressed by linear constraints on
the marginal masses [1];

e using more generic models than belief functions is
possible [9], since the mass positivity assumption can
be dropped without modifying our results.

4 Inclusion-exclusion for monotone
functions

In this section, we show that the inclusion-exclusion prin-
ciple can be applied to evaluate some events of interest for
monotone functions, and we provide an illustration from
Multi-State Systems (MSS) reliability.

4.1 Checking the conditions

Let ¢ : 2°"P — % be a D-placed function, where 2/ =
{x],... ,xij} is a finite ordered set, for every j=1,...,D.
We note <; the order relation on .2 and assume (with-
out loss of generality) that elements are indexed such that
x! <jxj iff i < k. We also assume that the output space
% is ordered and we note <g the order on ¢/, assuming
an indexing such that y; <# y; iff i < k. Given two ele-
ments x,y € 2P, we simply write x >y if x/ >; y/ for
j=1,...,n,and x <y if moreover x # y (i.e., x/ <; y/ for
at least one j).

We assume that the function is non-decreasing in each of
its arguments X/, that is

I D I
¢(x,-1,...7xfé,...,xiD) <o (Z)(xil,...,xfz,..., i) (10)

iff iy < z'[ Note that a function monotone in each variable
XJ can always be transformed into a non-decreasing one,
simply by reversing<; for those variables X/ in which ¢
is non-increasing.

We now consider the problem of estimating the uncertainty
of some event {¢(-) > d} (or {¢(-) < d}, obtained by du-
ality). Evaluating the uncertainty over such events is in-
strumental in a number of applications, such as risk anal-
ysis [2]. Given a value d € ¢/, let us define the concept of
minimal path and minimal cut vectors.

Definition 1. A minimal path (MP) vector x of function
¢ for value d is an element x € 2°""P such that ¢ (x) > d
and ¢(y) < d for any x >y (x is a minimal element in
{x:¢9(x) >d}).

Definition 2. A minimal cut (MC) vector x of function ¢
for value d is an element x € 2°"? such that ¢(x) < d
and ¢(y) > d for any x <y (x is a maximal element in

{x:9(x) <d}).

Let py,...,pp be the set of all minimal path vectors of
some function for a given performance level d (means
to obtain minimal paths are provided by Xue [18]).
We note A,, = {x € 2 1"P|x > p;} the set of configura-
tions dominating the minimal path vector p; and @ =
{Ap,,...,Ap,} the set of events induced by minimal path
vectors. Note that

Ap = <P W >; ply (11)

is rectangular, hence we can use results from Section 3.

Lemma 4. The rectangular sets </ induced by minimal
path vectors satisfy Theorem 5

Proof. Consider two minimal path vectors A,,, A P and a
dimension 4, then either {x’ >, p{} C {x’ >, pﬁ} or {x >,
pi} 2 {x = pl}. m

It can be checked that {x € Z'1"P|¢(x) >d} = Ul A,
‘We can therefore write the inclusion/exclusion formula for
belief functions:

Bel(¢(x)>d) = Bel(Ay U...UAp,)
= Y (=D Bel(nuesA),
ICAp
= 1=Pl(¢(x) <d) (12)

Under the hypothesis of random set independence, com-
puting each term simplifies into

D
Bel(Ay,N...NAy) = []Bel({x' > max{p},...,p;})
' i=1

The computation of Bel(¢(x) < d) can be done simi-
larly by using minimal cut vectors. Let 4],...,%c be
the set of all minimal cut vectors of ¢. Then Ay =

fxre 2P <G}y = P (W < %/} is rectangular
and we have the following result, whose proof is similar

to the one of Lemma 4.

Lemma 5. The rectangular sets <ty induced by minimal
cut vectors satisfy Theorem 5

Denoting by % = {Ay,,...,A¢.} the set of events
induced by minimal cut vectors, we have that
{xe Z'P|¢(x) <d} = U A, hence applying the
inclusion/exclusion formula for belief functions gives

Bel(¢(x) <d) = Bel(Ag U...UAg.)

= Y (=) Bel(nyuesA),
I Cdly

= 1-Pl(¢(x) > d). (13)

Let us now illustrate how this result can be applied to reli-
ability problems.
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4.2 Application to Multi-State Systems (MSS)
reliability

Using the inclusion/excusion formula is a classical way
of estimating system reliability. In this section we show
that, thanks to our results, we can extend it to the case
where system components can be in multiple states and
where the uncertainty about these states is given by belief
functions. We refer to Lisnianski and Levitin [15] for a
detailed review of the problem.

MSS analysed in this section are such that

e their components are s-independent, meaning that the
state of one component has no influence over the state
of other components;

o the states of each component are mutually exclusive;

e the MSS is coherent (if one state component effi-
ciency increases, the overall efficiency increases).

Let us now show that for such systems, we can define min-
imal path sets and minimal cut sets that satisfy the exclu-
sion/inclusion principle.

In reliability analysis, variables X/, j=1,...,D corre-
spond to the D components of the system and the value
x{ is the ith state of component j. Usually, states are or-
dered according to their performance rates, hence we can
assume the spaces .2/ to be ordered. 2 '*P corresponds
to the system states and % = {y1,...,yy} is the ordered
set of global performance rates of the system.

The structure function ¢ : 2 1P — % links the system
states to its global performance. As the system is coherent,
function ¢ is non-decreasing, in the sense of Eq. (10).

As a typical task in multi-state reliability analysis is to es-
timate with which certainty a system will guarantee a level
d of performance, results from Section 4.1 directly apply.

Example 1. Let us now illustrate our approach on a com-
plete example, inspired from Ding and Lisnianski [10].

In this example, we aim to evaluate the availability of a
flow transmission system design presented in Fig. 3 and
made of three pipes. The flow is transmitted from left to
right and the performance levels of the pipes are measured
by their transmission capacity (tons of per minute). It is
supposed that elements 1 and 2 have three states: a state
of total failure corresponding to a capacity of 0, a state of
full capacity and a state of partial failure. Element 3 only
has two states: a state of total failure and a state of full
capacity. All performance levels are precise.

The state performance levels and the state probabilities
of the flow transmitter system are given in Table 2.
These probabilities could have been obtained the impre-
cise Dirichlet model [4] considered in Li et al. [14]. We

Figure 3: Flow transmission system

aim to estimate the availability of the system whend = 1.5.
The minimal paths are

p1= (x},x%,x%) =(0,1.5,4), po = (x%,x%,xg) =(1.5,0,4).

The set A, and A, of vectors a such thata > py, b > p»
are

Ay ={0,1,1.5} x {1.5,2} x {4} and
Ay, = {1.5} x{0,1.5,2} x {4},

and their intersection A,, NA,, consists of vectors ¢ such
that ¢ > p; V pp (with V = max), that is:

Ap NAy, = {1.5) x {1.5,2} x {4}.

Applying the inclusion/exclusion formula for a requested
level d = 1.5, we obtain

Bel(¢p > 1.5) = Bel(A,,)+ Bel(A,,) — Bel(A,, NA,,)

For example, we have

Bel(Ap,) Bel({0,1,1.5} x {1.5,2} x {4})
= Bel({0,1,1.5}).Bel({1.5,2}).Bel({4})
= 1%0.895%0.958

= 0.8574

and Bel(Ap,), Bel(A, NAp,) can be computed similarly.
Finally we get

Bel(9p >1.5) = 0.8574+0.7654 —0.6851 = 0.9377

and by duality with Bel(¢ < 1.5), we get

Pl(p >15) = 1—Bel(¢p <1.5)=0.9523.

The availability A; of the flow transmission system
for a requested performance level d = 1.5 is given by
[Bel(A),PI(A)] =[0.9377,0.9523].

5 The case of Boolean formulas

In this section, we consider binary spaces .2, and lay bare
conditions for applying the inclusion/exclusion property to
Boolean formulas expressed in Disjunctive Normal Form
(DNF).
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X! 00 0o o0 0 0 1 1 1 11 1 15 15 15 15 15 15
X 0 0 15 15 2 2 0 0 15 15 2 2 0 0 15 15 2 2
x 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4
y=®(x'’x¥) 0 0 O0 15 0 2 o0 I 0 25 0 3 0 15 0 3 0 35
Table 1: Performance rates of the oil transmission system
X/ 1 2 3 Consider the first condition of Theorem 5

p{ [0.096,0.106] [0.095,0.105] -

py 10.095,0.105] [0.195,0.205]  [0.032,0.042]
pé [0.799,0.809] [0.7,0.71] [0.958,0.968]
g{ 0 0 -
gé 1 1.5 0
gé 1.5 2 4

Table 2: Parameters of the flow transmission system

In propositional logic, each 27/ = {x/,x'} can be associ-
ated to a variable also denoted by x;, and 2~ LD ig the set
of interpretations of the propositional language generated
by the set ¥ of variables x;. In this case, x' is understood as
an atomic proposition, while X' denotes its negation. Any
rectangular setA C 2~ I:D ¢an then be interpreted as a con-
junction of literals (often called a partial model), and given
a collection of n such partial models 7, = {Ay,...,A,},
the event A; U...UA, is a Boolean formula expressed in
Disjunctive Normal Form (DNF - a disjunction of conjunc-
tions). All Boolean formulas can be written in such a form.

A convenient representation of a partial model A is in
the form of an orthopair [6] (P,N) of disjoint subsets
of indices of variables P,N C [1,D] such that Apy) =
Aiep X A Aren X Then a singleton in 27" is of the form
Neep XA Akep)?k, i.e. corresponds to an orthopair (P,P).

We consider that the uncertainty over each Boolean vari-
able x' is described by a belief function Bel’. For sim-
plicity, we shall use x' as short for {x'} in the argument
of set-functions. As 2! is binary, its mass function m’
only needs two numbers to be defined, e.g., I! = Bel’(x')
and ' = PI'(x"). Indeed, we have Bel'(x') = I' = m'(x"),
Pli(x') = 1 —Bel'(x') = 1 —m'(¥) and m'(2") = u' — I
For D marginal masses m’ on 2, i =1,...,D, the joint
mass m on 2 P can be computed as follows for any par-
tial model A py), applying Equation(8):

m(A(RN)):HliH(I—ui) H (ui—li)

icP ieN i¢PUN

(14)

We can particularize Theorem 5 to the case of Boolean
formulas, and identify conditions under which the belief
or the plausibility of a DNF can be easily estimated us-
ing Equality (1), changing probability into belief. Let us
see how the conditions exhibited in this theorem can be
expressed in the Boolean case.

p#qe{l,...,D} such that A7 N A7 = AT n AT =0.

Note that when spaces are binary, Af =xP (if p € P),
or A =P (if p € N;), or yet A? = 277 (if p & P,UN;).
A;NA; = 0 therefore means that for some index p, p €
(P,NN;j)U(P;NN;) (there are two opposite literals in the
conjunction).

The condition can thus be rewritten as follows, using or-
thopairs (P;,N;) and (P;,N;):
dp#qge{l,...,D} such that p,q € (P;,NN;)U(P;NN;).

For instance, consider the equivalence connective x! <=
= (x'Ax?) V(X' AX?) so that A} = x! Ax? and A, =
! AX%. We have p=1€P NNy,g=2¢€ P NN, hence
the condition is satisfied and Bel(x! <= x?) = Bel(x' A
x?) + Bel (%! AX?) (the remaining term is Bel(0).

The second condition of Theorem 5 reads
Ve € {l,...,D} either A¢ QA§ orA§ C Af

and the condition Af - Aﬁ. can be expressed in the Boolean
case as:

{e (Pl ﬂﬁj) U (Niﬂﬁj) U (F,ﬂﬁiﬂﬁjﬂﬁj).

The condition can thus be rewritten as follows, using or-
thopairs (B;,N;) and (P;,N;):

PNNj=0and P,NN; =0
For instance consider the disjunction xPv %, where A} =

x! and Ay = ¥, so that Py = {1}, P, = {2},N; =N, = 0.
So Bel(x! V x*) = Bel(x") + Bel (x*) — Bel (x' Ax?).

We can summarize the above results as

Proposition 6. The set of partial models <, =
{A1,...,A,} satisfies the inclusion/exclusion principle if
and only if, for any pair A;,A;j one of the two following
conditions is satisfied:

e dp#qe{l,....D}s.t. p.g € (BNN;)U(P;NN;).

° PiﬂN,-:(Z)andeﬁNi:(D

This condition tells us that for any pair of partial models, :
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e cither conjunctions A;,A; contain at least two oppo-
site literals,

e or events A;,A; have a non-empty intersection and
have a common model.

These conditions allow us to check, once a formula has
been put in DNF, whether or not the inclusion/exclusion
principle applies. Important particular cases where it ap-
plies are disjunctions of partial models having only pos-
itive (negative) literals, of the form A; U...UA,, where
Ni=...=N,=0(P, =...= P, =0). This is the typical
Boolean formula one obtains in fault tree analysis, where
the system failure is due to the failures of some subsets of
components, the latter failures being modelled by positive
literals. More generally, the inclusion/exclusion principle
applies to disjunctions of partial models which can, via a
renaming, be rewritten as a disjunction of conjunctions of
positive literals: namely, whenever a single variable never
appears in a positive and negative form in two of the con-
junctions.

As an example where the inclusion/exclusion principle
cannot be applied, consider the formula x! v (¥! A x?)
(which is just the disjunction x! vV x> we already consid-
ered above). It does not hold that Bel(x' v (X' Ax?) =
Bel(x') + Bel (' Ax?), since the latter sum neglects m(x?),
where x? is a focal set that implies neither x! nor ! A x?.
Note that this remark suggests that normal forms that are
very useful to compute the probability of a Boolean for-
mula efficiently may not be useful to speed up compu-
tations of belief and plausibility degrees. For instance,
x' v (' Ax?) is a binary decision diagram (BDD) [5] for
the disjunction, and this form prevents Bel(x' v x*) from
being computed using the inclusion/exclusion principle.

We can give explicit expressions for the belief and plausi-
bility of conjunctions or disjunctions of literals in terms of
marginal mass functions:

Proposition 7. The belief of a conjunction Cipyy =

/\ker A /\keNx
ViepX V \Vien X of literals forming an orthopair (P,N)
are respectively given by:

and that of a disjunction Dpy) =

Bel(Cipyy) =TI [J(1 o) (15)

ieP ieN
Bel(Dipy)) =1—-[J(1=1)] ] (16)
iepP ieN

Proof. Bel(Cpy
tion (9) to Cp).

)) can be obtained by applying Equa-

For Bel(D(py)), we have
PI(Ciyp) = Pl(Aienx' ANicpX')
= H(l—li)Hui
ieN icP
= 1-(1-JJa—-1)]]w)
ieN ieP

= 1 7361(\/,'61\/?' V \/iepxi)

where the second equality following from Equation (9).
O

Using the fact that Bel(Cy
deduce

) =1 =Pl(Dpyy), we can

PI(Dpy) _1—1‘[11]'[1—14 (17)

icP ieN

=[]« -1) (18)

icP ieN

To compute the plausibility of a formula ¢, we can put
it in conjunctive normal form, that is as a conjunction of
clauses /\é‘:1 k; where the k;’s are disjunctions of literals.
Then we can write:

Pl(¢) =1—Bel(— ( — IK,))*I—Bel( 10k) (19

Noticing that the terms —k; are rectangular (partial mod-
els), we can apply Proposition 6 again (this trick can be
viewed as an application of results of Subsection 4.1 to
ordered scale 2" = {0 < 1}). As a consequence we can
compute the belief and the plausibility of any logical for-
mula that obeys the conditions of Proposition 6 in terms of
the belief and plausibilities of atoms x'.

Example 2. For instance consider the formula (]) (x' A
P)V(E A2) VA, withA| =x! AF2, Ay =3 Ax?, Ay =23,
It satisfies Proposition 6, and

Bel(¢) = Bel(x' AF*) 4 Bel (z' A x?)

+Bel(x3) fBel(xl AT /\x3) —Bel(il Ax? /\x3)

= l](l —u2)+(1 —ul)lz+l3(1 —l](l —Ltz) — (1 —ul)lz)

In CNF, this formula reads : (x' Vx?) A (' VX¥*) Ax>. Then:

Pl(¢) =1 —Bel((x' AX?)V (X AT VE);

= 1 — Bel(x' Ax*) — Bel(x' AF*) — Bel(%°)

+ Bel(x' A\x* AX*) + Bel (' AT NT°)
=1-1'"P—(1—u Y1 —i®) =1+ + 111 — i)
(=) (1)1 - i)

6 Conclusion

We provided necessary and sufficient conditions for the in-
clusion/exclusion principle to hold with belief functions.



ISTPTA ’13: Inclusion/exclusion principle for belief functions 11

To demonstrate the usefulness of those results, we dis-
cussed their application to system reliability and to uncer-
tainty evaluation over DNF and CNF Boolean formulas.

We can mention several lines of research that would com-
plement the present results: (1) find necessary and suf-
ficient conditions for the inclusion/exclusion principle to
hold for plausibilities in the general case (a counterpart
to Proposition 5); (2) investigate the relation between the
assumption of random set independence (made in this pa-
per) and other types of independence [12]; (3) investigate
how to decompose an event / a formula into a set of event
satisfying the inclusion/exclusion principle (e.g., classical
BDDs do not always provide adequate solutions).
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Abstract

We propose a new methodology to classify temporal
data with imprecise hidden Markov models. For each
sequence we learn a different model by coupling the
EM algorithm with the imprecise Dirichlet model. As
a model descriptor, we consider the expected value
of the observable variable in the limit of stationar-
ity of the Markov chain. In the imprecise case, only
the bounds of this descriptor can be evaluated. In
practice the sequence, which can be regarded as a
trajectory in the feature space, is summarized by a
hyperbox in the same space. We classify these static
but interval-valued data by a credal generalization of
the k-nearest neighbors algorithm. Experiments on
benchmark datasets for computer vision show that
the method achieves the required robustness whilst
outperforming other precise and imprecise methods.

Keywords. Time-series classification, credal sets,
Markov chains, credal classification.

1 Introduction

The theory of imprecise probability (IP, [17]) extends
Bayesian theory of subjective probability to cope with
sets of distributions, this providing more general and
robust models of uncertainty. These ideas have been
applied to classification and a number of IP-based, so-
called credal, classifiers for static data have been pro-
posed (e.g., [19]). A key feature of these approaches is
the ability of discriminating between hard-to-classify
instances (e.g., for Bayesian-like approaches, those
prior-dependent) for which multiple class labels are
returned in output, and the others “easy” instances
to which single labels are assigned. On the other side,
dynamical models such as Markov chains and hidden
Markov models (HMMs) have been also extended to
IP in order to model the non-stationarity of a process
(see e.g., [5, 6]). It seems therefore natural to merge
these two lines of research and develop a credal clas-
sifier for temporal data based on imprecise HMMs,
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thus generalizing methods already developed for pre-
cise HMMs (e.g., [13]).

This is achieved as follows. First, from each sequence,
we learn an imprecise HMM by means of a technique,
already tested in [3] and [16], which combines the EM
algorithm, commonly used to learn precise HMMs,
with the imprecise Dirichlet model (IDM, [18]), a
popular approach to learn IPs from (complete) data.
After this step, each sequence is associated with an
imprecise HMM. As a descriptor of this model (and
hence of the sequence), we evaluate the lower and up-
per bounds of the expected values of the features in
the limit of stationarity. This is based on a charac-
terization of the limit behaviour of imprecise Markov
chains provided in [6]. As a result, the sequence is
associated with a hyperbox in the feature space. This
represents a static, but interval-valued, datum which
can be processed by a classifier. To achieve that, a
generalization of the k-nearest neighbors algorithm to
support interval data is proposed. Overall this cor-
responds to a credal classifier (i.e., a classifier which
might return more than a single class) for temporal
data. Its performances are tested on some of the most
important computer vision benchmarks. The results
are promising: the methods we propose achieve the
required robustness in the evaluation of the class la-
bels to be assigned to a sequence and outperform the
competing imprecise method proposed in [3] with re-
spect to state-of-the-art metrics [20] for performance
evaluation. The performance is also good when com-
paring the algorithm with the dynamic time warp-
ing, a state-of-the-art approach to the classification
of temporal sequences, whose performance degrades
when coping with multidimensional data [14].

2 Temporal data

Let us introduce the key features of our approach and
the necessary formalism for the precise case. Variables
01,04, ...,O7 denote the observations of a particular
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phenomenon at 7' different (discrete) times. These
are assumed to be observable, i.e., their actual (real)
values are available and denoted by 01,09, ..., 07.

If the observations are all sampled from the same dis-
tribution, say P(O), the empirical mean converges to
its theoretical value (strong law of large numbers):

. Z?:l 0i _ e
lim =5 = / o- P(o) - do. (1)

T—400 oo
Under the stationarity assumption, the empirical
mean is therefore a sensible descriptor of the sequence.
More generally, observations at different times can be
sampled from different distributions (i.e., the process
can be non-stationary). Such a situation can be mod-
eled by pairing O; with an auxiliary discrete vari-
able X;, for each t = 1,...,T. Variables {X;}] ;
are in correspondence with the generating distribu-
tions: they all take values from the same set, say X,
whose M elements are in one-to-one correspondence
with the different distributions. In other words, for
eacht =1,...,T, O, is sampled from P(O;|X; = ),
and P(O|zy) = P(O|xy) if and only if zp = xy.

Variables {X;}1_, are, generally speaking, hidden
(i.e., their values are not directly observable). The
modeling of the generative process requires there-
fore the assessment of the joint mass function
P(Xi,...,Xr). This becomes particularly simple
under the Markovian assumption: given X; 1, all
previous values of X are irrelevant to X, i.e.,
P(Xt|.%‘t_1,.13t_2, ce ,.Tl) = P(thxt—l)- Together
with chain rule, this implies the factorization:!

T
P(z1,...,27) = P(xl)'HP(xt‘xt—l)v (2)

t=2

for each (xy,...,x7) € XT. If the transition
probabilities among the hidden variables are time-
homogeneous, the specification of the joint model re-
duces to the assessment of P(X;) and P(X¢|X:—1),
i.e., M? + M parameters. A model of this kind is
called a Markov chain and, in the time-homogeneous
case, it is known to assume a stationary behaviour on
long sequences, i.e., the following limit exists:

P(z) := lim P(Xrp =x), (3)
T—00

where the probability on the right-hand side is ob-
tained by marginalizing out all the variables in the
joint in Eq. (2) apart from Xp. The marginal proba-
bility mass function P over X is called the stationary
mass function of the chain and it can be computed
by standard algorithms.

1We use P for both probability mass functions and densities.

In this limit, also the generation of the observations
becomes stationary, i.e.,

P(0)= > P(Olz)- P(). (4)

zeX

Again, as in Eq. (1), the empirical mean converges to
the theoretical value, which is now:

T 0: 5 +oo
lim 2%1 = ZP(:C)./ 0-P(o|z)-do. (5)

T—+o0
zeX >

The two key points of this paper are the following:
(i) emphasize the fact that, although coincident in
the limit of infinite sequences, the weighted average
of the means on the right-hand side of Eq. (5) pro-
vides a better descriptor than the empirical mean on
the left-hand side; (ii) extend Eq. (5) to the imprecise-
probabilistic framework and then use the new descrip-
tor for robust classification of temporal data.

Concerning (i), the important remark is that the
arithmetic mean does not take into account the tem-
poral correlation of the data, while the learning of
the transition probabilities P(X;|X;—1) and hence the
corresponding value of the stationary mass function
takes that into account. An empirical validation of
this point is reported in Section 5. A discussion of
point (ii) is in the next two sections.

3 Imprecise hidden Markov models

By merging the Markov chain defined in the previous
section together with the time-homogeneous emission
terms P(O¢|X}), we define a probabilistic model over
the whole set of variables X1, O, ..., X7, Or which is
called a hidden Markov model (HMM). An imprecise
HMM is obtained by simply replacing with credal sets,
i.e., convex sets of probability mass functions over
the same variables, the precise local models P(X1),
{P(Xti1|7t) }a,cx and {P(O¢|zt) }o,cx. While a pre-
cise HMM defines a single distribution over its whole
set of variables, an imprecise HMM defines a joint
credal set, which is the convex closure of the whole set
of joint distributions obtained when each local model
takes its values in the corresponding credal set. In the
following we explain, respectively: (i) how to learn an
imprecise HMM from a sequence; (ii) how to extend
Eq. (5) to the case of imprecise HMMs; (iii) how to
perform classification with these models.

3.1 Learning

The hidden variables X7, ..., X7 of a HMM, no mat-
ter whether precise or imprecise, are by definition di-
rectly unobservable. Algorithms to learn model pa-
rameters from incomplete data in HMMs are therefore
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needed. A typical choice in the precise case is the EM
algorithm, which finds a local optimum of the likeli-
hood by an iterative procedure. Extending EM to IP
is not trivial: credal sets can be described by a vari-
able number of parameters (e.g., its extreme points),
which cannot be easily tracked during the iteration.?

Despite the lack of a sound version of EM for IP, a
simple heuristic approach based on the IDM has been
shown to provide reasonable estimates [3]. In practice
the counts required by the IDM to learn IPs, which
are not available for incomplete data, are just replaced
by the expectations provided by the standard EM. For
the first variable in the chain, this corresponds to the
following constraints:

Eln(z1)] Eln(z1)] + s

D0, Bln(z1)] + 5 D, Eln(z1)] +
(6)

for each x; € X, where E[n(z1)] is the EM expec-
tation, after convergence, for X; = xy, the sum is
over all the elements of X and s is a nonnegative
real parameter which describes the level of cautious-
ness in the learning process. Intervals in Eq. (6) are
used to compute the credal set K(X;) made of the
probability mass functions consistent with these (lin-
ear) constraints. We similarly proceed for the tran-
sition credal sets {K(X¢|zt—1)}s,_,cx. Considering
the freedom in the choice of the number of hidden
states M, it is worth noticing that the above IDM-
based probability intervals are invariant with respect
to that number.

< P(z1) <

Regarding the emission part of the model (i.e., the re-
lation between hidden and observable variables), note
that the discussion was introduced in the case of a
scalar observable O just for sake of simplicity. In
real-world problems, we often need to cope with se-
quences of arrays of F' > 1 features, say o1,...,07,
with o, € R¥ for each t = 1,...,T. To define a
joint model over the features we assume their condi-
tional independence given the corresponding hidden
variable. A Gaussian distribution is indeed used, for
each feature, to model the relation between hidden
and observable variables:

)-do; = H N ohy dof, (7)

P(Ot|l‘t Uf(xt)

where 0,{ is the f-th component of the array o, N¥ is
a Gaussian density with mean p and standard devia-
tion o, and pys(x;) and oy(x;) are the EM estimates
for the mean and standard deviation of the Gaussian

2 An exception is the EM for belief functions proposed in [7].
Yet, belief functions correspond to a special class of credal sets
parametrized by a fixed number of elements.

over OZ given that X, = x;.3

Regarding the choice of the number of hidden states
M = |X|, with Gaussian emission terms the clus-
tering method in [12] provides an optimal criterion
to assess this value. The cluster information (means
and standard deviations) also defines a possible ini-
tialization of for the emission terms in the EM, while
uniform choices are adopted for the transition and the
prior. Overall, after this learning step, the sequence of
observations in the F-dimensional space is associated
with a time-homogeneous imprecise HMM, with im-
precise specification of the transition and prior prob-
abilities and precise specification of the (Gaussian)
emission terms.

3.2 An interval-valued descriptor for
imprecise HMMs

In this section we show how the descriptor proposed
in Eq. (5) for precise HMMSs can be generalized to the
case of the imprecise HMM we learn from a sequence
of feature vectors. In the imprecise case the station-
ary mass function of a Markov chain is replaced by
a stationary credal set, say K(X). Its computation,
which is briefly summarized in Appendix A, can be
obtained by Choquet integration [6]. Thus, in this
generalized setup, distribution P(X) in Eq. (5) is only
required to belong to K (X). Note that K is a finitely
generated credal set which can be equivalently charac-
terized by (a finite number of) linear constraints. Re-
garding the emission terms, nothing changes as they
are assumed to be precise. Thus, for each feature oy,
with f =1,..., F, we evaluate the bounds of the ex-
pectation as

A ; P

of = min N P(a)-py(a), (8)
P(X)eK(X) =3 !

o/ = max g P(x (9)

P(X)EK(X) *

Both of and &/ are solutions of linear programs with
|X| optimization variables and an equal number of
linear constraints (see Appendix A). The interval
[of, of | represents therefore the range of the descriptor
in Eq. (5) in the case of imprecise HMMs.

The lower and upper vectors 0,0 € RY are indeed ob-
tained by applying the optimization is Egs. (8) and (9)
to each feature. They define a hyperbox in the feature
space, which can be regarded as the range of the F-
dimensional version of the descriptor in Eq. (5) when

3The choice of using a single Gaussian, separately for each
feature, is just for the sake of simplicity. An extension of the
methods proposed in this paper to a single multivariate Gaus-
sian with non-diagonal covariance matrix would be straightfor-
ward, even with mixtures.
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IPs are introduced in the model. Overall, a static
interval-valued summary of the information contained
in the temporal sequence has been obtained: the se-
quence, which is a trajectory in the feature space is
described by a hyperbox in the same space (Fig. 1). In
the next section, a standard approach to the classifi-
cation of static data is extended to the case of interval
data like the ones produced by this method.

frame T

Ol

Figure 1: From trajectories to hyperboxes in the fea-
ture space. The example refers to footage data from
which two features are extracted at the frame level.

4 K-nearest neighbors for interval
data

4.1 Distances between hyperboxes

Consider the F-dimensional real space R¥. Let us
make it a metric space by considering, for instance,
the Manhattan distance which, given x,y € RF, de-
fines their distance ¢ as

F

3(x,y) =Y |y —ysl- (10)

f=1

Given two points x,X € R such that, for each f =
1,...,F, z; <Ty, the hyperbor associated with these
two points is denoted by [x,X] and defined as

x,X:={xeR"|z; <azy<mp}. (11)

The problem of extending a distance defined over
points to hyperboxes can be solved by considering the
general ideas proposed in [1].

Given two hyperboxes, their distance can be charac-
terized by means of a real interval whose bounds are,
respectively, the minimum and the maximum distance
(according to the distance defined for points) between
every possible pair of elements in the two hyperboxes.
Accordingly, the lower distance between two boxes is:

o(pe X [y, ¥]) = x€[x Ifr]li;q‘s[y vl 20%,¥), (12)

and similarly, with the maximum instead of the min-
imum for the upper distance 0([x,X],[y,y]). With

the Manhattan distance in Eq. (10), the evaluation of

the lower (and similarly for the upper) distance as in
Eq. (12) takes a particularly simple form:

3(xx.[y.¥) =) min =yl (13)

z;<zf<T

The optimization in the F-dimensional space is in fact
reduced to F', independent, optimizations on the one-
dimensional real space. Each task can be reduced to
linear program whose optimum is in a combination of
the extremes, unless intervals overlap. In other words:

min |xf—yf:min{ A
f |£f—yf|a|$f—yf|

z,<zy<T
Y,<yr<ys

(14)
unless Ty > yf or Yy > Ty, a case where the lower
distance is clearly zero. A dual relation holds for the
upper distance case with no special discussion in case
of overlapping.

Replacing the Manhattan with the Euclidean distance
makes little difference if we consider only the sum of
the squared differences of the coordinates without the
square root.* In this case the lower distance is the

sum, for f =1,..., F of the following terms:
. 2
min _ (xr —y¢)°. 15
lfgwfgf,( F=Yr) (15)
Y,SYr<ys

This is the minimum of a convex function, which is
attained on the border of its (rectangular) domain. It
is straightforward to check that the minimum should
lie on one of the four extreme points of the domain.
Thus, the minimum in Eq. (15) is the minimum of
the squares of the four quantities in Eq. (14). Again,
the only exception is when the two intervals overlap
(the global minimum is in zy = y¢), and the lower
distance becomes zero. Similar considerations hold
for the upper distance.

4.2 Hyperboxes classification

The above defined interval-valued distance for hyper-
boxes is the key to extend the k-nearest neighbors
(k-NN) algorithm to the case of interval-valued data.
First, let us review the algorithm for pointwise data.

Let C denote a class variable taking its values in a
finite set C. Given a collection of supervised data
{e?, x4} 2| classification is intended as the problem
of assigning a class label ¢ € C to a new instance X on
the basis of the data. The k-NN algorithm for k =1

4The square root is a monotone function, which has no effect
on the ranking-based classification method we define here.
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assigns to X the label associated with the instance
nearest to X, i.e., the solution is é := ¢* with

d" = argming_, _ pd(x, x7). (16)

For k > 1, the k nearest instances need to be consid-
ered instead: a voting procedure among the relative
classes decides the label of the test instance.

To extend this approach to interval data just replace
the sharp distance among points used in Eq. (16) with
the interval-valued distance for hyperboxes proposed
in Section 4.1. Yet, to compare intervals instead of
points a decision criterion is required.

To see that, consider for instance three hyperboxes
and the two intervals describing the distance between
the first hyperbox and, respectively, the second and
the third. If the two intervals do not overlap, we can
trivially identify which is the hyperbox nearer to the
first one. Yet, in case of overlapping, this decision
might be controversial. The most cautious approach
is interval dominance, which simply suspends any de-
cision in this case.

When applied to classification, interval dominance
produces therefore a credal classifier, which might re-
turn more than a class in output. If the set of optimal
classes according to this criterion is defined as C*, we
have that ¢ € C* if and only if there exists a datum
(¢*,x*) such that ¢ = ¢* and

5(x', %, [x,%) < o(x*, %Y, [x. %) (17)

for each d = 1,...,D such that ¢ # ¢*. Classes
in the above defined set are said to be undominated
because they correspond to instances in the dataset
whose interval-valued distance from the test instance
is not clearly bigger that the interval distance associ-
ated to any other instance. A demonstrative example
is in Fig. 2. Note also that the case k£ > 1 simply
requires the iteration of the evaluation in Eq. (17).

02

Hiry

BE=Es
ek

Figure 2: Rectangular data processed by the 1-NN
classifier. Gray background denotes data whose in-
terval distance from the test instance is undominated.
Points inside the rectangles describe consistent precise
data and the diamond is the nearest instance.

Ol

4.3 Summary and related work

By merging the discussions in Sections 3 and 4 we
have a classifier, to be called iHMM-KNN, for tem-
poral data based on imprecise HMMs. In summary,
for each sequence we: (i) learn an imprecise HMM
(Section 3.1); (ii) compute its stationary credal set
(Appendix A); (iii) solve the LP tasks required to
compute the hyperbox associated with the sequence
(Section 3.2). These supervised hyperboxes are finally
used to learn a credal classifier (Section 4).

Another credal classifier for temporal data based on
imprecise HMMs, called here iHMM-Lik, has been
proposed in [3]. Each imprecise HMM learned from a
supervised sequence is used to “explain” the test in-
stance, i.e., the lower and upper bounds of the prob-
ability of the sequence are evaluated. These (proba-
bility) intervals are compared and the optimal classes
according to interval dominance returned.

Regarding traditional (i.e., not based on IP) clas-
sifiers, dynamic time warping (DTW) is a popular
state-of-the-art approach. Yet, its performance de-
grades in the multi-feature (i.e., F > 1) case [14].
Both these methods will be compared with our clas-
sifier in the next section.

Other approaches to the specific problem of classify-
ing interval data have been also proposed. E.g., re-
maining in the field of IP, the approach proposed in
[15] can be used to define a SVM for interval data.
Yet, time complexity increases exponentially with the
number of features, thus preventing an application of
the method to data with high feature dimensionality.
This is not the case for iIHMM-kNN, whose complexity
is analyzed below.

4.4 Complexity analysis

Our approach to the learning of imprecise HMMs has
the same time complexity of the precise case, namely
O(M?TF). The computation of the stationary credal
set is O(T'), while to evaluate the hyperboxes a LP
task should be solved for each feature, i.e., roughly,
O(M?3F). Also the distance between two hyperboxes
can be computed efficiently: the number of operations
required is roughly four times the number of opera-
tions required to compute the distance between two
points, both for Manhattan and Euclidean metrics.
To classify a single instance as in Eq. (17), lower
and upper distances should be evaluated for all the
sequences, i.e., O(DF). Overall, the complexity is
linear in the number of features and in the length of
the sequence and polynomial in the number of hidden
states. Similar results can be found also for space.
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4.5 Metrics for credal classifiers

Credal classifiers might return multiple classes in out-
put. Evaluating their performance requires there-
fore specific metrics, which are reviewed here. First,
a characterization of the level of indeterminacy is
achieved by: the determinacy (det), i.e., percentage
of instances classified with a single label; the aver-
age output size (out), i.e., average number of classes
on instances for which multiple labels are returned.
For accuracy we distinguish between: single-accuracy
(sing-acc), i.e., accuracy over instances classified as a
single label; set-accuracy (set-acc), i.e., the accuracy
over the instances classified with multiple labels®.

A utility-based measure has been recently proposed
in [20] to compare credal and precise classifiers with a
single indicator. In our view, this is the most princi-
pled approach to compare the 0-1 loss of a traditional
classifier with a utility score defined for credal classi-
fiers. The starting point is the discounted accuracy,
which rewards a prediction containing ¢ classes with
1/q if it contains the true class, and with 0 other-
wise. This indicator can be already compared to the
accuracy achieved by a determinate classifier.

Yet, risk aversion demands higher utilities for
indeterminate-but-correct outputs when compared
with wrong-but-determinate ones (see [20] for details).
Discounted accuracy is therefore modified by a (mono-
tone) transformation w,, with w € [.65,.80]. A con-
servative approach consists in evaluating the whole
interval [u g5, u gg] for each credal classifier and com-
pare it with the (single-valued) accuracy of traditional
classifiers. Interval dominance can be used indeed to
rank performances.

The precise counterpart of a credal classifier is a clas-
sifier always returning a single class included in the
output of the credal classifier. E.g., a counterpart of
iHMM-KkNN is obtained by setting s = 0 in the IDM.
If a precise counterpart is defined, it is also possible to
evaluate: the precise single accuracy (p-sing-acc), i.e.,
the accuracy of the precise classifier when the credal
returns a single label; the precise set-accuracy (p-set-
acc), i.e., the accuracy of the precise classifier when
the credal returns multiple labels.

5 Experiments

5.1 Benchmark datasets

To validate the performance of the iHMM-KNN al-
gorithm we use two of the most important computer
vision benchmarks: the Weizmann [8] and KTH [11]

51n this case, classification is considered correct if the set of
labels includes the true class.

datasets for action recognition. For this problem, the
class is the action depicted in the sequence (Fig. 3).

s4

Figure 3: Frames extracted from the KTH dataset.

These data are footage material which requires a fea-
tures extraction procedure at the frame level. Our
approach is based on histograms of oriented optical
flows [4], a simple technique which describes the flows
distribution in the whole frame as an histogram with
32 bins representing directions (Fig. 4).

For a through validation also the AUSLAN dataset
[9] based on gestures in the Australian sign language
and the JAPVOW dataset [10] with speech about
Japanese vowels are considered. Table 1 reports rele-
vant information about these benchmark datasets.

Dataset | |C] | F D T
KTH; 6 | 32 150 51
KTH, 6 | 32 150 51
KTHg 6 | 32 149 51
KTH,4 6 | 32 150 51

KTH 6 | 32 599 51
Weizmann | 9 | 32 72 105-378
AUSLAN | 95 | 22 | 1865/600 | 45-136

JAPVOW | 9 | 12| 370/270 7-29

Table 1: Datasets used for benchmarking. The
columns denotes, respectively, name, number of
classes, number of features, size (test/training
datasets sizes if no cross validation has been done)
and the number of frames of each sequence (or their
range if this number is not fixed). As usually done,
the KTH dataset is also split in four subgroups.

To avoid features with small ranges being penalized
by the k-NN with respect to others spanning larger
domains a feature normalization step has been per-
formed. This is a just a linear transformation in the
feature space which makes the empirical mean of the
sample equal to zero and the variance equal to one.
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Figure 4: Low-level feature extraction. Rows correspond to different actions (i.e., class labels), columns to
subjects. In each cell, feature values are shown as gray levels, with the different feature variables on the y axis,
and frames on the x axis. Characteristic time-varying patterns are visible for each action.

5.2 Results

Our iHMM-kNN algorithm is empirically tested
against the iHMM-Lik algorithm and the DTW on
the seven datasets described in the previous section.
Five runs of ten-fold cross validation are considered
for KTH and Weizmann. A single run with fixed
test and training set is considered instead for AUS-
LAN and JAPVOW. We implemented in Matlab both
iHMM-kNN and iHMM-Lik.® Regarding DTW, the
Mathworks implementation for Matlab has been used.

Our classification algorithm has only two parameters
to be specified: the integer value of k in the k-NN
and the real parameter s of the IDM as in Eq. (6).7
We choose k = 1 because higher values could make
the classifier too indeterminate. As reported in the
second column of Table 2, small values are used also
for s. The remaining columns of that table report the
determinacies and average output size of both our al-
gorithm and iHMM-Lik (with the same value of s).
As a comment, with the selected values of s, either
the determinacy is high or the average output size is
consistently lower than the number of class labels. For
AUSLAN, in particular, despite the very high number
of classes the classifier is mostly determinate and, if
not, much fewer than the original 95 classes are re-
turned. When compared to iHMM-Lik, iHMM-kNN
is less determinate and its average output size smaller.
This can be explained by the high dimensionality of
the feature space.

Tables 3 and 4 report information about accuracy.
Results in Table 3 about single and set accuracy
clearly report a higher performance of iHMM-kNN
when compared to iHMM-Lik.

As noted in Section 4.5, the interval [u g5, u g09] pro-

6Both these tools are available as a free software at
http://ipg.idsia.ch/software.

"Remember that the method described in [12] is used to
fix the number M of states of the hidden variables. In our
experiments this number ranges between 2 and 30.

Datasot s iHMM-kNN | iHMM-Lik
det out det  out

KTH; b5 o[ .311 2.85 | .7T00 2.28
KTH, .5 | 065 3.96 | .565  2.13
KTH; b5 o[ .135 291 | .820 2.00
KTHy .5 | .040  3.31 | .600 2.42
KTH 5| 111 3.51 | .601  2.28
Weizmann | .5 | .0563 4.00 | .766 2.00
AUSLAN | .01 | .749 6.77 | .935 2.37
JAPVOW | .01 | .968 2.00 | .965 2.15

Table 2: Determinacies and average output sizes for
the benchmark datasets.

iHMM-kNN iHMM-Lik
Dataset . .
sing-acc set-acc | sing-acc  set-acc
KTH; .989 990 301 .017
KTH, 534 981 .180 .384
KTH; 901 972 .070 .083
KTHy .680 1.000 .269 .524
KTH .883 .986 .299 448
Weizmann 1.000 1.000 275 143
AUSLAN 782 .675 .021 .062
JAPVOW .958 917 .283 462

Table 3: Single and set accuracies on the benchmark.
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vides a better summary of the credal classifiers perfor-
mance by also allowing for a comparison with a tradi-
tional classifier like DTW. The results are in Table 4.
Also this descriptor shows that iHMM-kNN clearly
outperforms iHMM-Lik. This basically means that
our interval-valued descriptor provides a better sum-
mary of a sequence rather than the interval-valued
likelihood. Impressively, iHMM-kNN also competes
with the DTW, showing both the quality of our ap-
proach and the (known) degradation of the DTW per-
formance in the multiple-features case.

ical part of the whole methodology. An alternative
method, again heuristic and very naive, is therefore
tested: LIN-VAC adopts a credal set corresponding to
a linear-vacuous mizture [17] of the probability mass
functions estimated by the EM.® The results of a com-
parison with this method for the Weizmann dataset
are in Table 6. To determine the value of €, we choose
that leading to a determinacy comparable with that
of IDM-EM. The [u g5, u.g0] intervals obtained in this
way are overlapping, this suggesting the need of new,
more sophisticated, models for this learning step.

Method IDM-EM LIN-VAC
parameter §=.5 e=.03
det .053 .054
out 4.00 4.38
[u.g,{,, ’u.go] [.463, 575] [.400, .504]

iHMM-kNN | iHMM-Lik | DTW
Dataset
U.65 Ugo | Ues  U.80 acc
KTH, .659 .752 | 211 212 .613
KTH, 409 517 | 201 .225 .369
KTHj 550 .662 | .073 .076 .529
KTHy 474 597 | 281 .310 | .480
KTH 495 .604 | 283 .309 | .525
Weizmann | .463 .575 | .236 .242 | .540
AUSLAN | .680 .702 | .021 .022 | .838
JAPVOW | 946 .951 | .283 .285 .697

Table 4: Accuracies for the benchmark datasets. Best
performances are boldfaced.

Moreover, we already noted that iHMM-kNN has a
precise counterpart obtained by setting s = 0 in the
IDM constraints as in Eq. (6) and corresponding to
the precise approach described in Section 2. This al-
lows to check whether the classifier discriminates be-
tween “easy” instances (on which a single class is re-
turned) and “difficult” ones. Results in Table 5 show
that the precise single accuracy is larger than the pre-
cise set accuracy. KTH, is the only exception which
can be explained by its low determinacy.

Dataset p-sing-acc  p-set-acc | acc
KTH; .989 787 .849
KTH, .534 447 451
KTH; 901 671 .703
KTH4 .680 782 779
KTH .883 .674 .698

Weizmann 1.000 .842 .853
AUSLAN 782 351 .674
JAPVOW .958 333 938

Table 5: Precise single and set accuracy of iHMM-
kNN. The same classifier with s = 0 is used as a
precise counterpart and its accuracy is in the last col-
umn. The values of p-sing-acc in this table coincide
therefore with the sing-acc in Table 3.

As already discussed in Section 3.1, the adopted
IDM-EM approach to the learning is the most crit-

Table 6: An alternative to the IDM-EM learning ap-
proach tested on the Weizmann dataset.

Finally, to validate our argument about the descriptor
on the right-hand side of Eq. (5) being better than the
sample mean, we compare the two descriptors in the
precise case over datasets with different time lengths.
When coping with short sequences the difference is
in favor of our method (+2% on JAPVOW, +5%
KTH,) while the gap disappear with longer sequences
(e.g., —4% on Weizmann). This remark makes our
method especially suited for the classification of short
sequences.

6 Conclusions and outlooks

A new credal classifier for temporal data has been
presented. Imprecise HMMs are learned from each
sequence, and described as hyperbox in the feature
space. These data are finally classified by a general-
ization of the k-NN approach. The results are promis-
ing: the algorithm outperforms another credal clas-
sifier proposed for this task and competes with the
state-of-the-art method DTW. As a future work, we
want to investigate novel, more reliable, learning tech-
niques like for instance the likelihood-based approach
already considered for complete data in [2]. Also more
complex topologies should be considered.

8Given a mass function Pp(X), its linear-vacuous mixture
is a credal set K(X) defined by the constraints (1 — €) Po(z) <
P(z) < (1—€)Py(z)+e. This corresponds to the vacuous credal
set for e = 1 and to the original mass function for € = 0.
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A Computation of the stationary
credal set

Given an imprecise Markov chain as in Section 2, for
each X’ C X, define Qy/ : X — R, such that, Vo € X

Q2+ (7) := min Z P(2'|r),1 - Z P(z'|z)
reEX! reX\ X'/
(18)
Given this function, Vg : X — R, define ﬁg : X = R,
such that:

9 __
Ry(z) =g+ / Qpwergoon(@dt,  (19)
g

for each z € X, with g := mingcx g(z) and g :=
max,cy g(x). Proceed similarly for the unconditional
probability of the first hidden variable. In this way the
following numbers (instead of functions) are defined:

Qo = min{ S Pah1- Y P(x’)} . (20)

rzeX’ reX’

-0

7*0
Rg = g+/ Q{I’GX:g(I’)Zt}dt' (21)
g

A “lower” version of these functions and numbers can
be obtained by simply replacing the lower probabili-
ties with the uppers, maxima with the minima, and
vice versa. For each i =1,...,nlet h; : X — R. To
characterize the stationary credal set K (X), consider

P2 = maxX pyye g (x) F(2'). Given the recursion:

B (@) == R, (a), (22)
with initialization hy := I9, we obtain:
P'(2) := lim Ry , (23)
n— oo "

and similarly for the upper.
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Abstract

The paper is devoted to the description of extreme points
in the set of 2-monotone measures. We describe them
using lattices on which an extreme 2-monotone measure
is additive. We also propose the way of generation
extreme monotone measures based on the aggregation of
extreme measures with the help of multilinear extension.
We describe also the class of extreme 2-monotone
measures that are additive on the filter on which a 2-
monotone measure has positive values.

Keywords. 2-monotone measures, extreme points,
additivity on lattices, filters, partially ordered sets,
multilinear extension.

1 Introduction

2-monotone measures play an important role in the
theory of imprecise probabilities [17], because for
imprecise probabilities represented by 2-monotone
measures it is possible to find analytical solutions for
many problems and, therefore, such models are more
attractive in a computational point of view. Meanwhile,
some unsolved problems concerning 2-monotone
measures can be solved [5] if we know the structure of
extreme points of the set of all 2-monotone measures. It
is worth to mention that finding description of extreme
points of a convex set is usually a hard problem. This
problem is solved for the set of all monotone measures
[13,15], p-symmetrical measures [7,8], but for some
convex families, e.g. k -additive measures [7], is far
from the final solution.

The aim of this paper is to make one step forward in this
direction, providing some general necessary and
sufficient conditions that a 2-monotone measure is an
extreme point and giving descriptions of some special
families of them.

The paper has the following structure. We remind first
some results concerning monotone measures and criteria
of 2-monotonicity. After that we provide general
necessary and sufficient conditions that a 2-monotone
measure is an extreme point through lattices on which it
is additive. After that we remind the multilinear
extension of monotone measures and using it we define
the composition of monotone measures. We show that
the composition of extreme 2-monotone measures is an
extreme 2-monotone measure again. The paper is ended
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by describing a special class of 2-monotone measures
which are additive on the filter of sets on which a 2-
monotone measure has positive values.

2 Monotone measures
Let X be a finite set and let z:2* —[0,1] be a set

function on the powerset 2*. Then u is called a

monotone measure [9] if the following conditions hold:
1) u(@)=0 and u(X)=1;
2) ACB for A,Be 2" implies u(A)< u(B).

Let us denote the set of all monotone measures on 2 by
M, _(X) orbriefly M ifthe set X is clearly defined

mon mon

from the context. For monotone measures 4, i, € M

H(A)=ap (A)+
(1-a)u,(A), where a€[0,1] and Ae2*. Clearly,
HEM i.e. the set M

mon

we define their convex sum as

is convex and it is possible
are {0,1}-
valued monotone measures, i.e. monotone measures with
values in {0,1}. Let the algebra 2* be considered as a
partially ordered set w.r.t. By
definition, a filter f in 2* is a nonempty subset of 2%
such that Aef, AcC B implies Be f. Any filter can be
uniquely defined by the set of its minimal elements

{A,....A,}. This fact is denoted by f=(A,,...,A,). The

connection between filters of algebra 2* and {0,1}-

mon

to show [13,15] that extreme points of M

mon

inclusion of sets.

valued monotone measures is shown in the following
lemma [13].

Lemma 1. Any {0,1} -valued monotone measure n

defines a filter £ ={Ae 2% |n(A) >O} such that Sgf.
Conversely, any filter £ with De¢f defines a {0,1}-
valued monotone measure n by

1, Aef,

0, Ag¢f.

In the sequel we denote a {0,1}-valued measure as 7, if

1n(A) ={ 1

it corresponds to a filter f .
Remark 1. Clearly, a set f(r)={Ae 2" |u(A)>1} for
any given ye M, =~ and te[0,1) is a filter in algebra

mon
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1
2%, moreover, u(A) =J.77M(A)dt and if {7,1,,....t,} is
0
the set of all values of u# and 0=1¢ <1, <...<t, =1, then
k=1
M= z(tm - tz)nm,) .
i=1

3 2-monotone measures
A monotone measure i is called 2-monotone [9] if the

following inequality

u(A)+ w(B) < (AN B) + u(AL B) (2)
is fulfilled for any A, Be€ 2* . We denote the set of all 2-
(X).
The condition (2) can be simplified [3]. It is sufficient to
check inequalities of the following type:

HAVLx D+ u(AV X)) < w(A) + (AU {x, x; 1) 5 (3)
for all Ae2* and x,x;€2* such that |X\A[>2,

X, X; € X\A and x; # x;.

monotone measures on the algebra 2* by M

2—-mon

In the next we can also consider nonnegative set
functions # on 2% with (&) =0. Such set functions
are called 2-monotone if they are monotone and
inequalities (2) or equivalently inequalities (3) are
fulfilled. The next proposition shows that the
monotonicity of g is not necessary to check.
Proposition 1. Let u be a nonnegative set function on
2% with u(@)=0. Then it is 2-monotone iff inequalities
(3) are fulfilled for all Ae 2* and X, X; € 2% such that
|X\A|22, X, X, € X\A and x, EX;.

Let us consider how Proposition 1 can be strengthened if
we know that the sets on which a nonnegative set
function is positive, form a filter. In this case we say that
44 is 2-monotone on the filter £ ={Ae2* | u(A)> 0}, if
inequalities (3) are fulfilled, when AuU{x,}ef and
Au{x;}ef. In addition, we say that a set function ,
which is 2-monotone on the filter f, is also 2-monotone
on its borders if inequalities (3) are fulfilled if at least
Au{x}ef or Au{x;}ef. Next proposition is the

direct consequence of Proposition 1.
Proposition 2. Given a nonnegative set function u such

that £ ={A€2*|u(A)>0} is a filter. Then u is 2-

monotone iff it is 2-monotone on the filter £ and its
borders.

In some cases the 2-monotonicity on the filter can imply
the 2-monotonicity on its borders. The description of
such a case is given in the following proposition.
Proposition 3. Let a nonnegative set function be 2-

monotone on the filter fQ{Ae 2% |,u(A)>0} and let

¢ ={C,...,C,} be the set of its minimal elements. Then

m

U is 2-monotone on borders of £, if for every C, e &

and every x,&C, there exists a C,€, such that
{x,}=C\C,.

4 Additivity properties of 2-monotone
measures on lattices
We denote by M (X)

pr

the set of all probability

then the
core of u 1is the set of probability measures defined by

core(u)={Pe M, | P> u}. It is well known [16] that

measures on the algebra 2% . Let ue M

2-mon

core(u) is a nonempty convex set for any ue M

2-mon

and its extreme points are probability measures P,

where y:{1,2,...,n} —{1,2,...,n} is a permutation of the
set {1,2,...,n} and any P, is constructed with the help of
the chain of sets B, ={x,,}, B,={x,,%3}: -
P.(B)=u(B,),
i=1,..,n. Let us remind the result from [2,4], that can
be also found in [10].

Proposition 4. Letr ue M

B, ={x,qs-sX,,,} by the rule:

n

mon » thER the system of sets
L (u)={Ae2" |u(A)=P,(A)} is a
A,Be L (1)

ANB,AUBe L (1) and it is a maximal lattice, on

lattice w.r.t.

operations N and U, i.e. implies
which p is additive.

Remark 2. Additivity of # on £ (4) means that if
A,Be L,(u) , then

H(A)+ 1(B) = (AN B) + U(AUB) .

As we will see in the next such maximal lattices play an
important role for the extreme points description of 2-
monotone measures. Therefore, we also present here
some results showing the connections between such
lattices and partially ordered sets.

Let us assume that a maximal lattice £, on which a 2-
monotone measure 4 is additive, contains maximal

chains described by a set of permutations I'={y,}. We
put into correspondence the linear order p, on X to
each permutation yel' in a way that xp x, if
y(@) £ y(j) . Then the following theorem is valid.

Theorem 1. Let £ be a maximal lattice, on which a 2-
monotone measure U is additive, and let the maximal
chains in £ be described by a a set of permutations
I'={y,}. Consider the partial order p, = ﬂpy ! where

yell

linear orders p, are defined as above. Then {py} - is
ye

the set of all linear orders satisfying p, 2 pr..

Here is wused the wusual intersection of relations, i.e. if
P 0, € {L..,n}X{L,....,n},
defined for sets.

then p Np, is the usual intersection
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Next result can be considered as a corollary of more
general result that can be found in [10].
Theorem 2. Let p be a partial order on X and let

{py}ysr be the set of all linear extensions p, i.e. each
0, is a linear order and p, > p. Then any p,, yeT,

induces a chain of sets By=0, Bl={xm)},

Bz={xy<l),xy<2)}, ... B, ={xy(l),xm),...,xy(”)} and the

union of all such chains is a lattice of sets w.r.t. union
and intersection.

5 The description of extreme 2-monotone

measures through lattices
Proposition 5. Let us consider the set of all maximal
lattices £,(u), on which a 2-monotone measure [ is

additive, and let £, ={AE 2% | u(A) > 0}. Then u is not

an extreme point in M iff there exists a 2-monotone

2—mon
measure vV (Vv # ) such that
1) £,(w) c £,(v) for any permutation y ;

2)f, cft,.

v ="u
Corollary 1. Let u be an extreme point in M,_, . Then
the filter £ , and the system of lattices L, (u) define u
uniquely.

6 Multilinear extension and composition of

monotone measures
In this section we will use the notion of pseudo-Boolean
functions [12]. Any pseudo-Boolean function is a

mapping ¢:{0,1}" — R . For our purpose, it is sufficient
to consider pseudo-Boolean functions taking their values
in [0,1], i.e. we assume that ¢:{0,1}" —[0,1]. It is easy
to see that there is a one-to-one correspondence between

pseudo-Boolean functions and set functions. For this
purpose, we consider set functions defined on the algebra

2%, where Z={l,...,n}, and consider

1,=(x,...,x,), where Ae2” and x,=1 if i€ A and

vectors

x, =0 otherwise. Then obviously w(A)=¢(1,), where

Ae 2% is a set function on 2”. If we consider the class
of monotone pseudo-Boolean functions

¢:{0,1}" - [0,1] with @(0)=0 and ¢(1)=1, where
0=(0,...,0) and 1=(l,...,1), then it corresponds to the

class of monotone measures on 2% .

Any pseudo-Boolean function can be uniquely
represented as a multilinear polynomial [14] as
px)= 3, mA[]x . “)

Ae2? i€ A
where m is the Mobius transform m of the set function
H(A)=¢(,), defined by
m(A)=Y (D" u(B).
BCA
We see that there is a one-to-one correspondence
between multilinear polynomials and pseudo-Boolean

functions. In addition, we can assume that the vector x
in formula (4) can take values in [0,1]". In this case, the
function @:[0,1]" —[0,1] is called [14] the multilinear
extension of @ .

The next proposition [3] shows how to check
monotonicity and 2-monotonicity of a set function using
its multilinear extension.

Proposition 6. Let u:2” —[0,1]1 and let @ be its
corresponding pseudo-Boolean function. Then u is a
monotone measure iff the multilinear extension ¢ of @
has the following properties:

1) p(0)=0 and p(1)=1;

2) m =20 for any x, and at any point x€ [0,1]".

i

In addition, u is 2-monotone iff
9’ P(x)
0x,0x

[hag)

3) >0 forany x;,x; and at any point x€ [0,1]".

Proposition 6 shows that the multilinear extension of a
monotone measure is an aggregation function. Let us
remind that, by definition [11], an aggregation function
@ is a mapping @:[0,1]" —[0,1] such that

1) ¢(0)=0 and (1) =1;

3) p(x)<@(y) for x,ye[0,1]" if x<y (x<y means
for x=(x,...,x,) and y=(y,..,y,) that x, <y,
i=1,..,n).

We can generate monotone measures using aggregation
@:[0,1]" —[0,1]

aggregation function and X ,..., X, be mutually disjoint

functions as follows. Let be an
finite nonempty sets and let 4, i=1,..,n, be monotone
measures on 2% . Then a set function & on 2%, where
X =X,u..UX,, defined by

A =@(1(ANX ), th, (AN X,)), A€2Y,  (5)
is also a monotone measure. For the measure g, defined
by formula (5), we will use the notation u = @op , where
=ty ) -

In this section, we will use multilinear polynomials as
aggregation functions. It can be shown [3] that if ¢ is a

multilinear extension of a 2-monotone measure and 4 ,
i=1,..,n, be 2-monotone measures on 2%, then
U =@op is also a 2-monotone measure.

Obviously, we can introduce the same representation like
(5) for pseudo-Boolean functions. Let @:[0,1]" —[0,1]
be an aggregation function and let £ (x"”), i=1,...,n,

be pseudo-Boolean functions. Then the aggregation of
these functions is defined as

U(x) = @(,ul(x“)),...,yn (X("))) , where x = (x“),...,x(’”) .
Proposition 7. Let ¢:[0,1]" >R be the multilinear
extension of a pseudo-Boolean function ¢ and let
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,u[(x(”) , i=1,....,n, be pseudo-Boolean functions. Let us

consider the pseudo-Boolean Sfunction
1) = @, (xV),. 1, (x™)), where x=(xV,...x").
Then the multilinear extension of (1 can be computed as
%) = (i (x"), . 1, (x")).
Remark 3. Proposition 7 allows us to represent the
aggregation (5) using more simple aggregations as
follows. Let @(1,,...,z,) be a multilinear extension of a
pseudo-Boolean function ¢:{0,1}" — [0,1]. Then we can

consider the following sequence of pseudo-Boolean
functions

Py =B (t10emt,) - 0= ()1t ).
0, =5 (") 3 15,1, )
0,0 = @1, (x"),.o , (x)) .
1,€{0,1},
aggregation functions:
@y =P(tsenst)) s @ = (ﬁ(ﬂl(x“)),tz,...,tn) ,
@, =@ (8 ") (X, 1yt ).
3,0 =@ (&), 2,x™)),

that have to be obviously multilinear extensions of
corresponding pseudo-Boolean functions. Each ¢, is

where i=L..,n, and corresponding

generated from ¢, , by replacing variable #, with the

pseudo-Boolean function z (x").

The interpretation of simple aggregations, considered in
Remark 3, through set functions is given in the following
lemma.

Lemma 2. Let ¢, :{0,1}" —[0,1] and ¢, :{0,1}" —[0,1]
be pseudo-Boolean functions and let @,, i=1,2, be their
multilinear extensions. Consider their aggregation of the
following type:

O(Xseas X3 X seees X ) = Py (X paes X, Py (X eees X, ),
set functions on 2%,

and corresponding where

Z={l,..n+m}:
w(A)=¢p@1,), where AcC(L2,...,n};
U, (B)=@,1,), where BC{n+1,...,n+m};
u(C)y=9pd.), where C c{l,...n=Ln+1,...n+m}.
Then
M(AU B) = 1,(A) + (1 (Au{n}) — 1, (A) i, (B)
where AC{l,..,.n—1} and BC{n+1,..,n+m}.

Like in the theory of Boolean functions, let us introduce
the notion of essential variable for pseudo-Boolean

functions. Let ¢:{0,1}" —[0,1] be a pseudo-Boolean
function. The variable x, is called essential for ¢ if
X, = (%500 %0, X,,,..,x,)  and
{0,13"
@(x,) # @(x,) . It is easy to express such a property using

there are vectors

X, = (X, X n L X, 000 x,) 0 such that

i

set functions. Let #(A)=¢(1,), where Ae 27 . Then the

variable essential if the set function

V(A)= u(AU{i})— u(A), where Ae 2”, is not identical
to zero.
Proposition 8. Let

x, s

9:{0,1}" = [0,1]
@:[0,1" = [0,1] be its
multilinear extension. Then the variable x, is essential
_aqo(x) #0.

X

i

be a pseudo-

Boolean function and let

for @ iff thereis a xe [0,1]" such that

Proposition 9. Let y=@opn be the aggregation defined
by formula (5), and let ¢ :[0,11" — [0,1] be a multilinear
of a Then
representation u=@opn for fixed sets X,,..., X, is

n

extension monotone  measure Q.
defined uniquely iff each variable in @ is essential.
In this section we will prove the following result.
Theorem 3. Let ¢:[0,1]" —[0,1]

extension of a 2-monotone measure @ on 2° and let all

be a multilinear

variables of ¢ be essential. Let us assume that y, are 2-

monotone measures on 2%, where X,,...X, are
mutually disjoint finite nonempty sets. Then yu=@opn is
an extreme point iff 2-monotone measures @, U,,..., i,

are extreme pOil’ltS too.

7 Examples of extreme 2-monotone

measures

Let u be an extreme 2-monotone measure. Then we call
it perfect if it is uniquely defined by a filter
f ={Ae 2% |,u(A)>0}, in other words, an extreme
measure is not perfect if there is another extreme 2-
monotone measure with the same filter f, on which it
has positive values. We will describe next the class of
such extreme 2-monotone measures.

Let 4 be a set function on 2*. We say that u is
additive on a filter f if

a) u(A)=0 forany Ae¢f;

b)  w(AU{x D+ u(Au{x;}) = u(A)+u(Auix,x})
for any sets AU{x;},AU{x;}ef such that x,x & A
and x; # x;.

Lemma 3. Let a set function u be additive on a filter f .
Consider any Aef and x,¢ A. Then u(Au{x})-
U(A) = u(Cu{x})—u(C) forany Cef with CC A.
Corollary 2. If the set function u is additive on a filter
£, then (AU {x,})~ u(A) = u(C U{x,}) - u(C) for any
A,Cef suchthat A,C C X \{x,}.

The results formulated in Lemma 3 and Corollary 2 can
be better described by the function

v(x)=u(Au{x;})—u4),
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where Aef and x, & A. Let us notice that v(x;) does
not depend on the choice of A. The value v(x;) is called
the weight of x; on filter f for a set function .
Proposition 10. Let a nonnegative set function u be
additive on a filter £, and v(x;)=0 for all x,€ X .
Then u is 2-monotone.

Proposition 11. Let a nonnegative set function u be
additive on a filter . Let us consider the system of sets
2"\t and the set of its maximal elements {C,,...,C,}.

Then u is 2-monotone if {61,...,@} is a covering of X .

Let us consider how to construct 2-monotone measures
that are additive on a filter. We prove first the following
auxiliary lemma.

Lemma 4. Let £ be a filter of the algebra 2 . Then the
system of sets

f,={A] AU{x},AU{x,}ef.x. x & A
is also a filter and £, O f .
Proposition 12. Let we use the notations from Lemma 4,
Aef, X, & A, and let a set function u be additive on
the filter £. Then the value v(x;) = pu(AU{x;})— u(A)
does not depend on the choice of Aef.
Corollary 3. Let Acf,, BD A, and let u be additive
on the filter £ . Then

U(B) = u(A)+ Y v(x,).

xEB\A
Corollary 4. Let AnNBef, for sets A and B, and let
U be additive on the filter £ . Then

H(A)+ 1(B) = (AN B) + U(AUB).
Proposition 13. Let a set function u be additive on the

filter £. Then values of v obeys the following system of
equations:

D vix)=u(X) forall Bef\f, (6)
X€B
in addition
0, Bef,
HB)Y=1 u(x)~ Y v(x), Bef, )

€8
Conversely, each set function y obeying equalities (6)
and (7) is additive on the filter f .
Remark 4. Solving equations (6) and (7) w.r.t. v(x,) we

can find all set functions that are additive on the filter f,
i.e. it is guaranteed that any such function satisfies

D w(Au{x D+ u(Au{x,}) = u(A) + u(Au{x, x;})
for Au{x}, Au{x;}ef and An{x, x;}=T;

2) u(A)=0 for Aef.

However, we can not guarantee that g is 2-monotone,
because 2-monotonicity of u in this case is equivalent to
v(x;) 20 forall x,e X by Proposition 10.

Proposition 14. Let u be a 2-monotone measure that is
additive on the filter £ ={A€ 2% |,u(A)>O}. Then u is

an extreme 2-monotone measure if it is defined uniquely.
Proposition 15. Let the filter f obey the conditions
Sformulated in Proposition 3. Then if an extreme 2-
monotone measure [, which is additive on

f= {Ae 2% | u(A) > 0} , exists, then it is perfect.
Proposition 16. Let the filter f obey the conditions

Sformulated in Proposition 11. Then if an extreme 2-
monotone measure  f, which is additive on

f={Ae 2% |,u(A)>0}, exists, then it is defined

uniquely.
Let us consider examples of perfect 2-monotone
measures that are additive on filter. A monotone measure
is called symmetrical if its values depend only on the
cardinality of the corresponding set. The next proposition
gives the description of extreme symmetrical 2-
monotone measures.

Proposition 17. Let

X ={x.,x,,..,x,}. Then any

symmetrical monotone measure, defined by
0, |Al<k-1,
#(A) ={(m—k+l)/(n—k+1), |A|l=m>k-1,
where k=2,...n, is a perfect extreme 2-monotone

measure.
Remark 5. It is easy to show that the set of all
symmetrical 2-monotone measures on 2% where
X ={x,x,,....x,}, is convex and the extreme points of it
are measures [, ,k=1,..,n. Obviously, x4 is not an
if n=1,

extreme point of M because it is

2—mon
represented as 4, = (l/n)ZUM y -
k=1

Hx,x,,x,x,}

) N

2 2 2 1
s x, ) Sl x,x )t Sl x.x) S{x,x,x}

1
%{XI’XZ} %{x11x3} §{xl’x4}

Figure. 1: A perfect extreme 2-monotone measure that is
additive on the filter.

Remark 6. Let X ={x,x,,x;}, then the extreme points

of M

filter of their positive values. These measures are May >

(X) are perfect and they are additive on the

2—mon
where |A|>O, and the symmetrical measure 4, for
n=3. If X={x,x,,x;,x,}, then extreme points of
M

Proposition 17. For example, let us consider the filter
f=<{x1,x2},{xl,x3},{xl,x4},{x2,x3,x4}>. Let us try to

(X) are not necessarily measures described in

2—-mon

find a 2-monotone measure 4 that is additive on
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f ={Ae 2% |,u(A)>O}. In this case, f, =({x}.{x,,x,},

xeX,
should obey the following linear system of equations:
v(x,)+v(x,)+v(x,) =1,
v(x)+v(x,) =1,

{x,,x,},{x;,x,}), and the function v(x),

v(x)+v(x)=1,

v(x)+v(x,)=1,
that has the following unique solution v(x,)=2/3,
v(x,)=v(x;)=v(x,)=1/3. After that we can calculate
the values of 2-monotone measure u by the formula (7).

This measure is depicted on Figure 1. Using Proposition
15 it easy to check that u is a perfect extreme 2-
monotone measure.

Let us consider an example of extreme 2-monotone
measure i, depicted on Figure 2, that is not additive on

the filter £ ={Ae€2* | u(A)>0}. Using Corollary 1, it is

easy to show that it is an extreme point of M In

2-mon *
addition, it is possible to show that u is a perfect
extreme 2-monotone measure.

1{x,,x,, x5, %, }

N

Hxex, ) Hxax,x) a{xxx ) 5l x,x)

HEWY
Figure. 2: A perfect extreme 2-monotone measure that is
not additive on the filter.

It is easy to find extreme 2-monotone measures that are
not perfect. Such measures are depicted on Figure 3, with
parameters «, 3,7, and A, given in Table 1.

H{x,x,, x5, %, }

N

(Z{xl,x,,x3 'xl"x‘7’x4 ﬁ{xl’xz’xzt ﬂ{xz’x?’xz;}

rx.x) Ax.x) Alxnx) Alng.xn}A{x,x}

Figure 3: Extreme 2-monotone measures that are not
perfect.

No.|a | B |7 | A4

2/3 1172 | 1/2 | 1/6
2/3 1172 | 1/3 | 1/6
1/3 1 1/2 | 1/6 | 1/6
1/3 | 1/3 | 1/6 | 1/6
5/6 | 1/3 | 2/3 | 1/6

Table 1: Values of parameters «, 5,7, 4

8 Conclusion
In this paper we give general necessary and sufficient
conditions under which 2-monotone measures are

Al Bl I e

extreme points of M describe some important

2-mon
classes of them, and give ways of their generation. As
shown by examples, the introduced class of extreme 2-
monotone measures, that are additive on filters do not
cover all possible extreme 2-monotone measures, and we
cannot generate all possible extreme 2-monotone
measures based on aggregations with the help of
multilinear extension. However, this paper can be
considered as the first step to the desirable solution. As
one can see from the examples, general extreme 2-
monotone measures have structures that are similar to a
structure of extreme 2-monotone measures that are
additive on filter and there is a possibility to generalize it.
This can be the topic for the future research.

Appendix
Proof of Proposition 1. We should prove monotonicity, i.e.
WAUxN- w(A)=20 for Ae2* and x, g A. Let us
consider a chain of sets B, =&, B ={y}, B, ={y,,¥,} -
B, ={y,...,y,} . Then inequalities (2) imply
0< (B, U {x.))~ 1(B)) < U(B, U (x,))~ (B < ... <
UB, ix - uB,) ie. u(Au{x})-u(A)z0. 1
Proof of Proposition 3. It is necessary to show that (3) is valid
for Au{x}ef and AU{x;}¢f. Since u(Au{x;})=0 and
HU(A) =0, this inequality is transformed to
HAU) S AU ULx)) .
Let us prove that u(BU{x;})—u(B)20 for any Bef and
xjeEB. Since Bef,
C, € ¢ such that C, c B . Let us show first that
H(C, U{x,)) = u(C)20 (AD).
According to the statement of the proposition for C, € ¢ and
x;& C, there exists C € such that {x;}=C\C,. Since

then there exists a minimal element

C\C, #J, there is some
C c(C M {xDulx,}, e (C\{x})Uix
is 2-monotone on f , we have

UAC N x D ulx D)+ u(C) < u(C A {x; D)+ u(C, Uix}). Let
xHU)>0
and u(C,\{x;}) =0, therefore, the inequality (A1) is valid.

x,€ C,\C,, and obviously
;yef . Because u

us notice that in the last inequality u«((C, \{

Let us show next that this inequality is fulfilled for B if
C, c B . For this purpose, consider the following chain of sets

B,=C,, B =C, U{xil }onB, =Gy U{xilv'-ﬂxi, }=B
Since u is 2-monotone on the filter f, the following
inequalities are valid:

/u(BO U {)Cj}) _;u(Bo) < /,l(Bl o {)Cj}) —,U(Bl) <..
< u(B, U{x,)~ u(B,).
ie. 4(C, U{x))—u(C)< u(BU{x}) - u(B) .M
Proof of Theorem 1. Obviously, o, D o, for any order p,
with yeI'. Let us show next that if Py 2 Prs then j/'e I.
For this purpose, it is necessary to show that sets B, ={y1} s
B, ={y.y.}» - B, ={y.yrn}s
i=12,..,n,arein £.Letus show first that B € £ . Let us put

into correspondence to each permutation yel the set

where =X,
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xy(m} such that y, =x

Jom - 1L 1S easy to

B,(y) :{xm)’xr(zw“"

see that conditions pp= ﬂpy and  p,Dp. imply
yel

(B,(»)={»}. ie. Begf. We then prove B, L,

yell

k=2,..,n, by induction. Let us assume that B,,..,B, € £

and show that B, € £ . In this case the conditions 0 = ﬂ P,

yel
and  p, Do imply ﬂBy(yk) cB,_,U{y.}. Therefore,
yel
B_,U()B,(y)=B,.ic. B M

yel

Proof of Proposition 5. Necessity. Let us assume that & is not
an extreme point in M Then it can be represented in the
and

u, # . Clearly, u, obeys conditions on v 1) and 2) in this

2-mon *

form u=au +(1-a)u,, where ac (0,1), u.u,e M

2—mon

proposition.
Sufficiency. Let us assume to the contrary that there exists
veM with properties 1) and 2). We will show that in this

case ( is not an extreme point in M

2-mon

»-mon - FOI this purpose, let
0,(A) = l(A) - av(A).
parametrically depending on a € [0,1] and also

& =max{ae[0,1]]6,(A)20 for all Ac 2"},

us consider a set function

&, =max{a€0,1]|6,(A)+6,(B) <
0,(ANB)+0,(AUB) for all A,Be2"}.
It is easy to see that conditions 1) and 2) imply that & >0 and

& >0. Therefore, a set function 6, , where b =min{e,,&,}, is
nonnegative and 2-monotone. Thus, u is represented as

u=bv(A)+(1-b)u,,
=6,/(1-b) and, obviously, v,u,e M
y |

where 1, ie. uis

2—mon *

not an extreme point in M

2-mon

Proof of Proposition 7. Clearly, (x) = @(ft(x"),.... &, (x"))

for every binary vector x and @(ﬂl(x“)),...,ﬂ”(x(”))) is a
multilinear polynomial. Therefore, the proposition follows from
the uniqueness of such a polynomial for the pseudo-Boolean
function « . W
Proof of Lemma 2. Using the Taylor decomposition at the
point X = (x,,...,x,_;,0) , we get
P sees Xy 5 X e Xy ) = (X X, 1, 0) +
09, (x,....x,_,,0)
¥¢2()€n+l’ n+m) .
ox,

Then we find that if (x,...,x,_,, X)) =1, 5 ,then

@, (XX, 1,0) = 1,(A)
0@,(x,,...,x, ;,0
%:M(Au{n})—ﬂl(f\),

n

Xpppreeees

Py (Xpiss X)) = 1o (B) M
Proof of Proposition 8. Let u(A)=¢(1,), where Ae?2”.

Then the multilinear extension of ¢ can be represented as
o) =3 w6 ]]a-x).
AcZ ke A kg A

Taking partial derivative, we get

990 5 (uaotin - ua)[TxJTa-x.

ax[ ACZ\(i} keA  kgA
The proposition follows from the last formula. l
Proof of Proposition 9. Let us show that ¢ is defined
uniquely. Let xe{0,1}" and A:UA[, where A,.EZX', is

i=1

chosen such that A, =X, if x,=1 and A =@ if x,=0. Then
(W (ANX),out,(ANX))=x, ie. u(A)=¢(x). This
means that ¢ is defined uniquely by .

Let us show that vector p is defined uniquely if each variable
x; is essential for ¢@. Let us assume that the variable x; is
essential for ¢@. Then by definition there are vectors

X, = (x50 %,,,0,,

i+l

wx,) and X, = (x,. %, x,

i+l

X, ) in

{0,1}" such that

p(x) #(x,). Let A=[JA, ., where

A €2™  such that A =X, if x, =1 and k#i;
x, =0 and k#i;
using the Taylor decomposition, we get
H(A) = P, Xy o (A XX, ) =
qu(xl) .

X

A =0 if

and A is chosen arbitrary in 2% . Then

P(x) + 1, (A)———+
Therefore, we can calculate
_ e/ 9P
1(A) = (u(A) (o(xl))/ .

99(x,)
o

X

i

because #0 according to Proposition 8. Thus, each set

function 4, is defined uniquely if every variable x, is
essential. Let us notice that if ¢ contains a nonessential
variable x,, then ¢ does not depend on x,. This implies that
the representation 4 =@op is not defined uniquely, since any
M, has no influence on the result of aggregation.ll

Proof of Theorem 3. Necessity. Consider 2 possible cases.

1) Let us assume to the contrary that ¢ is not an extreme 2-
monotone measure, however, 4« is an extreme 2-monotone
measure. Then ¢ =ag@, +(1-a)p,, where a€ (0,1) and ¢, ¢,
are different 2-monotone measures on 2“. Therefore,
p=ap +(-a)p, and u=@op= agop+(l-a)p,opn,
where @ op,@,op are different 2-monotone measures by
Proposition 9. But this contradicts our assumption that & is an
extreme 2-monotone measure.

2) Let us assume to the contrary that 4, is not an extreme 2-
monotone measure for some i€ {l,...n}, however, x is an
extreme 2-monotone measure. Then ; can be represented as a
convex sum of two different 2-monotone
= au +(A-a)u?

=G (s g apt” + (U= U sl ) =

measures:

(” , where ae (0,1), therefore,

ago (lul’“"/u[fl’/u[(l)’/u[ﬂ“"fun ) +
U= @@ 0 (fheos s 7 B )

where
@o (/111'--1/1,-711#,-(1)1#,41-",/‘"),(770 (ﬂlw,/t[,pﬂfz),/l[ﬂu-,ﬂ,,) >
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are different 2-monotone measures. But this contradicts the
assumption that 4 is an extreme 2-monotone measure.

Sufficiency. We will prove sufficiency by induction. According
to Remark 3 any aggregation (5) can be represented as a
composition of simple aggregations described in Lemma 2.
Therefore, if we prove that any simple aggregation of a type

w('xl""’xn—l’xn+l"“"xn+m) = (bl(xl’“"xn—v(”z (x/1+l"“"xn+m ), whe
re the corresponding set functions g and u, are extreme 2-
monotone measures (see notations from Lemma 2), generates
the extreme 2-monotone measure /. Then we can also say that
the general aggregation produces the extreme 2-monotone
measure if the conditions of the theorem are fulfilled. Let us
assume to the contrary that & is not an extreme 2-monotone
measure. Then there are 2 different 2-monotone measures "
and " such that
w=au® +1-a)u™ , where ae (0,1).

Let us consider 2-monotone measures, generated by a mapping

. i, ief{l,..,n—1},

w(i) = .

n, i€{n+l1,..,mj,

©

Obviously, 4 =a(u®)” +1-a)u®)? u’ =u,and u®,

)
u
assumption 4 is an extreme 2-monotone measure. Therefore,

are 2-monotone measures. But according to our

this implies that (u”)” = 4.
Our next step is to show that if x, is also an extreme 2-
monotone measure, then #* =u" = u.

By Lemma 2, ¢ can be represented as

H(AU B) = 11,(A) + (14, (A U {n)) — 14, (A) i, (B) . (A2)
where Ac{l,..,n—1} and Bc{n+1,..,n+m}. Let us denote
Y={n+L..,n+m}. Then, taking in

correspondence between pseudo-Boolean and set functions, the
formula (A2) can be rewritten as

HU(AVUB) = u(A)+ (UAVY) - u(A)u,(B),
and we can calculate

M, (B) =

account  the

U(AU B) — u(A)
HAVY) = u(A)’
forany A c({l,...,n—1} suchthat u(AUY)—u(A)>0.Letus
consider set functions:
H(AUB) - 1" (A)
HOAUY) = u(A)
of BCY forany Ac{l..,n—1} with u(AUY)—u(A)>0
and 4" (AUY)=u(AUY). It is easy to show that these set
functions are 2-monotone. Let us notice that we have proved
that £”(AUY)=u(AUY) and u”(A)= u(A) . After that we
easily derive that

apy” (B)+ (1= a)u,"(B) = 14,(B) .
By our assumption, 4, is an extreme 2-monotone measure.

W (B) = i=12,

This implies that {” = 4" = u, . Thus, we can write

U (AU B) = 1(A) + (UAUY) ~ (A i,(B) = i(AU B)

2 4’ denotes a measure on 2" such that uY(A)=

My (A)), where y™'(A) ={ie(L,...n+m}|p(@)e A}.

for any Acf{l,..,n—1} and Bc{n+l,..,n+m}, ie.
49 =u" =u, but this contradicts our assumption that
measures (. and " are different.ll
Proof of Lemma 3. Let us consider the sequence of sets
B,=C, B =CuU{x,},...B,=CU{x,,...x, } = A.
Since u is additive on the filter f , we can write
MCU{x;})—u(C) = u(B,V{x})— u(B)=..
=B, Vix}) - u(B,),
ie. u(Cufx})—u(C)=u(Au{x})—u(A) . Thus, the
required equality is valid.H
Proof of Corollary 2. By Lemma 3
(X)) = u(X \{x ) = u(CUx}) - uC)
forany Cef with C < X \{x,}. This implies the result.l
Proof of Proposition 10. Let us check inequality (3),
considering the following possible cases:
a) if Au{x}ef and AU{x;}ef, then the inequality (3)
follows from the additivity of ¢ on f;
b)if Au{x,}ef and AU{x;}¢f, then (3)is transformed to
UAV{x D S u(Au{x,x;}) .
The last inequality is valid, because according to our
assumption v(x;)20;
c) if Au{x}ef and Au{x}ef, then inequality (3) is
obviously true. l

Proof of Proposition 11. It is sufficient to show that
HAU (X))~ u(A) 20 (A3)

forall Aef andany x, € X . By the assumption {El,...,ék} is

a covering of X , therefore, there is a set C, such that x,€ C,.
Let us consider 2 possible cases.
If |G| =1,ie. G ={x}, then x € A forall Aef .Obviously,
in this case the inequality (A3) is valid.
If ‘EI‘ 22, then there is x; € C, such that x; #x,. Since C; is
a maximal element in 2*\f, then x,UC ef, x,VCEef,
and additivity of x on f implies
V(%) = 4G, U (x.x, 1) - (€, U x,}) =
u(Cuix ) —u(C)=uC uix}h 20,
i.e. the inequality (A3) is valid forall Acf .l
Proof of Lemma 4. Clearly f, Of . Let us show that Bef;
and B c C implies Cef, . Itis sufficient to consider the case,
when B¢ f and C¢ f . Then there exist x,,x; & B such that
B=(Bu{xhn(Buix}).
By our assumption C¢f, therefore x,x;¢& C . This implies
that C=(Cu{x})N(Cul{x;}) ,ie Cef,. 1l
Proof of Proposition 12. It is necessary to show that
UAV{x})— u(A)=v(x,) forany Aef; and x; &€ A. Letus
show first that if Aef, then
u(A)+ D v(x) = u(X).
XEA
Let us consider two possible cases. Let Ae f and
X\A={y,y,,... y,,} - Then
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HUAU{y D) =uA)+v(y),
HUAU{Y, Y, ) = (AU {y ) +v(y,)
=u(A)+v(y)+v(y,),

W) = )+ 3 V()

i.e. the required equality is valid for A€ f . Let us consider the
case, when Aef \f. Then there exist X, X, € A such that

Au{x},Au{x;}ef ,and
HAUL )+ #A UL D = AU, x, 1) + 4(A)

MAV{x ) - w(A) = u(Au{x,x;}) -
AU {x}) =v(x)).
After that we see that #(AU{x;}) = u(A)+v(x;) and
HX) =AU D+ Y v(x) = A+ 2 v(x) .
X EAU{x;} NEA
Thus, we can write
HAU () - uA) = u(X) = 3 v(x)-

XEAU{x;}

[u(X)— Zv(x[>]:v<x,> -

NEA
Proof of Corollary 4.
H(A) + 1(B) = W(ANB)+ Y. v(x)+H(ANB) +

x,€ A\B

> v(x)= u(ANB)+ (AN B) +

X EB\A
v(ix)=u(AnB)+ u(AuB). R
1 €(AUB)\(ANB)
Proof of Proposition 13. The first part of the proposition
follows from the results considered above. Let us prove the
second part. For this purpose, let us show that any set function
MU , obeying (6) and (7) is additive on f , i.e.
HAU ) + AU (x,)) = 1A+ AU (x,5,))

for Au{x}, Au{x;}ef and An{x,x;}=9.

Let us consider 2 possible cases. Let Ae f , then
MAV{x D)+ u(AU{x;}) = u(X) -

S vt uX)— Y vix)=

N EAULY; ) N EAULY, )
X =S v)+uX)- Y vix)=
NEA AU, X}

U(A)+ (AU {x,x;}) .
Let Aef)\f,then
MAV{x D+ uAU X)) = w(X) -~
Y vt ux)- Y vix)=

N EAULY; ) N EAULY, )
HX) =S v+ uX)- Y vix).
NEA AU, X}

In the last expression 2 v(x,)=u(X),in addition, #(A)=0.

XNEA
This implies that
HAU{xH+ AU {x}) = u(A) + u(Au{x,x;}) . B
Proof of Proposition 14. Let us assume to the contrary that u

is uniquely defined by the filter, but it is not extreme. Then
there are 2 different 2-monotone measures 4, and g, such that

u=au +(1-a)u,, where ae (0,1) . It easy to check that both
measures 4, and g, are additive on filter f but this
contradicts our assumption.ll
Proof Proposition 15. Let us assume to the contrary that u«
obeys conditions of the proposition, however, there is another
extreme 2-monotone measure v with f :{Ae 2% [v(A) > 0} .
Let us consider the set function 6, (A)=v(A)-au(A),
parametrically depending on a e [0,1] and
b=max{a€[0.1]|6,(A) >0 for all Ac 2"} .

Clearly, 5>0 and the set function @, is 2-monotone on the
filter f . According to Proposition 3 6, is 2-monotone on 2% .
Therefore, we can represent v as

v=bu+(1-b)u,,
where u,=6,/(1-b) is a 2-monotone measure, but this
contradicts our assumption.ll

Proof of Proposition 16. Let us assume to the contrary that u

obeys conditions of the proposition, however, there is another
extreme 2-monotone measure Vv, which is additive on

f :{Ae 2% |v(A) >0}. Let us consider the set function
6,(A) = u(A)—av(A), parametrically depending on ae€[0,1]
and

b=max{a€[0.1]|6,(A) >0 for all Ac 2"} .
Clearly, b >0 and the set function 6, is additive on the filter
f . According to Proposition 11, 6, is 2-monotone on 2%.
Therefore, we can represent 4 as

u=bv+1-bu,,

where u,=6,/(1-b) is a 2-monotone measure, but this
contradicts our assumption.ll
Proof of Proposition 17. Let us notice that x, = Mixy and for

this case the proposition is obviously true. Let us check that
My where ke {2,..,n—1}, is additive on the filter

f={Aec 2" ||A|2k},i.e. the following equality holds

MAV{x D)+ u(AU{x; D) = u(A)+ u(AULx,x;}) . (Ad)
for Au{x},Au{x;}ef and Anf{x.,x;}=0. Let
‘A‘ =m 2k —1, then the equality (A4) is transformed to

m—k+3
n—k+1"’

m—k+2+m—k+2 _m—k+1
n—k+1 n-k+1 n-k+l1
i.e. (A4) is valid for this case.
Let us show that g, is an extreme 2-monotone measure. In this

case f,={Ae 2X|‘A‘2k—1} and by Proposition 13 all

possible 2-monotone measures that are additive on f can be
found by solving the following linear system of equations:

Y v(x)=1forall Ae2* with [A|=k-1.

NEA
It is easy to check that the solution is uniquely defined by
v(x)=1/(n—-k+1), i=1,..,n. This implies that g, is an
extreme 2-monotone measure. It is easy to check that z, is a

perfect extreme 2-monotone measure by Proposition 15. l
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Abstract

Imprecise probability methods are often claimed to be
robust, or more robust than conventional methods.
In particular, the higher robustness of the resulting
methods seems to be the principal argument support-
ing the imprecise probability approach to statistics
over the Bayesian one. The goal of the present paper
is to investigate the robustness of imprecise probabil-
ity methods, and in particular to clarify the termi-
nology used to describe this fundamental issue of the
imprecise probability approach.

Keywords. Robustness, imprecise probabilities,
Bayesian analysis, credibility, decision making, indeci-
sion, sensitivity analysis, imprecise Dirichlet model.

1 Introduction

The theories of imprecise probability replace prob-
ability measures by more general mathematical ob-
jects, which can often be identified with particular
sets of probability measures. Such sets appear natu-
rally also in Bayesian sensitivity analysis (also called
robust Bayesian analysis) [6, 27] and robust statis-
tics [4, 20]. Hence, there is a strong connection be-
tween imprecise probability and robustness. In fact,
methods resulting from the imprecise probability ap-
proaches to inference and decision making are often
claimed to be “robust” (or “more robust” than alter-
native methods) [1, 14, 36], usually without specifying
the meaning of “robust”. The goal of the present pa-
per is to investigate the robustness of imprecise prob-
ability methods. We will focus in particular on the
most developed theory of imprecise probability: the
theory of lower and upper previsions [33, 35].

The question of the robustness of imprecise proba-
bility methods is particularly important in statistics,
where the imprecise probability approach can be seen
as an alternative to the Bayesian approach. In fact,
when comparing these two approaches to statistics,
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the latter has clear advantages in terms of technical
and conceptual simplicity [12, 13], also thanks to im-
portant invariances [3, 18, 21]. On the other hand, the
(higher) robustness of the resulting methods seems
to be one of the few general advantages claimed by
the proponents of the imprecise probability approach.
That is, the alleged (higher) robustness of the im-
precise probability methods seems to be the principal
argument for preferring the imprecise probability ap-
proach to statistics over the Bayesian one.

The present paper examines various aspects of the
question of the robustness of imprecise probability
methods, and in particular tries to clarify the ter-
minology used to describe this fundamental issue of
the imprecise probability approach. The paper is or-
ganized as follows. In the next section the concept of
robustness is introduced. The robustness of imprecise
probability methods is then investigated in Section 3,
which is the core of the paper. In particular, in Sub-
section 3.1 the higher credibility of imprecise prob-
ability analyses over Bayesian analyses is discussed.
These two kinds of analyses are then compared with
regard to decision making: Subsection 3.2 considers
the case when a decision has to be made, while the
case when indecision is allowed is studied in Subsec-
tion 3.3. The final section summarizes the results.

2 Robustness

Robustness means “insensitivity to small deviations
from the assumptions” [19, p. 2]. In the Bayesian
approach to inference and decision making it mainly
refers to “possible misspecification of the prior dis-
tribution” [7, p. 195]. Hence, the conclusions of a
Bayesian analysis are not robust if there are several
reasonable choices for the prior distribution and the
conclusions depend on which prior is actually chosen,
as in the following example.

Example 1 In the Bayesian framework, given an ex-
changeable sequence of Bernoulli random variables
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X1, Xa, ..., de Finetti’s theorem [16, § 11.4] implies
that they are independent and Ber(0)-distributed con-
ditional on the success probability 6 € [0,1]. That
is, to complete the Bayesian model we must choose a
(prior) probability distribution for 6. Suppose that we
have (almost) no prior information about 0: several
prior probability distributions have been suggested in
this situation. In particular, Bayes [5] and Jeffreys
[24] proposed the prior uniform distribution of 6 on
[0,1] and of arcsin /@ on [0,7/2], respectively. Using
Walley’s (s,t)-parametrization of the beta distribution
[33, 34], these two proposals correspond to the priors
0 ~ Beta(2,1/2) and 0 ~ Beta(1,1/2), respectively.

Assume now that we observe X1 + --- + X7 = 6.
That is, of the first seven Bernoulli trials, siz were
successes and one was a failure. In general, on the
basis of these data, the conjugate prior distribution
Beta(s,t) is updated to the posterior distribution

t
Beta(er?,ssj?G). (1)

In particular, Bayes’ and Jeffreys’ priors are up-

dated to the posteriors 0 ~ DBeta(9,7/9) and 0 ~
Beta(8,13/16), respectively.

Finally, suppose that we must choose between two
courses of action with uncertain payoffs A =5 Xg—4
and B = 4 — 5 Xg, respectively, expressed in a linear
utility scale. This can be interpreted as choosing the
side of a bet with odds of 4 to 1 on a success in the
next Bernoulli trial, where the total stake is a fixed
small amount of money. In general, the conjugate
prior distribution Beta(s,t) leads to the posterior ex-

pected utilities
7 6
5-—4 2
s+ 7 ( 7 ) @)

s
s+ T

and E(B) = —E(A). These are plotted in Figure 1 as
functions of s € (0,3], in the case t = /2 and in the
limit casest — 1 and t — 0. In particular, Jeffreys’
prior would lead to the choice of the first course of ac-
tion (that is, betting on success), since E(A) > E(B)
when (s,t) = (1,1/2), while Bayes’ prior would lead
to the choice of the second course of action (that
is, betting on failure), since E(B) > E(A) when
(s,t) = (2,1/2).

Therefore, in this situation the decision resulting
from the Bayesian approach is not robust, if both
Bayes’ and Jeffreys’ priors are considered as reason-
able choices in the case of (almost) no prior infor-
mation about 6. The Bayesian answer to this non-
robustness issue would be to give more careful consid-
eration to the prior information about 6, in order to
be able to identify more precisely the prior probability
distribution for 0.

E(A) (5t —4)+

Exactly as for the Bayesian approach, the conclusions
resulting from the imprecise probability approach to
inference and decision making are robust if they are
not too sensitive to small deviations from the assump-
tions in general, and to possible misspecification of the
prior (imprecise) probability distribution in particu-
lar. More precise definitions of robustness would be
possible, but would have a high degree of arbitrari-
ness, while the above informal definition is sufficient
for the scope of the present paper.

3 Imprecise Probability Methods

The robustness of some kinds of conclusions result-
ing from an imprecise probability analysis has been
studied in [32], with comforting results. However,
this study did not consider the robustness of the con-
clusions when the imprecise probabilities have been
updated in the light of new data. In this situation,
which is obviously very important for the imprecise
probability approach to statistics, the conclusions re-
sulting from an imprecise probability analysis are in
general not robust (and not more robust that the ones
resulting from a Bayesian analysis), as shown in the
following example.

Example 2 Let X be a random variable taking value
in the set {1,2,3}. Assume that our prior imprecise
probabilities are determined by the unique assessment
P(X) =x, where x € [1,3] is a real number. Suppose
now that we learn that the value of X is not 2. That
is, we observe the event X € {1,3}. If we update our
prior imprecise probabilities by reqular extension [33,
Appz. J], then the posterior lower prevision of X is

peo={ ) 45y (3)

while if we update them by natural extension, then it
18

ifx <2,
x ifx > 2,

(4)

since the prior lower probability of the observed event

is 0 if and only if © < 2. In both cases (3) and (4),

the posterior lower prevision of X, as a function of
€ [1,3], has a discontinuity at x = 2.

Therefore, the posterior lower prevision of X is not
robust, if for example both values x = 1.99 and x =
2.01 are considered as reasonable choices for the prior
lower prevision. By contrast, in a Bayesian analysis
of this situation, the posterior expectation of X would
be a continuous function of the prior probability val-
ues, although it would be very sensitive to these val-
ues if the prior probability of the observed event were
very small. Anyway, in this situation the posterior
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Figure 1: Expected utilities according to the posterior distribution (1), as functions of s € (0, 3], in the case

t = 1/2 and in the limit cases t — 1 and ¢ — 0.

distribution of the imprecise probability analysis is in
general not more robust than the one of a Bayesian
analysis.

However, the situation analyzed in Example 2 is artifi-
cial, and consequently its importance for the imprecise
probability methods suggested in the literature is not
clear. For this reason, in the remainder of the present
section we shall consider further the situation of Ex-
ample 1, focusing on the imprecise probability model
that seems to be by far the most studied and used:
the imprecise Dirichlet model [8, 34], in the special
case of Bernoulli random variables [33, § 5.3].

The imprecise Dirichlet model satisfies some impor-
tant invariance properties, and in particular the rep-
resentation invariance principle [34]. This principle
describes a particular kind of robustness with respect
to assumptions about the statistical model, and it
cannot be satisfied by objective Bayesian analyses.
However, it can be satisfied by subjective Bayesian
analyses, and its appropriateness is questionable any-
way [34, p. 52]. On the other hand, the imprecise
Dirichlet model is highly non-robust with respect to
other aspects of the statistical model [28, 29]. There-
fore, to keep things simple, in the remainder of this
section we shall consider only the robustness with re-
spect to the choice of the prior distribution.

3.1 Credibility

From the standpoint of the theory of lower and upper
previsions, a Bayesian analysis corresponds to the spe-
cial case of an imprecise probability analysis in which
we have so much prior information that the previ-
sions are linear. Hence, from this standpoint, a lower
prevision can be interpreted as being based on less
information (or assumptions) than a linear prevision
dominating it. In this case, the Bayesian analysis can
thus be considered as less credible than the imprecise
probability analysis, according to a “law of decreas-
ing credibility” [26, p. 1], stating that the credibility
of the conclusions decreases when additional assump-
tions are made.

Such a law seems reasonable when inferences such
as confidence or credible regions are considered as
conclusions, but it does not necessarily seem reason-
able when decisions or point estimates are considered.
Anyway, for the sake of argument, let’s agree that
imprecise probability analyses are more credible than
Bayesian analyses (when the linear previsions domi-
nate the lower previsions). Does this imply that they
are also more robust?

Example 3 In the imprecise probability framewortk,
given an exchangeable sequence of Bernoulli random
variables X1, Xo,..., a generalization of de Finetti’s
theorem [15] implies that they are independent and
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Ber(0)-distributed conditional on the success proba-
bility 0 € [0,1]. That is, to complete the imprecise
probability model we must choose a (prior) imprecise
probability distribution for 8. The usual choice of the
prior imprecise probability distribution in the case of
(almost) no prior information about 0 is the impre-
cise Dirichlet model, which corresponds to the set of
all Beta(s,t) distributions with t € (0,1). That is,
the parameter s must still be chosen: the most popu-
lar choices appear to be s = 2 and s =1 [8, 34, 36].
In this context, it is important to note that the im-
precise previsions resulting from different choices of
s are nested, the more imprecise corresponding to the
larger values of s.

When observing X1 + --- + X7 = 6, the imprecise
Dirichlet model is updated by regular extension to
the posterior imprecise probability distribution cor-
responding to the set of all distributions (1) with
t € (0,1). The posterior lower and upper previsions,
P(A) and P(A), of the utility of the first course of
action described in Example 1 are the limits of (2) as
t = 0 and as t — 1, respectively. By contrast, the
posterior lower and upper previsions, P(B) = —P(A)
and P(B) = —P(A), of the utility of the second course
of action are the limits of E(B) = —FE(A) ast — 1
and as t — 0, respectively. These two pairs of poste-
rior lower and upper previsions are plotted in Figure 1
as functions of s € (0, 3].

The posterior imprecise previsions with s = 1 are thus
more credible (in the sense considered above) than the
posterior expectations resulting from Jeffreys’ prior,
and the posterior imprecise previsions with s = 2 are
more credible than the posterior expectations resulting
from both Bayes’ and Jeffreys’ priors. However, it
is not clear why these posterior imprecise previsions
should be more robust than the posterior expectations
of Example 1, since they too depend strongly on the
choice of s.

The question of the alleged higher robustness of im-
precise probability analyses compared to Bayesian
analyses can perhaps be better clarified by consid-
ering the choice of a probability distribution as con-
sisting of two steps. First we choose a lower prevision
P, and then we select a linear prevision P dominat-
ing it. The second step can be seen as an additional
assumption, and therefore the imprecise probability
analysis based on P is more credible than the Bayes-
ian analysis based on P. Moreover, since there is
certainly some arbitrariness in the second step, the
imprecise probability analysis can appear to be more
robust than the Bayesian analysis. However, once P
has been selected, it does not depend on the choice of
P anymore. That is, the robustness of the imprecise
probability analysis is relative to the arbitrariness in

the choice of P, while the robustness of the Bayesian
analysis is relative to the arbitrariness in the choice
of P (and not in both choices of P and P). So it is
not clear that in general the Bayesian analysis is less
robust that the imprecise probability analysis, even
when the latter is more credible (in the above sense).

Of course, the imprecise probability analysis would be
more robust than the Bayesian analysis, if there were
no arbitrariness in the choice of the lower prevision.
In this case, “conclusions drawn from the imprecise
model are automatically robust, because they do not
rely on arbitrary or doubtful assumptions” [33, p. 5].
Unfortunately, this is never the case, because there
is always some arbitrariness in the choice of a model,
even when we choose the vacuous model. In fact,
if the vacuous prevision is a reasonable choice, then
probably also a slightly more determined imprecise
prevision would be reasonable.

In particular, the choice of the prior distribution in
the imprecise probability analysis of Example 3 does
not seem to be less arbitrary than the choice of the
prior distribution in the Bayesian analysis of Exam-
ple 1. In fact, thanks to symmetry arguments, in the
Bayesian analysis the choice of ¢ = 1/2 is less problem-
atic than the choice of s, which must be chosen also
in the imprecise probability analysis. In analogy to
the discussion above, we could see the choice of the
prior probability distribution in Example 1 as consist-
ing of two steps. First we choose to restrict attention
to the beta distributions and we select the value of s,
while in a second step we also choose the value of t.
With this description, it appears that the imprecise
Dirichlet model (corresponding to the choices in the
first step) has one assumption less than the Bayesian
beta prior (the assumption of a particular value for
t). However, this appearance is misleading, because
in the imprecise Dirichlet model we also make a choice
about t: we choose to let it vary in the whole interval
(0,1). In fact, replacing this interval for instance with
the interval [e, 1 — €], for some small positive ¢, could
also be a reasonable choice [11].

An important difference between the choices of s in
Examples 1 and 3 is that in the latter case the impre-
cise previsions resulting from different values of s are
nested, and this could make the choice “less crucial”
than in the former case [34, p. 12]. The importance of
this property of the imprecise Dirichlet model for the
question of the robustness of the imprecise probabil-
ity analysis of Example 3 depends on how the impre-
cise previsions are used. Therefore, in the following
subsections we shall consider the decision problem of
Example 1 in the imprecise probability framework of
Example 3.
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3.2 Decision

Several decision criteria have been suggested in the lit-
erature on imprecise probabilities [2, 17, 31]. Some of
these criteria, like I'-maximin, induce a total preorder
on the possible decisions, and usually identify a sin-
gle optimal decision. When such criteria are used in
an imprecise probability analysis, the resulting con-
clusions are in general not more robust than those
resulting from a Bayesian analysis, as shown in the
following example.

Example 4 Consider the decision problem of Exam-
ple 1 in the imprecise probability framework of E-
ample 3. In particular, Figure 1 shows that P(A) >
P(B) when s = 1, while P(B) > P(A) when s = 2.
Hence, the I'-mazimin decision would correspond to
the first course of action (that is, betting on success)
when s = 1, and to the second course of action (that
is, betting on failure) when s = 2. We would obtain
the same decisions if we used the I'-mazximaz, Hurwicz
[2, 22], or interval bound dominance [17] criteria in-
stead of I'-mazximin.

Therefore, in this situation the decision resulting from
the imprecise probability approach is not robust, if one
of these criteria is used and both s = 1 and s = 2
are considered as reasonable choices for the parame-
ter s of the imprecise Dirichlet model in the case of
(almost) no prior information about 6. In complete
analogy with the Bayesian analysis of Example 1, an
answer to this non-robustness issue would be to give
more careful consideration to the prior information
about 0, in order to be able to identify more precisely
the prior imprecise probability distribution for 0.

Other decision criteria, like maximality, E-admissi-
bility, or interval dominance, often do not identify
a unique optimal decision, and are perhaps more
in keeping with the spirit of imprecise probabilities.
When such criteria are used, imprecise probability
analyses can be seen as descriptions of the robust-
ness or non-robustness of Bayesian analyses. In fact,
if one of these criteria identifies a single optimal de-
cision in an imprecise probability analysis based on a
lower prevision P, then this decision is the unique op-
timal one in each Bayesian analysis based on a linear
prevision P dominating P (assuming that in these
Bayesian analyses there are optimal decisions). By
contrast, the two approaches diverge when the Bayes-
ian analysis is not robust, in the sense that different
linear previsions P dominating P lead to different op-
timal decisions. In this case, all these decisions are
optimal in the imprecise probability analysis based
on P, when one of the above criteria is used. How-
ever, this situation has very different meanings for
the two approaches to decision making. In the Bayes-

ian approach the non-robustness issue can be tackled
by identifying more precisely the linear prevision P,
while in the imprecise probability approach there is
not necessarily a more precise lower prevision P that
would still be a reasonable choice.

Therefore, since the goal of decision making is to select
one of the possible decisions, in the imprecise prob-
ability approach we often still have to choose one of
the optimal decisions, when one of the above criteria
is used. This choice can be based on a second decision
criterion selected among the ones usually identifying a
single optimal decision, like I-maximin [25]. However,
when such two-stage decision procedures are used in
an imprecise probability analysis, the resulting con-
clusions are in general not more robust than those
resulting from a Bayesian analysis, as shown in the
following example.

Example 5 Figure 1 shows that in the decision prob-
lem of Example 1, when s = 1 we have E(A) > E(B)
if t € (0,1) is sufficiently large, and E(B) > E(A) if
t € (0,1) is sufficiently small. That is, the decision
resulting from the Bayesian approach is not robust,
if all Beta(1,t) distributions with t € (0,1) are con-
sidered as reasonable choices for the prior probability
distribution. Therefore, in the imprecise probability
framework of Example 3, when s = 1 both courses
of action would correspond to optimal decisions ac-
cording to the criteria of maximality, E-admissibility,
or interval dominance. Exactly the same holds in the
case with s = 2. By contrast, when s = 1/3 these
criteria would lead to a single optimal decision, cor-
responding to the first course of action (that is, bet-
ting on success), since in this case P(A) > P(B), as
can be seen in Figure 1. That is, the decision result-
ing from the Bayesian approach is robust, if only the
Beta(1/3,t) distributions with t € (0,1) are considered
as reasonable choices for the prior probability distri-
bution.

However, if the goal of the imprecise probability analy-
sis is decision making (and not the study of the robust-
ness or non-robustness of Bayesian analyses), then
when s = 1 or s = 2 we still have to select one of
the two possible decisions. If we choose one of the
four criteria considered in Example 4 as the second
decision criterion in a two-stage decision procedure,
then we obviously obtain the same conclusions as in
Ezxample 4.

Another possibility (besides a second criterion in a
two-stage procedure) for choosing a decision when
there are multiple optimal decisions, is to select it
arbitrarily. Of course, there is no real hope that the
resulting decisions can be robust, since arbitrariness is
antithetical to robustness. However, one could main-
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tain that such an arbitrary choice cannot be non-
robust, because from the point of view of the deci-
sion criterion all optimal decisions are in a certain
sense “equivalent”. But even from this point of view
the decisions resulting from the imprecise probability
approach are not robust in general, as shown in the
following example.

Example 6 Consider again the decision problem of
Ezxample 1 in the imprecise probability framework of
Example 3, with as decision criterion mazimality, E-
admissibility, or interval dominance. In Fxample 5
we have seen that in this case the first course of ac-
tion (that is, betting on success) would correspond to
the unique optimal decision when s = 1/3, while both
courses of action would correspond to optimal deci-
sions when s = 1. Hence, if we would choose one of
the two optimal decisions arbitrarily when s = 1, then
we could choose the second course of action (that is,
betting on failure), which does not correspond to the
single optimal decision when s =1/3.

Therefore, in this situation the decision resulting from
the imprecise probability approach is not robust, if both
s =1/3 and s = 1 are considered as reasonable choices
for the parameter s of the imprecise Dirichlet model.
Of course, s = 1/3 is not a usual choice for this param-
eter, but it would suffice to slightly modify the decision
problem, in order to obtain that the difference in the
decisions is between the cases s = 1 and s = 2 (instead
of s =1/3 and s = 1). For instance, it would suffice to
consider the decision problem corresponding to choos-
ing the side of a bet with odds of 5 to 2 (instead of 4
to 1) on a success in the next Bernoulli trial, where
the total stake is a fized small amount of money (in
this situation, the decision resulting from the Bayes-
ian approach would be the same for both Bayes’ and
Jeffreys’ priors: betting on success).

Hence, in this subsection we have seen that when a
decision has to be made, the imprecise probability ap-
proach is in general not more robust than the Bayes-
ian one. In particular, the choice of s in the imprecise
probability analyses of Examples 4, 5, and 6 does not
appear to be “less crucial” than in the Bayesian anal-
ysis of Example 1. In this context, it is important
to note that the results would remain substantially
unchanged if randomized decisions were allowed in
these examples. In this case, we would have infinitely
many possible decisions, but the (sets of) randomiza-
tion probabilities of the optimal decisions would still
change in a discontinuous way at either s = 4/3 or
s = 1/2 (depending on the example being considered).

3.3 Indecision

As discussed in Subsection 3.2, decision criteria like
maximality, E-admissibility, or interval dominance of-
ten do not identify a unique optimal decision, when
used in an imprecise probability analysis. Instead of
choosing a decision from the set of all optimal de-
cisions, the set itself is sometimes considered as the
conclusion resulting from the imprecise probability
approach [1, 14, 36]. That is, (partial) indecision is
sometimes allowed.

In this case, the set of all possible decisions of the
original decision problem is practically replaced by its
power set (without the empty set). The resulting new
decision problem is in a certain sense smoother than
the original one, because the indecision about two
(originally) possible decisions can be seen as a mid-
dle course between them. Therefore, non-robustness
issues regarding the new decision problem can be less
serious than those regarding the original one. How-
ever, the Bayesian approach too can be applied to
the new decision problem, as shown in the following
example.

Example 7 In Example 5 we have considered the de-
cision criteria of mazimality, E-admissibility, and in-
terval dominance for the decision problem of Exam-
ple 1, in the imprecise probability framework of E-
ample 3. We have seen that the first course of ac-
tion (that is, betting on success) would correspond to
the unique optimal decision when s = 1/3, while both
courses of action would correspond to optimal deci-
stons when s =1 or s = 2. Hence, if indecision is al-
lowed, then we would stick to the first course of action
when s = 1/3, but we would have indecision between
the two courses of action when s =1 or s = 2.

In order to apply the Bayesian approach when indeci-
sion is allowed, we can define the utility C' of the in-
decision between the two courses of action. Assuming
risk aversion, this utility must be larger than the util-
ity of choosing one of the two courses of action at ran-
dom (by tossing a fair coin) [37]: that is, C > 0. The
choice C = 1/10 is plotted in Figure 1: we can see that
in this case the decision resulting from the Bayesian
approach would still be the first course of action (that
is, betting on success) when (s,t) = (1/3,1/2), and the
second course of action (that is, betting on failure)
when (s,t) = (2,1/2), but it would be the indecision be-
tween the two courses of action when (s,t) = (1,1/2).

The new decision problem in Example 7 can be con-
sidered as smoother than the original one in Exam-
ple 1, because in a certain sense there is a new possible
choice (the indecision) somewhere in between the two
courses of action. In particular, with the new decision
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problem the choice of s is perhaps “less crucial” than
with the original one, but this holds for the Bayes-
ian analysis as well as for the imprecise probability
analysis.

Apparently, the imprecise probability approach has
the advantage of not needing to define the utilities of
the cases of (partial) indecision. However, this ap-
pearance can be misleading. First, the definition of
these utilities can be avoided in the Bayesian approach
too, for instance by replacing the posterior expecta-
tions of the utilities of the original decisions with their
highest posterior density intervals (for a given proba-
bility level), and using interval dominance as a deci-
sion criterion. Second, and most important, the defi-
nition of the utilities for the cases of (partial) indeci-
sion is necessary anyway to evaluate and compare the
resulting imprecise probability methods: much work
has recently been done in this direction [37]. The
trouble is that the imprecise probability methods are
obtained on the basis of one decision problem (with-
out utilities for the cases of indecision), and are then
evaluated on the basis of another (with utilities for
the cases of indecision).

The difficulty in evaluating and comparing imprecise
probability methods is strictly related to a fundamen-
tal issue in the imprecise probability approach to in-
ference and decision making: the difficulty in com-
paring models with different degrees of imprecision
[30]. The discussion of this issue goes far beyond the
scope of the present paper, but it is important to note
the connection with the difficulty in the choice of the
parameter s of the imprecise Dirichlet model of Ex-
ample 3, since the degree of imprecision of this model
increases with s.

4 Conclusion

Imprecise probability methods are often claimed to be
robust, or more robust than Bayesian methods. Some-
times the expression “more robust” is simply used as
a synonym for “more imprecise” or “less determinate”
[23]. However, this use is misleading, if not wrong. In
fact, “more robust” has a positive connotation, which
“more imprecise” or “less determinate” do not have,
and which derives from its usual interpretation in sci-
ence and engineering as meaning something like “less
sensitive to small changes in the conditions or in the
assumptions”.

In particular, in the Bayesian approach to infer-
ence and decision making, robustness mainly refers
to changes in the choice of prior probability distri-
bution. A Bayesian sensitivity analysis (also called
robust Bayesian analysis) is the study of the robust-
ness of the conclusions of a Bayesian analysis. The

fact that Bayesian sensitivity analyses are often per-
formed by letting the prior vary in a set of proba-
bility distributions can suggest the idea that impre-
cise probability analyses are robust (since imprecise
probability measures can be identified with partic-
ular sets of probability measures). In fact, as dis-
cussed in Subsection 3.1, imprecise probability analy-
ses can perhaps be considered as more credible than
Bayesian ones, and as noted in Subsection 3.2, they
can be seen as descriptions of the robustness or non-
robustness of Bayesian analyses, when decision crite-
ria like maximality, E-admissibility, or interval domi-
nance are used. However, the robustness of imprecise
probability analyses does not refer to the variability of
a (precise) prior in a set of probability distributions,
but rather to the variability of the (imprecise) prior
in a set of imprecise probability distributions.

Another source of confusion about the robustness of
imprecise probability methods (besides the meaning
of “robust” in the expression “robust Bayesian analy-
sis”) seems to be the idea that they are allowed to be
inconclusive, while Bayesian methods are not. In fact,
the Bayesian approach to a particular decision prob-
lem is sometimes compared to the imprecise proba-
bility approach to a modified version of the decision
problem, in which (partial) indecision is allowed. As
discussed in Subsection 3.3, the new decision problem
is in a certain sense smoother than the original one,
and so robustness can be less of an issue. However,
both approaches can be applied to both decision prob-
lems, and a fair comparison is possible only if they are
applied to the same one.

In conclusion, imprecise probability methods are in
general not robust, and not more robust than Bayes-
ian methods. The robustness of the imprecise proba-
bility approach to inference and decision making can
be increased by introducing a second-order possibility
distribution, allowing a smoother and more efficient
updating rule [9, 10], but this goes beyond the scope
of the present paper, and will be the subject of future
work.
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Abstract of the underlying uncertainties (for example,

uncertainties in material properties, loading ctods,

In this paper a novel imprecise probability des@ipis and fabrication details) which could be probakist
applied to vibro-acoustic problems in engineering. (Parametric [1-4], non-parametric [5-7] or a conation
Frequently little data is available concerning the Of both [8,9]) or non-probabilistic [1,4].

variability of the key input parameters required o  Reliability methods aim to estimate the probabitityt
predictive analysis. This has led to widespread afse design targets will be met [10,11]; this probailis
several uncertainty descriptions. The hybrid Finite referred to as the reliability of the system. Theshods
Element/Statistical Energy Analysis (FE/SEA) apptoa are often based on a parametric probabilistic dfetsmm

to the analysis of vibro-acoustic systems is based Of the uncertain parameters of the system andorelthe
subdividing a system into: (i) SEA components whichassumption that the statistical distributions (i.e.
incorporate a non-parametric model of uncertaintyl a Probability density function (pdf)) of these paraers
(i) FE components with parametric uncertainty. SThi are precisely known [12]. The parametric probatidis
approach, combined with the Laplace asymptoticdescription requires a large amount of empiricahda
method, allows the evaluation of the failure prdligb ~ the pdf is constructed using a frequentist view.
A novel strategy for establishing bounds on théufei ~ Alternatively the pdf may be interpreted as a statet of
probability when an imprecise probability modelgpa ~ belief based on expert opinion, as in the subjectiv
on expressing the probability density function of aapproach to probability theory [13]. The more coonm
random variable in the form of a maximum entropy frequentist approach is concerned with the outcane
distribution with bounded parameters) is employed i experiments performed (hypothetically or in reglign

presented. The approach is illustrated by appticath a  large ensembles of systems; these ensembles nhey eit
built-up plate system. be real (for example cars from a production lina),

virtual but realizable in principle (such as anemble of
Keywords. Uncertainties in probabilistic assignments, manufactured satellites, when only one satellitey ma
hybrid FE/SEA method, reliability analysiparametric ~ actually be built). In contrast, with the subjeetiv
and non-parametric uncertainty models, maximumapproach, no ensemble is necessarily involved. The

entropy distribution, vibro-acoustic analysis. frequentist and subjective views can be roughlgradd
to the notions of aleatory and epistemic uncemnaint
1 Introduction aleatory uncertainty is an irreducible uncertainty

associated with an inherent variability of the mxgs

of the system, while epistemic uncertainty is rébleg
being associated with a lack of knowledge of thalyst
with respect to the system’s properties which &edf
boundary conditions) required for a predictive g, [4]. Clearly, the interpretation employed fpr deig the
and yet an engineering assessment of a design mugfjf of the uncertain parameters W'” affec_t . the
nonetheless be performed. This topic has beeruthjet mterprgtaﬂon of the results obtained with a peide

of much recent research, and various analytical an naIyS|s.. | limited fd b
computational approaches have been proposed (f [ practice, only a limited amount of data may be

le. [1-91). h h ; . available and therefore it is often difficult toeiatify the
example, [1-9]). Such methods require some desanipt form of the distribution of the random variable &rdhe

In engineering problems it is frequently the cakatt
little data is available concerning the variability the
key input parameters (geometry, material propertiesl
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parameters of the distribution. Moreover, the astatyay  is modeled as an assembly of subsystems, whose
have uncertainties in belief, meaning that the iflgec  response is described by their vibrational enedgyiied

pdf is itself subject to doubtJsing a pdf which differs as twice the time-averaged kinetic energy). The merm
from the actual one can significantly affect thegiction  of degrees of freedom employed is drastically reduc
of the system performance with respect to safetslity, compared to the FE approach, since a single degfree
design or cost constraints [12,14]. One way arotiniel ~ freedom SEA subsystem might replace thousand wéfin
difficulty is to employ imprecise probability degations element nodes. The interaction between the SEA
in the reliability assessment in order to establisinds  subsystems is described using the principle of
on the failure probability (that is the probabilifyat the  conservation of energy flow, and this leads to aode
response exceeds a critical level). These bourldeal equations that can be solved to yield the subsystem
(i) the evaluation of the sensitivity of the systesponse energies. This method can predict both the ensemble
to the uncertainty of the system parameters; (i@ t average vibrational energy levels [33] (averagess
identification of the worst case scenario (the bggh an ensemble of nominally identical structures) émel
failure  probability expected). Many reliability ensemble variance of the energy levels [6]. The
approaches which includes imprecise probabilityapplication of this approach is limited to highdoency
descriptions have been developed in the past yearbecause of its underlying assumptions (i.e. each
among which there are: (i) First Order Reliability structural component is sufficiently random anct ttiee
Method (FORM) [10] approaches which employ pdfs coupling between subsystems is sufficiently weal. [6
with one [15] or two [16] bounded parameters (mean,Between the respective ranges of validity of FE Sh&d\
variance or another distribution parameter), [1B,16 there is amid-frequencyegion and much research effort
Dempster-Shafer theory (DST) [17,18] and P-box n®de has been directed at the development of efficient
of imprecise probabilities [19-21] applied to réliéy analytical methods that can be applied in this eal@ne
analysis [22-25]; (iii) reliability analysis withandom  such method is the hybrid FE/SEA method [7,34].sThi
sets [26,27]; (iv) reliability assessment by meais approach is based on subdividing a system into SEA
Fuzzy Probabilities [4,28]; (v) Reliability modelghich components (which incorporate a non-parametric
account for the lack of information about the probabilistic model of uncertainty), and determiigi$-E
independence of the stress and strength, and @beut components. This partition leads to a large reductf
parameters of each pdf [29]; (vi) reliability mogidlased the number of degrees of freedom employed in theéeio
on imprecise Bayesian inference models [30]; (vii) and a large gain in numerical efficiency. Moreotee
Interval importance sampling methods combined withmethod enables the prediction of the mean and rneeia
specified pdf with bounded parameters [31]. Howgver of the response (such as the energy response &fAa S
the application of these approaches is often linit®  subsystem or the mean squared amplitude of theefini
simple models, mainly because of the computationaklement degrees of freedom) over a collection sfesys
burden associated to the propagation of the impeeci with random SEA subsystems properties [7,34] withou
probability description. employing Monte Carlo simulations. The hybrid FEASE

In automotive and aerospace industries there asgmle method has been recently generalized by introducing
requirements to ensure vibro-acoustic performarge iparametric uncertainty into the FE components [8] i
met. Vibro-acoustic problems usually involve a very order to provide an enhanced description of those
broad frequency range due to the broadband nafuheo components which may contain a degree of randomness
loadings acting on the system. Broadly speakingethr but cannot be appropriately modeled as SEA sulrsgste
frequency ranges can be identified: low-, mid- &igh- The vibro-acoustic performance of a complex system
frequency ranges. In the low-frequency range thgtle  broad frequency range can be established by apgpthie
scale of deformation of the system components ishybrid FE/SEA method in combination with the
relatively long with respect to their overall dinsgon so  Laplace’s method (hybrid FE/SEA + Laplace) [35].thVi
that: (i) few degrees of freedom are required tadeho this approach both parametric and non-parametric
their dynamic behavior; (i) the system response isprobabilistic uncertainty models are employed ahe t
insensitive to small changes in the system proggeriihe  failure probability over the combined ensembles of
Finite Element method (FE) [32] is a well-estabdidh uncertainty can be assessed. This approach is esthan
deterministic technique for acoustics and vibrationin this paper by considering a system with uncertai
analysis in the low-frequency range. In the high- properties modeled with non-parametric, parametrid
frequency range, instead, the length scale of deftion  also imprecise parametric probabilistic descripgidn

is comparable to small manufacturing imperfectionsorder to account for those input parameters of Rke
producing high sensitivity to uncertainty and reiug a  components which are imprecisely known. In partcul
large number of degrees of freedom for capturing th the hybrid FE/SEA + Laplace is extended in thisgrap
components' dynamic behavior. An alternative tad-© by employing a recently developed model of imprecis
employ Statistical Energy Analysis (SEA) [6,33], a probability [36] in order to establish bounds ore th
probabilistic technique which was developed spesilfy failure probability. The imprecise model employed i
to deal with high frequency vibration. In SEA thestem  based on expressing the probability density fumctiba
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random variable in the form of a maximum entropy
distribution with bounded parameters [36]. This
parametric probabilistic uncertainty model will be

by the Lagrange multipliers (which are constanuga).
It can be therefore argued that Eq. (1) represzefasily
of maximum entropy continuous distributiohghen the

described in more details in Section 2. The hybridconstraints are expressed in terms of statistical

FE/SEA + Laplace approach will be summarized in
Section 3. In Section 4 an efficient approach for
establishing bounds on the failure probability is
presented. The method is illustrated by applicatmm
built-up plate system in Section 5.

2 Probability Density Function with
Bounded Parameters

In this Section a recently developed parametric ehodl
uncertainty which admits uncertainty in the proliatic
assignments is described [36]. This uncertainty ehod
requires as input bounded statistical expectatiohs
specified functions of the random variable andai be
used to describe both aleatory and
uncertainties. The uncertainty model is briefly désed

in Subsection 2.1. In Subsection 2.2, a procedore f
treating the bounded statistical expectations
summarised.

2.1 Basic Concepts

The model of uncertainty is based on consideriiag tine
pdf of a random variable itself is subject to doubt. The
pdf is expressed as the exponential of a serieansipn,
but the parameters within this model, the so-cdltlasic
variables, are allowed to have bounded descrifpd6h

p(x|aDS):exr{Zn:aj fj(x)} (1)
j=1

Eqg. (1) represents a family of distributions defirever
the set of basic variables (which has entries; with

j =2,3...n) that lie within an admissible regio8. A
“basic variable” is defined here as one which cawmeh
any possible pdf within certain bounds, includirg t
extreme case of a delta function at any point betwee
bounds. If a parameter is not “basic”, then its gaifi be
expressed in terms of the basic parameters, arsdoitiy
this type of parameter is considered in what foloiwhe
admissible regiors can be an interval, a convex region,
etc. The term f;(x) is a specified function of the
uncertain variable, such thef (x) =1. The coefficient
& is dependent on the bounded basic variableand it

is chosen to satisfy the normalisation condition.

Eqg. (1) describes a single distribution when theiha
variables have fixed values, and accounts for aemor
general description (a set of pdfs) when thesenpeters
are bounded. In particular, for fixed basic varshlthe

is

expectation inequality constraints, such as:

Vj,minsvj :E[fl (X):|:J. .E(X) d*a)d x jvmax'(z)

j=2,3,..n
wherev, ., andv, . are the lower and upper bound on
the jth statistical expectationv;, within a class of
distribution (for example, polynomial distributigns
maximum entropy distribution, etc.), there are many
distributions which are consistent with the statat
expectation inequality constraints. The Principlé o
Maximum Entropy (MAXENT) selects, among the class
of maximum entropy distributions, the distributiaith

epiStemiGpe |argest entropy [37]. The proposed approaciead,

constructs a family of maximum entropy distribugon
consistent with the statistical expectation ineijyal
constraints and selects, among this family of pitifs,pdf
which maximises (or equivalently minimises) a sfpiedi
engineering metric (for example, the probability of
exceeding a specified limit value, the probabitifypeing
within a certain region). This pdf is potentialliffdrent
from the pdf which maximises the entropy (which &en
recovered as well); therefore the proposed appriasch
more useful from an engineering point of view. This
aspect of the approach will be illustrated by a atioal
application in Section 5 of this paper.
The inequality constraints on the statistical exgton of
the uncertain variable may arise by analysing allsma
data set or can be provided by an expert who mefepr
to assign bounds rather than specifying a singleevdf
f; (x) = x then the inequality constraints are specified
on the mean value, alternatively if; (x) = X*they are
specified on the second moment; (x) can be also
defined as an interval of possible values that the
uncertain variable may take, i.d; (x)=[b,c]; in this
case the constraints corresponds to the probalufity
finding the random variable within those bounds.
The family of pdfs defined in Eq. (1) is construttas
follows:
1. The form of the pdf which maximises the
entropy is computed, as for the maximum
entropy approach, by using the Lagrange
multipliers method.
The Lagrange multipliers are substituted by the
basics variables .
The bounds on the statistical expectations of the
uncertain variable are used to establish bounds
on the basic variables.

3.

pdf expression corresponds to the maximum entropyA procedure for obtaining an approximate mapping of

distribution [13] that arises from specifying thepected

the basic variables domain (a-domain) starting fram

valuesE| f; (x)], where the basic variables are replacedbounded description of the statistical expectati¢ms
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domain) of the uncertain variable [36,38] is sumzet
in the next Subsection.

2.2 Bounds Conversion
Consider the case for which two statistical expémta

of the uncertain variablex lie within a rectangle, as
described in Figure 1.

E[ f,(x)] 4
V3.ma>< -- 2 3
l/3,min - 4

I/Z,max E[ fZ(X)]
Figure 1: Moment domain (m-domain).

The first step of the approach requires the evialoatf
the maximum entropy distribution, which for the gest
case take the form

p(xja) =expla + a h( X+ a &( X]. (3)
In principle, each point of the basic variables dom(a-
domain), which is depicted in Figure 2, can be eatdd

by solving a set of two non-linear equations inmgrof
the statistical expectations of the random variable

a-domain

v

Figure 2: Basic variables domain (a-domain).

For example, point 1 of the m-domain can be mapped
the corresponding point 1 of the a-domain by s@yvin

[f.(exd a+af,(Y+at()]dw v,

J' fo(x)exp| a+a, f,( N+ a §( R]dx= ®

wherea, and a, are the unknown coefficients, armag is
chosen to satisfy the normalisation condition.
In practice, considering enough points along thgesf

number of sets of equations to be solved. The prohs
that, even for a simple problem (like the 2D case
depicted in Figure 1), the solution of each senohf-
linear equations can be time consuming and conueme
problems may occur.
An approximate mapping of the a-domain can be
obtained by [36,38]:
I. Evaluating the mid-points of the surfaces of the
hypercube defining the m-domain
(v =E[ £ (X)]= (Y mee= Y ) 12).
Il.  Estimate the corresponding poiat solving a set
of non-linear equations for the mid-point of the m-
domain.
I1l.  Each point of the a-domain is then calculated by
using an approximate expression of theth
moment:

n

vs=vi+ 2 cf (aj- )
i=2

e (5)
3 dci(a-4d)(a-4a)
j=2k=2
where:
CJ5* :E{(fS(X)—E[ f;(x)])( fj(X)_ E|: f](X)])},
(6)

. {(fs(x%E[ ) i) - f’}(x)J)}
cj =E . .
x(fi () = E[ & (2)])
(7)

This approach is expected to yield less accurataltse
when the variation of theth moment value with respect
to the mid-point moment domain value becomes large.

3 The Hybrid FE/SEA Method Combined
with the Laplace Asymptotic M ethod

In this Section the hybrid FE/SEA approach and its
combination with the Laplace asymptotic method are
briefly reviewed.

3.1 Basic Concepts

The hybrid Finite Element/Statistical Energy Anadys
(FE/SEA) method [7,34] is a vibro-acoustic analysis
technique which combines the strength of a well
established low-frequency deterministic techniqthe
Finite Element method (FE) [32], with a high-frequg
probabilistic method, the Statistical Energy Anays
method (SEA) [6,33], by means of the diffuse field
reciprocity relation [39,40]. With this approachithlin

the m-domain would aI.Iow a good approximation'(ﬂ th the frequency range of interest of the problem andh a
shape of the a-domain to be obtained, reducing theomplex system is considered as an assembly of (i)
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components with very few local modes, collectively 3.2 The Hybrid FE/SEA Equations for Fixed FE
called the “master” system and modelled by using FE Properties

and (i) components with many local modes, called

“subsystems”, which are modelled with SEA, andsit i The hybrid FE/SEA equations for evaluating the
assumed that all the SEA subsystems are couplednsemble average responsg, (b)) at the excitation
exclusively through the master system. For examdle, frequencyw are [34]:

generic class of engineering systems characteiiged a) Subsystem energy balance equations

thin panels coupled through stiff structural comgats is

often encountered in aerospace structures, whésre _ VE _ _ _ - py p (8

is coupled with a skin paneﬁ), or in automotive stuwes, A, *11a.1) +Zk:m’kn B/n-&Im=R+ RO
where the frame of the car is coupled to the rcaigb

and window panel. Within the hybrid FE/SEA modedlin where 77, is the damping loss factor of the subsystgm
strategy, the panels would be modelled as SEAp, , is an additional loss factor on the subsystgndue
subsystems, and the stiff components would be rteatlel to the energy dissipated in the FE componenisiis the
using FE. The response of the master system isidedc  coupling loss factor between subsystem and

by a set of nodal degrees of freedomand the response  supsystemk, n; is the modal density of subsystejn

of the SEA subsystems is described by a set ofwhich is defined as the average number the average
vibrational energiesg (defined as twice the time- number of natural frequencies within a unit frequen
averaged kinetic energy). band), E; is the ensemble average vibrational energy of
The properties of the hybrid FE/SEA model composient subsystem j, F?:fj‘ is the external power input to the
(such as density, Young's modulus, geometry, &®) subsystem arising from the loads acting on the enast
represented by two groups of parameters to disBhgu system andP, ; is the power input arising from external
different models of uncertainty [8]: the masterteys  |oads directly applied to the subsystgm

properties are represented by a set of paramdiers Eq (g) states that the power dissipated throughpiteg
while the properties of the SEA subsystem are( oy, +n, ,)E,) plus the net power transmitted to other
represented by a set of parametstsThe effect of the  gypsystems wyn (E /n-E/R)) is balanced
uncertain parameters is accounted for via a non- py the power mput to the subsyste®®{ + R ), and it
parametric statistical approach based on the fattdt g hased on the assumption that the power traresinit
high frequency the statistics of the natural freques ., nortional to the difference of the average modal
and mode shapes of the subsystems can approaemcert oo gies (defined ak, /n ) of the coupled subsystems.

universal distributions, regardless of the detaihatlure ;
. T Eqg. (8) has the same form as the standard SEAiegsat
of the underlying uncertainty [7,8,40]. The effettthe [33], but also contains two additional terms relgtio:

upct?rtba}:inti pararrner};eﬁib If] ?tccig':mt?r(]j o|f(|)r 8by T?\ (i) the contribution of the master system to theveo
probabilistic parametric uncertainty model [8]. € input PeXJ‘, and (ii) the power dissipated in the master

system is therefore varying over two ensemblesora n in,j :
- - .. system, ar, .E.. These two terms can be expressed in
parametric ensemble (a collection of systems with oy

random subsystem properties) and a parametric daleem terms _of: (k)(') the total dynamlc stlffn.ess . matrix
(a collection of systems with random master systemDuo =>..Di +D;, where D, is the dynamic stifiness
properties). matrix asspmated with the FE model
For fixed master system properties, the hybrid E&s (Ds =~@M +iaC+K, where M,Cand K are
method enables the calculation of the conditiormi-n resPectively the FE c?kgn_ponent mass, damping and
parametric ensemble averagg, (b) and ensemble snffnes; mgtrlces), anf.i)dir is the so-called.dwect field
varianceo? (b) of a response variable (which can be dynamic stiffness matrix for subsysteknwhich can be
the vibrational energy of the SEA subsystgm or the computed using various tec_hnlques_[34]; _(||) thessr
cross spectrum of the finite element degrees @fdiven) spectral matrix of thﬁ loading applied directly tioe
[7,34]. The ensemble is non-parametric in the sénae master systens, :[ff J , SO that

the details of the parametess are never considered in

the model, but rather the Gaussian Orthogonal Ebkem _
(GOE) is used to described the statistics of thsgstem di =
natural frequencies and mode shapes [7,40]. This
approach obviates the need for any detailed knayeled . .

o? E)he variability or uncertainty of th)e/) parametsr;rﬁ Pine,xjt = (w/ 2)2 'm{ Déirj)xrs} (D;Sff Dt_oltT)rs' (10)
does not require Monte Carlo Simulations to be *
performed to propagate the uncertainty. The equostio
necessary for the evaluation of, (b) are reviewed in
the following Subsection.

2a,
m;

[Em{o. ) oimiouox), o

where the superscript indicates the complex conjugate,
the superscriptT denotes the transpose, Im represents
the imaginary part of the matrix, and, is a factor
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which takes into account the fact that the subsyste by the general response variate= w(b,s) (which can

wave field may not be perfectly diffuse [7]. Gerlgra be the vibrational energy of subsystejm or the cross

a, is equal to 1 when the subsystem wave field isspectrum response of the master system). This thomndi

diffuse, and close to 2 when the subsystem is exkcit can be expressed as:

predominantly by motion of the master system [7].

Three of the remaining terms in Eq. (8), specifica}, , p = P[WZ V‘6] — J“"’ p( v\) dw (13)

n;, and B, ,, are evaluated by using standard SEA Wo

procedures [33], while the coupling loss factore ar

expressed analytically as a function of the totalagnic ~ The application of the hybrid FE/SEA method forefik

stiffness matrix in the form [34] b yields the conditional non-parametric ensemblermea

and variance of the responsey (b)ando?(b),

24 . B > respectively), which can then be used to evaluhée t

W :( ”ij'm{chijr),rs}(Dwi'm{Dg?r)}DwiT),s'(ll) probability density function of the general respons

® variable conditional orb, p(wb); for example, the pdf

Writing Eq. (8) for each subsystem leads to a det 0of the non-parametric ensemble vibrational energy i
equations that can be solved to yield the ensembléjslljgllyr:og'normf‘l’ anddtfherE(;efé)rAfeztheEmearlgnchmHBb
average vibrational energg, of each subsystenThis yie t.e Icomp gte P [6.8,42]. b q (13) can be
set of E, is then used to calculate the average respons&2nveniently rewritten in terms ap(wb):

of the master system.

b) Master system response equation P :I; J'b p(vqb) p(b)dbd w (14)
S, =Da|S, +Y Aa, E, |m{D(§i?} DT, (12)  The failure probability conditional otb can be now
| wrm, defined as:
here S, is the cross-spectrum of the response of theP; (b) :Ium p(wb)d w (15)

master system (averaged over the non-parametric

ensemble), and the FWO tgrms on the rightjha.nd Sid'?;md therefore Eq. (13) can be written as an unbedind
correspond to the forcing arising from externali@tion integral:

(expressed in terms of the cross spectrum of thee$o

S, ) and the forcing arising from the subsystems, as_

yiglded by the diffuse field reciprocity relatiodd,40]. P _J-b P (b) p(b)db. (16)

By using the hybrid FE/SEA variance theory [7]sitalso

possible to estimate the covariance of the subsyste The integral in Eq. (16) can be evaluated numdyida)
energies Cov| E;,E |, where E =E//n) and the considering a grid of integration points (direct
variance of the cross-spectral matrix of the respoof  integration), although this approach is unpracticiaén a
the master system\/(ar[sqq;) over the non-parametric large number of uncertain input parameters is cemed
ensemble, which are indicated in what follows as[10]. Alternatively, an approximate evaluation dfist
Uf(b). These equations are required in the followingintegral can be obtained by applying the Laplace’s
developments of the theory for estimating the pbdtig method to the integral expressed in the form
density of the general response variable, but fewity J'bexpLIn[Pf (b) p(b)} do. In particular, the failure
they will not be included in this paper. The reader probability can be approximated as [35]:

referred to the paper by Langley and Cotoni [7] khe
their full derivations can also be found. v -2

P =P, (65) p(b7)(27)" el H(b) ], @)
3.3 Hybrid FE/SEA + Laplace =

The hybrid FE/SEA method has been recently combineq\r']h[e;e(g') S(ts)ndztf%rcézﬁngg*mbgrisoihg)%?rln;nrgﬁifc)f
with the Laplace's method [35] (a technique used to he sfet ofprangom variablds Jir;volved in the problem
approximate integrals expressed in the Laplace for det[ ] s the matrix determinant operator ahk;bm) - ,
[41]) in order to establish the failure probabiliof a h . i wh | P . bj
complex built-up system with input parameters déescr the Hesslan matrix whose elements are given by

by a combination of parametric and non-parametric )

probabilistic uncertainty models. H, (b) —_ 0 [In(Pf (b) p(b)ﬂ (18)
The failure probability is defined as the probabithat a ohob,

deterministic limit valuew, is reached and/or exceeded
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This approximation (Eq. (17)) corresponds to repigc If the basic variables are allowed to vary, a fgnuof

the

integrand function with an n-dimensional Gaassi response pdfs is obtained and the bounds on thedai

distribution with mean equal td; and covariance probability can be established as
matrix equal to the inverse o (bJD) . Conditions for the
accuracy of Eq. (17) are discussed in referenced$} mSin(Pf (a)) <P < msax( P (a)) . (21)

4 Bounds on the Failure Probability These bounds give an indication of the sensitigityhe

4.1

) _ ) system reliability with respect to the uncertaioty the
Hybrid FE/SEA + Laplace Using Imprecise  pdf of the input parameters. If the bounds are wite

Probabilities uncertainty in the input parameter description is

significantly affecting the system reliability. Qine other

The hybrid FE/SEA + Laplace approach can behand, if the bounds are narrow then the systerahitity
generalised considering the case in which the tmicer s little affected by the uncertainty in the pdf tife
input parametersb of the FE components can be uncertain parameters.

subdivided into two groups: (i) a set of parametbrs

described by a specified probability density fumeti 4.2 Stepsfor Implementing the Proposed Approach

p(B) and (ii) a set of parameters

imprecisely

imp

known described in terms of bounded statisticalThe reliability analysis can be summarised as ¥adto

expectations (derived from small data set or spgetiby I. The system is subdivided into: (i) FE components
an analyst). The second set of parametgfs can be with uncertain propertiesb; and (i) SEA
modelled by using the imprecise probability undatia components with uncertain propertiges
model presented in Section 2. With this approabk, t 1l. The effect of the uncertain parameteysof the
joint pdf of the random variablep bimp|a is expressed SEA components is accounted for by using non-
in the form of a maximum entropy distribution (Et)), parametric statistical methods.
and the bounds on the statistical expectations arelll. The uncertain parameters of the FE componbnts
converted into bounds on the so-called basic viasad are partitioned into two sets of parameters:kyi)
(as described in Section 2). If these basic vasmlare modelled by using a specified pfﬂf(b): and (ii)
taken to have fixed valuesa, then a single pdf b, modelled via the imprecise probability model
p bimﬂa is identified. p’(bimp a) wherea are the basic variables which
According to Eq. (17), the failure probability catiainal define the family of pdfs (Eq. (1)).
on the basic variables is then given by IV. The admissible region of the basic variable a-
domain) associated to the random variaties

— 0 (obtained as described in Section 2 from the

Pr(2)= P[ (b,bimp|a,s) z W’J (19) knowledge of the bounds on statistical

=J,P

where P, (b,b

The hybrid FE/SEA + Laplace approach [35] can leath

(b i) )p(B) p(b,gla) db. expectations) is overlaid with a grid of points.
i i This grid is chosen in order to capture enough
) ) . » sampled points within and along the a-domain.
Imp| ) is the failure probability conditional V. For each sampled point of this grid, the
( .mp|a correspondinga, is calculated via normalization.
The set of basic variables associated to each point
of the domain identifies a singﬁra(bimp a

employed to estimate the failure probability as: VI. For fixed basic variablea, P, (a) is calculated
v using Eq. (20).
P.(a)=Y P (b"b” p(b?) p(b? VIl. The bounds on the failure probability are then
' (2) Z f( ‘ ’”| ) ( ‘) ( ’”| ) (20) calculated by using Eq. (21).
-1/2
d/2 0 w0 i . .
x(27) det["' (7 bl )J 5 Numerical Application
The evaluation of the failure probability requires: The example system is composed by two simply
I. Evaluation of p vv{ b,.b..;|a)] by using the supported plates coupled via a spring/mass system i
results yielded by the hybrid FE/SEA method. order to represent with the simplest possible dyoam
ll. Calculation ofP, bu b,, ]|a by using Eq. (15). model a generic class of systems in which thin |saze
IIl. Evaluation of bJD, I%np] a) by applying a coupled to stiff structural components (such asfthee
standard unconstrained minimization algorithm to of @ car coupled to the roof and the window pandlkg
~In| P, (bY,b. |a p(bD) p(b.m | )J coupling is realised using three springs attacmethée
IV. Eval anor# of tph’e Hessian matr?nj( interior of each plate (point connections) linkexdthe
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second mass of the spring/mass system (Figurel®. T The initial step of the analysis consists of evihgathe

system is excited with a unit force applied to fhet
mass of the spring/mass system. The two platemade
of aluminium (Young’s modulusY=71x16 N /nf,
density 2700Kg /m*> and Poisson’s ratio =0.3) and
their properties are summarised in Table 1.

Plate 1

A
ks K3 2

Figure 3: Built-up plate system under investigation

Element [Thickness| Size Loss Modal
(m) LxL, |factor | densityn

(mxn) |7 (%) |(modes/Hz)
Plate 1 1.25 14x12 2 0.4286
Plate 2 1.25 14x1: 2 0.4643

Table 1: Properties of the plates.

The spring connections in the interior of the fiptate
have  stiffness ki =2x10° N/m, (u= 1,2,3and
attachment points (0.3,0.9 ( 0.6,0% , anfl 0.8,0.
measured in metres along the and y directions and

probability density function of the uncertain paeier

k,. This is achieved by using the procedure desgritve
Subsection 2.1. The pdf &, has the form
p(ke|a) =exp[a - ax- ain( 3], (22)

where g is obtained by using the normalization
condition as:
a = —In(al®r(1-a)), (23)

whereT () is the gamma function.

14.5

14.5

14.45

14.4-

Elin(k)] (N/m)

1.9 2 2.1 2.2
E[k,] (N/m) X 106

Figure 4: Moment domain fdk,
The a-domain is then calculated by using the gyate

summarized in Subsection 2.2. In particular, the
quadratic approximation of statistical expectatidis.

relative to point theo,. The second plate is connected (5)) was employed and 16 points along the m-dortasn

via springs of stiffness k,2 =2x10* N/m, (I =12,
attached at points(0.4,0.4 ( 0.5,0p , anfl 0.9,
measured in metres along the and y directions and
relative to the poinb, .

shown in Figure 4) were mapped into the a-domalire T
resulting approximate domain is shown in Figure 5.

Each point of the a-domain defines a single pdm&of

the pdfs corresponding to the a-domain are shown in

The hybrid FE/SEA model of the system comprises twoFigure 6.

SEA subsystems (the plates), which are highly remdo

The second step of the analysis consists of appatiig

and a mass/spring system (FE component) with twdhe bounds on the failure probability as descrilied

uncertain parameters, namety and k, . k; is described
by a lognormal pdf with mean valuéx1® N/m and
variance10"( N/m)z. k, is imprecisely known and it is
specified in terms of bounds on statistical expéema as
summarised in Table 2 and depicted in Figure 4.

1 2 3 4
(18x 16 ,14.2)7 (22x 16 ,14.5)2 (22x 16 ,14.5)1 (18x 16 ,14.2)4

Table 2: Coordinates of the vertices of the m-domai

The system is forced by a unit force applied to first
mass of the mass/spring system (as shown in Figure
The design target is the energy level of plate 14&t Hz,
and a limiting value ofg, =0.02x 10 J is considered.

Subsection 4.2.

The a-domain was overlaid with a grid &0x50
equally-spaced points. The 16 points along the doma
and 414 points internal to the domain were consitler
(for a total of 430 pdfs). For each grid po{,, as) the
procedure illustrated in Subsection 4.1 was applied
particular, for fixed gbj,bimp'j|a) the hybrid FE/SEA
method was applied to estimate the mean and varieihc
the response. These were used, under the assuroption
lognormal distriution of the yjbrational energy jifite
1, to evaluateplvq(bj,bimpda . P (b, by a\f was
then calculated by using Eq. (15). The minimum t{ejn
of -In LPf (b?,bimmp'j a) p(b??} p(biDmp’j|a)1 was
calculated by using the ‘Matlab function Tminunc.eTh
Hessian matrix was approximated by using third orde
Lagrange polynomials. Finally, the failure probépil
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conditional on the basic variables was computeddiyg probability estimates. The computational time reegi
Eq. (20). by the proposed approach was of about 3 minutes.

The failure probability obtained for the MAXENT
distribution (corresponding to the point 10 of the
domain in Figure 7) is 0.03976. The MAXENT
distribution would therefore underestimate the mmaxn
failure probability.

The results obtained with the proposed approache wer
validated against direct numerical integration gf E.9),
which took about 6 hours, showing differences tass
1%. Full FE Monte Carlo simulations for the present
; | | | D system considering a single point (and therefosingle

= i i i i 785 pdf) of the a-domain requires about 45 hours. Il

L6 18 222 24 26 328 Monte Carlo simulations are therefore unfeasiblenev

E x10 for this example system. It can be concluded that t
. . . . proposed approach provides a very efficient tooltfe
Figure 5: Approximate a-domain. reliability analysis of system with uncertain projes.

6 Summary and Conclusions

An imprecise probability model based on expressirgy
pdf of a random variable in the form of a maximum
entropy distribution with bounded parameters wasdus
to describe the parametric uncertainty of the FE
components of a hybrid FE/SEA model. The hybrid
FE/SEA + Laplace method, which fully accounts for
both parametric (FE components) and non-parametric
, ‘ , (SEA components) uncertainties, was applied tdéista
o 1 2 3 4 5 6 7 bounds on the failure probability. These bound® gin
k, (N/m) x 10 . . . e . L
2 indication of the sensitivity of the system reliili to
the uncertain input parameters and allow estabilisttie
Figure 6: Pdfs generated from the a-domain. highest failure probability expected.
This approach provides a very useful tool for estihg
The results obtained for each grid point are shawn the reliability of complex engineering systems gitbat:
Figure 7. - The partition of the system in SEA and FE
components leads to a large reduction of the number
of degrees of freedom employed in the model
(potentially thousand of finite elements nodes are
substituted with a single degree of freedom SEA
0.035 . subsytem) and a large gain in numerical efficiency.
- The SEA subsystem ensemble is dealt with
analytically (without using MCS) leading to a
. further reduction in computational costs.
R ‘ : - The uncertainty in FE components is dealt with
y using the Laplace asymptotic method instead of
™ MCS.
- & - The bounds on the failure probability can be
1 efficiently established when the imprecise
probability model is employed.

Figure 7: Failure probability as a function of thesic ~ The method has been illustrated by applicationuiit-b

variables. The lower and upper bounds of the failur UP Plate systems, showing a large reduction of the
probability are labeled as “min” and “max”. computational cost when compared to a direct irattgn
procedure and to Full FE Monte Carlo simulations.

p(k,fa,.az)

The bounds on the failure probability are (by uskg
(21)): 0.02192< P, < 0.0424 (respectively, at point 1 Acknowledgements
and 9 of the a-domain), meaning that the uncestamt

the input parameters significantly affects the uiwl Financial support from the Schlumberger Gould
Research Center is gratefully acknowledged.
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Abstract

In this paper we consider Bayesian-like inference pro-
cesses involving coherent T-conditional possibilities
assessed on infinite sets of conditional events. For
this, a characterization of coherent assessments of pos-
sibilistic prior and likelihood is carried on. Since we
are working in a finitely maxitive setting, the notions
of complete disintegrability and of complete conglom-
erability are also studied and their relevance in the
infinite version of the possibilistic Bayes formula is
highlighted.

Keywords. Complete disintegrability, complete con-
glomerability, finite maxitivity, T-conditional possi-
bility, possibilistic likelihood function, coherence.

1 Introduction

This paper deals with finitely maxitive T-conditional
possibilities (with 7" any continuous t-norm) and fo-
cuses the attention on problems related to the updat-
ing of possibility by Bayesian-like procedures.

In the first part of the paper we mainly deal with
the characterization of coherent T-conditional possi-
bility assessments, both for arbitrary families of con-
ditional events and for particular families of the type
{H;, E|H;};c1, with I infinite, where the H;’s form
a partition of the sure event while E is an arbitrary
event. For these last assessments we also characterize
the set of coherent values for their extension to F, in
the case T is the minimum or a strict t-norm and F
is logically independent of the H;’s.

In the second part we take into consideration two
concepts: complete disintegrability and complete con-
glomerability for events, defined in analogy to those
introduced in probability theory (originally given for
countable partitions [18, 29, 1]), considering infinite
partitions with arbitrary cardinality. As it is well-
known, in probability theory the two properties (see,
e.g., [17, 21, 29, 30, 31, 4]) are strictly related to o-
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additivity. In fact for finitely additive conditional
probabilities it is possible to have examples which,
contrary to intuition, show that a P needs not be con-
glomerative (and so disintegrable). In Bayesian lit-
erature, the phenomenon of nonconglomerability has
emerged in the so-called marginalization paradoxes
[7]. In this paper we show similarities and differ-
ences between the probabilistic and possibilistic con-
texts about complete disintegrability and complete
conglomerability, moreover we investigate their con-
nection with complete maxitivity. In particular, we
find that, for a fixed infinite partition £, complete
disintegrability w.r.t. £ implies both complete max-
itivity w.r.t. £ and complete conglomerability w.r.t.
L but the implications are not invertible. Further-
more, complete conglomerability w.r.t. £ and com-
plete maxitivity w.r.t. £ are independent.

2 Coherent T-conditional possibility

In this section we recall the definition of conditional
possibility given in [5, 6, 13, 14], that can be obtained
as a particular instance of the one introduced in [10].

An event E is singled out by a Boolean proposition,
that is a statement that can be either true or false.
Since in general it is not known whether E is true
or not, we are uncertain on F, which is said to be
possible. Two particular events are the certain event
Q and the impossible event (), that coincide with, re-
spectively, the top and the bottom of every Boolean
algebra B of events, i.e., a set of events closed w.r.t.
the familiar Boolean operations of contrary ¢, con-
junction A\ and disjunction V and equipped with the
partial order C. Recall that due to Stone’s theorem,
events can be represented as subsets of a universe set
that is identified with Q: in this case we continue to
use ¢, A and V in place of set-theoretic operations.

A conditional event E|H is an ordered pair (E, H),
with H # (), where E and H are events of the same
“nature”, but with a different role (in fact H acts as
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a “possible hypothesis”). In particular any event F
can be seen as the conditional event E|(.

In what follows, B x H denotes a set of conditional
events with B a Boolean algebra and ‘H an additive set
(i.e., closed with respect to finite disjunctions) such
that # C B® = B\ {0}. Moreover, given an arbitrary
set G = {Ej|H,}jecs, denote with ({E;, H;},cs) the
Boolean algebra generated by the events {E;, H; }je.

We recall that a t-norm T is a commutative, asso-
ciative, increasing, binary operation on [0, 1], having
1 as neutral element. A t-norm is called continu-
ous (analogously, left-continuous or right-continuous)
if it is continuous as a function, in the usual interval
topology on [0, 1]2. Prototypical examples of continu-
ous t-norms are the minimum, the algebraic product
and the Lukasiewicz t-norm, moreover, any continu-
ous t-norm is isomorphic to an ordinal sum of pre-
vious t-norms (see for instance [24]). A ¢-norm is
called strict if it is continuous and strictly monotone:
strict t-norms are isomorphic to the algebraic product
through an order automorphism of the unit interval.

Definition 1. Let T be any t-norm. A function II :
B x H — [0,1] is a T-conditional possibility if it
satisfies the following properties:

(i) I(E|H) = I(E AN H|H), for every E € B and
He™H;

(ii) TI(-|H) is a finitely mazitive possibility on B, for
any H € H;

(iti)) W(EAF|H) =TI(E|H),IL(F|EAH)), for any
H,ENH€eH and EF € B.

Let us stress that condition (7) requires that, for ev-
ery H e H, II(0|H) = 0, II(QH) = 1 and for every
Ey,...,E, € B, I(V,_, Ei|H) = _max I(E;|H),

which is called finite mazitivity axiom [33]. More-
over conditions (i) and (i) imply that II(H|H) = 1
for every H € H.

Notice that in this paper we do not postulate the
stronger condition of complete maxitivity, which re-
quires that for every {E;}ier € B with \/,.; E; € B

and arbitrary I, II (\/,c; Ei|H) = supIL(E;|H), thus
iel

we always mean finitely maxitive T-conditional pos-
sibilities even when not explicitly stated.

Remark 1. FEwvery finitely mazitive unconditional
possibility TI(-) on B can be seen as a T-conditional
possibility on B x {Q}, where T is an arbitrary t-
norm. In particular, for a T-conditional possibility
IT on B xH, we will write II(E) for II(E|Q), provided
that 2 € H.

For every finite set of incompatible events
Hy,...,H, € H with H = \/[_, H; and for ev-
ery E € B, axioms (i) and (i) imply a possibilistic
counterpart of the well-known disintegration formula

N(EIH) = max (TOUEH).IEH)}. (1)

Definition 1 does not require any particular property
for the t-norm T'. The only constraint is the distribu-
tivity over the maximum operation used in condition
(ii), but this constraint is vacuous since every t-norm
is distributive over max.

Nevertheless, continuity of the t-norm 7" is fundamen-
tal [14, 27] in order to guarantee the extendability
(generally not in a unique way) of a T-conditional
possibility on B x H to a full T-conditional possibility
on B (i.e., with domain B x B°). For this, in the rest
of the paper we will always assume 7T is continuous
when not explicitly stated.

Differently from other common notions of condition-
ing in possibility theory [36, 23, 22, 15], a full T-
conditional possibility TI(-|-) is not singled out by a
single unconditional possibility measure II(+), in gen-
eral, but one needs a class of finitely maxitive mea-
sures [33] defined on a family of ideals linearly ordered
by proper set inclusion.

Remark 2. We notice that in the particular case
where the t-norm T is the usual product, @ € H and
II(H) =II(H|Q) > 0, for every H € H, the definition
of T-conditional possibility coincides with Dempster’s
rule [20]:
II(E A H)

II(H)

We recall that the conditional possibility Ilp is not
necessarily a coherent conditional upper probability
(see [16, 35]), vice versa a conditional possibility ob-
tained as upper envelope of a class of conditional prob-
abilities in general does not satisfy condition (iii) of
Definition 1.

Definition 2. Let B be a Boolean algebra and T a
continuous t-norm. A family {(Z;,m;) : i € I} is a
T-nested class if:

Up(EIH) =

(a) for everyi € I, Z; is a Boolean ideal of B and the
family {Z; : i € I} is linearly ordered by proper
set inclusion;

(b) for every E € B°, there exists i € I such that
E S I7 \ U{Ij : Ij C :L},

(c) foreveryi € I, m; is a (non-identically equal to 0)
finitely mazitive measure on I; ranging in [0, 1],
such that for every E € Z;, m;(E) < 1 if and only
’LfE S U{IJ : Ij C Iz};
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(d) for every i,j € I such that I; C Z; and every
E,F € Z;, all the solutions of equation 7;(E A
F) = T(x,m;(F)) are solutions of the equation
T (ENF) =T(x,m;(F));

(e) for everyi,j € I such that Z; C I;, Tz, < Wi

Notice that, Definition 2 is equivalent in the finite case
to the notion of T-nested class introduced in [14]. In
particular, each finitely maxitive measure m; on Z; is
a restriction of a finitely maxitive possibility measure
on B.

The algebraic requirement on the domain of the func-
tion II in Definition 1 cannot be relaxed, indeed ax-
ioms (i)—(iii) are no more sufficient to characterize
IT if it is defined on an arbitrary set of conditional
events G. Hence, in order to deal with this eventu-
ality, the axiomatic system must be reinforced going
back to the concept of coherence, originally introduced
by de Finetti [19] in the context of (finitely additive)
probabilities.

Definition 3. Let T be any continuous t-norm.
A function 11 G — [0,1] is a coherent T-
conditional possibility (assessment) if there ex-
ists a T-conditional possibility TU' : BxH — [0,1] such
that HTg =1II, where B x H O G with B a Boolean al-
gebra and H C BY and additive class.

Remark 3. Previous definition can be equivalently
formulated by requiring that 11 can be extended as a
full T-conditional possibility on B. In fact in [27] the
extendability of any T-conditional possibility on B x
H to a full T-conditional possibility on B has been
proved.

Coherent T-conditional possibility assessments on fi-
nite domains have been characterized in [14]. Such
characterization has been extended to the infinite case
in [27], where the coherence of an assessment II on G
is expressed in terms of coherence of Il on every fi-
nite F C G. The following Theorem 1 provides also a
characterization in terms of a T-nested class agreeing
with the assessment.

Theorem 1. Let T be a continuous t-norm, G =
{Ej|H;}jecs an arbitrary set of conditional events and
B the Boolean algebra generated by {E;, H;};cy. For
any F = {E1|Hy,...,Eq|Hpy} € G, let Br be the
Boolean algebra generated by {E;, H;} whose set of
atoms is Cx, and Hy C B% an additive set such that
{H;} CHr. For a function II : G — [0,1], the fol-
lowing statements are equivalent:

(i) 11 is a coherent T-conditional possibility on G;

(“) fOT any Foo= {E1|HlaaEn|Hn} - g7
if Crog = {Cr e Cr : C. C Hg} and

HY = \/Her H, there exists a sequence of
compatible systems S}_[_-a, for a = 0,...,k, with
unknowns & > 0 for C, € Cr,,

max xp =T (H(E¢|Hi), max x?)

CrCE;NH; CrCH;

{for Ei|H; € F s.t. max €271 < 1]
CrCH;

SE -

¢ x?ngila ’Lfc’l‘ec]:a

el (xﬁ‘, Max 5?71), if Cr € Crq

sec]-'a

max zy =1
CreCrqy

(2)

where € (with r-th component ) is the so-
lution of the system Sga and Cr, is the set
of atoms {C, € Crq_1 C, C H§Y} with

[ — . B < —
H§ \/{HEH;.CHT%)I%ET<1,6_0¢ 1},
moreover £ =0 for any C,. in Cry;

(iii) there exists a T-nested class {(Z;, ;) i eI}
on B such that for every E;|H; € G there exists
i € I such that H; € Z;, and m;(H;) = 1 and
mi(E; A Hj) = TI(E;|Hj).

Proof. The equivalence between (i) and (i) has been
proved in [27]. To prove the equivalence between (i)
and (iit) we follow the line of the construction in-
troduced by Krauss in [25] for full conditional prob-
abilities. Due to space limitations we give here just
a sketch of the proof. For this aim, consider that for
any full T-conditional possibility II' on B it is possible
to define a total preorder < on B°, setting F < F if
and only if II'(F|E V F) = 1, for every E,F € B°.
For every E € B°, the relation < determines the
Boolean ideal Zp = {F € B° : F < E} U {0}, and
the family {Zg : E € B°} results to be linearly or-
dered by set inclusion. For every E € B, define
mg(F) = II'(F|E V F) for every F € Zg, which re-
sults to be a finitely maxitive measure on the ideal
ZIp. The family {(Zg,7g) : E € B°} is such that if
Ir = Ip then mg = mp. Thus, up to equal ideals, we
can obtain a unique T-nested class {(Z;,7;) : ¢ € I'}
which uniquely represents the full T-conditional pos-
sibility II' on B, since for every E|H € B x B°, there
exists an index ¢ € I such that m;(H) = 1 and
mi(ENH) =1I'(E|H). Now, since by Remark 3 the
coherence of the assessment II is equivalent to the ex-
istence of a full T-conditional possibility I’ on B ex-
tending II, this is equivalent, in turn, to the existence
of a T-nested class on B agreeing with the assessment
II. O

Remark 4. In condition (ii) of previous theorem, for
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any finite F C G, the sequence of solutions EO, e ,Ek
gives rise to a class of possibilities P = {Ily, ..., II;}
on Br representing a T-conditional possibility on
Br x Hr extending Iz [27]. The choice of HF es-
sentially impacts on the number of systems to solve
[2, 3]. Let us notice that for the sake of convenience
one can always take for Hr the minimal additive set
containing {H;}, that is, the additive set generated by
the H;’s. In the particular case Hr is taken equal to

Bg-, then the solutions ZO, e ,Zk correspond exactly
to a finite T-nested class {(Zo,m0), .- ., (Zg, 7x)} with
To CZy1,a=1,... k.

Remark 5. The characterization of coherence given
in Theorem 1 implies that if 11 : G" — [0, 1] is coher-
ent, then for any subset G C G’ also Ilg is coherent.

Now we focus on the main ¢-norms used for condi-
tioning in possibility theory, i.e., the minimum and
strict ¢-norms. Under this choice, the coherence of
an assessment is a sufficient (and necessary) condi-
tion for the extendability to any superset of condi-
tional events, as stated in next theorem [27], which is a
possibilistic counterpart of the celebrated de Finetti’s
fundamental theorem for conditional probabilities.

Theorem 2. Let T be the minimum or a strict t-
norm. Let G be an arbitrary set of conditional events
and II : G — [0,1] a coherent T-conditional pos-
sibility. Then II can be extended as a coherent T-
conditional possibility II' to any superset G' D G.
Moreover, if G = GU{E|H} then the coherent values
for IV (E|H) lie in a closed interval [, 7*].

Previous theorem, whose proof relies on Zorn’s
lemma, generalizes to the infinite case a result proved
n [14] for finite domains. In particular, the exten-
sion interval [m,,7*] is computed as the intersection
of all the intervals [wr,, 7 #*] expressing the coherent
extensions of IIjz on E|H, for any finite subfamily

FCg.

Remark 6. Let IT : G — [0,1] be a coherent T-
conditional possibility and G C G'. If we denote with
(7., 7""] the extension interval of 11 on E|H and with

[T, 7] the eatension interval of Ilig on E|H, then it
holds [r'., 7] C [ms, 7*].

Example 1. Take N as universe, let £ = {E; =
{i}}ien, and H = {Hy = {1}°,N}. Consider the
assessment 11 defined for every E; € € and H € H
as

1 .
TI(E;[H) { 0 otherwise.
The function I is a coherent min-conditional possi-
bility as it can be extended as a min-conditional pos-
sibility on B x H, where B is the field of finite-cofinite
subsets of N. For example, a possible extension is the

function TI' defined for H € H putting II'(E|H) = 1
if E is cofinite, while if E is finite we set

1 .
H'(E|H) — min{i : it€ EAH} ZfE/\H 7é (Z)’
0 otherwise.

Actually, II' turns out to be a T-conditional possibility
for every continuous t-norm T. Indeed, conditions
(i) and (ii) are easily verified, while condition (i)
reduces to

I'(E A Hy) = T(IU(E[Hy), T (Hy)),

for every E € B, which trivially holds since II'(H;) =
1 and II'(E N Hy) =1I'(E|H;) for every E € B.

We want to determine the coherent extension interval
of the coherent min-conditional possibility I1 to the
new event Hy = Hq|N. By previous discussion we
know that 1 is the upper bound, thus we only need
to compute the lower bound. Recalling that € x H
is a countable set, for every {i1,...,in} € N we can
focus on the family F = {E;,, E;;|H1,: j=1,...,n}.
Indeed, by virtue of Remark 6 every finite subset of F
gives rise to a larger extension interval, thus it can be
ignored.

Denote with C;; = E;; N Hi and C;j = E;, N Hf,
j=1,...,n,and C;, , = /\;-L:l EfJ AHy and C{,LH =

/\?:1 Ef N HY, the atoms generated by {Ei,,Hy :j =
1,...,n}, where only possible ones are considered.

The lower bound of the extension interval of 11z
on Hy is computed solving the following optimization

problem under the system S3  [27], which has un-
knowns x?j,m?j/ > 0 for atoms Cij,C{j, ji=1,....,n+
1, and results to be

minimize [ max
-

max{z; , 7, T
[j = ) 7n]
o) o0 il 0
SH, ] g, = mln{ij ,jzg}%ﬂ{%}}
[.7 = 17 . ,TL]

where equations of the second kind in which C;, = ()
are neglected as well as unknowns corresponding to
Ci, =0 or C, = 0.

The lower bound can be written as my;, . .}
max{% =1, ni # 1}.

Hence, the coherent min-conditional possibility values
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for Hy range in the closed interval

3 Possibilistic likelihood functions
and possibilistic priors on infinite
partitions

Theorem 1 and 2 deal with coherence and extension
in their most general form. Nevertheless, there are
situations in which coherence is immediately implied
by some conditions and the extension on a new con-
ditional event is easily computed.

This is the case of Bayesian-like inference processes
in which one considers a prior possibility 7(-) on a
partition {H; }ier and a possibilistic likelihood f(E|-)
on the set {E|H;}icr, where E is the evidence event.
The aim is to evaluate the posterior possibility of the
conditional events {H;|E}icr.

To accomplish this task it is fundamental to establish
whether the two assessments 7 and f are coherent per
se and moreover whether the global assessment {f, 7}
is coherent.

A complete characterization of the coherence of pre-
vious assessments has been given for a finite I =
{1,...,n} in [9]. In this case, the coherence of {f,r}
allows to regard the global assessment as a II(:|-) on
the set G = {H;, E|H;};c; and to apply the following
possibilistic counterpart of the Bayes formula (where
we denote with IT also the posterior) for i = 1,...,n,

ceey

= T(I(E|H,;), II(H;)). 3)

Notice that, differently from the probabilistic case,
depending on the particular t-norm 7', the posterior
possibility II(-|E) could be non-unique on some H;
even requiring II(E) > 0. In particular, if we consider
T = min or a strict t-norm, Theorem 2 implies that
each posterior II(H;|E) lies in a (possibly degenerate)
closed interval. Hence, in case of non-uniqueness, an
arbitrary value in each interval can be chosen: the

only constraint we have is that max II(H;|E) = 1.
i=1,...,n

Example 2. Consider the finite partition L =
{H1,Hs, Hs} together with the event E such that
ENH;, = 0. The following global assessment TI(H) =
1, II(H,) = TI(H3) = 3, I(E|H) = 0, I(E|H) = 3
and II(E|H3) = %, is a coherent min-conditional pos-
sibility.

In order to get the posterior (that we still denote with

I1) we compute
1
max {min{I1(E|H,), TI(H,)}) = 5

J=12,

thus for i = 1,2,3 we need to solve
1
min {H(H,|E), 3} = min{II(E|H,),11(H;)},

that implies II(H{|E) = 0, I(Hs|E),II(Hs|E) €
[3,1] such that max{II(Hs|E),II(Hs|E)} = 1.

Our goal in this section is to generalize previous
results to the case of an infinite index set I with
card I > card N.

Next theorem puts in evidence that every function de-
fined on an infinite partition £ = {H;};c; and ranging
in [0, 1] (in particular the null function) is a coherent
finitely maxitive possibility (i.e., it can be extended as
a finitely maxitive possibility on (L)), and so, by Re-
mark 1, a coherent T-conditional possibility, for any
continuous t-norm 7.

Theorem 3. Let L = {H;}ier be a partition of Q
with cardI > cardN. Then any function m : L —
[0,1] is a coherent T'-conditional possibility (for every
continuous t-norm T).

Proof. We use condition (i) of Theorem 1. Then for
every {i1,...,in} C I, take the set 7 = {H;, : j =
1,...,n} and denote C;, = H;, for j = 1,...,n, and
Ci,y, = Nj=; H,, the atoms generated by F.

Consider the sequence of systems S}T_-a with Hr =
{Q}. The first (and unique) system of the sequence
has unknowns x?j >0for Cj, j=1,...,n+1, and
results to be

. l‘?j:ﬂ'(Hij) ji=1,....n
S]:O .
01 — 1,
j:H.l%i{wl{x”}
System S, admits the solution z? = m(H;,), for
j=1,...,n,and 2? =1, and so 7 is coherent. []

Let £ = {H;};cr be an arbitrary partition of Q and E
an arbitrary event, in the following we call likelihood
function any function f : {E} x £ — [0, 1] defined as:

0 when EA H; = 0,
1 when H; C E, (4)
a value 7; € [0, 1] otherwise.

f(E[H;) =

We underline that for the values v;’s the only con-
straint is to be between 0 and 1.

Theorem 4. Let £ = {H;}ier be a partition of Q
with card I > cardN and E an arbitrary event. For
a likelihood function f : {E} x L — [0,1], defined by
(4), the following statements hold:
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(i) [ is a coherent conditional probability;

(ii) f is a coherent T-conditional possibility (for ev-
ery continuous t-norm T').

Proof. In [9] this theorem has been proved for a finite
partition £, we prove it for the infinite case. Con-
dition (i) follows by Proposition 1 in [8] and The-
orem 4 in [11]. To prove (ii), by condition (i7) of
Theorem 1, for every {iy,...,i,} C I, take the set
F={E|H;; :j=1,...,n} and denote C;, = EN H;,
and Cj = E°AH;; for j = 1,...,n, and Cj,,, =
ENN_ Hf and C] = E°ANj_, Hf,, the atoms
generated by {E,H;, : j = 1,...,n}, where only pos-
sible ones are considered.

Consider the sequence of systems S}T_—a with Hr equal
to the additive set generated by the H;,’s. The first
(and unique) system of the sequence has unknowns

x?j,x?j/ >0 for C;;,Cf, j = 1,...,n, and results to
be
of, = T (f(B|H,,) max{a) a8}
St [1=1,...,n]

!
max {z7 27} =1
= n

[RRRE)

where equations in which C;; = ) are neglected as well
as unknowns corresponding to Cj; =0 or C], = 0. A
solution for S% is ) = f(E|H;;) and x?j/ =1 for
j=1,...,n, implying that f is coherent. O

Previous theorem highlights that no significant prop-
erty characterizes a likelihood function (defined by
(4)) regarded either as coherent conditional probabil-
ity or as coherent T-conditional possibility.

Remark 7. We notice that Theorem 4 is related to
a function defined only on a set of events {E} X L,
(the conditioned event E is only one). Obuviously, if
we have a family of likelihood functions {f; : j €
J} each defined on {E;} x L, where & = {E;};cs is
an arbitrary set, the assessment could be non-globally
coherent. In particular if £ is a finite partition we
must take into account additivity in the probabilistic
case and mazitivity in the possibilistic case, as the
following Theorem 5 shows.

Theorem 5. Let £ = {Ej}jzl,...,m and L = {Hl}1€[
be two partitions and let F be a (finite) class {f; :
Jj=1,...,m} of likelihood functions, where each f; is
defined by (4) on {E;} x L, for j =1,...,m. Then
the following statements hold:

(i) the global assessment F is a coherent conditional
probability if and only if Y f;(E;|H;) = 1 for
j=1

every H;;

(i) the global assessment F is a coherent T-
conditional possibility (for every continuous t-
norm T) if and only if _max fi(Ej|H;) =1

j=1,....m

for every H;.

Proof. In [9] this theorem has been proved for a finite
partition £, we prove it for the infinite case. Condi-
tion (%) follows by Theorem 4 in [11]. Condition (%)
follows by Theorem 1 on the same line of the proof of
Theorem 4. L

Next theorem focuses on a likelihood function taking
into account also a probabilistic or possibilistic prior.

Theorem 6. Let £ = {H;}icr be a partition of Q with
cardl > cardN and E an arbitrary event. Consider
a likelihood function f : {E} x L — [0,1], defined by
(4), a coherent probability assessment p : L — [0,1]
and a coherent possibility assessment w : L — [0,1].
The following statements hold:

(i) the global assessment {f,p} is a coherent condi-
tional probability;

(ii) the global assessment {f,w} is a coherent T-
conditional possibility (for every continuous t-
norm T).

Proof. In [9] this theorem has been proved for a finite
partition £, we prove it for the infinite case. Condi-
tion (i) follows by Proposition 2 in [8] and Theorem 4
in [11] (see also [28, 32]). Condition (i) follows by
Theorem 1 in analogy to the proof of Theorem 4, and
taking into account Remark 5. O

Example 3. Consider N as universe and take the
partition £ = {H; = {2i — 1,2i}};en, together with
E = {2 i € N}.  Consider the assessments
f(E|H;) = %, p(H;) =m(H;) =0 forie N. We have
that f(E|-) verifies condition (4), moreover p(-) and
m(-) are, respectively, a coherent probability and a co-
herent possibility. This implies {f,p} and {f, 7} are,
respectively, a coherent conditional probability and a
coherent T-conditional possibility (for every continu-
ous T-norm,).

4 Complete disintegrability and
complete conglomerability

In this section we consider a T-conditional possibility
II on B x H, with H containing {2 and a partition
L = {H;}ics, where I is arbitrary. Moreover, we say
that an event E € B is logically independent of the
elements of L if ) 2 E A H; # H;, fori € 1.
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Definition 4. A T-conditional possibility I1 on BxH
is completely maxitive on L if it holds

supII(H;) = 1. (5)
iel
Definition 5. Given an event E € B, and a T-

conditional possibility 11 on B x H, we say that 11 is
completely L-disintegrable on E if it holds

I(E) = sup T(I(E|H;),11(H;)). (6)

We introduce now a notion of conglomerability analo-
gous the one introduced by de Finetti [17, 18, 19] (see
also [29, 7, 30, 31, 1]), involving only events. We recall
that in probability theory a stronger notion of con-
glomerability involving linear spaces of bounded ran-
dom variables is present (see for instance [21, 28, 4]).

Definition 6. Given an event E € B, and a T-
conditional possibility I1 on B x H, we say that 11 is
completely £-conglomerative on FE if it holds

inf II(E|H;) <II(E) < supII(E|H;). (7)

i€l i€l
Remark 8. Definitions 5 and 6 actually involve only
a family G = {E, H;, E|H;};cr contained in BXxH, so
they can be given for a coherent T'-conditional possibil-
ity assessment on G, if we are interested only on com-
plete L-conglomerability or complete L-disintegrability
on E (for instance in Bayesian-like updating). In
fact, these properties are satisfied (for the given E and
L) by all the possible extensions on B x H. Neverthe-
less, as discussed in the following, the above proper-
ties required only for one event E are not particularly
meaningful, so we use a Il on B x H to enforce the
properties to all the events of B.

In the case the partition £ is finite, it is readily veri-
fied that complete maxitivity on £ collapses into finite
maxitivity and complete L-disintegrability and com-
plete L-conglomerability always hold for every E € B,
as simple implications of Definition 1. Nevertheless,
previous properties could not be verified when the
partition is infinite. In particular, in analogy with
finitely additive conditional probability [18, 29], there
can exist events £ € B on which II is completely
L-disintegrable but not completely £-conglomerative
and vice versa, as shown in next example.

Example 4. Let T be a continuous t-norm and con-
sider the countable set G = {F, H;, E|H;};en with E
logically independent of the elements of the partition
L ={H;}ien. Recall that the coherence of an assess-
ment on G implies its extendability on B x H, where
B={({E}UL) and H is the additive set generated by
L

The coherent T-conditional possibility assessment
I(E) = %, II(E|H;) = % and TI(H;) = 0 for i € N is
completely L-conglomerative on E, but not completely
L-disintegrable on E. In fact, we have II(E) = 1 #
0 = sup,;c; T(II(E|H;), II(H;))

On the other hand, the coherent assessment II(E) =
II(H;) = 0 and I(E|H;) = § for i € N is com-
pletely L-disintegrable on E, but it is not completely
L-conglomerative on E, since we have II(E) = 0 <

1 = infie; (E|H;).

Previous claim suggests to give a definition
of complete L-disintegrability and complete L-
conglomerability which is not dependent on the event
E.

Definition 7. A T'-conditional possibility 11 on BxH
is completely L-disintegrable if it is completely L-
disintegrable on E, for every E € B.

Definition 8. A T'-conditional possibility IT on BxH
is completely L-conglomerative if it is completely
L-conglomerative on E, for every E € B.

Let us note that the notion of conglomerability given
in previous definition differs from the ones proposed
for coherent lower and upper previsions (see for in-
stance [34, 16, 26]). The difference is essentially due
to the different concepts of conditioning adopted (see
Remark 2).

Remark 9. Suppose to have a possibilistic prior ™
on a partition £ and two likelihood functions f; on
{E;} x L, with E; € B, (j = 1,2), such that each
{fj,7} admits a completely L-conglomerative exten-
sion on B x H. FEven in the case {f1, fo, 7} is glob-
ally coherent there could not exist a completely L-
conglomerative extension on BxH (similarly for com-
plete L-disintegrability). Previous discussion general-
izes to a larger class of likelihood functions.

It is well-known that, in the probabilistic framework
(see for instance [18, 21, 29]), for a countable I,
L-disintegrability and o-additivity on £ are equiva-
lent. Nevertheless, since in the case of probability the
equivalence is implied by the subtractive property, the
same equivalence does not hold in the case of possi-
bility, as shown by next example.

Example 5. Let T be a continuous t-norm and I
an index set s.t. cardl > cardN. Consider the set
G ={E,H;,E|H;};c1, where the H;’s form a partition
L of Q and E is logically independent of the H;’s.

The assessment II(E) = I(H;) = 1 and II(E|H;) =0
for i € 1, is a coherent T -conditional possibility.
We have that 11 is completely mazxitive on the parti-

tion L since sup;e; II(H;) = 1, while it is not com-
pletely L-disintegrable on E since II(E) =1 # 0 =
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sup;c; T(I(E|H;), I(H;)).

In the possibilistic setting, complete maxitivity on
L is only a necessary condition for complete L-
disintegrability.

Proposition 1. If a coherent T-conditional possibil-
ity IT on B x H is completely L-disintegrable, then it
is completely mazitive on L.

Proof. Tt holds

1=1I(Q?) = S_E?T(H(Q‘Hi)aH(Hi)) = sup II(H;).

O

We notice that if II is not completely maxitive on £
then, if there exists an F € B such that II is com-
pletely L-disintegrable on E then II is not completely
L-disintegrable on E°.

Next theorem shows that, analogously to the proba-
bilistic case [19], complete L-disintegrability implies
the complete L-conglomerative property.

Theorem 7. If a T-conditional possibility IT on BxH
is completely L-disintegrable, then it is completely L-
conglomerative.

Proof. For every E € B, complete L-disintegrability
implies that

II(F) =sup T(II(E|H;),11(H;)) < supII(E|H;),
il iel
moreover, setting k = inf;c; II(E|H;) and recalling
Proposition 1 and that any left-continuous ¢-norm
commutes with the supremum, we get

H(E) = supT(I(E[H;),TI(H;))

iel

> supT(k,II(H;) =T (n,supH(Hi)) =K.
i€l iel

O

Nevertheless, as it is shown in [29] for probability the-
ory in the case of a countable partition, complete L-
disintegrability and complete L£-conglomerability are
not equivalent. The next example in fact shows that
complete L-disintegrability is just a sufficient condi-
tion for the complete L-conglomerative property.

Example 6. Take N as universe, let B be the field of
finite-cofinite subsets of N and L = {H; = {i}}ien.
Consider on B x B° the function II defined for any
E|H € B x B° putting if H is cofinite

| 0 if ENH is finite,
(E|H) = { 1  otherwise,

while if H is finite

[0 EANH=0,
(E|H) = { 1 otherwise.

First we show that I1 is a full T-conditional possibility
on B for any continuous t-norm T. For this, it is
sufficient to show that axiom (iii) of Definition 1 is
satisfied, since axzioms (i) and (i) are easily seen to
be verified. At this aim, for any H,EANH € BY and
EF € B we consider the following cases.

(Case 1). If ENH and H are cofinite then we have
II(E|H) = 1, thus aziom (iii) is verified both when
E NF A H is cofinite (in this case we have II(E A
F\H)=1I(F|EANH) = 1) and when EAFAH is finite
(in this case we have INEAF|H) =II(F|EAH) =0).

(Case 2). If E AN H s finite and H is cofinite then
we have TI(E|H) = 0, thus axiom (iii) is verified for
every value of I(F|E AN H), since EAF AN H is finite
and so we have II(E A F|H) = 0.

(Case 3). If EANH and H are finite then we have
II(E|H) = 1, thus aziom (iii) is verified both when
EANFANH#D (in this case we have I(E A F|H) =
I(FIEANH)=1) and when EANF AN H =0 (in this
case we have I(EA F|H) =1I(FIEAH) =0).

It is easily seen that 11 is not completely maxitive on
L, since
II(N) =1 > 0 =suplII(H;),
1€N

thus by virtue of Proposition 1, 11 is not completely
L-disintegrable. On the contrary, we have that Il
is completely L-conglomerative. Indeed, if E is cofi-
nite we have II(E) = 1 > inf,enT(E|H;), and there
must exist j € N such that E N H; # 0, thus
sup;en I(E|H;) = 1. Moreover, if E is finite we have
II(E) = 0 < sup;ey(E|H;), and there must exist
J € N such that ENH; = 0, thus inf;eny II(E|H;) = 0.

Since complete L-disintegrability and complete L-
conglomerability refer to a partition £ C H, it is
natural to ask if their validity w.r.t. an infinite £
implies the validity w.r.t. any other infinite partition
L' C H. In next example, inspired to the well-known
Lévy’s paradox [19, 30, 31, 7], we show that it is not
the case.

Example 7. Take N? as universe, let B be the power
set of N? and take the two partitions L1 = {H; =
{i} x N}ieny and Lo = {K; = N x {i}}ien. Consider
on Bx (L1ULs) the function I1 defined for any E|H €
B x (El U £2) putting

| 0 if ENH is finite,
(E|H) _{ 1 otherwise.
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It is possible to show that the assessment Il is a co-
herent T'-conditional possibility for any continuous t-
norm T'.

The coherence of I1 implies its extendability to B x H,
where H is the additive set generated by L1 U Lo.
In particular, taking E = {(i,j) € N? i > j}
we have II(E|H;) = TI(E°|K;) = 0, for any i € N,
which implies that no extension I’ can be simulta-
neously completely L1-conglomerative and completely
Lo-conglomerative.

Finally, by virtue of Theorem 7 it follows that no
extension II' can be simultaneously completely L1-
disintegrable and completely Lo-disintegrable.

Complete L-disintegrability and complete L-
conglomerability are particularly relevant in the
context of Bayesian-like inference processes since
they constrain the set of coherent values for the
posterior possibility. Anyway, when they are not
satisfied, one needs to go back to the general enlarge-
ment procedure in which the posterior values are
determined by Theorem 2.

For this, we are interested in the coherent extensions
IT" on G U{E} of a coherent T-conditional possibility
IT assessed on a family G = {H;, E|H;}iecy, cardI >
card N, where the set £ = {H;};cs is a partition of
and F is an arbitrary event. Let us stress that II is
nothing else than the global assessment corresponding
to a likelihood f and a possibilistic prior 7 (coherent
by Theorem 6).

Next theorem characterizes the set of coherent val-
ues for the possibility II'(E) in the case F is logically
independent of the H;’s and T is the minimum or a
strict t-norm. Notice that if H; C E for every i € I,
then it must be II(E|H;) = 1 for every i € I and so
IT'(E) = 1; similarly, if H; A E = ) for every i € I,
then it must be II(E|H;) = 0 for every i € I and so
II'(E) = 0. Thus in this two trivial situations com-
plete L-conglomerability on E holds compulsorily.

Theorem 8. Let II be a coherent T'-conditional pos-
sibility on G (with T = min or strict) such that for
II(H;) = w, with card] > cardN. Then the set of
coherent values for TI'(E) is

where M, . i3 = max T(m,m ).
j=1,.

Proof. By Theorem 2 the coherent values for II'(E)
are a closed interval [m,,7*], that is obtained as the
intersection of all the intervals [mx,,7#*] expressing

the coherent extensions of Iz on E, for any finite
subfamily F C G.

Thus, for every {i1,...,i,} C I take the set F =
{H;;,E|H;; : j =1,...,n}. Notice that by Remark 6
every finite subset of F gives rise to a larger exten-
sion interval than the one induced by F and thus can
be ignored. Denote with C;; = E' A H;; and C{j =
ECNHi, j=1,...,n, andC E/\/\?leC

Tn41
and Cj = E°A /\j:1 ¢, the atoms generated by
{E,Hij ] = 1,...,TL}.

The endpoints of the extension interval of II; on E
are computed solving the following two optimization
problems under the system SJHT , which has unknowns

x?], i) >Oforat0msC C ,j=1,...,n+1, and
result to be

)]

minimize / maximize { max

j=1,...,n+1
0 0"’y _ L
max{xij,xij}fﬂij ji=1,....n
oo, 0 _ , 0 .0’ o
SFo:] i, —T(m].,max{xij,xij ) i=1,...,n
2071 —
j= I’Il on +1{ZL’1J 15 }_1
for which any solution is such that z¥ = T(7rl77 ),

for j = 1,...,n, thus the p0551b1hty of F is de—
termined by the value assigned to z? , Wwhich is
only asked to belong to [0,1]. This 1mphes the ex-
tension of Il on E ranges in [M{z1>~~<7zn}v ] with

, .
Mg, iy = nllax T(mj,w ), and the conclusion

follows. O

In particular, previous theorem implies that if
II(E|H;) = 7 for i € I, then the extension II' on
GU{E} of every coherent T-conditional possibility IT
on G is generally not completely £-conglomerative on
E if 7 < 1, since the value II'(E) = 1 is always co-
herent. Theorem 8 also implies the coherence of the
posterior (that we still denote with II) defined as:

II(H;|E) = TAI(E|H;),1I(H;)) foriel. (9
5 Conclusions

In probability theory, in particular in modern
Bayesian analysis, concepts of conglomerability and
disintegrability have been deeply studied, especially
with respect to finitely additive probability, where
many famous examples of nonconglomerative con-
ditional probability assessments are proposed. We
studied the analogous concepts in possibility theory,
starting from the definition of finitely maxitive T-
conditional possibility, with 7" any continuous ¢-norm.
We put in evidence analogies and differences between
the two frameworks.
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Abstract

Consistency of partial assessments with different
frameworks (probability, possibility, plausibility) is
studied. We are interested in inferential processes
like the Bayesian one, with particular attention when
a part of the information is expressed in natural lan-
guage and can be modeled by a possibilistic or a plau-
sibilistic likelihood.

Keywords. Natural extension, conditional Plausibil-
ities, T-conditional possibilities, generalized Bayesian
inference, fuzzy sets.

1 Introduction

Fuzzy set theory, introduced by Zadeh [42], has be-
come very popular and it provides a formalization
of some concepts expressed by means of natural lan-
guage. Different interpretations of fuzzy sets have
been given [35, 26, 38] in terms of (conditional) prob-
abilities, we refer to that given in [9, 10, 8], where the
membership function of a fuzzy subset is interpreted
in terms of a coherent conditional probability assess-
ment. This interpretation, as shown in [5, 14, 13], is
particularly useful when fuzzy and statistical informa-
tion is simultaneously available.

Nevertheless sometimes the statistical information is
related to a family of events different from that of in-
terest and in which the fuzzy information is available
(as a particular case we can have two partitions such
that the elements of one are finite conjunctions of the
element of the others): by extending the probabilistic
assessment a la de Finetti [20, 41] we obtain a fam-
ily of probabilities, whose upper envelope, which is in
general only an upper probability, could be a plausi-
bility [23, 31, 40, 11] or a possibility [28, 15, 22].

In this paper we consider the above problems by focus-
ing mainly on plausibility and possibility measures,
for which many proposals of conditioning are present.
We adopt the definition of T-conditional possibility,
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with T" any t-norm (introduced in [3] for minimum
and generalized in [17] for any t-norm): this class of
conditional measures includes as a particular case the
conditional possibilities obtained by using the Dubois
and Prade rule based on minimum specificity principle
[27]. For conditional plausibility we adopt a definition
generalizing Dempster rule, introduced in [6, 36], also
if, as it is well known, it cannot be obtained as the
lower envelope of a class of conditional probabilities.
Nevertheless it assures a “weak disintegration rule”
and admits as particular case T-conditional possibil-
ity, with T' the usual product.

In the first part (Section 2 and 3) of the paper, in order
to consider a generalized Bayesian inferential proce-
dure, by using the concept of coherence (that is the
consistency of a partial assessment with a conditional
possibility or plausibility), we study the properties of
likelihood functions, both as point and set functions,
in the different frameworks. Moreover, we study the
coherence of a likelihood with a plausibility (or possi-
bility) measure having the role of “a prior”.

In Section 4 we give an interpretation of the member-
ship of fuzzy sets as a possibilistic or a plausibilistic
likelihood function and we study which properties of
fuzzy set theory are maintained. In both cases the se-
mantic of the interpretation seem to be very similar:
if  is a property, related to a variable X, the mean-
ing associated to the membership p,(z) on = con-
sists into the possibility [plausibility] that You claim
that X is ¢ under the hypothesis that X assumes
the value . We show that from a syntactical point of
view many differences and common features can oc-
cur. About the specific feature the most relevant is
that the membership fi,vy of the union of two fuzzy
sets, with memberships p, and py, is not linked to
Hony by the Frank equation ([30]), as in probability
theory. On the contrary, in the case of possibilistic
setting pi,vq is univocally determined by p, and py
independently of poay. While in the case of plau-
sibilistic framework it is not univocally determined,
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but fi,vy (@) must be between max{ ., (), ()} and
min{ig () + py ()} = oy (2), 1}

In this interpretation the fuzzy membership p, coin-
cides with a likelihood and the fuzzy event F, is the
Boolean event “You claim that X is ¢”; moreover for
the measure of uncertainty of E, when the prior on
X is a plausibility we get an upper bound, while when
the prior is a possibility we give an analytic formula
depending on the chosen t-norm.

2 Conditional measures

Usually in literature a conditional measure is pre-
sented as a derived notion of the unconditional one,
by introducing a law involving the joint measure and
its marginal. Nevertheless, this could be restrictive,
since for some pair of events the solution of the equa-
tion (the conditional measure) can either not exists
or to be not unique. So, in analogy with conditional
probability [21], it is preferable to define conditional
measures in an axiomatic way, directly as a function
defined on a suitable set of conditional events. We re-
call here the notion of T-conditional possibility (with
T any t-norm)[3, 17]

Definition 1. Let T be any t-norm. Given a Boolean
algebra B and an additive set (closed under finite dis-
junctions) H with H C B° = (B\ {0}), a function
IT: BxH — [0,1] is a T-conditional possibility if it
satisfies the following properties:

(i) I(E|H) = II(E A H|H), for every E € B and
HeH;

(it) II(:|H) s a (finitely mazitive) possibility on B,
for any H € H;

(i) (EAF|H)=TJI(E|H),II(F|EAH)), for any
H EANHecH and E,F € B.

Condition (i) of previous definition requires that
I(QH) = 1, TI(|H) = 0 and for every H € H,
H(Vz':l,...m A;|H) = max;=1, ,I(A;|H), for every
A1, ..., A, € B [37]. Moreover from (i) and (i)
II(H|H) =1 for every H € H.

Actually, conditional possibility (according to Defi-
nition 1) cannot be in general induced by a unique
possibility, but by a class of possibilities (for more de-
tails, see [17]). Nevertheless, by using some principle,
conditional possibility could be defined by means of
a unique possibility measure. Obviously some prin-
ciples can give rise to assessments inconsistent with
axioms (i) — (i), see [16, 17].

Taken the minimum t-norm, by considering the min-
imum specificity principle the following notion of

conditioning [27] arises (in the following called DP-
conditional possibility, where DP stands for Dubois
and Prade):

for any E|H in BxH°, II(E|H) = 1, when [I(EAH) =
II(H) and EAH # 0, II(E|H) = II(E A H) otherwise.

It is easy to see that a DP-conditional possibility is
a conditional possibility in the sense of Definition
1. More generally, for a continuous t-norm, the T-
conditional possibility II(E|H) can be seen as the
residuum —7 of the t-norm T’

x—py=sup{z €[0,1]: T(z,2) =y}

that means II(H) —1 I(E A H) whenever EAH # ()
(see [19]). In [2] a link between these kinds of con-
ditioning and Jeffrey’s rule is studied, while in [25]
connections between conditioning in possibility and
belief function context are studied.

In [17] we proved that if T' is a continuous t-norm, a
conditional possibility can be extended on any other
set B x H' with B’ a Boolean algebra and H' an ad-
ditive set (H' C B°) with B x H C B’ x H'. Moreover,
for any E|H in B’ x H'\ B x 1 the admissible values
lay on a closed interval.

Analogously, conditional plausibility can be defined
axiomatically as follows (see [6, 11]):

Definition 2. Let B be a Boolean algebra and H C B°
an additive set. A function Pl defined on C =B x H
is a conditional plausibility if it satisfies the following
conditions

i) PI(E|H) = PI(ENHI|H);

it) Pl(-|H) is a plausibility function VH € H;
it1) For every E € B and H/K € H

PI(E AH|K) = PI(E|H AK) - PI(H|K).

Moreover, given a conditional plausibility, a condi-
tional belief function Bel(-|-) is defined by duality as
follows: for every event E|H € C

Bel(E|H) = 1 — PI(E°|H).
Condition ¢) and i) requires that PI(QH) =

PI(H|H) = 1 and PI(@|H) = 0 and moreover, for
any n, Pl(-|H) is n-alternating [23]:

PUAIH) <Y (=D Pi(nerAilH) (1)
for any A;,...,A,, A € A with A = v} ;A,. Then,
Bel(-|H) is n-monotone for any n.
This axiomatization extends the Dempster’s rule, i.e.

PI(Fe A H)

Bel(F|H) =1 — P
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for all conditioning events H such that PI(H) > 0.
When all the conditioning events have positive plau-
sibility, i.e. PI(H|H®) > 0 for any H € H (with
H® = VyeyH), the above notions of conditional
plausibility and conditional belief coincide with that
given in [24]. In fact, if PI(H) > 0 it follows

Bel(F v H) — Bel(H®)
PI(H) - @

Bel(F|H) =

An easy consequence of Definition 2 is a weak form of
disintegration formula for the plausibility of an event

E|H with respect to a partition Hy,..., Hy of H
N
PIE|H) < PI(Hy|H)PI(E|Hy) (3)
k=1

Taking into the following definition of conditioning
(see [29, 33, 40, 41]):

PI(F A H) A
PI(FAH) + Bel(Fe N H) )

PI(F|H) =

the obtained conditional plausibility Pl does not sat-
isfy axiom i) of Definition 2. Therefore conditional
plausibilities given trough equation (4) does not sat-
isfy equation (3).

Note that for T equal to the usual product every T-
conditional possibility is a conditional plausibility.

In the next result we show that every conditional plau-
sibility on B x H can be extended (not uniquely) to
a full conditional plausibility on B (i.e., a conditional
plausibility on B x BY).

Theorem 1. Let B be a finite algebra. If Pl on
B xH —[0,1] is a conditional plausibility, then there
exists a conditional plausibility Pl' - B x B® — [0,1]

such that PZIBX% = PI.

Proof. Denote HJ Viyey H.  If HY coincides
with the certain event Q, PI(-|Q2) defines univocally
PU(E|H) for PI(H|Q) > 0. Let H} = {H € B"
PI(H|Q) = 0}, H} = V3 H belongs to B° and
PU'(H}|) = 0 since PI(H}|Q) < e PUHIQ).
If H} € H again for PI(H|H}) > 0 PU'(-|H) is univo-
cally defined, so proceed as before.

While for H! & H check whether the set
K = {H € H : PI(H|H})} is not empty. If it is
not empty, consider the event Ky = \/ o H in H
and K; C H}. Define PI'(E|H}) = PI(E|K;) for any
E € B. Note that PI'(K|H}) = 1, PI'(K¢|HE) = 0
and Pl'(-|H}) is a plausibility since PI(-|K7) is. Oth-
erwise if K is empty define PI'(E|H}) = 1 for any
E € B such that EA H} # 0. It is easy to check that
even in this case Pl'(-|H}) is a plausibility.

Now, define H3 = {H € B :
proceed as before.

PI(H|H}) = 0} and

It is easy to check that P’ satisfies the axioms iii) of
Definition 2 and so it is a conditional plausibility. [J

Now we show that every full conditional plausibility
on B can be extended as a full conditional plausibility
on every finite superalgebra B’ 2 B.

Theorem 2. Let B be a finite algebra and B' 2 B a
finite superalgebra. If Pl : B x B — [0,1] is a full
conditional plausibility, then there exists a full con-
ditional plausibility Pl : B' x B'® — [0,1] such that
Plingo = PI.

Proof. For any A’ € B’ consider the smallest event
A € B containing A’, A = Veep.onar2pC and define
PU(A") = PI(A).

Since for any A’, B’ € B', PI(AA B) = PI'(A’ A B')
the function PI’ is a plausibility and induces a full
conditional plausibility on B’. By construction for
any A|B € B x BY it holds PU'(A|B) = PI(A|B). O

Note that the full conditional plausibility on B’
extending the given conditional plausibility is not
unique, that one given in the proof of Theorem 2 is
just an example.

2.1 Coherent conditional plausibility

Analogously to probability theory, it is possible to in-
troduce a notion of coherence in the context of plausi-
bility functions, as done for conditional probabilities
[21] and also for T-conditional possibilities [17].

Definition 3. A function (or assessment) v : C —
[0,1], on a set of conditional events C, is a coherent
conditional plausibility (T-conditional possibility) iff
there exists a full conditional plausibility Pl (full T-
conditional possibility I1) on an algebra B such that
C C B x BY and the restriction of Pl (11) on C coin-
cides with .

For a characterization of (coherent) conditional pos-
sibility, with T-continuous t-norm, see [17, 1]. Theo-
rem 3 characterizes (coherent) conditional plausibility
functions in terms of a class of plausibilities.
Theorem 3. Let F = {E1|F1,E2‘F2, ey Em|Fm}
and denote by B the algebra generated by
{Br,....Em, Py, Fp}, HY = VI Fj.  For
Pl . F — [0,1] the following statements are
equivalent:

(a) Pl is a coherent conditional plausibility;

(b) there exists a class P = {Pl,} of plausibility
functions such that Pl,(HS) = 1 and HY C HY
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for all B < «, where H§ is the greatest (with
respect to the inclusion) element of K for which
Pliay)(H§) = 0.
Moreover, for every E;|F;, there exists a unique
index « such that Plg(F;) = 0 for all o > f3,
Pl (F;) >0 and

Plo(E; A F;)

PUBIF) = =55

(5)

(c) all the following systems (S®), with o =
0,1,2,...k < mn, admit a solution X® =
(x7, x5 ) with x§ = ma(Hj) (5=1,..., ja):

X,
S af - PUEIR) = 5 of, VECH]
H;@/\Fq‘,?ﬁ@ Hk/\E,;/\FHéV)
2 ap=1
HkEH[')‘!
g >0, VH,CHY
where HS is the greatest element of KC such that

> m-n(H;) =0.
H; NHE#0

(5%) =

In particular, conditions (b) and (c) stress that this
conditional measure can be written in terms of a suit-
able class of basic assignments, instead of just one as
in the classical case, where all the conditioning events
have positive plausibility.

Note that every class P (condition (b) of Theorem 3)
is said to be agreeing with conditional plausibility PI.
Whenever there are events in /C with zero plausibility
the class of unconditional plausibilities contains more
than one element and we can say that Pl; gives a re-
finement of those events judged with zero plausibility
under Plj.

For an example showing the construction of the class
P characterizing (in the sense of the above result) a
conditional plausibility see [36].

3 Likelihood functions

This section is devoted to a comparative analysis
of likelihood functions under different frameworks:
probability, possibility, plausibility.

Given an event F and a partition £, a likelihood func-
tion is an assessment on {E|H; : H; € L} (that is a
function f : {E} x £ — [0,1]) satisfying only the
following trivial condition:

(L1) for every H; such that E A H; = } one has
f(E|H;) =0 and for every H; such that H; C E
one has f(E|H;) =1

Theorem 4. Let L ={H;,...,H,} be a finite parti-
tion of Q and E an event. For every likelihood func-
tion f on {E} x L the following statements hold:

a) f is a coherent conditional probability;

b) f is a coherent T-conditional possibility (for ev-
ery continuous t-norm T );

¢) f is a coherent conditional plausibility.

Proof. Condition a) and b) have been proved in [10]
and [7], respectively.

Condition ¢) derives from a) and the fact that any
coherent conditional probability is a coherent condi-
tional plausibility (or equivalently from condition b)
and the fact that any coherent T-conditional possibil-
ity, with T  the usual product, is a coherent conditional
plausibility). O

Theorem 5. Let £L = {H,,...,H,} be a finite par-
tition of © and E an event. If the only coherent
conditional plausibility (possibility) f takes values in
{0,1}, then it is H; AN E = () for every H; such that
f(E|H;) =0 and it is H; C E for every H; such that
FEIH) = 1.

Proof. Tt follows directly from Theorem 3 and the
characterization theorem for T-conditional possibili-
ties [17]. O

The above results put in evidence that (in all con-
texts) no significant property characterizes likelihood
as point function (i.e. an assessment on a partition).

This implies that since two likelihoods
fi : {El} X El — [07 1]

(i = 1,2), related to events logically independent F;
are coherent with a conditional probability, then they
should be coherent also with a conditional plausibility.

It is easy to show that {fi, fo} are coherent also with
a T-conditional possibility.

3.1 Likelihood and prior

The aim now is to make inference with a Bayesian-
like procedure, so we have to deal with an initial as-
sessment consisting of a “prior” ¢ on a partition £
and a “likelihood function” f related to the set of
conditional events E|H;’s, with E an arbitrary event
and H; € L. This topic has been deeply discussed in
[40, 41] by considering several interesting examples.

First of all we need to test the consistency of the global
assessment

{f, 0} = {f(E|H:), p(A) : H; € L, A € (L)}

with respect to the framework of reference ((£) de-
notes the algebra generated by £). The choice of the
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framework of reference is essentially decided by the
prior, since as shown in Theorem 4, a likelihood can
be re-read in any framework. This can happen also
when the prior comes from a previous inferential pro-
cess such as the enlargement of an uncertainty assess-
ment (see [15, 22, 28, 41]).

Theorem 6. Let L be a partition of Q, consider a
likelihood f related to an event E on L and consider
a probability P, a plausibility Pl and a possibility 11
on the algebra (L). Then, the following conditions
hold:

a) the global assessment {f, P} is a coherent condi-
tional probability;

b) the global assessment {f, Pl} is a coherent con-
ditional plausibility;

¢) the global assessment {f, 11} is a coherent T-
conditional possibility (for every continuous t-
norm T);

Proof. Condition a) has been proved in [39], while
condition c¢) has been proved in [1].

Concerning condition b) note that Pl on (L) defines
a unique basic assignment function mg on (£) that is
the unique solution of S?,l concerning the coherence
of PIl. Then, we need to establish whether the assess-
ment {f, Pl} is coherent inside conditional plausibil-
ity, so we need to check whether the relevant system
S, ¢ has solution and so whether there is a class of
basic assignment {m/ } on (F, L). Notice if the sys-
tem S%l, # has a solution then coherence with respect
to conditional plausibility follows from Theorem 5.

Actually, the atoms in (F,L) are all the events
E ANH;, E° N H; with H; € £. From [18] any plausi-
bility on (£) induces a unique function, called basic
plausibility assignment, v (possibly taking also nega-
tive values) on (£) such that }° . v(A) = 1 and

Y ac(cy.acp V(A) = PU(B).

Let 4 be on (L) be the plausibility assignment induced
by Pl, consider p’ defined on (E, L) as y/(H;) =0,

W (B A H;) = [(E|H)PI(H,), ' (E° A H;) = p(H;) —
W (E A H;), and, for any A € (L) \ L, p(A) = ' (A4).
By construction }° ,cp 0y #'(A) = 1. For any B in
(E, L), but not in ((LYU{EANH;,,E°NH;: H; € L})
one has p/(B) = 0. Then, the function f on (E, L)
defined as 3_ 4c(p r).acp 1 (A) = f(B) is such that
by construction, for any B € (L),

(B= Y d@A)=

A€(E,L):ACB

ST W(ENA) 4 (BN A+ (A) =
Ac(L):ACB

S u(A) = PIB)

A€e(L):ACB
then f extends PI.

We need to prove that f is a plausibility: the proof
can be made by induction, we prove here that is 2-
alternating, the proof that it is n-alternating under
the hyphothesis that is (n — 1)-alternating is similar.

For any event A € (F, L) there is an event A € (L)
such that A C A and no event B € (L) such that A C
B C A, that is the maximal event of (£) contained
in A. Then, given any pair of events A, B € (E, L)
let A, B € (L) be the two maximal events contained,
respectively in A and B. Thus,

F(AVB) = S do= Y

Ce(E,L):CCAVB

> W(E°AH)+ >

E¢AH;CAVB CE(LI\L,CCAVEB

> u(H)+ >

H;CAVB EANH;CAVB,E°AH;ZAVB

3 W (B° N H;) + > u(C)

E¢ANH;CAVB,ENH; ZAVB Ce(L)\L,CCAVB

= PI(AVB) + >
EAH;CAVB,ECAH; ZAVB
> W (E° A Hy) =
EC¢AH;CAVB,EANH;ZAVB
PI(AV B) + >
H;CAVB,H;ZAVB
> W (E A H)+
EAH;CAVB,ESAH;ZAVB
> W (E€ A H;y).
E¢AH;CAVB,EANH;ZAVB
Note that A = AVV ;. r.y. g s (EAHiAA)V(E°AHiAA))
and analogously for B. Obviously, Av E C AV B and
A A B coincides with A A B. Moreover, AV B is included
into AV B, but does not coincide with it, in fact H; € L

could be included in AV B, but H; is not included neither
in Anorin B (e.g. EAH; C Aand E°AH; C B). Hence,

W (E N H)+

w (E N Hi)+

,U(Hi)‘F

f(AVB) < PI(A)+PI(B)—PI(ANB)+ >
H;CAVB,H;ZAVB
,LLI(E A Hi)"'
EAH;CAVB,E°AH;ZAVB
W (B A Hi)

E¢AH;CAVB,EANH;ZAVB
< PI(A) + PI(B) — PI(A A B)+

ST (W(ENH) A+ (BCAH))+
H,;CAVB,H;ZAVB

W (E A H;)+

EANH;CAVB,ESAH;ZAVB

;L(Hi)‘F
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> ' (E° A Hy)
E¢AH;CAVB,EAH;ZAVB
= f(A) + f(B) - PI(ANB)
- > W' (E A H;)
EAH;CAAB,ESAH;ZAVB
- > ' (E° A H;)
ECAH;CAAB,EAH;Z AVB
=f(A)+ f(B) - f(AAB)

Finally, f induces a conditional plausibility, that we
continue to denote by f, on (E, L) x H where H is the
additive set generated by H; € L such that f(H;) > 0.
For any H; € L one has

_ f(EAHy) _ p/(EAH:) _
FEIH:) = Srary = Spramy = f(EIH)).
This implies that the system S%, ; admits a solution
and so for the above consideration the assessment

{Pl, f} is a coherent conditional plausibility. O

3.2 Aggregated likelihoods

Now we study the properties of aggregated likelihood
functions, that is all the coherent extensions g of the
assessment {f(F|H;) : H; € L} to the events F|K,
with K belonging to the additive set H = (£)° =
(L) \A{0}).

The interest derives from inferential problems in
which the available information consists of a (prob-
abilistic or plausibilistic or possibilistic) “prior” on a
partition {K;} and a likelihood related to the events
of another partition refining the previous one. So first
of all we need to aggregate the likelihood function pre-
serving coherence with the framework of reference.

In what follows g : {E}x#H — [0, 1] denotes a function
such that its restriction to {E'} x £ coincides with f.

We recall a common feature of probabilistic and pos-
sibility framework: any aggregated likelihood g, re-
garded as a coherent conditional probability or a co-
herent T-conditional possibility, satisfies the following
condition for every K € H:

pin f(B|H;) < g(BIK) < max f(E|H:).  (6)

Now the question is to investigate whether an aggre-
gated likelihood seen as a coherent conditional plau-
sibility must satisfy the same constraints.

In the following example we show that, for a coherent
conditional plausibility, the value max f(E|H;) is not
an upper bound. -

Example 1. Let L = {H;, Hs} be a partition and E
an event logically independent of the events H; € L.
Consider the following likelihood on L

FBIH) = 3 f(BIH:) =

and let g be a function extending f on {E} X H such
that g(E|H, V Hp) = § = f(E|H1) + f(E|Hs).

From equation (6) it follows that g is not a coherent
T'-conditional possibility or conditional probability;
we prove that it is indeed a coherent conditional
plausibility. For that let us consider the following
system with unknowns mo(C), where C € (E, L)

/4. 3> me(C)= > mo(C),
HiANC#D H{AEANC#D
/2. 3 me(C)= 32 mo(C),
HyANC#() HyAEANC#(D
(S%)=43/4" > mo(C)= >, mo(C),
(H1VH2)AC#D (H1VH2)AENC#(D
> m(C)=1
CCH,VH,
mo(C) > 0, vC € (E, L)
It is easy to see that the basic assignment:
1
mo((E/\Hl)\/(EC/\HQ)) = mo(Hl\/(Ec/\Hg)) = g,
mo((EC AN Hl) \Y (E A HQ)) = mo((EC AN Hl) \Y HQ) =
i 1
?7’L0(.Ec A\ (Hl V HQ)) = Z

and mo(C) = 0 for any other event C € (E, L), is a
solution of Sy, giving positive plausibility to both the
events H;.

The following example shows that also the lower
bound of condition (6) can be violated in the plau-
sibility framework.

Example 2. Let £L = {Hy, Ha} be a partition and E
an event logically independent of all the events H;.

Consider the following aggregated likelihood on H

1
5"
To prove that the assessment is coherent within a

conditional plausibility, we consider the following
system with unknowns mo(C), where C € (E, L)

FBIH) = f(B|Hy) = 3, f(E|H, v Hy) =

2/3- > mo(C)= 3 mo(C),
HiANC#D H{AEANC#D
2/3- X mo(C)= 32 mo(C),
HoANC#D HyNEANCH#D
(89)=41/2" mo(C) = mo(C),
(H1VH2)ANC#D (H1VH2)AEAC#D
> m(C)=1
CCH1VH,
mo(C) >0, vC € (E, L)

The following basic assignment on (E,L):

mop = (Ec/\Hl) = mo(EC/\HQ) = mo(E) = mo(Q) = i
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and mo(C) = 0 for any other event C € (E,L), is a
solution of Sy, giving positive plausibility to both the
events H;.

The fact that the lower bound of coherent
values of PI(E|H; V Hj;) can be less than
inf{PI(E|H;), PI(E|H;)} is an indirect proof that a
conditional plausibility (Definition 2) is not an upper
envelope of a set of conditional probabilities.

Theorem 7. Any coherent conditional plausibility
Pl, extending a likelihood f : Ex L — [0,1] on ExH,
satisfies the following inequality for every K € H.:

(L2) 0 < PUBIK) <min{ 52 f(E|H;), 1}

Proof. Since f is a coherent conditional plausibility
assessment, then there is a coherent conditional plau-
sibility Pl on B x H with B = (H U {E}), extending
f- The restriction of Pl to E x H is a coherent con-
ditional plausibility and for every K € H, satisfies
(3) and PI(E|K) > 0. So we have 0 < g(F|K) <

> f(E|H;)g(H;|K), and then the thesis. O
H,CK

Theorem 7 shows that in plausibility framework there
is much more freedom than in both probabilistic and
possibilistic ones, where aggregated likelihood func-
tions are monotone, with respect to C, only if the
extension is obtained, for every K, as max f(E|H;)

and they are anti-monotone if and only if their exten-
sions are obtained as I}n&r}( f(E|H;).

Since any likelihood (see Theorem 4) is also a coherent
conditional probability and in [10, 12] it is proved that
an aggregated likelihood coherent within conditional
probability can be obtained by taking the minimum
(maximum), this extension is obviously also a coher-
ent conditional plausibility.

In the following Proposition we prove that we could
take the sum of likelihoods.

Theorem 8. Let f be a likelihood on L related to
an event E and consider the function g on {E} x H
defined as follows: for all Ky, Ky € H with K1 ANKy =
0

9(E|K1V K3) = g(E|Ky) + g(E|K2).

If > m,ep f(E|H;) <1, then g

is a coherent conditional plausibility extending f.

Proof. To prove the result it is enough to consider the
following basic assignment m on (E, £):

m((EAH;) v \/(E°AHj))+
J#i

m(H; v \/ (E° A Hj)) = f(E|H,)
J#i
for H; € £ and m(E¢) =1 -3y . f(E|H;).

It is easy to show that this basic assignment m is
agreeing with g (see Theorem 3) and the plausibility
of H; is positive. O

4 Fuzzy sets

The aim of this sections is to apply the results of the
previous section to an inferential problem, starting
from linguistic information (fuzzy sets) and statistical
information. We refer to the interpretation of fuzzy
sets in terms of coherent conditional probabilities [8,
9, 5]: the idea behind such interpretation is related to
that given in the seminal work [32], and we extend it
inside imprecise probabilities.

Let X be a (not necessarily numerical) variable, with
range Cx, and, for any x € Cx, let us indicate by A,
the event {X = z}. Let ¢ be any property related
to the variable X and let us refer to the state of in-
formation of a real (or fictitious) person that will be
denoted by “You”. A coherent conditional probabil-
ity (possibility) [plausibility] f(E,|A,;) measures (in
different frameworks) the degree of belief of You in
E,, when X assumes the different values  in Cx.

Then f(E,|-) comes out to be a natural interpretation
of the membership function p,(-), analogously to the
probabilistic case [9] (see also [8, 5]).

Definition 4. For any variable X with range Cx and
a related property ¢, the fuzzy subset E, of Cx is the
pair

E; = {E€P7 ,UEV,}a
with pg,(x) = f(E,|Az) for every x € Cx (f stands
for a coherent conditional probability or plausibility or
possibility).

Theorem 4 assures that any  assessment
{f(E|Ay)}secx 1s coherent within conditional
probability, plausibility and possibility: so we have
no syntactical restriction for f; Theorem 5 assures
that in all the three frameworks the notion of fuzzy
subsets, defined by a likelihood, is a generalization of
crisp subsets.

Now denote by ¢ V 9, ¢ A 1, respectively, the prop-
erties “p or ¢”, “p and ¢”, and define

Eap\/w :Ega \/Ew,
EW/\UJ :EW NEy .

Let us consider two fuzzy subsets L7, Ej, corre-
sponding to the same variable X, with the events
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E,, Ey logically independent with respect to X. As
proved in [9], for any given x in the range of X, the
assessment P(E, A Ey|A;) = v is coherent within a
conditional probability if and only if takes values in
the interval

max{P(E,|A;) + P(Ey|Az) — 1,0} <v <
< min{P(E,|A,), P(Ey|A,)}

It is easy to see that the assessment f(E,AEylA;) =
v is coherent within a conditional plausibility or pos-
sibility if and only if takes values in the interval

0 < v < min{f(Ey|As), f(Ey|Az)}.

Then, the lower bound of conditional probability does
not continue to be valid.

While probability rules imply that given a value to
F(E,NEy|Ay), we get also the value of f(E,VEy|As,),
in the case of possibility we have that the value of
f(EyV Ey|A;) is univocally determined by f(E,|Az)
and f(Ey|A;) without taking into account the value
of f(E, N EylAz).

In the case of plausibility we have that the value of
f(E, V Ey|A;) is not univocally determined but it
must be

max{f(Ey|As), f(Ey|Az)} < f(Ep V EyplAs) <
min{f(Ey|Az) + f(Ey|As) — f(Ep A Ey|Ag), 1}
Then we can put
ELUE) ={Epvy s bovyl

E:; N E;Z = {Etp/\’d) ’ ,U'go/\i/}} )
with

vaw(x)::f(Ew\/Eh¢A$)a

tony (1) = f(Ep N Ey|Asg).

Moreover, denoting by EZ , the complementary fuzzy
set of £y, the relation E_, # (E,)° holds, since the
propositions “You claim —¢” and “You do not claim
" are logically independent. In fact, we can claim
both “X has the property ¢” and “X has the property
—¢", or only one of them or finally neither of them;
similarly are logical independent E, and E,, where
1) is the superlative of (.

Then, while E, V (E,)¢ = Cx , we have instead E, V
E_, C Cx, and, if we consider the union of a fuzzy
subset and its complement

E; U (E;;)’ = {Epv—p v}

we obtain in general a fuzzy subset of C'x.

The constraints on the function f depend, as shown
before, on the framework of reference.

The concept of fuzzy event, as introduced by Zadeh,
can be seen an ordinary event of the kind

E, = “You claim that X is ¢”.

and for any uncertainty measure (probability, possi-
bility and plausibility) on the events related to X the
assessment together p, is coherent with respect the
relative measure (see Theorem 6) and so coherently
extendible to E, (Theorem 2 for plausibilities, [17]
for conditional possibilities).

In the case of probability and possibility it is easily to
see that the only coherent value for the probability or
possibility of E,, is

9(Ey,) = @ frp, (2) @g(x),

zeCx

where @@ and (© are the sum and the product in the
case of probability, while they are the maximum and
minimum in the case of possibility.

Obviously, only in the case of probability it coincides
with Zadeh’s definition of the probability of a “fuzzy
event” [42].

5 Conclusion

The first part of the paper is devoted into studying
likelihood functions seen as assessment on a set of
conditional events F|H;, with E the evidence and
H; varying on a partition £. It is shown that like-
lihood functions are assessment coherent with respect
probability, possibility and plausibility. Then, infer-
ential processes, like Bayesian one, are studied in the
different setting taking a likelihood function and a
prior, that could be a probability or a possibility or a
plausibility. T particular we prove that any likelihood
function on E x £ and any plausibility on £, with £
a partition, are globally coherent within conditional
plausibility. Then, a comparison of aggregated like-
lihoods, that are coherent extensions of a likelihood
function on E x £ to E x (£)Y is studied in the dif-
ferent setting by showing the common characteristic
and the specific features.

Finally, by using the above results we give an inter-
pretation of fuzzy sets in terms of likelihood function
in the different setting: by starting from the interpre-
tation in the probabilistic setting given in [9] we give a
similar interpretation in plausibility and possibilistic
settings.



ISIPTA ’13: Conditional not-additive measures and fuzzy sets 75

References

[1] M. Baioletti, G. Coletti, D. Petturiti and B. Van-
taggi. Inferential models and relevant algorithms
in a possibilistic framework. International Journal
of Approximate Reasoning, 52: 580-598, 2011.

[2] Benferhat Salem, Tabia Karim and Sedki Karima.
Jeffrey’s rule of conditioning in a possibilistic
framework. Annals of Mathematics and Artificial
Intelligence, 66(3): 185-202, 2011.

[3] B. Bouchon-Meunier, G. Coletti and C. Marsala.
Independence and Possibilistic Conditioning. An-
nals of Mathematics and Artificial Intelligence, 35:
107-123, 2002.

[4] A. Chateauneuf and J.Y. Jaffray. Some charac-
terizations of lower probabilities and other mono-
tone capacities through the use of Mobius inver-
sion. Mathematical Social Sciences 17(3): 263-283,
1989.

[5] G. Coletti, O. Gervasi, S. Tasso and B. Vantaggi.
Generalized Bayesian inference in a fuzzy context:
From theory to a virtual reality application. Com-
putational Statistics €& Data Analysis, 56: 967—
980, 2012.

[6] G. Coletti and M. Mastroleo Conditional belief
functions: a comparison among different defini-
tions. Proc. of 7" Workshop on Uncertainty Pro-
cessing, 2006.

[7] G. Coletti, D. Petturiti and B. Vantaggi. Possi-
bilistic and probabilistic likelihood functions and
their extensions: Common features and specific
characteristics. Fuzzy Sets and Systems, submit-
ted.

[8] G. Coletti and R. Scozzafava, Probabilistic logic in
a coherent setting. (Trends in logic n.15), Kluwer,
Dordrecht, 2002.

[9] G. Coletti and R. Scozzafava. Conditional Prob-
ability, Fuzzy Sets, and Possibility: a Unifying
View. Fuzzy Sets and Systems, 144: 227-249,
2004.

[10] G. Coletti and R. Scozzafava. Conditional Prob-
ability and Fuzzy Information. Computational
Statistics € Data Analysis 51:115-132, 2006.

[11] G. Coletti and R. Scozzafava. Toward a general
theory of conditional beliefs. Int. J. of Intelligent
Systems, 21: 229-259, 2006.

[12] G. Coletti, R. Scozzafava and B. Vantaggi. Inte-
grated Likelihood in a Finitely Additive Setting.
Lecture Notes in Computer Science: LNAI 5590:
554-565, 2009.

[13] G. Coletti and B. Vantaggi. Probabilistic Reason-
ing in a Fuzzy Context. Proc. of the Second World
Conference on Soft Computing, Baku, Azerbaijan,
65-72, 2012.

[14] G. Coletti and B. Vantaggi. Hybrid models:
probabilistic and fuzzy information. Synergies of
Soft Computing and Statistics for Intelligent Data
Analysis. In: Kruse, R.; Berthold, M.R.; Moewes,
C.; Gil, M.A.; Grzegorzewski, P.; Hryniewicz, O.
(Eds.) Advances in Intelligent Systems and Com-
puting. 63-72, 2013.

[15] G. Coletti, R. Scozzafava and B. Vantaggi.
Inferential processes leading to possibility and
necessity Information Sciences, in press (doi:
10.1016/j.ins.2012.10.034).

[16] G. Coletti and B. Vantaggi. Possibility theory:
conditional independence. Fuzzy Sets and Sys-
tems, 157(11): 1491-1513, 2006.

[17] G. Coletti and B. Vantaggi. T-conditional pos-
sibilities: coherence and inference. Fuzzy Set and
Systems 160: 306-324, 2009.

[18] F. Cuzzolin. Three alternative combinatorial for-
mulations of the theory of evidence. Journal of
Intelligent Data Analysis, 14: 439-464 , 2010.

[19] G. de Cooman. Possibility theory II: Conditional
Possibility. International Journal of General Sys-
tems, 25: 325-351, 1997.

[20] B. de Finetti. Teoria della probabilitd. Torino:
Einaudi, (1970) (Engl. Transl. (1974) Theory of
probability vol.I,II, London: Wiley & Sons).

[21] B. de Finetti. Sull’'impostazione assiomatica del
calcolo delle probabilita. Annali Univ. Trieste, 19,
3-55 1949 - Engl. transl.: Ch.5 in Probability, In-
duction, Statistics, Wiley, London, 1972.

[22] G. de Cooman, E. Miranda, and I. Couso. Lower
previsions induced by multi-valued mappings. J.
of Statistical Planning and Inference, 133: 173—
197, 2005.

[23] A.P. Dempster. A generalizatin of Bayesian Infer-
ence. The Royal Stat. Soc. B, 50: 205247, 1968.

[24] T. Denoeux, P. Smets, Classification using Be-
lief Functions: the Relationship between the Case-
based and Model-based Approaches, IEEE Trans-
actions on Systems, Man and Cybernetics B,
36(6): 1395-1406, 2006.

[25] S. Destercke and D. Dubois. Idempotent conjunc-
tive combination of belief functions: Extending
the minimum rule of possibility theory. Informa-
tion Sciences, 181: 3925-3945, 2011.



76 Giulianella Coletti & Barbara Vantaggi

[26] D. Dubois, S. Moral and H. Prade. A seman-
tics for possibility theory based on likelihoods. J.
Math. Anal. Appl., 205: 359-380, 1997.

[27] D. Dubois and H. Prade. Possibility theory.
Plenum Press, New-York, 1988

[28] D. Dubois and H. Prade. When upper probabili-
ties are possibility measures. Fuzzy Sets and Sys-
tems, 49: 65-74, 1992.

[29] R. Fagin and J. Y. Halpern. A New Approach to
Updating Beliefs. In P. P. Bonissone, M. Henrion,
L. N. Kanal, J. F. Lemmer (eds.), Uncertainty in
Artificial Intelligence 6: 347-374, 1991.

[30] M. J. Frank. On the simultaneous associativity
of F(z,y) and x+y— F(x,y). Aequationes Math.,
19: 194-226, 1979.

[31] J. Halpern. Reasoning about uncertainty. The
MIT Press, Boston, 2003.

[32] E. Hisdal. Are grades of membership probabili-
ties. Fuzzy Sets and Systems, 25: 325-348, 1988.

[33] J.Y. Jaffray. Bayesian Updating and Belief Func-
tions. IEEFE Transactions on Systems, Man, and
Cybernetics, 22: 1144-1152, 1992.

[34] C. Kraft, J. Pratt, A. Seidenberg. Intuitive prob-
ability on finite sets, Annals of Mathematical
Statistics 30, 408-419, 1959.

[35] V.I. Loginov. Probability treatment of Zadeh
membership functions and theris use in patter
recognition. Engineering Cybernetics, 68-69, 1966.

[36] M. Mastroleo and B. Vantaggi. An independence
concept under plausibility function. Proceeding of
5th International Symposium on Imprecise Proba-
bilities and their Applications, 287-296, 2007.

[37] , N. Shilkret. Maxitive measure and integration.
Indagationes Mathematicae, 74: 109-116, 1971.

[38] N.D. Singpurwalla and J.M. Booker. Member-
ship functions and probability measures of fuzzy
sets (with discussion). Journal of America Statist.
Association 99: 867-889, 2004.

[39] B. Vantaggi. Statistical matching of multiple
sources: A look through coherence. International
Journal of Approzimate Reasoning, 49: 701-711,
2008.

[40] P. Walley. Belief function representations of sta-
tistical evidence. Annals of Statistics, 4, 1439—
1465, 1987.

[41] P. Walley. Statistical reasoning with Imprecise
Probabilities. Chapman and Hall, London 1991.

[42] L. Zadeh. Fuzzy sets. Information and Control,
8: 338-353, 1965.



8th International Symposium on Imprecise Probability: Theories and Applications, Compiegne, France, 2013

Is the mode a lower prevision?

Inés Couso
Dep. Statistics and O.R.
Universidad de Oviedo
couso@uniovi.es

Abstract

We introduce the notion of mode-desirability of a
gamble, that generalizes the idea of non-negativeness
of the mode of a random variable. The lower and
upper previsions derived from this new definition co-
incide with the minimum and maximum values of the
set of modes of a gamble, when the credal set is a sin-
gleton, but they only bound them in the general case.
The reason why the minimum and the maximum of
the set of modes can not be written, in general, by
means of a pair of lower and upper previsions is dis-
cussed.

Keywords. Expectation, median, mode, desirability,
preference.

1 Introduction

In Decision Making Literature, several criteria of pref-
erence between random variables have been proposed
within the setting of classical Probability Theory, like
for instance stochastic dominance [10], dominance in
the sense of expected utility [13], or statistical prefer-
ence [7, 14], the last one being based on Condorcet’s
voting criterion ([2]). The above mentioned criteria
share a commonality: the joint probability distribu-
tion induced by the pair of variables is assumed to
be known in order to define each preference criterion,
which is expressed in terms of it. Some generalizations
of the aforementioned preference criteria have been
recently reviewed ([3]) to the case where the joint dis-
tribution is not completely determined. Some of those
generalizations had been previously introduced in the
literature: Denoeux ([8]) generalized first-stochastic
dominance to the case of belief-plausibility measures
and Destercke ([9]) and Troffaes ([15]), for instance,
consider several generalizations of Savage dominance
criterion. We have shown that many of those pref-
erence generalizations can be expressed in terms of a
general formulation that is related to the expectation
of a function of both random variables, increasing in
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the first component and decreasing in the second one.

Differently, in Walley’s setting, first hand information
is expressed by means of a family of ordered pairs of
variables (or “gambles”), the first one in the pair being
preferred to the second one. This kind of knowledge
can be equivalently represented by means of a coher-
ent family of “desirable” gambles (those preferred to
the null one). The family of desirable gambles induces
a closed and convex set of linear previsions (also called
a “credal set”). Each of those linear previsions is de-
fined on the initial space and induces, for each pair of
gambles, a (finitely-additive) joint probability. Thus,
what is primary information in this framework is sec-
ondary information in the previous setting and vice
versa. Notwithstanding, from a purely formal point
of view, Walley’s almost preference can be seen as a
particular case of the general formula introduced in
[3], if we consider the function that assigns, to each
pair, the difference between both components. With
those ideas in mind, we proposed in [6] a generaliza-
tion of the notion of statistical preference from the
setting of classical Probability Theory to the frame-
work of Imprecise Probabilities. It leaded us naturally
to a new desirability criterion that we called “signed-
desirability”. We say that X is signed-desirable if its
sign (the gamble that takes the value 1 when X takes
a positive value and —1, when it is negative) is desir-
able, according to Walley’s framework. In [5], a set of
axioms characterizing the family of signed-desirable
gambles induced by a coherent set of desirable gam-
bles is provided. Furthermore, we have found an in-
teresting connection with the notion of median: the
infimum and supremum of the set of medians of a
gamble, when we range an arbitrary credal set, can
be respectively expressed as the lower and upper pre-
visions, according to this new desirability definition.

In this paper, we will propose a new desirability con-
dition very closely related to the notion of mode. The
minimum and maximum values of the family of modes
of a gamble associated to a single prevision do coin-
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cide with the lower and upper previsions of this new
desirability condition. However, when we consider an
arbitrary credal set, those lower and upper previsions
bound the set of modes, but do not necessarily coin-
cide with their minimum and maximum values. We
will explore in Section 4 the reasons why those pairs
of values do not coincide in general.

2 Preliminaries

The basics on Imprecise Probabilities are assumed to
be known by the reader. Notwithstanding we will
introduce here the formal notation used in the rest of
the paper, and specify the axioms that characterize
a coherent family of desirable gambles ([16]). Those
axioms have not been stable along the literature in
what concerns the inclusion of the null gamble (see
[4] for a detailed discussion). In this paper, we will
assume it to be non-desirable.

Let Q denote the set of outcomes of an experiment. £
will denote the set of all gambles (bounded mappings
from  to R). For X,Y € L let X > Y mean that
X(w) > Y(w), Yw € Q and let X > Y mean that
X > Y and X(w) > Y (w) for some w € . A subset
D of L is said to be a coherent set of desirable gambles
[16] when it satisfies the following four axioms:

D1. If X <0 then X ¢ D. (Avoiding partial loss).
D2. If X > 0, then X € D. (Accepting partial gain).

D3. If X € D and ¢ € RT, then ¢X € D. (Positive
homogeneity).

D4. If X e Dand Y € D, then X +Y € D. (Addi-

tion).

The lower prevision induced by a set of desirable gam-
bles D is the set function P : £ — R defined as follows:

P(X)=sup{c: X —ceD}.

The upper prevision induced by D is the set function
P : L — R defined as follows:

P(X)=inf{c: c— X € D}.
The set of linear previsions induced by a coherent set
of gambles D is defined as:

Pp={P : P(X)>0forall X € D}.

Pp is always a credal set (a closed and convex set
of linear previsions, whose restrictions to events are
finitely additive probability measures). P and P are
dual and they respectively coincide with the minimum

and the maximum of Pp, which can be defined in
turn, as the set of linear previsions that dominate P.
On the other hand, a subset D~ C L satisfying Ax-
ioms D2-D4 and

D1 If sup X < 0 then X & D~. (Avoiding sure loss).

D5. If X +6 € D, for all § > 0 then X € D~.
(Closure).

is called a coherent set of almost desirable gambles.
A set of almost desirable gambles D~ determines a
pair of lower and upper previsions, and a credal set,
by means of expressions analogous to the case of de-
sirable gambles. Conversely, a credal set univocally
determines a coherent set of almost desirable gambles
via the formula:

Dp={XecL:P(X)>0,VPeP}

Finally, a set DT C L is said to be a coherent set
of strict desirable gambles if it is a coherent set of
desirable gambles, and it satisfies, in addition, the
following axiom:

D6. If X € DT, then either X >0 or X —J € DT,
for some ¢ > 0. (Openness).

A coherent set of strict desirable gambles can be de-
rived from a credal set as follows:

Dy ={X:X>0o0r P(X)>0YPeP}.

Let the reader notice that D; can be alternatively
expressed in terms of the lower prevision P as follows:

Dy ={X : X>0or P(X)>0}. (1)

In Walley’s theory, the notion of preference between
two gambles is dual to the above notion of desirabil-
ity: X is said to be preferred to Y when their differ-
ence X — Y is desirable. Conversely, if our primary
information is described by means of a partial pref-
erence ordering, we will say that X is desirable when
it is preferred to the null gamble. Furthermore, there
exists a formal connection between preference crite-
ria in classical Probability literature and Walley’s no-
tion of preference: in the particular situation where
the credal set associated to a preference ordering (ac-
cording to Walley’s view) is a singleton, {P}, Wal-
ley’s almost preference of X over Y, P(X —Y) > 0,
is equivalent to dominance according to the expecta-
tion, i.e., X is almost preferred to Y if and only if
Ep(X) > Ep(Y). (In the last expression, P is con-
sidered as a probability defined on the set of events,
instead of a linear prevision defined in the set of gam-
bles.)
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In [3], some known notions of dominance in the (clas-
sical) probabilistic setting were reviewed, and it was
shown that all of these orderings can be expressed
by means of the formula Ep[g(X,Y)] > 0, where
g : R? — R is increasing in the first component,
and decreasing in the second one. It was also clar-
ified that some generalizations of the above notions
considered in the recent literature (see, for instance,
[8, 9, 12, 15]) are very closely related to the formula
Ep[g(X,Y)] > 0. This idea made possible to con-
nect Walley’s framework, where the initial informa-
tion is expressed in terms of a partial ordering and
the alternative setting considered in those reviewed
papers, where the initial information is represented
by means of a lower prevision. Therefore, we can join
both frameworks and say that X is g-preferred to Y if
9(X,Y) is desirable according to Walley’s framework.
With this idea in mind we introduced the notion of
sign-desirability in ([6]). X is said to be sign-preferred
to Y if sgn(X—7Y) = 1xsy — lysx is desirable, where
14 denotes the indicator function of A C €, and
X >Y and Y > X respectively denote the subsets of
Q) where X and Y satisfy each of those inequalities.
According to this new preference condition, X is said
to be sign-desirable when sgn(X) = 1xs0— lx<o is de-
sirable. In words, X is said to be sign-desirable when
we are disposed to pay one probability currency unit
if X takes a negative value in return for the gamble
1xso (receiving 1 unit if X takes a -strictly- posi-
tive value.). In [5] an axiomatic characterization of
“coherent” sets of sign-desirable gambles is provided.
The associated pair of lower and upper previsions can
be defined as follows:

Po(X)=sup{c : X —c is strictly sign-desirable}

Pg(X) =inf{c : ¢ — X is strictly sign-desirable}.
We have checked in [6] that those lower and upper
previsions do coincide, in fact, with the infimum and
the supremum of the set of medians of X when we
range the credal set associated to the initial coherent
set of desirable gambles.

In this paper, we will explore the generalization of the
notion of mode, and its connections with Walley’s de-
sirability theory. We will introduce a new notion of
desirability, but it will not be expressed in terms of
the desirability of an increasing function of the con-
sidered gamble, as it happens with the notion of sign-
desirability. We will also consider the pair of lower
and upper previsions of a gamble, according to the
new desirability condition. The infimum of the set of
modes associated to a credal set will be bounded by
the lower prevision, but it will not coincide in general
with it.

3 The notion of mode-desirability

Let L denote the family of “simple gambles” (those
with a finite number of different possible values). Let
us consider an arbitrary but fixed probability measure
P on Q. According to the classical definition, the set
of modes of a gamble X € Lp with a finite image

Im(X) ={z1,...,2,} is defined as follows:
Mop(X) =
{zieIm(X) : P(X =z;) < P(X =u;), Vj#i} =

{z; € Im(X) : Ax; # x; with P(X = ;) > P(X =)} =
{z; € Im(X) : Aj #1is.t. Ep(lx:rj —1x—s;) > 0}.

Let us now consider the credal set, Pp, associated to
an arbitrary coherent set of desirable gambles D. Let
P denote the induced lower prevision. A natural way
to extend the classical notion of mode seems to be the
following one:

Mop(X) =
{2 € Im(X) : P(1x—s, — 1x—a,) <0, Vj #i} =
{zi € Im(X) Aj#ist. P(lx=z; — Ix=z;) > 0}.

We will prove the following result, in order to connect
this definition with Walley’s desirability framework.

Lemma 1 Let P be the lower prevision induced by a
coherent set of gambles D. Let D;'; be the set asso-
ciated set of strictly desirable gambles, according to
FEquation 1. Let X € Lp. For every v € Im(X) and
ally e R:

B(]-X:y — lX:m) >0 Zﬁ ]-X:y —1x—z € DT,

Proof: By definition, the gamble 1x—, — 1x—, is
strictly desirable if and only if it is some of the fol-
lowing conditions are fulfilled:

B(lX:y — 1X:z) >0 or 1X:y —1x—,>0.

But 1x—y — 1x—, > 0 implies that 2 does not belong
to the set of outcomes of X, what is a contradiction.
O

According to the above lemma, we can alternatively
express the set of modes as follows:

Mop(X) =
{rieIm(X) : Bj#ist Ix—y, —lx—s, € DT} =
{Qii S ]m(X) : Aj £ s.t. (1{1].} — 1{951}) oX € D+},

where the symbol “o” stands for the composition of
functions.

Furthermore, we can skip our reference to the set of
outcomes of X by taking into account the following
result.
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Lemma 2 Let us consider a credal set P, and let DT
denote the set of strictly desirable gambles induced by
it. Let X € L. Then:

1. IfyégIm(X), andx € R, 1x=y — 1x=, ¢ DT.

2. AL ={z: By#ast (1 —1ly)oX eDT}
is included in Im(X).

Proof:

1. Ify € Im(X), then (IX:yflxzx) =—1x—, <0.
According to Axiom D1, this gamble does not
belong to DT.

2. The second part is also straightforward: if z ¢
Im(X), then (14 —1¢5)0 X > 0,Vy € Im(X),
and therefore, the gamble (17,3 — 1(53) o X be-
longs to D for every y € Im(X) C R\ {z}.
O

According to the above lemma, the set of modes asso-
ciated to the credal set, Mop(X), can be alternatively
expressed as:

{o:By#ast (L) —1lgy)oX €D},

This new expression suggests us to consider the fol-
lowing new desirability condition. We will say that
X is mode-desirable when Mop(X) = A% does not
contain any negative number:

Definition 1 A gamble X € L is said to be mode-
desirable, if

Va<0, Jy#xst (1fy — 1) o X € Dt
We will denote it X € Dyy,.

Remark 3.1 There is an alternative equivalent def-
inition for the notion of mode-desirability of sim-
ple gambles. In fact we can check that X is mode-
desirable if and only if:

V2 <0, 3y >z st (1 —1ly) o X € DT

One of the implications is straightforward, so we just
need to check the second one: Let us suppose that X €
Do and let us consider an arbitrary but fived value
x < 0. According to the definition of Dyy,, there exists
y1 # x such that (1g,,y — 1{z3) o X. Furthermore,
we can assure that yy belongs to Im(X). If y1 >
x, the proof is finished. Otherwise, there will exist
Yo # y1, y2 € Im(X) such that (1, —1g,,3) 0 X €
D*. According to the additivity of DV (Aziom DJ),
we can easily check that (1{,,3 — 1z3) 0 X € D+,
According to this procedure, after a finite number of

steps, k < #Im(X), we will get yg+1 > x such that
1y, — 1y,) o X € DF. Otherwise, we would need to
assume that y, s less than or equal to x, and it would
lead us to a contradiction, because, there would need
to exist y ¢ Im(X) with (1, —1,,) o X € D*.

If X is mode-desirable, then, for every x < 0, there ex-
ists some y # x such that we are disposed to exchange
the gamble 1x—, in return for the gamble 1x—,. The
new desirability condition induces a pair of lower and
upper previsions as follows:

Definition 2 Let D be a coherent family of desir-
able gambles, and let Dyy, denote the family of mode-
desirable gambles induced by it. Let X € Lpr. The
lower prevision of X is defined as follows:

Puro(X)=sup{ceR : X —c€Dyo}
Analogously, the upper prevision is:

PMO(X) = inf{c cR:c—Xe DMO}.
Now we will prove that the minimum and the maxi-
mum values of the set A} do coincide with the pair

of lower and upper previsions defined above. Let us
first prove the following supporting result:

Lemma 3

o The set C' ={c : X —c € Do} can be alterna-
tively expressed as:

{c: e <c=>3Fy#2 with (1y—1{3)0X € DT} =

{e:[z<c=2¢gAL]} = (—oco,min AL].

o The set D={d : d— X € Dpro} can be alterna-
tively written as:

{d:[z>d=3y#x with (1—1{)oX € DY} =

{d:[x>d=z¢A%]} = [max AL, o).

Proof: The proof is almost immediate, if we take
into account that 1y, o (X —c¢) = 1gy4c o X, and
1{y}0(d—X)Zl{d_y}OXVC,d,yER. (I

The next result is straightforward, according to the
above lemma:

Proposition 4 The following equalities  hold:

min AL = P, (X) and max A% = Ppo(X).

Remark 3.2 According to the proof of Lemma 3, the
supremum of C and the infimum of D are, indeed,
mazimum and minimum values, respectively, and they
do coincide with the minimum and the mazimum of
A}"(, respectively.
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Let us now consider the set of mode values associated
to the credal set:

Mop,(X) = Upepp{Mop(X)}.

If it coincided with A}, the minimum and the maxi-
mum of the family of modes associated to the credal
set would coincide with the lower and upper previsions
of X, according to the notion of mode-desirability.
Nevertheless, those lower and upper previsions just
bound, but they do not coincide in general with the
minimum and maximum of the set of modes of X.
More specifically, we can check that:

Proposition 5 The set of mode values associated to
the credal set Pp, Mop,(X) is included in A% . Fur-
thermore, if the credal set is a singleton, both sets of
values do coincide.

Proof: The set of modes can be expressed as follows:
Mopy, (X) = Upepp{Mop(X)} =

UPGPD{.”L' Yy # a:,P(l{y} — 1{z}> o X < O} =
{.Z‘ : dP € Pp s.t. Vy 7& mP(l{y} — l{w}) o X < 0}
On the other hand,

A ={z : Vy#2,P(lyy — 1)) 0 X) <0}

According to the above expressions, and taking into
account that P is the minimum of the credal set, we
can easily derive the thesis of this proposition. [

According to the last results, A% is a finite set con-
taining the set of modes, Mop,(X), and included in
the set of images of X. Under some additional con-
straints (Pp being a singleton or, contrarily, express-
ing vacuous information, or AJ)} being included in the
set of images with maximum upper probability, etc.)
they do coincide. But they do not in general, as we
illustrate in the following example.

Example 1 Let Q be a finite set with four elements,
Q= {w1,ws,ws,ws} and let us consider the credal set
P={(Z-0,5-%,5+%.23+a) : € [-3,2]}. Inthe
above formula, each vector of the form (p1,p2,ps,pa)
represents the linear prevision P defined as:

4
P(X)=> piX(w;), VX € L.
i=1
Let D; denote the set of strictly desirable gambles as-
sociated to P: D ={Y : Y >0 or P(Y) > 0}. Let
us now consider the gamble X defined as X (w;) =

i, i =1,2,3,4. Let A} denote the collection of num-
bers:

AL ={z : By # v with (1, — 1) 0o X € DT} =

{ie{l,...,4} 1 Vj#i, P(1{w,) — L{wy) <0}

A =1{1,2,3,4}, but Mop(X) = {1,4}. In order to
check it, Tables 1 and 2 respectively display, for each
pair (4,1), the value that the linear prevision P, =
(% —a, % -5 % + 7, % + ) and the lower prevision
P = minae[_%%] Py, assign to the gamble (1,3 —

1{%}) oX = 1{wj} - 1{wi}'

[J\a] 1 2 3 [ 4 |
1 0 I'_8Sa Tl 5a 2a
9 3a 1 404 4,Q4 _1_5a
3 5%1 il a 02 % Ja
L 155(1 1 Sa ——
4 —2«a 1~ 1 Z+T 0

Table 1: It displays Pu(1{.,} — 1{w,}), for each (j,1).

J\i 1 ]2 [ 3 ] 4 |
S E e

B+
e
4 -3 |- =m0

Table 2: It displays P(14,,) — 1u,}), for each (j,1).

None of the values in Table 2 is strictly positive, and
this means that A} coincides with the set of possible
outcomes of the gamble X, {1,2,3,4}. On the other
hand, there does not exist any o € [—3,3] such that
the values 2 or 3 belong to the set of modes of X as-
sociated to the linear prevision P,, Mop, (X). Thus,
the set of modes associated to the credal set, Mop(X),

. . . . +
is strictly included in A% .

We can ask ourselves what happens if we replace, DV
by D or D~ in the construction of the set of values:

{z : By #x with (1g — 1) 0 X € DT}
Let us consider the pair of sets:
Ax ={z : By # v with (13 —1{z3) o X € D}
and
Ax ={e: Ay #xwith (lgyy —lpy)e X €D} =
{z : P((1yy — 1{z3) 0 X) <0, Vy #a},
and let us compare them with A}.

Lemma 6 Ay C Ax C A}. Furthermore, if Pp is a
singleton, Pp = {P}, then Ay =0, unless the distri-
bution of X is unimodal. In that case, Ay = Ax =
A} = Mop(X).
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Proof: The first part is easy to prove if we take into
account the chain of inclusions D+ C D C D~. Sec-
ondly, if Pp = {P}, we can easily check that = belongs
to Ay if and only if P(1x—y) < P(lx=z), Vy # x.
This only happens when z is the only mode of X, with
respect to the linear prevision P. [

Remark 3.3 Using expressions analogous to those
considered in Lemma 3, we can easily prove that the
minimum and mazimum of Ay do respectively coin-
cide with sup{c : X —c€ Dy, } andinf{d : d— X €
Dot where Dy, is defined as:

{X eELp :Ve<03dy#uz st (1{y}—1{z})OX S D_}.

Furthermore, we have seen that Ay is included in A%,
and that the last one coincides with the set of modes,
when the credal set is a singleton. We can ask our-
selves whether Ay is, in general a subset of Mop(X),
and therefore it approximates it from below. But we
can easily check that this does not happen. In Exam-
ple 1, we have shown that none of the lower previsions
displayed in Table 2 was strictly positive. Further-
more, we observe that all of them are negative (except
for those in the diagonal). This means that Ay also
coincides with the whole family of possible outcomes
of X, Ay = {1,2,3,4} and therefore, it strictly in-
cludes the set of mode values associated to the credal
set.

4 What’s the problem with
mode-desirability?

In Walley’s framework ([16]), any coherent set of gam-
bles satisfies Axioms D2 and D4. The following prop-
erty can be easily derived from both axioms:

YeD,and X >Y = X €D. (2)

On the other hand, the set of sign-desirable gambles
induced by a coherent set of gambles D satisfies Ax-
iom D2, but it does not necessarily satisfy Axiom DA4.
However we can easily check that it fulfills the prop-
erty mentioned in Equation 2, since it is connected
to Dt through the function sgn : R — R, that is
increasing. More explicitly:

Definition 3 Let D be a coherent set of desirable
gambles, and let f : R — R be an increasing func-
tion. We will say that X is f-desirable if and only if
f(X) belongs to D. We will denote it X € Dy.

Lemma 7 Let D be a coherent set of desirable gam-
bles, and let f : R — R be an increasing function.
The set of f-desirable gambles satisfies the property:

XGDf,Y>X:>Y€Df.

A “coherent” set of mode-desirable gambles does not
necessarily satisfy the property considered in Equa-
tion 2 as we illustrate in Example 2:

Example 2 Let Q be the unit interval, and let P de-
note the uniform probability distribution defined on it.
Let Y denote the gamble defined as follows:

-1 if wel0,1/3)
if well/3,5/6)

2 if welb/6,1]
Y takes the values —1, 1 and 2 with respective prob-
abilities 1/3, 1/2 and 1/6. Thus, we can easily check
that Y is mode-desirable, since P(1{;y — 1z 0Y) >
0, Y < 0. Let us now consider the gamble:

-1 if wel0,1/3)
if well/3,1/2)
if well/2,2/3)
if we2/3,5/6)
if wel[5/6,1]

=W NN =

We clearly see that Y > X, but it is not mode-
desirable. In fact, for x = —1 there does not erist
any y > x such that P(1g, — 13 0 X) > 0.

From this example, and according to Lemma 7, a “co-
herent” sets of mode-desirable gambles can not be ex-
pressed, in general, as the family of f-desirable gam-
bles, according to some increasing function f : R — R
and some coherent set of desirable gambles D. This
fact seems to be essential in relation with the proper-
ties of the lower and upper previsions derived from it,
as we show below.

Lemma 8 Let D be a coherent set of desirable gam-
bles, and let us consider an increasing function f :
R — R. The set C = {c : f(X —c) € D} satisfies the
following property: c€ C,d <c¢= € C.

Proof: Let us suppose that ¢ € C and ¢ < ¢. By
definition, f(X —¢) € D. According to the properties
of f, f(X —¢) > f(X — ¢) and, therefore, according
to the coherence of D, f(X — ¢’) belongs to it. O

Proposition 9 Let D be a coherent set of desirable
gambles, and let us consider an increasing function
f: R = R. Let D;{ denote the set of f—desirable
gambles with respect to the coherent set DT, D;{ =
{X : f(X) € D"}. Let us also consider, for every
P € Pp, the set of f-desirable gambles with respect to
D?P}, ie.: D;{P} ={X : f(X)>0 orP(f(X)) >
0}. Then:

sup{c : X—ceD}} = Pi€n7£D sup{c : X—ce D+{P}}.

s
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Proof: First of all, let us take into account that D+ C
D?P}, and therefore ’D;{ - D;{P}, VP € P. Thus,
theset {c : X —ce€ D}'} is included in {¢ : X —c €
D (py}» VP € P, and therefore

: X—ceDf} < inf :
sup{c c i< uf sup{c i
Let us now prove the reverse inequality.Let cp denote
the supremum of the set {¢ : f(X —¢) € D;{{P}}
and let ¢ = infpep cp. Let us consider an arbitrary
¢ < e. Tt will suffice to check that, ¢ € {¢ : X —c€
D?} Let us consider the difference ¢ = ¢ — ¢ > 0.
According to the definition of supremum, for every
P € P thereexistscp € {¢c : X—c€ D}'{P} such that
cp—e < cp < cp. Therefore, ¢ < infpep ¢p and thus,

according to Lemma 8, f(X — () € D?‘P}, VP eP.

Having into account that DT = ﬂpe’[)D?—P}, we have
that € {c : X —ce€ ’D?}, and the result is proved.
0

According to the last result, when we consider an
increasing function f : R — R, and the supremum
sup{c : f(X —¢) € ’D?P}} coincides with some well-
known parameter, 6p(X) induced by the probability
distribution Px (like, for instance, the expectation for
f(-) =+, or the infimum of the interval of medians, for
f = sgn, the supremum sup{c : f(X —c) € D*} coin-
cides with the infimum of the values of the parameter,
when we range the credal set, inf pep, 0p(X).

The condition of mode-desirability cannot be ex-
pressed in terms of an increasing function. According
to Example 2, it is something inherent to the stan-
dard definition of mode, and it does not depend on
the particular definition we have introduced in or-
der to extend the idea of non-negativity of the mode
to the Imprecise Probabilities framework. Even for
the family of single-pointed credal sets, we cannot
find an increasing function f : R — R such that
sup{c : f(X —¢) € D?P}} = min Mop(X), for ev-
ery linear prevision, P.

5 Alternative definitions of mode
desirability

As we have mentioned in the introduction, [3] re-
views several classical stochastic preference criteria
and shows that many of them can be written accord-
ing to the general formulation:

X is preferred to Y iff Ep(g(X,Y)) >0,

where g : R? — R is increasing in the first com-
ponent and decreasing in the second one. Further-
more, in most cases, g can be expressed in terms of

X—ceDj pm}

an increasing point-to-point function f : R — R as
9(z,y) = f(z) = f(y), ¥(z,y) € R® As we clarify
in [3], some extensions of those stochastic orderings
introduced in the recent literature ([6, 8, 9, 11, 15])
can be written in terms of the non-negativity of the
lower prevision of ¢g(X,Y). Some others, instead,
take into account the pairs of lower and upper pre-
visions of f(X) and f(Y), (E(f(X)),E(f(X))) and

(E(f(Y)),E(f(Y))). Based on both pairs, we can gen-
erate four different preference relations, that, for the
sake of shortness, will be called min-max, max-max,

max-min and min-min.

In Section 3, we considered the following generaliza-
tion of the notion of mode:

MOB(X) == {:El 5B(IX:xj - 1X:$i) S 0, V] %’L}

Instead of the lower prevision of gambles of the form
(1{1,].} - 1{%}) o X, we can alternatively consider the
pairs of lower and upper previsions of the gambles
l{z;3oX and 17,3 0 X and compare them, according
to the four criteria mentioned in the last paragraph.
In this section we will briefly discuss these four alter-
native definitions.

Min-max criterion

Let P and P respectively denote the lower and upper
previsions induced by a credal set P. Let X € Lp
be an arbitrary simple gamble. We will define the
min-maz-mode of X with respect to P as the set:

MMop(X) ={z; : P(1x=s,) < P(lx—y,), Vj #i}.

According to the suBer—additivity of P, and the dual-
ity between P and P, the following inequality holds:

B(lX:xj) - P(1X:zl) Z E(lX:z]-) - ﬁ(lX:mi)a

and therefore, we can easily check that the max-min-
mode of X contains the set Mop(X), that is, in turn,
a superset of the family of modes of X, when we range
the credal set. Therefore, the max-min-mode is even
less precise than our initial generalization of the mode.

Max-max criterion

We will define the maz-max-mode of X with respect
to P as follows:

M Mop(X) ={z; : P(lx—s,) < P(lx=s,), Vj #i}.

This set is included in the set of modes of X, when
we range the credal set. In fact, according to the
coherence of P, it is the maximum of the credal set,
P, and that means that there exists, for every ¢ €
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MMop(X), some P; € P that satisfies the equality
Pi(1x—,,) = P(1x—,,), that satisfies, by definition,
the inequalities P(1x—g,) > P(1x—z,), Vj. Thus, we
get the inequalities:

Pi(lX::L’i) = ﬁ(lX:xl) > F(lX:wJ) > Pi(lX::L’j)7 Vj

Therefore, the max-max-mode approximates the set
of modes from below.

Max-min criterion

We will define the maxz-min-mode of X with respect
to P as follows:

RiMop(X) = {x: : Plx—s,) < P(lx—s), Vj #i}.

This set of values is clearly included in the max-max-
mode, and therefore, it is a less precise approximation
of the family of modes Mop(X).

Min-min criterion

We will define the min-min-mode of X with respect
to P as the set:

mMop(X) ={z; : P(1x=z;) < P(1x=s,), VJj # i}.

P((14z;3 = 1gay) © X) < P((1ga,y — Lqey) 0 X) <

?(1{17} °© X) - E(l{fﬂq} © X)7 VZ,]

The above set does not necessarily include, nor is it
necessarily included in the family of modes, Mop(X).
Both sets may even be disjoint, as it happens in the
following example.

Example 3 Let us consider again the credal set of
Ezample 1, P = {(3 —a,§ — 4,4 + 9,2 + )

a € [f%, %]} The lower previsions of the gambles of
the form 1x—s,, i = 1,2,3,4, are, respectively 0, 3%,
é and 0. Thus, the min-min-mode, " Mop(X) =

{2,3} is the complementary of the set of modes of X,
Mop(X) = {1,4}.

6 Concluding remarks and open
problems

We have introduced the notion of mode-desirability,
and connected the classical notion of mode to Wal-
ley’s desirability framework. The lower and upper
previsions of a gamble bound, but do not necessarily
coincide with the minimum and the maximum of the
set of modes, when we consider an arbitrary credal
set. In Section 4, we have discussed the reason why
there does not seem to exist a way to express the pair
of minimum and maximum values as the pair of lower

and upper previsions, according to some desirability
condition.

We have also studied four alternative generalizations
of the notion of mode. The “min-max” approach leads
to a pair of bounds that are even less precise than the
lower and upper previsions induced from the notion
of mode-desirability. Notwithstanding, the number of
comparisons needed to calculate the outer approxima-
tion A} is greater than the number needed in order
to calculate the min-max mode. It will be the expert
that uses those approximations in practical problems
who has to decide what is the most convenient proce-
dure in each specific situation. On the other hand, the
min-min mode does not seem to be related in general
with the set of modes. Finally, the max-min and the
max-max modes are included in the family of modes,
the last one being the most precise of the two. In a
specific problem, we can consider the outer and inner
approximations of Mop(X) respectively derived from
the notions of mode-desirability (or, alternatively, the
min-max mode, when the calculation of A} is non-
viable) and max-max mode. According to the notion
of upper prevision, the max-max mode can be alter-
natively expressed as:

{:Ci : U;-lzl{d 1 d— 1X:Zj €D} - {d cd— 1X:Ii gD}}
3)

The max-max mode and the set A} approximate the
set of bounds, respectively from below and above. At
first sight, the problem of characterizing the set of
modes associated to a credal set seems to be more
complicated: the mode of a linear convex combination
is not between the modes of both extremes. There-
fore, the set of modes associated to a credal set does
not seem to be easily characterized by the modes of
the extremes, as it happens with other parameters,
like the entropy (see [1], for instance). At least, the
fact of departing from a pair of inner and outer ap-
proximations can simplify the process of characteriz-
ing the set of modes in some specific problems.

In the future, we plan to study the properties of the
desirability condition that matches with the gener-
alization of the notion of mode considered in Equa-
tion 3, as well as for the notion of mode-desirability.
According to the definition introduced in this pa-
per, a gamble is mode-desirable if and only if AJ)} N
(—00,0) # 0. The set of mode-desirable gambles does
not satisfy, in general, Axiom D1 (“avoiding partial
loss”). In order to overcome this inconvenient, we
could have alternatively considered X to be mode-
desirable if and only if A% N (—oc0,0] = 0. But this
would not entail a substantial improvement, since the
set of mode-desirable gambles would no longer sat-
isfy Axiom D2 (“accepting partial gain”). We plan to
study other alternatives in order to find a new defini-
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tion that simultaneously satisfies both axioms.

We also plan to study necessary and sufficient condi-
tions for a credal set P in order to satisfy the equality
Mop(X) = A%, so that the minimum and the max-
imum of the set of modes do coincide with the lower
and upper previsions induced by the set of mode-
desirable gambles.

In the paper, we have assumed that the outcomes of
the gambles were numbers, but we could easily ex-
tended this framework to a non-necessarily numeri-
cal setting. The definitions of mode-desirability and
lower and upper prevision would require, anyway, the
universe being an ordered set including a “neutral”
element that plays the role of the value 0 in the real
line.
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Abstract

In this paper we examine concepts of independence
for sets of full conditional probabilities; that is, for
sets of set-functions where conditional probability is
the primitive concept, and where conditioning can be
considered on events of probability zero. We also dis-
cuss the related issue of independence for (sets of)
lexicographic probabilities and for sets of desirable
gambles.
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1 Introduction

This paper examines concepts of independence for sets
of full conditional probabilities and related models.
We study the behavior of several concepts of inde-
pendence in the literature, and propose a number of
possible additional concepts. The results should be of
interest to anyone concerned with representations of
uncertainty that allow indeterminacy and imprecision
in probability values, and that allow conditioning on
every nonempty event.

The motivation for this paper is the following.

The use of a single standard probability measure fails
to encode indeterminacy and imprecision about prob-
ability values. Belief functions, interval-valued prob-
ability, and sets of probability measures have been
proposed to handle such indeterminacy and impreci-
sion. It is not obvious how to generalize the concept
of stochastic independence when one deals with sets
of probability measures; accordingly, there have been
many proposed concepts of independence in the liter-
ature.

Another problem with standard probability measures
is that they do not handle conditioning on events of
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probability zero; that is, if P(B) = 0, then P(A|B)
does not exist, regardless of the event A. Indeed, stan-
dard conditional probability is merely a derived, in-
completely specified concept, while one might argue
that conditional probability should be the primitive
object of interest. Full conditional probabilities offer
an account of conditional probability as primitive ob-
jects that can be specified even if conditioning events
have probability zero. As standard stochastic inde-
pendence is quite weak when applied to full condi-
tional probabilities, there have been several proposals
for concepts of independence that are appropriate for
a single full conditional probability.

However, there is still much to be understood about
concepts of independence for sets of full conditional
probabilities. This paper tries to partially fill this
gap, by examining a number of concepts of indepen-
dence and deriving their graphoid properties (these
properties are often taken as abstract properties that
any “sensible” concept of independence should sat-
isfy). We also discuss concepts of independence for
(sets of) lexicographic probabilities and sets of desir-
able gambles, as they share several features with full
conditional probabilities.

Section 2 describes existing and novel concepts of in-
dependence for credal sets and full conditional proba-
bilities. It does not seem that a similar analysis can be
found in the literature. Section 3 examines a number
of new concepts of independence for sets of full condi-
tional probabilities. Section 4 then examines concepts
of independence that resort to lexicographic probabil-
ities and to sets of desirable gambles.

2 Concepts of independence

We assume throughout that the possibility space 2
is finite, so there are no issues of measurability.
Throughout the paper we use W, X, Y and Z to
denote random variables. Then w denotes a possible
value of W, x denotes a possible value of X, y denotes
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a possible value of Y, z denotes a possible value of Z.
And {z} denotes the event {w € Q: X (w) = x}; like-
wise for {w}, {y} and {z}. The letters A and C will
always denote nonempty events in the algebra gener-
ated by X. Likewise, the letters B and D will always
denote nonempty events in the algebra generated by
Y. The letter f will always denote a function of X,
and the letter g will always denote a function of Y.

The intersection of events G and H is written either
as GH or as G, H. When the event {z} appears in an
intersection, we remove braces whenever possible; for
instance, G denotes the event {z} N G. Sometimes
we add braces to enhance clarity; for instance, we may
write {y, z} instead of simply y, z.

Finally, when w, =z, y, z appear in expressions,
they are universally quantified unless explicitly noted.
Likewise, when functions f and g appear in expres-
sions, they are universally quantified unless explicitly
noted.

Conditional stochastic independence of random vari-
ables X and Y given random variable Z obtains when
P(z,y|z) = P(z|z) P(y|z) whenever P(z) > 0.

Throughout, if Z is any constant function, we remove
the expression “given Z” and in that case we have
“unconditional” independence of X and Y (for any
concept of independence of interest). Often we just
write “independence” to mean both conditional and
unconditional independence.

Concepts of independence can be evaluated by their
graphoid properties [14, 34]. For any three-place rela-
tion (- 1L-|-), we are interested in the following prop-
erties, all of them satisfied by stochastic indepen-
dence:

Symmetry: (X 1LY |Z)= (Y1 X|2)
Redundancy: (X 1LY |X)

Decomposition: (X 1L (W)Y)|Z)= (X1Y|Z)
Weak union: (X 1L (W, Y)|Z)= (X LY |(W,Z))

Contraction:
(XUY|Z)INXLULW|(Y,2) = (XLW,Y)|Z).

2.1 Independence for sets of standard
probability measures

A set of standard (Kolmogorovian-style) probability
measures, not assumed to be closed and convex, is re-
ferred to as a credal set. Denote by K(X) the set
of probability distributions for variable X. Given
a function f(X), its lower and upper expectations
are, respectively E[f(X)] = infpex Ep[f(X)] and
E[f(X)] = suppey Ep[f(X)], where Ep[f(X)] is

the expectation of f(X) with respect to P. Simi-
larly, given an event A, its lower and upper prob-
abilities are, respectively P(A) = infpex P(A) and
P(A) = suppegx P(A).

Given a credal set K(X), we define the conditional
credal set

K(X|A)={P(-|A): Pe K(X)} if P(A)>0;
otherwise, K(X|A) is left undefined [21]. Another
option is to define a conditional credal set that fo-
cuses on those probability measures that assign posi-
tive probability to A:

K> (X|A) = {P(|A) : P € K(X) and P(A) > 0}
if P(A) > 0; (1)

otherwise K~ (X|A) is left undefined [44, 45]. Ob-
viously, if P(A) > 0, then K(X|4) = K~ (X|A).
The set K~ (X|A) is convex when K(X) is convex,

but it may be open even when K(X) is closed. We
define E7[f(X)[A] = infp|ayer>(x|a) Ep[f(X)[A]

and B [f(X)|A] = supp. ayerc> (x|a) BpLf(X)]A].

For a moment, assume that all lower probabilities are
positive.

Following Levi [29], say that Y is confirmationally ir-
relevant to X given Z when

K(Xly,z) = K(X]z). (2)

Walley has proposed a similar concept [41, 42]: Y is
epistemically irrelevant to X given Z when

E[f(X)ly, 2] = E[f(X)]z] 3)

(recall our conventions: by implicit quantification,
this equality is required for all f, for all y, z).

Both confirmational and epistemic irrelevance fail
Symmetry. Walley’s clever solution, borrowed from
the work of Keynes, was to “symmetrize” irrelevance
to obtain epistemic independence: X and Y are epis-
temically independent given Z when X is epistemi-
cally irrelevant to Y given Z and Y is epistemically
irrelevant to X given Z [42]. Take confirmational in-
dependence to be a likewise symmetrized version of
confirmational irrelevance.

If all credal sets are closed and convex, then confir-
mational and epistemic independence are equivalent.
Now even if all lower probabilities are positive and
all credal sets are closed and convex, epistemic in-
dependence (and confirmational independence) fails
Contraction [7]. And if credal sets are not required to
be convex, then confirmational independence fails De-
composition, Weak Union and Contraction even when
all lower probabilities are positive [9].
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Matters become more complicated if lower proba-
bilites are allowed to be zero. Suppose first that Y
is taken to be confirmationally irrelevant to X if

K(X|y,2) = K(X|z) whenever P(y,z) > 0.

We are surely flirting with disaster here, because it is
not difficult to have a variable Z such that every value
of Z has zero lower probability, and yet K(Z) is not a
vacuous credal set (that is, it does not contain every
possible distribution for Z). Now given such a vari-
able Z, every two other variables are confirmationally
independent! This is not reasonable.

The other path to handle events of zero lower prob-
ability within confirmational independence is to say
that Y is confirmationally irrelevant to X given Z
when

K~ (X|y,2) = K(X|z) whenever P(y,z) > 0. (4)

The symmetrized concept of independence fails De-
composition, Weak Union and Contraction (as noted
before, these properties fail even when all lower prob-
abilities are positive [9]).

Another possibility is to define epistemic irrelevance
of Y to X given Z by requiring:

E7[f(X)|y, 2] = E[f(X)|z] whenever P(y,z) > 0.

(5)
The resulting symmetrized concept of independence
fails Contraction (as noted before, this property fails
even when all lower probabilities are positive [7]). It
is an open question whether Decomposition and Weak
Union hold when Expression (5) is used to define in-
dependence; Decomposition and Weak Union hold for
epistemic independence when all lower probabilities
are positive [12].

Note: Expressions (4) and (5) impose different con-
straints, as K~ (X|A) may be open even when K(X)
is closed.

Yet another path has been followed by de Campos
and Moral [15]: they say Y is type-5 irrelevant to X
if

K> (X|B) = K(X) whenever P(B) >0
(recall: B is an event in the algebra generated by Y).

Accordingly, say that Y is type- irrelevant to X given
Z if

K~ (X|B,z) = K(X|z) whenever P(B,z) > 0.

Now we might also modify epistemic irrelevance, and
say that Y is type-5 epistemically irrelevant to X given
Z if

E”[f(X)|B, 2] = E[f(X)|2] whenever P(B,z) > 0.

And we can symmetrize type-5 irrelevance and type-
5 epistemic irrelevance to obtain corresponding con-
cepts of independence. Now, Contraction fails for
type-5 independence and for type-5 epistemic inde-
pendence (Contraction fails already when all lower
probabilities are positive [7]). It is an open question
whether Weak Union holds for these concepts of in-
dependence. As for Decomposition:

Proposition 1 Both type-5 independence and type-5
epistemic independence satisfy Decomposition.

Proof. Assume X and (W,Y) are type-5 independent
given Z. Then K(Y|A,z) = K(Y]|z) by marginal-
ization, and K(X|B,z) = K(X|z) because any B
belongs to the algebra generated by (W,Y’). Like-
wise, assume type-5 epistemic independence holds for
X and (W,Y). Then Elg(Y)|A,2] = E[g(Y)|2] be-
cause any function of Y is a function of (W)Y, and
E[f(X)|B,2] = B[f(X)|2]. O

Type-5 irrelevance may seem very attractive at first,
but the following example, due to de Campos and
Moral [15], displays rather weird behavior when lower
probabilities are zero. Take binary variables X and
Y, and K(X,Y) with two distributions, one that as-
signs probability one to (xg,yo) and another that as-
signs probability one to (z1,y1) (if K(X,Y) must be
convex, take the convex hull of these two distribu-
tions). Both distributions satisfy stochastic indepen-
dence, but X and Y fail to be type-5 independent! In
general, type-5 independence may fail even when all
elements of the credal set K(X,Y") factorize.

This discussion suggests that concepts of indepen-
dence for credal sets must handle conditioning care-
fully. We now describe a few concepts of independence
that require no discussion about conditioning.

Strong independence was also proposed by Levi [29],
initially with the name strong confirmational irrel-
evance: X and Y are strongly independent when
K(X,Y) is the convex hull of a set of probability mea-
sures that satisfy stochastic independence. Strong in-
dependence is an attempt to stay close to stochas-
tic independence while assuming convexity (given
that imposing stochastic independence over a set of
probability measures may generate a nonconvex set
of measures). Strong independence can be derived
from assumptions of infinite exchangeability [9] or fi-
nite exchangeability together with epistemic indepen-
dence [16]. Note that strong independence, and slight
variants of it, have received several names in the lit-
erature, such as type-1 product, type-2 product, type-2
independence, independence in the selection, repeti-
tion independence [9)].

Complete independence abandons convexity and im-
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poses stochastic independence directly: X and Y are
completely independent when every joint distribu-
tion in K (X,Y) satisfies stochastic independence [9].
Complete independence satisfies all graphoid proper-
ties previously mentioned.

The last notable concept of independence we mention
for credal sets is due to Kuznetsov [28]: X and Y are
Kuznetsov-independent if

E[f(X)g(Y)] = E[f(X)] K E[g(Y)]

for all functions f(X) and g¢(Y), where E[] de-
notes the interval from lower to upper expectations,
and X denotes interval multiplication. Kuznetsov-
independence satisfies Symmetry, Redundancy and
Decomposition; it fails Contraction even when all
probabilities are positive [8], and it is an open ques-
tion whether it satisfies Weak Union or not.

2.2 Independence for full conditional
probabilities

A full conditional probability [20] P : B x (B\0) —
R, where B is a Boolean algebra, is a two-place set-
function such that for every event H #
(1) P(H|H) = 1:
(2) P(G|H) > 0 for all G;
(3) P(G1 UGsy|H) = P(G1|H) + P(G2|H)
whenever G1 N Gy = {;
(4) P(G1,G2|H) = P(G1|G2, H) x P(G2|H)
whenever GoH # ().

This fourth axiom is often stated as P(Gi|H) =
P(G1|G2) P(GQ‘H) when Gl Q GQ g H and G2 7’5 (Z)
[13, Section 2].

Define the “unconditional” probability P(G) of an
event G to be P(G|Q2). That is, whenever the con-
ditioning event H is equal to £, we suppress it and
write the “unconditional” probability P(G).

There are other names for full conditional proba-
bilities in the literature, such as conditional proba-
bilities [27] and complete conditional probability sys-
tems [33]. We simplify to full probability whenever
possible. Full probabilities have found applications
in several fields, notably economy, philosophy, and
statistics [5, 19, 26, 30, 32, 35, 38].

We can partition 2 into events L, ..., L as follows.
First, take Ly to be the set of elements of € that
have positive unconditional probability. Then take
L1 to be the set of elements of €2 that have positive
probability conditional on Q\Lg. And then take L;,
for i € {2,...,K}, to be the set of elements of Q
that have positive probability conditional on 2\ U;;%J
L;. The events L; are called the layers of the full
probability. Note that some authors use a different

Yo A Yo Y1
zo | [y | (1=l zo | [1]o | [1];
z1 | |, [1], 1 UJ]‘ 1]

Table 1: Joint full distributions for binary variables
X and Y. The right table stands for two full distri-
butions: one for ¢ = 1,j = 2; another for i = 2,j = 1.

terminology, using instead the sequence Uf:iLj rather
than L; [5, 27].

Any full probability can be represented by a sequence
of probability measures P, ..., Pk, where P; is posi-
tive over L;. This useful result that has been derived
by several authors [3, 5, 23, 27].

For nonempty G, denote by Lg the first layer such
that P(G|L¢) > 0, and refer to it as the layer of G.
We then have P(G|H) = P(G|H N Lyg) [2, Lemma
2.1al.

We often write [, to denote a probability value a
that belongs to the ith layer L;. Table 1 shows three
full distributions using this compact notation.

Given a full probability and a nonempty event H, the
two-place function P(:|-NH) is also a full probabil-
ity from which a partition of H consisting of layers
Lo, L1jm, - - -, Lig can be built. Given an event G
such that G N H # (), denote by Lgp the first layer
of P(:|-NH) such that P(G|Lg ) > 0.

For a nonempty event GG, the index ¢ of the first layer
L; of the full probability P such that P(G|L;) > 0
is the layer number of G. Layer numbers have been
studied by Coletti and Scozzafava [5], who refer to
them as zero-layers. The layer number of G is denoted
by o(G). Inspired by Coletti and Scozzafava [5], we
define the layer number of G given nonempty H as
o(G|H) = o(GN H) — o(H), and we adopt o((})) = cc.

Now consider concepts of independence for full prob-
abilities.

Stochastic independence satisfies all graphoid prop-
erties we have mentioned previously, when applied
to full probabilities. Unfortunately, it may happen
that X and Y are stochastically independent and yet
P(A|B) # P(A) when P(B) = 0. Table 2 shows an
extreme example. To avoid this embarrassment, more
stringent notions of independence have been proposed
for full probabilities [3, 5, 23, 39].

Say that Y is epistemically irrelevant to X given Z
if P(Aly,z) = P(A|z) whenever {y,z} # ), and then
say that X and Y are epistemically independent given
Z if X is epistemically irrelevant to Y given Z and
vice-versa. Epistemic independence satisfies Sym-
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Yo Y1
zo | (1o | [1]s
zy | (1] | (1],

Table 2: Joint full distributions for stochastically in-
dependent binary variables, where P(xo) =1 # 0 =

P(xoly1).

WoYo | W1Yo WoyY1 W1Y1
To LaJo LﬂJQ 11— Oéjo |1- ﬂJz
| oy | v | [T—af; | [1—9]3

Table 3: Full distribution for W, X, Y, with distinct
€(0,1), € (0,1), v € (0,1).

metry, Redundancy, Decomposition and Contraction,
but it fails Weak Union [11, Proposition 4.2]. The full
distribution in Table 3 displays failure of Weak Union
for epistemic independence.

As proposed by Hammond [23], say that Y is h-

irrelevant to X given Z when
P(A|B,C,z) = P(A|C,z) whenever {B,C, z} # (),

and say that X and Y are h-independent given Z when
X is h-irrelevant to Y given Z and vice-versa (recall
our conventions: this equality must hold for every A
and C in the algebra generated by X, and for every
B in the algebra generated by Y).

If X and Y are h-independent given Z, then
P(A,B|C,D,z) = P(A|C,z)P(B|D,z)
whenever {C, D, z} # ().

H-independence satisfies Symmetry, Redundancy, De-
composition and Weak Union, but it fails Contraction
[11, Theorem 5.4]. The full distribution in Table 3
displays failure of Contraction for h-independence.

Coletti and Scozzafava [5] have proposed conditions
on zero-layers to characterize independence. Say that
event H is cs-irrelevant to event G, where H # () #
He, if P(G|H) = P(G|H®), o(G|H) = o(G|H®), and
o(G°|H) = o(G°|H®). To understand the motivation
for these conditions on layer numbers, suppose that
GH, GH®, G°H are nonempty, but GSH¢ = (). Hence
observation of H¢ does provide information about G.
However, the indicator functions of G and H can be
epistemically /h-independent! Coletti and Scozzafava
eliminate such difficulties using their conditions on
layer numbers; other authors, such as Hammond [23]
and Battigalli [2], explicitly require the possibility
space to be the product of the possibility spaces for
each of the variables.

Vantaggi [39, 40] has extended Coletti and Scozzafava
conditions to independence of variables. Say that Y
is cs-irrelevant to X given Z when event {y} is cs-
irrelevant to event {x} given event {z}, whenever
{y,2} # 0 # {{y}° 2} [39, Definition 7.3]. Call
the symmetrized concept cs-independence of X and
Y given Z. Besides Symmetry, cs-independence sat-
isfies Redundancy, Decomposition and Contraction,
and it fails Weak Union [39, Section 9].

The conditions on layer numbers imposed by cs-
independence can be written as [11, Corollary 4.11]:

o(x,ylz) = o(x|z) +o(ylz)  for {z} #0. (6)
Condition (6) can be used to generate additional con-
cepts of independence. For instance, say that Y is
fully irrelevant to X given Z if Y is h-irrelevant to
X given Z and if they satisfy Condition (6); say that
X and Y are fully independent given Z if they are
h-independent given Z and satisfy Condition (6) [11].

Full independence satisfies Symmetry, Redundancy,
Decomposition and Weak Union, but it fails Contrac-
tion [11, Theorem 5.7]. Table 3 displays failure of
Contraction for full independence.

A different concept of independence has been pro-
posed by Kohlberg and Reny [26], essentially as fol-
lows. Say that X and Y are kr-independent given Z
when both:

o if {x,2} # 0 and {y,z} # 0, then {z,y, 2z} # 0;

e if, whenever conditioning events are nonempty,

P(x7y|Lac7y|z @] L.’n',y/|z)
P(x/7y/|LI,y‘Z U Lm’,y’lz)

. Palz]2)Palyle)
1 — o~ /7 RN
”ggc Pn($/|Z)Pn(yl|Z)

for some sequence of product probability mea-
sures P, (+|z).

Relatively little is known about kr-independence; we
only note that it satisfies Symmetry, Redundancy, De-
composition and Weak Union, and it fails Contraction
as can be seen in Table 3 [10, Theorem 1].

We now introduce a new concept of independence for
full probabilities where we require factorization across
layers of the full probability [10]. Consider:

Definition 1 X and Y are layer independent given
Z if, for each layer L; of the underlying full probability
P, and each z such that {L;,z} # 0, we have both

o(z,y|z) = o(z|2) + o(yl2) -
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This concept of independence satisfies Symmetry, Re-
dundancy, Decomposition, Weak Union and Contrac-
tion; in fact, this seems to be the only known concept
of independence for full probabilities that satisfies all
these five properties.

We conclude this section by commenting on an aspect
of full probabilities that has not received the deserved
attention so far; namely, failure of uniqueness (some
comments about it appear in the work of Battigalli
[1] and Kohlberg and Reny [26]). The issue is this.
Suppose one is given marginal probabilities P(xg) =
P(yg) = 1 for binary variables X and Y. Now every
full distribution in Table 1 (for every a € (0, 1)) satis-
fies these marginal assessments and epistemic/h-/cs-
/full/kr-independence; moreover, the two full distri-
butions encoded by the right table satisfy layer inde-
pendence. In general, one cannot uniquely determine
a single full probability by specifying marginal assess-
ments and judgments of independence. Once assess-
ments are to be combined with existing concepts of
independence, one must be prepared to consider a set
of joint full probabilities that satisfies all constraints.

3 Full credal sets and independence

We now focus on sets of full probabilities, and inves-
tigate the graphoid properties of several concepts of
independence. We refer to such sets as full credal sets;
we do not assume the sets to be convex and closed.

As already noted, a concept of independence that
relies on product factorizations is too weak in the
context of full probabilities. Indeed we have that
Kuznetsov, strong, complete and type-5 independence
declare X and Y independent for the full credal set
containing only the full distribution in Table 2.

Complete independence can be adapted to full credal
sets as follows. Define elementwise epistemic/h-
Jes-/full/kr-/layer independence of X and Y given
Z to hold when every element of the full credal
set K(X,Y|z) satisfies respectively epistemic/h-/cs-
/full/kr-/layer independence whenever {z} # (). We
note that Coletti and Scozzafava’s concept of inde-
pendence for lower probabilities [4, Definition 6], ex-
tended to variables by Vantaggi [40, Definition 7], is
quite similar to elementwise cs-independence.

Given the results mentioned in the previous section:

Proposition 2 Elementwise epistemic/cs-indepen-
dence satisfy Symmetry, Redundancy, Decomposition
and Contraction (and fail Weak Union). Element-
wise h-/full /kr-independence satisfy Symmetry, Re-
dundancy, Decomposition and Weak Union (and fail
Contraction). Elementwise layer independence sat-

isfies Symmetry, Redundancy, Decomposition, Weak
Union and Contraction.

A challenge that merits future work is to justify these
concepts of independence from behavioral or decision-
theoretic arguments. Even though complete indepen-
dence has an intuitive justification using choice func-
tions [9, 37], the interaction between choice functions
and full probabilities is yet to be explored.

Consider now confirmational and epistemic indepen-
dence as defined in Section 2.1, but applied to full
credal sets. The resulting concepts were originally
proposed by Levi [29] and by Walley [42] within the-
ories that adopt full probabilities.

Confirmational independence fails Decomposition,
Weak Union and Contraction when applied to gen-
eral full credal sets (even when all lower probabilities
are positive [9]).

Epistemic independence fails Decomposition and
Weak Union when applied to full credal sets [12], as
can be seen in Example 1, and fails Contraction even
when all lower probabilities are positive [7].

Example 1 Consider a full credal set with the two
distributions depicted in Table 4, where a € (0,1/2).
We have P(wg) € [o,1—a] and P(wo|z,y) € [a, 1— 0]
for all possible z,y: (X,Y) is epistemically irrelevant
to W. The reader can verify that both distributions
yield identical values of P(z,y|lw) and P(z,y) such
that P(z,y|lw) = P(x,y), for all possible (z,y,z).
Hence W is epistemically irrelevant to (X,Y’). Thus
we have epistemic independence of W and (X,Y).
However, P(wglz1) = 1/2; consequently, X is not
epistemically irrelevant to W (Decomposition fails),
and Y is not epistemically irrelevant to W given X
(Weak Union fails). O

So, at least from the point of view of graphoid proper-
ties, both confirmational and epistemic independence
fare rather poorly.

Note that the motivation behind confirma-
tional/epistemic irrelevance of Y to X is that
observation of Y does not change beliefs about X.
However, for a full probability the beliefs about X
are encoded not just by expectations E[f(X)] but
rather by conditional expectations FE[f(X)|A] for
events A in the algebra generated by X. This is
indeed the rationale behind h-independence; for this
reason, the combination of h-independence and full
credal sets seems very attractive.

Consider then adapting h-independence to full credal
sets as follows:
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P | woyo WoY1 w1Yo w1Y1

P Wo¥Yo WolY1 wiYo | wWiy1

zo | 15)o | [8]0 | 15520 | 1552,

zo | 1550 | 15520 | [8)0 | 15);

w8l [l | )| L5)

1 LPTQL L%L L%J1 LkTaJl

Table 4: Extreme points of the full credal set in Example 1.

Yo Y1
zo | lal, | [1—al,
z1 | |of 1 |1 —«af 1

Table 5: Marginal probabilities from Table 3.

Definition 2 Y is h-irrelevant to X given Z if
E[f(X)IA,B,z] = E[f(X)|A 2]

whenever {A, B, z} # 0.

X and Y are h-independent given Z when X is h-
irrelevant to Y given Z and vice-versa.

We have:

Theorem 1 H-independence satisfies Symmetry, Re-
dundancy, Decomposition, and Weak Union.

Proof. Symmetry holds by definition; Redun-
dancy is trivial. From the assumed h-independence
of X and (W)Y), we have: E[f(X)|A4,B,z] =
E[f(X)|A,z], and E[g(Y)|A, B,z] = E[g(Y)|B,2]
(Decomposition). Weak Union follows from
Elg(Y)|A, B,w,z] = E[g(Y)|B,w, z], and then, using
Decomposition, E[f(X)|4,w,z] = E[f(X)|A,z] =
E[f(X)|A, B,w,z]. O

Note that h-independence fails Contraction (Table 3).

In the next section we examine two other representa-
tions that are closely related to full conditional mea-
sures and full credal sets.

4 Lexicographic probabilities and sets
of desirable gambles

Consider again Table 3. For this full distribution we
have X and Y epistemic/h-/cs-/full/kr-/layer inde-
pendent. One might argue that there is something
strange about this “independence”. For take a func-
tion ¢g(Y') such that g(yo) = —(1 — «) and g(y1) = a.
This function has expected utility zero. But if 5 < «
one might argue that g is better than the zero func-
tion; after all, if {w;} happens to be observed, then
the expected value of g given {w;} is @ — 3, and g

Yo Y1
Zo |_CYJ0a L6J2 Ll - aJoa Ll — /BJQ
L1 LO‘JD L'YJ?, 11— O‘Jp |1 _’YJP,

Table 6: Lexicographic marginal probabilities from
Table 3.

should then be considered better than the zero func-
tion. And if v > «, then conditional on {w,x;1}
the zero function should be considered better than g.
Hence conditioning on {z1} seems to change opinions
about a function of Y.

One way to understand this example is to look at the
marginal full probability for (X,Y"), shown in Table
5. Note that when the full probability in Table 3 is
marginalized over W, the content of layers L, and Ls
disappear: in Table 5 one sees neither 3 nor «y. Pref-
erences about g that might depend on deeper layers
can only be exposed by observing W. In a sense, the
direct marginalization of Table 3 loses important in-
formation about the joint full probability. It would
make more sense to say that the marginal probabil-
ities obtained from Table 3 should be given by the
overlapping layers in Table 6, so as to conclude that
X and Y are not independent.

We are then moving into lexicographic probabilities
that assign probability measures to various layers with
possibly overlapping support. Due to the lack of
space, we omit detailed background on lexicographic
probabilities, and refer the reader to the work of
Blume et al. [3] for all necessary definitions. We as-
sume their axiomatization of the non-Archimedean
preference relation =, and use the fact that this pref-
erence relation can be represented by a sequence of
probability measures over €2; each one of these mea-
sures is a “layer” of the lexicographic probability. [3,
Corollary 3.1]. Two functions fi(X) and fo(X) are
compared with respect to a lexicographic rule in the
sense that f1 = fo if and only if

K
[Z fi(z)Pi(z)

(for a,b € RE a >p b iff whenever bj > a;, there
exists a k < j such that ar > bg). These probabili-
ties are unique only up to linear transformations, so

K

)
=0

>L [Z fa(z) Pi(x)
0 x

1=
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there is some intrinsic non-uniqueness associated with
lexicographic probabilities:

Example 2 Suppose that a binary variable Y is asso-
ciated with two layers such that Py(yo) = 1—FPo(y1) =
a and Pi(yg) = 1 — Pi(y1) = B. For fixed «, every
B € [0, «) yields identical preferences; likewise, every
B € (a,1] yields identical preferences. So the spe-
cific value of 8 cannot be fixed by resorting to lexico-
graphic preferences.

Conditional  lexicographic  probabilities  given
nonempty event H are obtained by conditioning
every layer of the lexicographic probability on H,
after discarding those layers that do not intersect
H. These conditional probabilities encode the
preferences f1(X)Ig = fo(X)Ig [3, Theorem 4.3],
denoted by [f1(X) = f2(X)|H].

The close proximity between full probabilities and lex-
icographic probabilities is apparent. A full probabil-
ity can be represented by a lexicographic probability
with disjoint layers [22, 23]. And for any lexicographic
probability, the function P(A|B) = P;(A|B), where
P; the the first measure such that P;(B) > 0, is a
full probability. However, as indicated by the dis-
cussion of marginalization concerning Tables 3, 5 and
6, full probabilities and lexicographic probabilities do
not behave identically.

Now consider defining a concept of independence for
lexicographic probabilities. We might try to define a
“product” for lexicographic probabilities. Here diffi-
culties abound due to non-uniqueness. First, prob-
abilities in various layers can be modified so as to
break factorization. Additionally, probability values
are not tied to specific layer numbers. For instance, if
we have a lexicographic probability with three over-
lapping layers, each with probability measures pg, p1
and po, we can generate an equivalent representation
with four layers pg, po, p1 and ps. Therefore a con-
dition such as layer factorization seems rather fragile
as we cannot control layer numbers just by looking at
marginal lexicographic probabilities.

Indeed the difficulties with product lexicographic
probabilities have already been discussed by several
authors [3, 23, 24]. Solutions based on factorization of
nonstandard measures have been advanced by these
authors; the interpretation and the manipulation of
such concepts do not seem easy, and we leave that to
future work.

Hence we are led, in our study of lexicographic proba-
bilities, to concepts of independence that rely on con-
ditioning. Blume et al. [3] say that X and Y are

WoYo W1Yo WoY1 w1y
Zo LO‘JO LBJQ |_1 - O‘Jo Ll - 5J2
A A T

Table 7: Lexicographic distribution for W, X, Y, with
distinct o € (0,1), 8 € (0,1), v € (0,1).

Yo Y1 _
o lalg, | [1—aly, P(W,i)(oly _w:1y)
Bl LBl o, T,
1 LOle, L]‘*aJla 71 |_1J1 |_1J3
Bls | [1—-8]5

Table 8: Marginal (left) and conditional (right) lexi-
cographic probabilities from Table 7.

independent when we have both
[[1(X) = fo(X)|y1] & [f1(X) = f2(X)]ye],

[91(Y) = g2(Y)|z1] & [1(Y) = g2(Y)|22]

whenever conditioning events are nonempty. Say that
X and Y are independent given Z when the expres-
sions above are satisfied conditional on any {z} such
that conditioning events are nonempty.

Even though Table 3 no longer fails Contraction if we
use this concept of independence (because X and Y
are no longer independent), consider Table 7. The
distributions for (X,Y), for (X, W) given {yo}, and
for (X, W) given {y1} are shown in Table 8. Here X
and Y are independent and X and W are indepen-
dent given Y; yet X and (W,Y") are not independent.
Contraction fails. The fourth layer “vanishes” when
one marginalizes out W as preferences are decided al-
ready at the third layer. To understand this, consider
Example 2: once o and [ are fixed, every preference
about Y is fixed, and there is no need to examine
further layers.

Now suppose we have a set of lexicographic probabil-
ities, where preference is given by unanimity amongst
lexicographic comparisons [36]. Example 1 shows that
Decomposition and Weak Union can fail for Blume et
al.’s concept of independence (just consider each full
probability a lexicographic probability, and take their
convex hull if a convex set is desired).

We suggest that a more promising concept of inde-
pendence for (sets of) lexicographic probabilities is
obtained by symmetrizing the following concept: Y is
irrelevant to X given Z when

[1(X) = fa(X)|A, B, 2] < [1(X) = f2(X)]A, 2],

for all functions, whenever conditioning events are
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nonempty. And X and Y are independent given Z
when Y is irrelevant to X given Z and vice-versa.

This concept of independence satisfies Symmetry, Re-
dundancy, Decomposition and Weak Union; Contrac-
tion fails (Table 7). Redundancy obtains because

[/1(X) = fo(X)|A, B,2] & fi(x) 2 fa(2)
& [Li(X) = fo(X)[B, ],

Decomposition holds because any event B belongs to
the algebra generated by (W,Y), and any function
g(Y) is also a function of (W,Y") (hence independence
of X and (W,Y) given Z implies independence of X
and Y given Z). Weak Union holds because, assuming
X and (W,Y) independent given Z, we have

[gl(Y) = 92(Y)|A’ B, w?'z} A [gl(Y) = 92(Y)‘Bv w?'z}’
and, using Decomposition,

(X)) = fo(X)[A,w, 2] < [fi(X) = f2(X)]A, 2]
A [fl(X)ifQ(X”A’B’wvz]

Sets of lexicographic probabilities are equivalent, from
the point of view of preference representations, to
sets of desirable gambles, a representation that has
received considerable attention [6, 17, 18, 31, 43]. In-
deed the derivation of lexicographic representations
for sets of desirable gambles appears already in the
work of Seidenfeld et al. [36], who show that a par-
tially ordered set of preferences (that encodes a set
of desirable gambles) can be represented by a set of
complete orderings, each one of which can be repre-
sented by a lexicographic probability (either using re-
sults by Kee [25] or the more direct results by Blume
et al. [3]). In recent work, Couso and Moral [6] have
studied the representation of sets of desirable gambles
through lexicographic probabilities.

A set of desirable gambles I is a set of variables not
containing the zero function and containing all non-
negative variables that are different from zero, and
such that A X e Dif X e Dand A > 0,and X+Y € D
if X,Y € D [17, Definition 1]. The set of desirable
gambles conditional on event A, denoted by [D|A],
contains all desirable gambles X such that X174 = X,
where I4 is the indicator function of A [18, Section
3.2]. Following notation by Moral [31], denote by D+¥
the set of desirable gambles that are functions of X
(that is, DX is the “marginal” set of gambles with
respect to X). A natural concept of independence for
sets of desirable gambles is [17, Definition 3]: Y is
irrelevant to X given Z if

Dy, 2]** = [D|z]** whenever {y, z} # 0.

And then: X and Y are independent given Z if X
is irrelevant to Y given Z and vice-versa. (Note that

there are other concepts of independence for sets of
desirable gambles in the literature [31].)

Mimicking our proposal for (sets of) lexicographic
probabilities, consider the following definition of inde-
pendence for sets of desirable gambles: Y is irrelevant
to X if

[D|A, B, 2] = [D|A, 2]** whenever {4, B, z} # 0.

And then define independence of X and Y given Z by
symmetrizing this concept of irrelevance.

5 Conclusion

This paper has studied concepts of independence for
sets of full probabilities, and for their close relatives,
sets of lexicographic probabilities, and sets of desir-
able gambles. We have tried to offer a commented
and organized review of the literature in Section 2.
We have then analyzed a large number of concepts of
independence in Sections 3 and 4.

At this point the only concept of independence for full
credal sets that satisfy Symmetry, Redundancy, De-
composition, Weak Union and Contraction is elemen-
twise layer independence. The concepts of confirma-
tional and epistemic independence seem particularly
weak when applied to full credal sets. The concept
of h-independence fares considerably better but still
fails Contraction. The extent to which one can adopt
concepts that fail various graphoid properties is yet
to be fully analyzed.

Concerning lexicographic probabilities: they do add
flexibility, but they introduce significant complexity
in dealing with non-uniqueness and marginalization.
Sets of desirable gambles also require some care in
dealing with marginalization. The new concepts of
independence suggested here for sets of lexicographic
probabilities and sets of desirable gambles should be
helpful in future work.
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Abstract

We present a new approach to credal networks, which are
graphical models that generalise Bayesian nets to deal with
imprecise probabilities. Instead of applying the commonly
used notion of strong independence, we replace it by the
weaker notion of epistemic irrelevance. We show how as-
sessments of epistemic irrelevance allow us to construct a
global model out of given local uncertainty models, leading
to an intuitive expression for the so-called irrelevant nat-
ural extension of a network. In contrast with Cozman [2],
who introduced this notion in terms of credal sets, our main
results are presented using the language of sets of desirable
gambles. This has allowed us to derive a number of useful
properties of the irrelevant natural extension. It has power-
ful marginalisation properties and satisfies all graphoid
properties but symmetry, both in their direct and reverse
forms.

Keywords. Credal networks, epistemic irrelevance, sets of
desirable gambles, graphoid properties, irrelevant natural
extension, lower previsions, coherence.

1 Introduction

In his overview paper [2], Cozman discussed and compared
a number of different extensions for so-called credal net-
works, which generalise standard Bayesian networks to
allow for imprecise probability assessments.

One of these extensions is the so-called irrelevant nat-
ural extension, which captures that the non-parent non-
descendants of any variable in the network are epistemic-
ally irrelevant to that variable given the value of its parents.
Cozman argues that of all the possible extensions, this irrel-
evant natural extension is perhaps the most appealing one.
Nevertheless, it has thus far received little attention.

The present paper tries to remedy this situation by provid-
ing a firm theoretical foundation for the irrelevant natural
extension of a network, leading to, amongst other things, a
powerful marginalisation property and a proof that it satis-
fies all graphoid properties but symmetry.

Gert de Cooman
Ghent University, Belgium
gert.decooman @ugent.be

The main results are stated using the theory of sets of desir-
able gambles, which we introduce in Section 2. We go on
to introduce and discuss important concepts such as direc-
ted acyclic graphs and epistemic irrelevance in Section 3,
and use these in Section 4 to show how assessments of epi-
stemic irrelevance can be combined with given local sets of
desirable gambles to construct a joint model. We call this
the irrelevant natural extension of the credal network and
prove that it is the most conservative coherent model that
extends the local models and expresses all conditional irrel-
evancies encoded in the network. In Section 5 we present
a powerful marginalisation property, and in Section 6, we
use an asymmetric version of D-separation to show that the
irrelevant natural extension satisfies all graphoid properties
except symmetry, both in their direct and reverse forms.
Finally, Section 7 establishes a connection between the sets
of desirable gambles approach to credal networks under
epistemic irrelevance that we presented in this paper, and a
similar approach using coherent lower previsions.

2 Sets of desirable gambles

Consider a variable X taking values in some non-empty and
finite set 2. Beliefs about the possible values this variable
may assume can be modelled in various ways: probability
mass functions, credal sets and coherent lower previsions
are only a few of the many options. We choose to adopt a
different approach, using sets of desirable gambles. We will
model a subject’s beliefs regarding the value of a variable
X by means of his behaviour: which gambles (or bets) on
the unknown value of X would our subject strictly prefer to
the status quo (the zero gamble).

Although they are not as well known as other (imprecise)
probability models, sets of desirable gambles have definite
advantages. To begin with, they are more expressive than
both credal sets and lower previsions. For example, they
are easily able to deal with such things as conditioning on
events with probability zero, which tends to be much more
involved when using other imprecise probability models.
9Secondly, they have the advantage of being operational,
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meaning that there is a practical way of constructing a
model that represents the subject’s beliefs. For sets of desir-
able gambles this can be done by offering the subject certain
gambles and asking him whether or not he strictly prefers
them to the status quo. And finally, our experience tells us
that it is usually easier to construct proofs in the language
of coherent sets of desirable gambles than in other, perhaps
more familiar languages. We give a brief survey of the ba-
sics of sets of desirable gambles and refer to Refs. [7, 1, 12]
for more details and further discussion.

2.1 Desirable gambles

A gamble f is a real-valued map on 2 that is interpreted as
an uncertain reward. If the value of the variable X turns out
to be x, the (possibly negative) reward is f(x). A non-zero
gamble is called desirable to a subject if he strictly prefers
to zero the transaction in which (i) the actual value x of the
variable is determined, and (ii) he receives the reward f(x).
The zero gamble is therefore not considered to be desirable.

We model a subject’s beliefs regarding the possible values
Z that a variable X can assume by means of a set Z of
desirable gambles—some subset of the set 4(.2") of all
gambles on £ For any two gambles f and g in 4(Z"), we
say that f > g if f(x) > g(x) for all x in £ and f > g if
both f > g and f # g. We use 4(Z")~0 to denote the set
of all gambles f € 4(Z2") for which f > 0and (2 )< to
denote the set of all gambles f € ¢(2") for which f <O0.
As a special kind of gambles we consider indicators 14 of
events A C 2. 1, is equal to 1 if the event A occurs—the
variable X assumes a value in A—and zero otherwise.

2.2 Coherence

In order to represent a rational subject’s beliefs about the
values a variable can assume, a set 7 C 4 (.2") of desirable
gambles should satisfy some rationality requirements. If
these requirements are met, we call the set & coherent. We
require that for all f, fi, f» € 9(2") and all real A > 0:

DI. if f < Othen f ¢ Z;

D2. if f > O then f € Z;

D3. if fe PthenAf € D,

D4. if f1,f> € P then f1+ f» € 2.

[scaling]

[combination]

Requirements D3 and D4 turn & into a convex cone:
posi(2) = 9, where we use the positive hull operator ‘posi’
that generates the set of finite strictly positive linear com-
binations of elements of its argument set:

posi(2) = {Zkkfk: i€ D, R\ ENO}.
k=1

Here ]Rg is the set of all (strictly) positive real numbers,
and Ny the set of all natural numbers (zero not included).

3 Credal networks

3.1 Directed acyclic graphs

A directed acyclic graph (DAG) is a graphical model that is
well known for its use in Bayesian networks. It consists of
a finite set of nodes (vertices), joined into a network by a
set of directed edges, each edge connecting one node with
another. Since this directed graph is assumed to be acyclic,
it is not possible to follow a sequence of edges from node
to node and end up at the same node one started out from.

We will call G the set of nodes s associated with a given
DAG. For two nodes s and ¢, if there is a directed edge from
s to ¢, we denote this as s — ¢ and say that s is a parent
of t and ¢ is a child of s. A single node can have multiple
parents and multiple children. For any node s, its set of
parents is denoted by P(s) and its set of children by C(s).
If a node s has no parents, P(s) = 0, and we call s a root
node. If C(s) = 0, then we call s a leaf, or terminal node.

Two nodes s and ¢ are said to have a path between them if
one can start from s, follow the edges of the DAG regardless
of their direction and end up in ¢. In other words: one can
find a sequence of nodes s = s1,...,5, =t, n > 1, such that
forall i € {1,...,n— 1} either s; — s;+1 or s; < s;41. If
this sequence is such that s; — s, foralli € {1,...,n—1}
(all edges in the path point away from s), we say that there
is a directed path from s to ¢t and write s C ¢. In that case
we also say that s precedes t. If s Tt and s # ¢, we say
that s strictly precedes t and write s  t. For any node s,
we denote its set of descendants by D(s) :={t € G: sC t}
and its set of non-parent non-descendants by
N(s):=G\ (P(s)U{s}UD(s)). We also use the shorthand
notation PN(s) :== P(s) UN(s) = G\ ({s} UD(s)) to refer
to the so-called non-descendants of s.

We extend these notions to subsets of G in the following
way. For any K C G, P(K) = (U,ex P(s)) \ K is its set of
parents and D(K) = (Ugegx D(s)) \ K is its set of descend-
ants. The non-parent non-descendants of K are given by
N(K) =G\ (P(K)UKUD(K)) = Nex N(s), and we also
define PN(K) = P(K) UN(K). This last set cannot be re-
ferred to as the non-descendants of K since P(K) and D(K)
are not necessarily disjoint.

Special subsets of G that we will consider, are the
closed ones: we call a set K C G closed if for all
s,t € K and any k € G such that s C k C ¢, it holds that
k € K. For closed K C G, P(K)ND(K) = 0 and therefore
PN(K) = G\ (KUD(K)), which means that for closed K,
PN(K) can rightfully be referred to as the non-descendants
of K.

With any subset K of G, we can associate a so-called sub-
DAG of the DAG that is associated with G. The nodes of
this sub-DAG are the elements of K and the directed edges
of this sub-DAG are those edges in the original DAG that
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G = {51,52,53,54,55,56,57,58,59,510, 511,512,513 }
Figure 1: Example of a directed acyclic graph (DAG)

H—O—®  ®

Figure 2: Example of a sub-DAG

connect elements in K. For a sub-DAG that is associated
with some subset K of G, we will use similar definitions as
those for the original DAG, adding the subset K as an index.
As an example: for all k € K, we denote by Pk (k) the par-
ents of k in the sub-DAG that is associated with the nodes
in K. Forall K C G and k € K, we have Px(k) = P(k)NK
and P(k)\ Px(k) = P(k)NP(K).

Example 1. Consider the DAG in Figure 1. For the node
57 € G, we find that P(s7) = {s4,s5}, D(s7) = {89,510} and
N(s7) = {s1,52,53,56,58,511,512,513 }. For the closed sub-
set K = {s5,57,59,512} C G, we have P(K) = {s3,54,511 },
D(K) = {ss,510,513} and N(K) = {s1,52,5¢}. The sub-
DAG that corresponds to K is drawn in Figure 2. We find
that Px(s7) = {ss}, Dk (s7) = {s9} and Nk (s7) = {s12}. O

3.2 Variables and gambles on them

With each node s of the network, we associate a variable
X, assuming values in some non-empty finite set 2. We
denote by 4 (.Z;) the set of all gambles on 2. We extend
this notation to more complicated situations as follows.
If S is any subset of G, then we denote by X the tuple
of variables whose components are the X for all s € S.
This new joint variable assumes values in the finite set
Zs = XsesZs and the corresponding set of gambles is
denoted by ¢ (Zs). When S = 0, we let 2 be a singleton.
The corresponding variable Xp can then only assume this
single value, so there is no uncertainty about it. ¢4 (.2p) can
then be identified with the set R of real numbers. Generic
elements of Z; are denoted by x; or z; and similarly for
xs and zg in Zs. Also, if we mention a tuple zg, then for
any ¢ € §, the corresponding element in the tuple will be
denoted by z;. We assume all variables in the network to

be logically independent, meaning that the variable Xs may
assume all values in Zs, forall @ C S C G.

We will use the simplifying device of identifying a
gamble fs on Zs with its cylindrical extension to
Zu, where S CU C G: the gamble fy on Zy defined
by fu(xy) = fs(xs) for all xy € Zy. For instance, if
A CY(Zg), this allows us to consider 2 NY(Zs) as
the set of those gambles in % that depend only on the
variable Xg.

3.3 Modelling our beliefs about the network

Throughout, we consider sets of desirable gambles as mod-
els for a subject’s beliefs about the values that certain vari-
ables in the network may assume. One of the main con-
tributions of this paper, further on in Section 4, will be to
show how to construct a joint model for our network, being
a coherent set Z¢ of desirable gambles on 2.

From such a joint model, one can derive both conditional
and marginal models [7, 6]. Let us start by explaining
how to condition the global model Z. Consider an event
A; C 27, with I C G, and assume that we want to update
the model Z; with the information that X; € A;. This leads
to the following updated set of desirable gambles:

DelAr={f €9 (Zo): Ia,f € D6},

which represents our subject’s beliefs about the value of
the variable Xg\;, conditional on the observation that X;
assumes a value in A;. This definition is very intuitive,
since 14, f is the unique gamble that is called off (is equal
to zero) if X; ¢ A; and equal to f if X; € A;. Since ]I{x@} =1,
the special case of conditioning on the certain variable Xj
yields no problems: it amounts to not conditioning at all.

Marginalisation too is very intuitive in the language of sets
of desirable gambles. Suppose we want to derive a marginal
model for our subject’s beliefs about the variable X, where
O is some subset of G. This can be done by using the set
of desirable gambles that belong to % but only depend on
the variable Xp:

marg, (%) = {f €9(20): f € D6} = ZcN¥Y(20).

Now let I and O be disjoint subsets of G and let A; be
any subset of .Z7. By sequentially applying the process of
conditioning and marginalisation we can obtain conditional
marginal models for our subject’s beliefs about the value
of the variable Xy, conditional on the observation that X;
assumes a value in A;:

marg,(Z¢|Ar) = {f €Y (Zo): Iy, f € 9@}. (D

Conditioning and marginalisation are special cases of
Eq. (1); they can be obtained by letting O = G\ I or I = 0.
If A; is a singleton {x;}, with x; € 27, we will use the
shorthand notation marg, (% |x1) := marg, (% |{x1}).
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Since coherence is trivially preserved under both condition-
ing and marginalisation, we find that if the joint model Z
is coherent, all the derived models will also be coherent.

3.4 Epistemic irrelevance

We now have the necessary tools to introduce one of the
most important concepts for this paper, that of epistemic
irrelevance. We describe the case of conditional irrelevance,
as the unconditional version of epistemic irrelevance can
easily be recovered as a special case.

Consider three disjoint subsets C, I, and O of G. When
a subject judges X; to be epistemically irrelevant to Xop
conditional on Xc, denoted as IR(Z, O|C), he assumes that
if he knew the value of X¢, then learning in addition which
value X; assumes in 27 would not affect his beliefs about
Xo. More formally put, he assumes for all xc € Z¢ and
x; € Z; that:

marg, (% |xcur) = margy (% xc).

Alternatively, a subject can make the even stronger state-
ment that he judges Xj to be epistemically subset-irrelevant
to Xo conditional on X¢, denoted as SIR(Z,O|C). In that
case, he assumes that if he knew the value of X, then re-
ceiving the additional information that X; is an element of
any non-empty subset A; of 27 would not affect his beliefs
about Xp. In other words, he assumes for all xc € Z¢ and
all non-empty A; C 27 that:

marg(Zc|{xc} x Ar) = margy(Zc]xc).

Making a subset-irrelevance statement SIR(Z, O|C) implies
the corresponding irrelevance statement IR(Z,0|C). Even
stronger, it implies for all I’ C I that IR(/’, O|C). The con-
verse does not hold in general. However, as we will show
further on, credal networks under epistemic irrelevance are
a useful exception: although we define the joint model by
imposing irrelevance, it will also satisfy subset-irrelevance.
For the unconditional irrelevance case it suffices, in the
discussion above, to let C = (. This makes sure the variable
Xc has only one possible value, so conditioning on that
variable amounts to not conditioning at all.

Irrelevance and subset-irrelevance can also be extended
to cases where I, O and C are not disjoint, but 7\ C and
O\ C are. We then call X; epistemically (subset-)irrelevant
to Xo conditional on Xc provided that Xp ¢ is epistemically
(subset-)irrelevant to Xp\c conditional on Xc. Although
these cases are admittedly artificial, they will help us state
and prove some of the graphoid properties further on.

3.5 Local uncertainty models

We now add local uncertainty models to each of the nodes
s in our network. These local models are assumed to be
given beforehand and will be used further on in Section 4

as basic building blocks for constructing a joint model for
a given network.

If s is not a root node of the network, i.e. has a non-empty
set of parents P(s), then we have a conditional local model
for every instantiation of its parents: for each xp(,) € Zp(y),
we have a coherent set 7 p(s) of desirable gambles on
Zs. It represents our subject’s beliefs about the variable X;
conditional on its parents Xp(,) assuming the value xp(y).

If s is a root node, i.e. has no parents, then our subject’s
local beliefs about the variable X; are represented by an
unconditional local model. It should be a coherent set of
desirable gambles and will be denoted by Z;. As was ex-
plained in Section 3.3, we can also use the common generic
notation Z; Jep in this unconditional case, since for a root

s)
node s, its set of parents P(s) is equal to the empty set 0.

3.6 The interpretation of the graphical model

In classical Bayesian nets, the graphical structure is taken
to represent the following assessments: for any node s,
conditional on its parent variables, the associated variable
is independent of its non-parent non-descendant variables

When generalising this interpretation to credal networks,
the classical notion of independence gets replaced by a
more general, imprecise-probabilistic notion of independ-
ence, which in the existing literature is usually chosen to
be strong independence; see Ref. [3] for an overview of
different approaches, including relevant references. Here,
we will not do so: we choose to use the weaker, asymmetric
notion of epistemic irrelevance, introduced in Section 3.4.
In the special case of precise uncertainty models, both epi-
stemic irrelevance and strong independence reduce to the
classical notion of independence and the corresponding in-
terpretations of the graphical network are equivalent to the
one used in classical Bayesian networks.

In the present context, we therefore assume that the graph-
ical structure of the network embodies the following condi-
tional irrelevance assessments, turning the network into a
credal network under epistemic irrelevance. Consider any
node s in the network, its set of parents P(s) and its set
of non-parent non-descendants N(s). Then conditional on
Xp(s)» Xn(s) is assumed to be epistemically irrelevant to X;:

IR(N(s), {s}[P(s))-

For a coherent set of desirable gambles % that describes
our subject’s global beliefs about all the variables in the
network, this has the following consequences. For every
s € G and all xpy(5) € Zpy(s)» P must satisty:

maIgs(-@GJxPN(s)) = margs(‘@GJxP(s))~ (2)
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4 Constructing a joint model

We now show how to construct a joint model for the vari-
ables in the network, and argue that it is the most conser-
vative coherent model that extends the local models and
expresses all conditional irrelevancies encoded in the net-
work. But before we do so, let us provide some motivation.
Suppose we have a global set of desirable gambles Zg,
how do we express that such a model is compatible with
the assessments encoded in the network?

4.1 Defining properties of the joint model

We will require our joint model to satisfy the following four
properties. First of all, we require that our global model
should extend the local ones. This means that the local
models derived from the global one by marginalisation
should be equal to the given local models:

G1. The joint model s marginalises to the given local
uncertainty models: marg, (%G |xp(y)) = D), ) for all
s € G and Xp(s) € ‘%P(s)-

The second requirement is that our model should reflect all
epistemic irrelevancies encoded in the graphical structure
of the network:

G2. Y satisfies all equalities that are imposed by Eq. (2).
In these equalities, the right hand side can be replaced
by 2, Fp) due to requirement G1.

The third requirement is that our model should be coherent:
G3. Y is coherent (satisfies requirements D1-D4).

Since requirements G1-G3 do not determine a unique
global model, we impose a final requirement to ensure that
all inferences we make on the basis of our global models are
as conservative as possible, and are therefore based on no
other considerations than what is encoded in the network:

G4. Pg is the smallest set of desirable gambles on Z¢
satisfying requirements G1-G3: it is a subset of any
other set that satisfies them.

We will now show how to construct the unique global model
9 that satisfies all of the four requirements G1-G4.

4.2 An intuitive expression for the joint model

Let us start by looking at a single given marginal model
Y); Ps) and investigate some of its implications for the joint
model Z¢. Consider any node s and fix values zp(,) and
Zn(s) for its parents and non-parent non-descendants. Due

to requirements G1 and G2, any gamble f € 7 Zp(s) should
also be an element of marg (% |zpy(s)), Which by defini-
tion means that H{ZPN(x)} f € Y. Inspired by this observa-
tion, we introduce the following set of gambles on Z¢:

AG" = {17 5 € G 2ov) € L)y € Dy

It should now be clear that <7 must be a subset of our
joint model Z.

Proposition 1. ﬁf(i;rr is a subset of any joint model 9 that
satisfies requirements G1 and G2.

Since our eventual joint model should also be coherent
(satisfy requirement G3), and thus in particular should be a
convex cone, we can derive the following corollary.

Corollary 2. posi(/™) is a subset of any joint model D¢
that satisfies requirements G1-G3.

We now suggest the following expression for the joint
model describing our subject’s beliefs about the variables
in the network:

DI = posi(T). 3)

We will refer to Z.I" as the irrelevant natural extension of
the local models & Jxp(s)- Since we know from Corollary 2
that it is guaranteed to be a subset of the joint model we
are looking for, we propose it as a candidate for the joint
model itself. In the next section, we set out to prove that
.@gr is indeed the unique joint model satisfying all four
requirements G1-G4.

We would like to point out that @gr is a generalisation of
the so-called independent natural extension of a number of
unconditional marginal models [6, Section 7]. This special
case corresponds to a DAG that has no edges, consisting
of a finite amount of disconnected nodes [6, Section 10].
Quite a few of the results obtained further on can therefore
be regarded as generalisations of those in Ref. [6].

4.3 Justifying our expression for the joint model

We start by proving a number of useful properties of _@gr.

Proposition 3. A gamble f € G(Z¢) is an element of 9&“
if and only if it can be written as:

f=Y X

) H{ZPN(S) }fsazmv(s) J
s€G zpy(5) €EZPN(s)

where fi oy € @skm) U {0} for every s € G and all
ZpN(s) € Zpn(s)> and at least one of them is non-zero.

Proposition 4. ¥(2)~o is a subset of Z17.
These two propositions serve as a first step towards the fol-

lowing coherence result, which states that our joint model
2§ satisfies requirement G3.
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Proposition 5. .@gf satisfies requirement G3: it is a coher-
ent set of desirable gambles.

Our proof for this result has an interesting feature that
deserves to be borne out. The crucial step hinges on the
assumption that if the local models of our network were
precise probability mass functions, we would be able to
construct a joint probability mass function that satisfies all
irrelevancies (in that case independencies) that are encoded
in our network. Since the precise version of a credal net
under epistemic irrelevance is a classical Bayesian network,
this assumption is indeed true. What we believe is useful
about this approach, is that it can be extended to credal
networks with irrelevance assumptions that differ from the
ones we impose in the present article, as long as the as-
sumption above is satisfied. In this way, it enables us to
use existing coherence results for precise networks to prove
their counterparts for credal networks.

Next, we turn to an important factorisation result that is
essential in order to prove that our joint model extends the
local models and expresses all conditional irrelevancies
encoded in the network, and therefore satisfies G1 and G2.

Proposition 6. Fix arbitrary s € G, xps) € Zp(s) and

8§ €Y (Zn(s))>0- For every f € G(Z5):
8l 1S € T fe 7.
Corollary 7. @‘” satisfies requirements G1 and G2: it
holds for every s € G and all xpy () € Zpn s (s) that
margs( lrlrJ')CPN ) margs(@iGrerP(s)) = @SJXP(S).
We now have all tools necessary to formulate our first im-
portant result. It is one of the main contributions of this
paper and provides a justification for the joint model Z5"
that was proposed in Eq. (3).

Theorem 8. The irrelevant natural extension .@iG“ is the
unique set of desirable gambles on Z¢ that satisfies all
four requirements G1-G4.

It is already apparent from Proposition 6 that the proper-
ties of the irrelevant natural extension Z. are not limited
to G1-G4. As a first example, Proposmon 6 implies that
for any node s, conditional on its parent variables Xp(y),
the non-parent non-descendant variables Xy ,) are not only
epistemically irrelevant, but also subset-irrelevant to Xj.

Corollary 9. All nodes s € G satisfy the subset-irrelevance
statement SIR(N((s), {s}|P(s)): for any xp(y) € Zp(y) and
non-empty Ay C Z(y), it holds that

marg, (Z¢" | {xp(s) } X An(s)) = marg (28 |xp(s)).-

In the next two sections, we establish a number of even
stronger properties of 75"

5 Additional marginalisation properties

As explained in Section 3.1, a subset K of G can be associ-
ated with a so-called sub-DAG of the original DAG. Simil-
arly to what we have done for the original DAG, we can use
Eq. (3) to construct a joint model for this sub-DAG. All we
need to do is provide, for every s € K and zp,(5) € Zpy(s

a local model @SJZPK ©

One particular way of providing these local models is to
derive them from the ones of the original DAG. The starting
point to do so is fixing a value xp(x) € Zp (k) for the parent
variables of K. This provides us, for every s € K, with a
value Xp(s)\Px(s) € %P( )\ Py (s) because P(s) \ Px(s) C P(K).
Forevery s € K and zp, (5) € Zpy(s)» We can then identify the
local model 7 2y ( of the sub-DAG with the local model
'@j Of the orlglnal DAG, where ZP(s)\Px(s) = XP(s)\Px(s)*
In other words, for every s € K and zp(5) € Zpy ()

sz = 25l

2Pg(s) 2Py () P(s)\ Py (5))°

Example 2. Consider again the DAG in Figure 1 and the
sub-DAG in Figure 2 that corresponds to the closed subset
K = {ss,57,59,512} C G. In order to provide this sub-DAG
with local models, we fix a value xpgy € Zpg). Using
Eq. (5), this provides us with unconditional local mod-
els Dy = gsijs3 and s, = 2 , for all 7, € X,

512 X511’
a conditional local model 9| tg = D,z Zsg %54 ) and, for all
Zs; € Zs,, a conditional local model :@Sg Jzsy® O

For every K C G and all xp(g) € Zp k), the resulting joint
model for the sub-DAG that is associated with K is given
by

irr

K|xp = posi( KJXP(K) ),
where

irr

Klxpr) = {H{ZPNK(S)}f: s € K zpng(s) € ZpNg(s):

Xp(s)\Pg (s)) } :

A question that now naturally arises is whether these joint
models for sub-DAGs can be related to the original joint
model @ic”. It turns out that, for subsets K of G that are
closed, this is indeed the case.

Theorem 10. If K is a closed subset of G, then for any
x) € Zrk) 8§ €Y (Znk))>0 and | € G(Zk):

fe€%@,

i) ELE & fET Ko

The proof, although complex and elaborate, is essen-
tially a simple separating hyperplane argument. We con-
sider this result to be the main technical achievement of
this paper. It is a significant generalisation of Proposi-
tion 6 [with K = {s}] and has a number of interesting con-
sequences. As a first example, it implies the following gen-
eralisations of Corollaries 7 and 9.
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Corollary 11. For all closed K C G, xpg) € Zp(x) and
non-empty Ay gy C k), we have that

margy (7] {xpk) } X An(x)) = @;frjmm'

Corollary 12. All closed sets K C G satisfy the
subset-irrelevance statement SIR(N(K),K|P(K)): for any
Xp(k) € Zp(k) and non-empty Ay(xy C Zn(k), it holds that

margy (Z¢" | xpk) } X Anik)) = margK(-@iGHJXP(K))

In the next section, we will extend this subset-irrelevance
result to even more general cases.

6 AD-Separation and graphoid properties

In credal networks that are defined by means of a symmet-
rical independence concept, the notion of D-separation is a
very powerful tool [9]. For asymmetrical independence con-
cepts such as epistemic (subset-)irrelevance, D-separation
has been modified to take this asymmetry into account.
Moral [8] speaks of asymmetrical D-separation (AD-
separation) and Vantaggi [10] has introduced the very sim-
ilar L-separation criterion. Here, we choose not to use
one of these existing concepts, but to introduce a slightly
modified version of AD-separation. We do so because our
definition is weaker (more general) than both Moral’s AD-
separation and L-separation and yet has stronger properties.

Consider any path s1,...,s, in G, with n > 1. We say that
this path is blocked by a set of nodes C C G whenever at
least one of the following four conditions holds:

Bl. 51 €C;
B2. there is some 1 < i < n such that s; — s;41 and s; € C;

B3. there is some 1 < i < n such that s;_; — s;  sit1,
s; ¢ Cand D(s;) NC =0;

B4. s, €C.

Now consider (not necessarily disjoint) subsets /, O and C
of G. We say that O is AD-separated from I by C, denoted
as AD(I,0|C), if every path i = s1,...,s, = 0,n > 1, from
anode i € Itoanode o € O, is blocked by C. Our version
of AD-separation satisfies a number of useful properties.

Theorem 13. For any subsets I, O, S and C of G, the fol-
lowing properties hold:

Direct redundancy: AD(Z,0|I)

Reverse redundancy: AD(Z,0|0)

Direct decomposition: AD(/,0US|C) = AD(/,0|C)
Reverse decomposition: AD(/US,0|C) = AD(I,0|C)

Direct weak union: AD(/,0US|C) = AD(I,0|CUS)
Reverse weak union: AD(/US,0|C) = AD(I,0|CUS)
Direct contraction:

AD(I,0|C) & AD(I,S|CUO) = AD(I,0US|C)
Reverse contraction:

AD(I,0|C) & AD(S,0|CUI) = AD(IUS,0|C)
Direct intersection: if ONS =0, then

AD(1,0|CUS) & AD(1,S|CUO) = AD(I,0US|C)

Reverse intersection: if INS =0, then

AD(I1,0|CUS) & AD(S,0|CUI) = AD(IUS,0|C)

This result (and our proof for it) is very similar to, and
heavily inspired by, the work of Vantaggi [10, Theorem 7.1].
The main difference is that Vantaggi does not include the
two redundancy properties, since L-separation is defined
only for disjoint subsets I, O and C of G. Moral’s version of
AD-separation [8] does not require /, O and C to be disjoint,
but it does not satisfy direct redundancy, and proofs for a
number of other properties are not given [8, Theorem 4].
We therefore prefer our version of AD-separation.

Example 3. Consider the sets of nodes I = {s2,53,54,511},
O = {s5,56,59,513}, C = {54,56,512}, Sa = {53,510} and
Sy = {s1} in the DAG that is depicted in Figure 1. The
direct properties in Theorem 13 are illustrated by I, O, C
and Sq and the reverse ones by I, O, C and ;. O

Theorem 10 implies a very general factorisation result.

Theorem 14. If1,0,C C G are such that AD(I, O|C) then
forall xc € Zc, 8 €9 (2nc)>0 and f € 9 (Zo\c):

gﬂ{xC}f S @gr = ]I{xc}f S ggr

This result can be combined with Theorem 13 to derive a
collection of (subset-)irrelevance statements that are ful-
filled by the irrelevant natural extension Z'.

Corollary 15. For any I,0,C C G such that AD(I,0|C)
we have that SIR(I, O|C) (and thus also IR(I,0|C)): for
all xc € Z¢ and non-empty Apc € Z)\c it holds that

margO\c(@iGrrJ {xc} x Apc) = margo\c(@ierxC)

This family of subset-irrelevance statements satisfies all
graphoid properties except symmetry: it satisfies redund-
ancy, decomposition, weak union, contraction and intersec-
tion, both in their direct and reverse form.

We leave it to the reader to show that Theorem 14 is a gen-
eralisation of Theorem 10 and that Corollary 15 generalises
the first part of Corollary 12. In other words: for any closed
subset K of G, it holds that AD(N(K), K|P(K)).
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Readers who are familiar with the work in Ref. [8] might
have noticed the similarity between Ref. [8, Theorem 5] and
the first part of Corollary 15. The main difference between
our approach and Moral’s approach [8], besides the fact that
we use a slightly different separation criterion, is that he
enforces a more stringent version of epistemic irrelevance
than we do. He calls X; epistemically irrelevant to Xy if
and only if the joint model Z; o is the so-called irrelevant
natural extension of Z; and %, and refers to our concept
of irrelevance as weak epistemic irrelevance. Consequently,
if we understand his work correctly, his results are not
applicable to all directed acyclic networks. As a simple
example: his concept of irrelevance does not seem to allow
for two variables to be mutually irrelevant, except in some
degenerated uninformative cases. Therefore, it appears to
us his results cannot be applied to a network consisting of
two unconnected nodes.

As far as the second part of Corollary 15 is concerned,
some clarification is perhaps in order. We do not claim
that epistemic irrelevance satisfies the graphoid axioms
that are stated in Theorem 13. As was proven in Ref. [4],
epistemic irrelevance can violate direct contraction and
both direct and reverse intersection. In fact, we believe that
this negative result might even be one of the main reasons
why a result such as Corollary 15 has thus far not appeared
in any literature.

Indeed, in Bayesian networks, proving the counterpart
to Corollary 15—with AD-separation replaced by D-
separation and epistemic irrelevance replaced by stochastic
independence—is usually done by using the fact that
stochastic independence satisfies the graphoid axioms [9].
By applying these axioms to the independence assesse-
ments that are used to define a Bayesian network, one can
infer new independencies, namely those that correspond to
D-separations in the DAG of that network.

If one tries to mimic this approach in our context, then
since epistemic irrelevance can fail some of the graphoid
axioms, one might suspect that Corollary 15 cannot be
proven. However, it is not necessary to use the axioms:
our proof for Theorem 14—of which the the first part of
Corollary 15 is a straightforward consequence—uses only
Theorem 10 and a number of properties of AD-separation.
At no point does it invoke graphoid properties of epistemic
irrelevance. The second part of Corollary 15 is then but
a mere consequence of the first part and Theorem 13. It
states that the family of irrelevance statements that are
proven to hold in the first part, are closed under the graphoid
properties in Theorem 13.

So in order to conclude this section: epistemic irrelevance
can fail a number of graphoid axioms, which implies that
the irrelevance statements that are proven in Corollary 15 do
not necessarily hold for every joint model Z; that satisfies
requirements G1-G3. However for the unique one that

also satisfies G4, being the irrelevant natural extension _@é;“
of the network, this family of irrelevance statements does
hold, the reason being that for this specific model, one can
provide a direct proof that does not invoke any graphoid
axioms of epistemic irrelevance.

7 Credal nets under epistemic irrelevance
using coherent lower previsions

Credal networks under epistemic irrelevance can also be
defined using imprecise probability concepts other than
coherent sets of desirable gambles. In this section, we de-
scribe an approach that uses coherent lower previsions, and
we show how it is related to the desirable gambles approach
of the previous sections.

7.1 Coherent lower previsions

For any subset O of G, we define a coherent lower prevision
P, as areal-valued functional on ¥ (.Zp) that satisfies the
following three conditions. For all f,g € 4(Zp) and all
real A > 0:

Cl. Py(f) > min f;
C2. Po(Af) =APo(f);
C3. Po(f+g)=>Po(f)+Py(g)

[non-negative homogeneity]

[super-additivity]

Now consider two disjoint subsets O and / of G and sup-
pose that we have, for all x; € 27, a coherent lower pre-
vision Py (:|x;) on 4(%Zp). The corresponding coherent
conditional lower prevision Py ;(-|Xr) is then a special
two-place function that is defined, for all f € 4(Zou;) and
x1 € 21, by Pou(flxr) = Po(f (-.x1)lx1).

7.2 Defining a credal network

Suppose now that the local models of our credal network
under epistemic irrelevance are coherent lower previsions:
forall s € G and xp() € Zp(5), we have a coherent lower
prevision Py, ) N G(Z5).

The irrelevance assessments that are encoded in the network
can then be expressed as follows. For all s € G, I C N(s),
xXp(s)ur € Zpsyur and f € G (Zs), we require that:

Py (Flxp(syon) = By, ()-

For all s € G and I C N(s), the corresponding conditional
lower prevision Py p(s)ur (| Xp(s)ur) is then given, for all
F €9 (Zsyups)ur) and xp(gyur € Zp(syurs bY

B{s}uP(s)Ul(f|xP(s)U1) = B;pr(s) (f('vxP(s)Ul))'

We will denote the set consisting of all these conditional

lower previsions as j(ﬂvjxp(s) ;8 € G,xp(s) € Xpyy))-
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The global model E| g is now defined as the smallest coher-
ent lower prevision on ¢ (Z¢) that is (strongly) coherent
with this set of conditional lower previsions. We will refer
to it as the irrelevant natural extension of the local mod-
els Py, o We will not get into the details of what strong
coherence means, but one can very roughly think of it as
requiring that the conditional lower previsions in the set
J(BVJXP(S),S € G,xp(5) € Zp(s)) (1) are compatible with one
another and (ii) can be obtalned by conditioning the global
model Eg; see Ref. [5, Section 2.4] for more details on
strong coherence.

We know from Walley’s Finite Extension Theorem [11, The-
orem 8.1.9] that if £/ exists, then it is equal to the natural
extension of the collection f(stxm) ;8 € G,xp(5) € Zp(s))
to an unconditional lower prevision on ¢(Z¢). In that

case, by applying a derivation that is similar to the one for
[5, Eq.(10), Section 5.2], we find for all f € ¥ (%) that

EGZ(f)= sup { min [f(ZG)
8{sjup(s)ur * 2GEZG
€9 (Zispups)un)

-

sEG,ICN(s)

_EWP(S) (g{s}up(s)ul(vZP(s)uI))ﬂ } 4

[8(syup(syur (zss 2p(s)ur)

7.3 Connections with our approach

For every s € G and xp(,) € 2 P(s)» the local coherent set of
desirable gambles )., uniquely defines a corresponding

- Forall f e G(Zs)

coherent lower prev1s1on P, Jp(s

stxp(s) (f) = Sup{.u eER: f-pe @vaP( } 5

Conversely, every local coherent lower prevision P, Jpe)
has at least one coherent set of desirable gambles % Xp(s)
from which it can be derived by Eq. (5). These sets are how-
ever not unique since coherent sets of desirable gambles
are generally more expressive than coherent lower previ-
sions. Using any such family of corresponding local sets
of desirable gambles, we can then apply Eq. (3) to obtain
their irrelevant natural extension QiGrr. This joint set also
has a corresponding coherent lower prevision. It is denoted
as P and given for all f € ¥(%¢) by

PE(f)=swp{uck: f-peZFy.  (©

The coherent lower prevision P! Pirr that is constructed in this

way from given local models Py, might depend on the

particular choice for the sets 1n its construction. We

JXP (s)
will show in Theorem 17 that such is not the case, however.
Proposition 16. Choose, for all s € G and xp(;) € Zp(y),
any coherent local set of desirable gambles Y xp( O Zs

such that the given local coherent lower prevision Py *p(s)

satisfies Eq. (5). Construct the irrelevant natural exten-
sion 95" by applying Eq. (3) and let P} be the coherent
lower prevision on 4 (Z¢) as given by Eq (6). Then PG is

strongly coherent with .9 (Py|,, po?S € G, xp(s) € Zp(s))-

Proposition 16 shows that it is possible to construct at least
one coherent lower prevision P§ on ¢ (2 ) that is strongly
coherent with .# (P ,8 € G s Xp(s) € Zp(s)), implying

stp(
that the irrelevant natural extension Elg is always well
defined and given by Eq. (4).

The following result now establishes the final connection
between the irrelevant natural extensions _@gr and E/ g that
were outlined in this paper. We show that P is always
equal to the irrelevant natural extension E, regardless of

the local sets Z; 5Jp(s) that are chosen to construct it.

Theorem 17. Let 9‘” be the irrelevant natural extension of
local coherent sets of desirable gambles Y ey S € G and
Xp(s) € Zp(s), as given by Eq. (3). Construct local coherent
lower previsions Py Pl by applying Eq. (5) and let E{S be
their irrelevant natural extension, as given by Eq. (4). It
then holds for all f € 4(Z¢) that

EG(f) =sup{u €R: f—p € 7"} = P (f).

We believe that this connection between the two approaches
can be used to translate at least some of our results for sets
of desirable gambles into the language of coherent lower
previsions. We intend to explore this further in future work.

8 Summary and conclusions

This paper has developed the notion of a credal network
under epistemic irrelevance using sets of desirable gambles.
We have proven that the resulting irrelevant natural exten-
sion of a network has a number of interesting properties. It
marginalises in an intuitive way and satisfies all graphoid
properties except symmetry. Finally, we have established
a connection with an approach to credal networks under
epistemic irrelevance that uses coherent lower previsions.

Future goals that we intend to pursue are to derive coun-
terparts to the marginalisation and graphoid properties in
this paper, expressed in terms of coherent lower previsions
rather than sets of desirable gambles. By exploiting these
properties, we would like to develop algorithms for credal
networks under epistemic irrelevance that are able to per-
form inferences in an efficient manner.
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Allowing for probability zero in credal networks under epistemic irrelevance
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Abstract

We generalise Cozman’s concept of a credal network under
epistemic irrelevance [2, Section 8.3] to the case where
lower (and upper) probabilities are allowed to be zero. Our
main definition is expressed in terms of coherent lower
previsions and imposes epistemic irrelevance by means of
strong coherence rather than element-wise Bayes’s rule. We
also present a number of alternative representations for the
resulting joint model, both in terms of lower previsions and
credal sets, a notable example being an intuitive character-
isation of the joint credal set by means of linear constraints.
We end by applying our method to a simple case: the in-
dependent natural extension for two binary variables. This
allows us to, for the first time, find analytical expressions
for the extreme points of this special type of independent
product.

Keywords. Credal networks, epistemic irrelevance, lower
previsions, credal sets, coherence, irrelevant natural exten-
sion, independent natural extension.

1 Introduction

Standard Bayesian networks can be generalised to allow
for imprecise probability assessments in a multitude of
ways; see Ref. [3, Section 3] for an overview. One way
to do so is by means of a credal network under epistemic
irrelevance. It differs from standard Bayesian networks in
two ways: beliefs are modelled by means of closed convex
sets of probability measures (so-called credal sets) rather
than single probability measures, and the non-parent non-
descendants of a variable are epistemically irrelevant to
that variable given its parents, rather than independent of it.

Credal networks under epistemic irrelevance were intro-
duced by Cozman in Ref. [2, Section 8.3]. In order to im-
pose the assessment of epistemic irrelevance, he assumed
that all conditioning events have strictly positive lower
probability. Under this assumption, a credal set can be con-
ditioned by applying Bayes’s rule to each of its probability
measures. However, we feel this assumption to be rather
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restrictive since an event with zero lower probability may
have strictly positive upper probability. Therefore, in the
present paper, we get rid of this positivity assumption. We
do so by using coherent lower previsions as an alternat-
ive, equivalent representation for credal sets and using the
concept of (strong) coherence to impose epistemic irrelev-
ance assessments, even when the conditioning events have
lower or upper probability zero. See Ref. [8] for an earlier
successful application of this method to the special case of
credal trees.

The graphical structure of a credal network is a directed
acyclic graph, of which we recall some basic definitions
in Section 2. Section 3 goes on to introduce some basic
terminology regarding the variables in the network and we
explain in Section 4 how to model a subject’s beliefs re-
garding the values of these variables by means of coherent
lower previsions. Section 5 introduces the notion of a credal
network under epistemic irrelevance. We first recall how
it is defined under the positivity assumption, then provide
a definition that does not need that assumption, and prove
a number of useful properties and alternative characterisa-
tions. We explain how to describe the joint model by means
of a set of linear constraints in Section 6, and reformulate
this approach in Section 7 for the special case of the so-
called independent natural extension. Finally, in Section 8,
we apply our method to the independent natural extension
of two binary variables and use it to, for the first time, ob-
tain analytical expressions for the extreme points of this
extension.

2 Directed acyclic graphs

A directed acyclic graph (DAG) is a graphical model that is
well known for its use in Bayesian networks. It consists of a
finite set of nodes (vertices), which are joined together into
a network by a set of directed edges, each edge connecting
one node with another. Since this directed graph is assumed
to be acyclic, it is not possible to follow a sequence of
directed edges from node to node and end up back at the
same node you started out from.
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We denote the set of nodes associated with a given DAG
by G. For two nodes s and ¢ in G, if there is a directed edge
from s to ¢, we denote this as s — ¢ and say that s is a parent
of t and ¢ is a child of s. A single node can have multiple
parents and multiple children. For any node s, its set of
parents is denoted by P(s) and its set of children by C(s).
If a node s has no parents, P(s) = 0, and we call s a root
node. If C(s) = 0, then we call s a leaf, or terminal node.

Two nodes s and ¢, are said to have a directed path between
them if one can start from s, follow the edges of the DAG
taking their direction into account, and end up in ¢. In other
words: one can find a sequence of nodes s = s1,...,s, =1,
n > 1,in G such that it holds for all i € {1,...,n— 1} that
s;i — si+1. In that case we also say that s precedes t and
write s C¢. If s C ¢ and s # ¢, we say that s strictly precedes
t and write s C ¢. For any node s, we denote its set of
descendants by D(s):={t € G:s Tt} ,its set of ascendants
by A(s):={r € G :t C s} and its set of non-parent non-
descendants by N(s):=G\ (P(s) U{s}UD(s)).

3 Variables and gambles on them

With each node s in G, we associate a variable X; taking
values in some non-empty finite set 2. Generic elements
of this set are denoted by x; or z;. A real-valued function
on Z; is called a gamble and we use ¢ (Z;) to denote the
set of all of them. Generic gambles are denoted by f, g or }.
As a special kind of gambles we consider indicators 14 of
events A C 2. I is equal to 1 if the event A occurs (the
variable X, assumes a value in A) and zero otherwise.

We extend this notation to more complicated situations as
follows. For any subset S of G, we denote by X the tuple
of variables (with one component X; for each s € S) that
takes values in the Cartesian product Zs:= X5 Zs. We
assume logical independence, meaning that Xs may assume
all values in Zs. Generic elements of the finite set 2y are
denoted by xg or zg. Also, if we mention a tuple xs, then
for any s € S, the corresponding element in the tuple will
be denoted by x;. The set ¥ (Zs) contains all gambles on
Zs and 14 is again used to denote the indicator of an event
AC Zs.

We will frequently use the simplifying device of identifying
a gamble fs on Zg with its cylindrical extension to 2y,
where S C U C G. This is the gamble fyy on 2y defined
by fu(xy) = fs(xs) for all xpy € Zy. To give an example,
this device allows us to identify the gambles I, on Z
and [y« 2, o ON Zu, and therefore also the events {xs}

and {XS} X %U\S'

When S = 0, we let 2p:={xp} be a singleton. The cor-
responding variable X can only take this single value xp,
so there is no uncertainty about it. ¢4(.Zp) can then be
identified with the set R of real numbers.

4 Modelling beliefs about the network

For two disjoint subsets O and I of G and any x; € 27 we
consider two equivalent methods of modelling a subject’s
beliefs about the value that Xp will assume in Zp, given
the observation that X; = x;.

The first approach is to use a credal set K(Xop|x;), defined
as a closed and convex subset of the so-called Zp-
simplex X g, which is the set containing all probability
mass functions on Zp. A generic element of K(Xp|xy) is
denoted by p(Xplx;). It is a probability mass function on
Z o conditional on the observation that X; = x;

The second approach is to use a coherent lower pre-
vision Py(-|x7), defined as a real-valued functional on
9 (Z0p) that satisfies the following three conditions: for
all f,g€¥9(Zp)andallreal L >0

Cl. Py(flxs) > min f,
C2. Po(Aflxr) = APo(fx1)s
C3. Po(f+glxr) > Po(flxr) + Polglxr).

The conjugate of P,(-|x;) is called a coherent upper
prevision. It is denoted by Po(-|x;) and defined for all
f€9(Z0) by Po(f|x1):=—Po(—fl|xr). We will focus on
coherent lower previsions, but it is useful to keep in mind
that all our results can be reformulated in terms of coherent
upper previsions by applying this conjugacy property.

Both approaches are equivalent because there is a one-to-
one correspondence between them [12, Section 3.3.3]. If we
denote by Py (-|x;) the expectation operator on ¢4 ( Zp) that
corresponds to a probability mass function p(Xp|x;), then
a credal set K (Xp|x;) defines a unique coherent lower pre-
vision Py (+|xs) in the following way. For all f € 4(Z0):

Po(flxr) :=min{Po(flx1) : p(Xolx1) € K(Xolx1)}.

Its conjugate coherent upper prevision Po(-|x;) is given for
all f € 9(Zp) by

Po(flxr) :=max{Po(fl|xr) : p(Xolxr) € K(Xolx1)}.

Conversely, the unique credal set K (Xo |x7) that corresponds
to a coherent lower prevision P, (+|x;) is given by

K(Xolxr):={pXol|x1) € Za,:
(Vf € 9(Zo))Po(flxr) = Po(flxr)}- (1)

If I = 0, then X; = Xj assumes its only possible value xy
with certainty, so conditioning on Xy = x¢ amounts to not
conditioning at all. We reflect this in our notation by us-
ing K(Xp) and P, as alternative notations for K(Xo|xp)
and P (-|xp) respectively. A notable example is / = @ and
O = G, for which we obtain a credal set K(X) and coher-
ent lower prevision P that can be used to model a subject’s
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beliefs about the value that the joint variable X will assume
in ,%G.

When given for all x; € 27, a coherent lower prevision
Po(-|xr) on 4(Z0), this defines a unique corresponding
coherent conditional lower prevision Py ;(+|X). It is a spe-
cial two-place function that is defined, for all f € 4 (Zour)
and all x; € 27, by Pou (f|x1) :=Po(f (-,x1)|x1).

5 Irrelevant natural extension

We will now show how to construct a joint model for the
variables in the network in the form of a credal set K(X),
or equivalently, a coherent lower prevision Pg.

5.1 Local uncertainty models

We start by adding local uncertainty models to each of the
nodes s € G. These local models are assumed to be given
beforehand and will be used as basic building blocks to
construct the joint model.

If s is not a root node of the network, i.e. has a non-empty set
of parents P(s), then we have a conditional local model for
every instantiation of its parents: for each xp(s) € Zp(y), we
have a credal set K(X;|xp5)) and a corresponding coherent
lower prevision Bs(".xp(s))- They represent our subject’s
beliefs about the variable X conditional on the information
that its parent variables Xp(;) assume the value xpy).

If s is a root node, i.e. has no parents, then our subject’s
local beliefs about the variable X, are represented by an
unconditional local model. We are given a credal set K(X;)
and a corresponding coherent lower prevision P. As ex-
plained in Section 4, we can also use the common generic
notations K (X;|xp(y)) and P(-|xp(y) ) in this unconditional
case, since for a root node s, its set of parents P(s) is empty.

In order to turn these local uncertainty models into a joint
model, we introduce the important concept of epistemic
irrelevance.

5.2 Epistemic irrelevance

We discuss conditional epistemic irrelevance, as the un-
conditional version can easily be recovered as a special
case.

Consider three disjoint subsets C, I, and O of G. When
a subject judges X; to be epistemically irrelevant to Xgp
conditional on Xc, he assumes that if he knew the value of
Xc, then learning in addition which value X assumes in 2
would not affect his beliefs about Xp. More formally put,
he assumes for all xc € 2¢ and x; € 27 that

K(Xol|xcur) = K(Xolxc) and Py (:|xcur) = Po(-|xc)-

It should be clear that it suffices for the unconditional case,
in the discussion above, to let C = (. This makes sure the

variable X has only one possible value, so conditioning on
that variable amounts to not conditioning at all.

Using this concept of epistemic irrelevance, we can provide
the graphical structure of the network with an interpretation.

5.3 Interpretation of the graphical model

In Bayesian networks, the graphical structure is taken to
represent the following assessments: for any node s, the
associated variable is independent of its non-parent non-
descendant variables, given its parent variables.

When generalising this interpretation to imprecise graph-
ical networks, the classical notion of independence gets
replaced by a more general, imprecise-probabilistic notion
of independence. In this paper, we choose to use epistemic
irrelevance. We provide the graphical structure of the net-
work with the following interpretation: for any node s and
all subsets [ of its non-parent non-descendants N(s), the
variable Xj is judged to be epistemically irrelevant to X;
conditional on Xp(y).

More formally put, we assume for all s € G, I C N(s) and
xp(s)ur € Zp(s)ur that

K(Xs[xp(syur) ==K (Xs|xp(s)) and Py (- |xp(s)ur) := Py (-|xp(s))-
5.4 Non-zero lower probabilities

Together with the local uncertainty models, the irrelevance
assessments that are encoded in the network provide us
with a number of belief models about the variables in the
network: for all s € G, I C N(s) and xp(s),; € Zp(s)ur> W
are given a credal set K (X;|xp(,) ), or equivalently, a co-
herent lower prevision P(-[xp(s)uy)- In order to arrive at a
joint model, we need to provide a method of translating
these belief models into constraints on the joint.

An approach that is often used when dealing with assess-
ments of epistemic irrelevance [6, 2], is to assume that all
lower probabilities are strictly positive, or equivalently, that
for every probability mass function p(X¢) in the joint credal
set K(Xg), all events have strictly positive probability. For
all s € G, I C N(s) and xp(5) 1 € Zp(s)ur- this assumption
allows us to apply Bayes’s rule to every p(X¢) in K(Xg),
resulting in a set of conditional probability mass functions
P(Xs|xp(syur)- This procedure is called applying element-
wise Bayes’s rule. One can now impose that, for all s € G,
1 C N(s) and xp(5)u; € Zp(s)ur- the set of conditional prob-
ability mass functions that is obtained in this way must be
equal to the given model K (X;|xp(s).;)- Any joint credal set
K(Xg) that satisfies these constraints is called an irrelevant
product of the local models.

One particular credal set that was proven to be an irrelev-
ant product in Ref. [2]—under the positivity assumption
mentioned above—is the so-called strong extension of the
network. Its credal set K®(Xg) is the convex hull of the
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set &, which contains all joint probability mass functions
p(Xg) that, for all xg € 2, satisfy

p(XG) = Hp(xs|xl’(s))7

seG

where each p(X;|xpy)) is selected from the local credal set
K(X;|xp(s)). The corresponding coherent lower prevision
P is given for all f € 4(Z2¢) by

Pg(f) =min{Ps(f) : p(Xg) € Z}.

The strong extension is not the only irrelevant product of
the local models. Although it has the advantage of having
an intuitive similarity to standard Bayesian networks, it
is somewhat arbitrary in that it satisfies more constraints
than those needed to be called an irrelevant product. We
prefer to use a least committal strategy: to only satisfy those
constraints that are imposed by the network, and no others.
The resulting model is the largest of all credal sets that
are an irrelevant product. We call it the irrelevant natural
extension of the network an denote it by K™ (X).

This irrelevant natural extension was introduced by Cozman
in Ref. [2], but only under the assumption that all lower
probabilities are strictly positive. We feel this assumption to
be rather restrictive since an event with zero lower probabil-
ity may occur with a strictly positive upper probability. The
first contribution of this paper will therefore be to extend
Cozman’s definition of the irrelevant natural extension such
that it allows for lower (and upper) probabilities to be zero.

5.5 Getting rid of the positivity assumption

If the conditioning event has lower probability zero, the
credal set K (X;|xp(y)u7) can no longer be uniquely related to
the joint model K (X¢;) through element-wise Bayes’s rule.
Therefore, we have to impose our assessments of epistemic
irrelevance in some other way. Here, we choose to do so by
means of strong coherence, defining the irrelevant natural
extension in terms conditional lower previsions, rather than
their corresponding credal sets.

As mentioned in the beginning of Section 5.4, the irrelev-
ance assessments, together with the local uncertainty mod-
els, provide us with a number of coherent lower previsions:
forall s € G, I C N(s) and xp(qu; € Zp(s)ur We are given
a coherent lower prevision Pg(-|xp(s)uz) := Py(+|xp(s)) on
G(Xs). As was explained in Section 4, this provides us
with a number of coherent conditional lower previsions:
for all s € G and I C N(s), we have a coherent condi-
tional lower prevision Py p(s)ur (+|Xp(s)ur), defined for all

€9 (Zisyups)ur) and xp(gyur € Zp(syur by

Psyupsur (Flxpisyor) = Py (f (5 xp(s)un) [Xp(s))-

We will denote the set consisting of all these conditional
lower previsions as -7 (P up(s) ([ Xp(s) ), s € G).

In order to turn these coherent conditional lower pre-
visions into constraints on a joint model, given in the
form of a coherent lower prevision P; on ¥(Z2¢g), we
use the concept of (strong) coherence [12, Section 7.1.4]:
we require P; to be strongly coherent with the family
I (Praup(s) (1 Xp(s)): s € G) of coherent conditional lower
previsions. Any P that satisfies this property, is called
an irrelevant product. The least committal—pointwise
smallest— irrelevant product is called the irrelevant natural
extension of the network and will be denoted by Eg.

As strong coherence is a rather involved requirement, we
will not get into the details of what it means. For our present
purposes, it suffices to think of it as a generalisation of the
element-wise Bayes’s rule approach that was explained in
Section 5.4. For the interested reader: Ref. [12, Section
7.1.4] provides a general definition and a behavioural in-
terpretation in terms of supremum buying prices, turning
strong coherence into a rationality requirement.

We would like to stress that strong coherence is a consist-
ency criterion, rather than a conditioning rule.! In fact, it is
compatible with a number of fundamentally different condi-
tioning rules, all of which reduce to element-wise Bayes’s
rule if the conditioning event has positive lower probability.
Also, strong coherence regards conditional models as funda-
mental, rather than deriving them from unconditional ones.
In that respect, it shares fundamental ideas with the well-
known concept of full conditional measures. See Ref. [1]
for a similar, coherence-based approach to stochastic inde-
pendence, which has been applied to credal networks in
Ref. [11].

When it comes to strong coherence, the so-called Reduc-
tion Theorem [12, Theorem 7.1.5] is a very useful result;
see also Ref. [9, Theorem 2]. It implies that the uncon-
ditional coherent lower prevision Py is strongly coherent
with the family 7 (Pygup(s) (*[Xp(s)), s € G) of conditional
ones—is an irrelevant product—, if and only if (i) the fam-
ily J(Praup(s) (| Xp(s)), s € G) is strongly coherent on its
own and (ii) P is weakly coherent [12, Section 7.1.4] with
I (Pisyup(s) ([ Xp(s)) s € G).

Using an approach that uses so-called sets of desirable
gambles rather than coherent lower previsions, it is relat-
ively easy to show that requirement (i) is always satisfied
[5, Proposition 16].

Proposition 1. Consider arbitrary coherent lower previ-
sions P(-xp(s)) on 9 (Zs), s € G and xp(5) € Zp(5). Then
the family .7 (Pygyup(s) (| Xp(s)) s € G) is strongly coherent.

It follows that P is an irrelevant product if and only if it

IRefs. [7, Definition 12] and [4, Section 3.2.4] provide definitions for
epistemic irrelevance that are based on a conditioning rule that is similar
to Walley’s notion of regular extension [12, Appendix J]. These definitions
are applicable in the presence of zero lower probabilities as well. It is
not clear to us whether they can be used to construct a joint model from
conditional ones, as is done in the current paper.
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is weakly coherent with . (P up(s) (*[Xp(s)), 5 € G). Inits
original form [12, Section 7.1.4], weak coherence is still
rather involved, but due to Ref. [9, Theorem 1], it can be
reformulated in a very elegant manner that leads directly to
the following characterisation of an irrelevant product.

Corollary 2. A coherent lower prevision Pg on 9(Z¢) is
strongly coherent with .7 (P gp(s) (| Xp(s) ), s € G)—is an
irrelevant product—if and only if for all s € G, I C N(s),
xp(syur € Zp(syur and g € G (Zs):

BG (HXP(J)UI [g — P (g|xP(s) )]) =0.

The condition imposed in this result is called the Gener-
alised Bayes’s Rule (GBR), and reduces to element-wise
Bayes’s rule when all conditioning events have strictly
positive lower probabilities [12, Theorem 6.4.2]. It should
therefore be clear that the definition of an irrelevant product,
as it was given in Section 5.4 under the assumption of
strictly positive lower probabilities, is a special case of the
definition given in the current section.

Proposition 3. The strong extension is an irrelevant
product: the coherent lower prevision Bg‘ is strongly coher-
ent with j(B{A}UP<S> ('|XP(.Y))aS S G)

This result guarantees the existence of at least one irrelev-
ant product, making the irrelevant natural extension well
defined: since strong coherence is preserved under taking
lower envelopes [12, Section 7.1.6], the irrelevant natural
extension is the lower envelope of all irrelevant products,
implying that it is indeed pointwise dominated by all other
irrelevant products. It should be clear that Corollary 2
provides us with an immediate characterisation for this
irrelevant natural extension.

Corollary 4. The irrelevant natural extension of a network
is the pointwise smallest coherent lower prevision Eg on
9 (Zg) such that for all s € G, I C N(s), xp(syur € Zp(s)ur
and g € 9(Zs):

BG(I[:XP(S)UI [g _Bs(g|xP(s))]) =0.

Similar to what has been shown in Ref. [2, Lemma 13]—
under the positivity assumption—most of the constraints in
Corollary 4 turn out to be redundant. We find that we only
need to impose those constraints for which 7 = N(s).

Theorem S. The irrelevant natural extension of a network
is the pointwise smallest coherent lower prevision Big on
9 (Zc) such that for all s € G, Xp(s)un(s) € Zp(s)uN(s) and
§EY(Zy):

BG (HXP(.r)uN(s) [g - Bs(g|xP(s))]) =0.

Although we have defined the irrelevant natural extension
in terms of coherent (conditional) lower previsions—since
strong coherence is not particularly well-suited for a formu-
lation in terms of credal sets—, it is valid for credal sets as

well. Due to the correspondence between credal sets and
coherent lower previsions, it suffices to consider the credal
set that corresponds to the irrelevant natural extension Pi.
We denote it by K™ (Xg) and will also refer to it as the
irrelevant natural extension of the network. Using Eq. (1),
we find that

K™(Xg) = {p(Xc) € Loy,
(Vf €9(26))Pa(f) = PE(f)}.

The following result provides an intuitive characterisation.

Theorem 6. A probability mass function p(Xg) € L, be-
longs to K" (Xg) if and only if for all s € G and xp() n(s) €
Zp(s)un(s) there are a real number A > 0 and a probability
mass function p(Xs|xp(s)) € K(Xs|xp(s)) such that

Y plpunes)Xeane) = Ap(Xslxp))-
p(s)€ %D(s)

5.6 Marginalisation properties

Given a credal network with nodes G and local models
K(Xs|xp(s)), s € G and xp(5) € Zp(y), a top sub-network is
a network formed by a subset of nodes S C G such that
for all s € S, its ascendants A(s) also belong to S. The
underlying graphical structure consists of those edges in
the original network that connect nodes in S and the local
models K(Xs|xp(y)), s € S and xp() € Zp(y), are taken to
be identical to those of the original model. We denote the
irrelevant natural extension of such a top sub-network as
K™ (Xs). It turns out to be closely related to the irrelevant
natural extension of the original network, a result that was
already present in Ref. [2, Theorem 15] under the assump-
tion that all lower probabilities are strictly positive.

Proposition 7. Consider a credal network with nodes G
and a top sub-network with nodes S. Let K™ (Xg) and
K™ (Xs) be their respective irrelevant natural extensions.
Denote by margg(K'™(Xg)) the credal set obtained by
element-wise marginalisation to Zs of the probability mass
functions in K™ (Xg), then

Ki"(XS) = margS(Ki”(Xg)).

We believe that the irrelevant natural extension also satisfies
marginalisation properties for sub-networks other than the
very specific subclass of top sub-networks, but we defer
any formal result to future work. See Ref. [5] to get an idea
of what might be possible.

6 A linear programming approach

The goal of the current section is to construct a set of linear
constraints that is able to fully characterise the joint credal
set K'"(X;) of the irrelevant natural extension of a given
network.
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In order to derive such a representation for the joint model,
we start from similar representations for the local models.
Forall s € G and xp(y) € 2 P(s)> We characterise the local
credal set K (X;|xp(y)) as the set of all real-valued functions

P(zslxp(s) € RZs that satisfy the unitary constraint

Z p(ZS‘XP(s)) =1 2
Zs€Xy
and a (possibly infinite) set of linear homogeneous inequal-
ities
Z p(ZS‘xP(S))’V(ZS) >0, (3)
7€ Xy
where y takes values in a (possibly infinite) set I'(s,xp(y))
of gambles on Z;.

Such a description for K (X;|xp(y)) always exists, as it can
be derived from the corresponding coherent lower prevision

Py(-|xp(s)) by letting
L(s,xps) = {f = Py(flxp) 1 fE€G(Z5)} D)

Indeed, for this particular choice of I'(s, xp(y) ), the combin-
ation of Egs. (2) and (3) will always be equivalent with
the constraints imposed by Eq. (1), thereby fully charac-
terising K (Xs[xp(y)). To understand why this equivalence
holds, start by noticing that if y = f — P (f|xp(y)), with
f€9(Z;), then due to Eq. (2), Eq. (3) becomes equival-
ent to

Y p(slep) f(zs) = Py(flxps))- Q)

€L

Coherence of Pg(:|xp() now implies, for all z; € 2,
that P(I;_ 1 [xp(s)) > 0 and therefore, due to Eq. (5), that
P(zs|xp(s)) = 0. By combining this with Eq. (2), we find
that p(X;|xp(s)) € L2;. This allows us to rewrite the left-
hand side of Eq. (5) as Ps(flxp(s)), thereby establishing the
equivalence with the constraints imposed by Eq. (1).

Eq. (4) produces an infinite set of constraints that is guar-
anteed to characterise K(X;|xp(y)), but in practice, most
of these constraints will often be redundant. This is espe-
cially the case for so-called finitely generated local mod-
els, for which the corresponding coherent lower prevision
P(-[xp(y)) is fully determined by its value in only a finite
number of gambles. For such local models, one can easily
construct a set F(s,xp(s)) that contains only a finite number
of constraints and yet fully characterises K (Xs|xp(y)). The
credal set of such a finitely generated local model will al-
ways be the convex hull of a finite number of probability
mass functions. The reason for this equivalence being that a
compact convex set can be specified as the intersection of a
finite number of closed half spaces if and only if it is the con-
vex hull of a finite number of vertices [10, Theorem 3.1.3].

The importance of these local representations in terms of
linear constraints—regardless of whether F(s,xP(S)) is finite
or not—is that we can use the local constraints to derive
global ones, thereby obtaining the following representation
for the irrelevant natural extension of a network.

Proposition 8. Consider a credal network for which each
of the local credal sets K (X;|xp()), s € G and xp(s) € Zp(y),
is fully characterised by means of Egs. (2) and (3). Then
K'"(Xg) consists of those p(Xg) € L, for which for all
s € G, Xp(s)un(s) € Zp(s)un(s) and ¥ € T(s,xpy)):

Y X

€25 2p(s) €2 (s)

P(Xp(s)un(s)» Zs:2D(s)) Y(2s) > 0.

When all lower probabilities are strictly positive, this result
is fairly straightforward. The global inequalities can then
be obtained by imposing all irrelevancies through element-
wise Bayes’s rule and clearing the denominators, as is done
in Ref. [2, Section 8.3]. The importance of our result is that
it shows that these inequalities remain valid if lower (and
upper) probabilities are allowed to be zero.

Ref. [2] does not explicitly impose p(Xs) € L4, as a con-
straint. It seems to assume that it suffices to impose only the
unitary constraint Y, ¢ 9. p(zg) = 1, making the require-
ment that p(zg) > 0, zg € 2, redundant. Although we
agree with this statement, we do not believe it to be trivial
and therefore choose to provide it with a proof.

Theorem 9. Consider a credal network for which each of
the local credal sets K(X;|xp(y)), s € G and xp(y) € Zp(y),
is fully characterised by means of Egs. (2) and (3).
Then K™(Xg) consists of those real-valued functions
p(Xg) ER?G for which ¥ ,c 9, p(zc) =1 and for all
s € G, Xp(s)un(s) € Zp(s)un(s) and ¥ € T(s,xp(s)):

Y X

2 EXs Zp(s) S ’%D(x)

P(Xp(s)un(s)» Zs:2p(s)) Y(2s) > 0.

Proposition 8 and Theorem 9 are valid for both finite and
infinite sets I'(s, xp(;)), but in the infinite case, their value
is mainly of a theoretical nature. They can only be used in
practice—at least in an exact way—if L(s,xp(y)) is finite
for all s € G and xp(5) € Zp(y), Or equivalently, if all local
credal sets are finitely generated.” Indeed, in that case, Pro-
position 8 and Theorem 9 will provide linear programs with
a finite number of constraints. Although the size of these
programs is still exponential in the number of variables
that define the network, it allows for inference problems
in small networks to be solved in an exact manner. Initial
ideas on how to reduce this exponential complexity are
provided in our conclusions.

7 Independent natural extension

An important special case is obtained when all nodes in the
network are unconnected. Every node s € G is then both

21f we allow for non-linear constraints, then local credal sets that are
not finitely generated could be practical as well, as they can often be
described by means of a finite set of non-linear constraints. We believe
that Proposition 8 and Theorem 9 could be adapted easily to allow for such
non-linear (homogeneous) constraints, thereby expanding their practical
use when combined with non-linear solvers.
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a root and a leaf of the network—meaning that P(s) and
C(s) are empty—, its non-parent non-descendants are given
by N(s) = G\ {s} and the local model is an unconditional
credal set K(X;), or equivalently, a coherent lower prevision

P, on 9 (Z5).

For such a network, the irrelevancies that are encoded by
the network are the following. For every s € G and all
I C G\ {s}, the variable X; is epistemically irrelevant to Xj,
implying that for any two nodes s,f € G, X; and X; are mu-
tually epistemically irrelevant and therefore by definition
epistemically independent. The resulting irrelevant natural
extension is called the many-to-one independent natural
extension and has been treated in full detail in Ref. [9]. That
same reference also introduces the so-called many-fo-many
independent natural extension, which requires that for all
disjoint subsets O and I of G, X; is epistemically irrelevant
to Xp. The many-to-one and many-to-many independent
natural extensions are shown to be equivalent [9, Theorem
23] and we can therefore simply call it the independent nat-
ural extension. Its coherent lower prevision is denoted by
®secP; and its credal set by ®,ccK(X;). For this special
case, Theorem 9 can be reformulated in the following way.

Corollary 10. Consider a finite number of local credal
sets K(X;), s € G, each of which is fully characterised
means of Egs. (2) and (3). Then ®scK(X;) consists
of those real-valued functions p(Xg) € RZ6 for which
Yooea, P(zc) = L and for all s € G, xg\(5y € Z\(5y and
yeI(s):

Y plxg\(sy25)7(zs) > 0.

7€ Xy

We leave it to the reader to reformulate some of the other
results that were obtained in the two previous sections,
taking the simplifications that correspond to the special
case of the independent natural extension into account. In
fact, Ref. [9, Proposition 14, Corollary 16 and Theorem 20]
already provides results that could be regarded as special
cases of Proposition 3, Corollary 2 and Proposition 7.

8 Case study of two binary variables

As an example, we apply our results to the very simple
case of two unconnected binary variables X; and X,. For
all i € {1,2}, the variable X; assumes values in its binary
state space 2; = {h;,#;} and has a given local uncertainty
model in the form of a credal set K(X;). We set out to con-
struct the independent natural extension K (X)) ® K(X) of
these two local models. In order to do so, we will describe
it by means of linear constraints and then use this charac-
terisation to find analytical expressions for the so-called
extreme points of K(X1) ® K(X5), which are those elements
of K(X;) ® K(X») that cannot be written as a convex com-
bination of the other elements. K(X;) ® K(X) is then equal
to the convex hull of these extreme points.

For a binary variable X;, i € {1,2}, the credal set K(X;) is
uniquely characterised by the lower and upper probability
of h;, respectively denoted as p(h;) and p(h;). Each of these
two probabilities defines a mass function on .2; and

K(X:)={peZy :p(h) € [p(h), p(hi)]}

is obtained by taking their convex hull. The corres-
ponding lower and upper probability of #; is given by
p(ti):=1—p(hi) and p(5;) := 1 = p(hi).

In order to apply the method described in Section 6, we
first need to characterise K(X;) by means of the unitary
constraint and a finite number of linear homogeneous in-
equalities. In this particular binary case, the following two
inequalities suffice:

By applying Corollary 10, these local inequalities can be
used to obtain eight global inequalities.

p(t1)p(hi,ha) — p(h1)p(ti,ha) >0 In)
—p(t1)p(h1,ha) +p(h1)p(ti,h2) >0 (12)
p()p(hy,i2) — p(h1)p(ti,12) 2 0 (13)
—p(t1)p(hi,t2) + p(h)p(t1,12) >0 I14)
p(t2)p(h1,ha) — p(ha)p(h1,12) > 0 I5)
—p(©2)p(h,h2) +p(h2)p(h1,12) >0 (16)
p(t2)p(ti,ha) — p(h2)p(ti,12) >0 a7
—p(t2)p(ti,h2) +p(h2)p(ti,12) >0 (I8)

Together with the global unitary constraint

p(hy,ha) +p(hy,t2) + p(tr, o) + p(t, 1) = 1,

they fully characterise the credal set K(X;) ® K(X3). If the
inequalities in equations (I1)—(I8) are replaced by equalit-
ies, we refer to them as (E1)—(ES).

Lemma 11. Every extreme point of K(X;) @ K(X3) is the
unique solution to the unitary constraint and three of the
equations (E1)—(ES8).

The extreme points of the independent natural extension
K(X1) ® K(Xz) can therefore be found in the following
way. We need to consider every possible subset of three
equalities out of (E1)—-(E8). For every such combination of
three equalities, we need to combine them with the unit-
ary constraint and check whether this results in a unique
solution, and if so, whether this unique solution satisfies
the inequalities in (I1)—(I8). If so, that unique solution is an
extreme point of K(X;) ® K(X2).

As there are 56 possible ways of choosing three equalities
out of eight, one might suspect that this problem cannot be
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p(hi,ha) ¥ p(h,) ¥ p(ti) ¥ ptn)X )3
psi p(h1)p(ha) p(h1)p(t2) p(t1)p(ha) p(t1)p(12) 1
ps2 p(h)p(h2) p(h)p(2) p(11)p(h2) p(1)p(r2) 1
ps3 p(h1)p(h2) p(h1)p(t2) p(t1)p(ha) p(11)p(12) 1
Ps4 P(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2) 1
PAl p(h)p(h)p(ha) p(h)p(h)p(12) p(t1)p(h)p(h2) p(h)p(1)p(12) p(h)p(12) +p(h1)p(h2)
pa2 p(h1)p(h1)p(h2) p(h1)p(h1)p(t2) p(h1)p(t1)p(h2) p(11)p(h1)p(t2) p(m)p(h2) +p(h)p(12)
PA3 Dp(h)p(t1)p(h2) p(t)p(h1)p(t2) p(1)p(t1) p(ho) p(1)p(t)p(t2) p(1)p(t2) +p(t1)p(h2)
Pas p(11)p(h1)p(h2) p(h1)p(t1)p(12) p()p()p(h2) p(11)p(t1)p(12) p()p(ha) +p(11)p(12)
PBI p(h2)p(h2)p(hy) p(12)p(h2)p(h1) p()p(h)p(t) p(h2)p(t2)p(11) p(h2)p(t1) +p(h2)p(h1)
PB2 p(h2)p(12)p(h1) p(12)p(12) p(hy) p(2)p(h)p(t) p(12)p(12)p(11) p(2)p(t1) +p(r2)p(h1)
PB3 p(h2)p(h2)p(hy) p(h2)p(t2)p(hy) p(h2)p(h2)p(t1) p(12)P(h2)p(t1) p(h2)p(h1)+p(h2)p(t1)
PB4 p(t2)p(ha)p(h) p(t2)p(t2)p(h) P(h2)p(12)p(t1) p(t2)p(t2)p(t1) p(t2)p(h) +p(t2)p(t)

Table 1: Candidates for the extreme points of the independent natural extension of two binary variables

solved manually. However, due to the extreme symmetry—
switching X; and X, k| and #; or h; and £, yields an equi-
valent set of inequalities—, only 7 of those 56 cases need
to be considered, as the others can be related to these 7
by an argument of symmetry. In this way, we managed
to obtain analytical expressions for the extreme points of
K(X)) @ K(Xp).

Theorem 12. Analytical expressions for the extreme points
of K(X1) @ K(X;) can be found by means of Table 1 and
Figure 1. Table 1 contains expressions for 12 probability
mass functions, which can be obtained by dividing the num-
bers in columns 2-5 by the denominator in column 6. The
diagram in Figure 1 shows, depending on the particular
values of p(hy), (1), p(t1), (1r), p(ha), Blha), p(tz) and
D(t2), which of these 12 probability mass functions are ex-
treme points of K(X1) ® K(X,). In this diagram, we use the
shorthand notation psi—s» to denote that ps| and psy are
two coinciding extreme points.

Although the diagram in Figure 1 considers quite a number
of special or degenerate cases, the main result can be sum-
marised quite easily. If one of the local models is precise
or vacuous, then the independent natural extension has the
same extreme points as—and therefore coincides with—the
strong extension. In all other cases, the independent natural
extension has up to four additional extreme points.

9 Summary and Conclusions

In this paper, we have developed a definition for credal net-
works under epistemic irrelevance that allows for zero lower

(and upper) probabilities, generalising Cozman’s defini-
tion [2, Section 8.3], which requires the lower probabilit-
ies of conditioning events to be strictly positive. For the
resulting joint model, we have derived a number of proper-
ties and alternative characterisations. Some of these results
were already mentioned by Cozman, but are now proved
to remain valid when his positivity requirement is dropped.
One particular result is that the joint credal set that cor-
responds to a credal network under epistemic irrelevance
can be described by means of linear constraints. As a first
toy example, we have used this approach to obtain analyt-
ical expressions for the extreme points of the independent
natural extension of two binary variables.

The main future goal that we intend to pursue is to develop
algorithms for credal networks under epistemic irrelevance
that are able to perform inference in an efficient manner.
This problem has been tackled before by Cozman [2, Sec-
tion 8.4], but we suspect that a more efficient solution can
be obtained. The idea would be to derive counterparts to
the marginalisation and graphoid properties that are proven
in Ref. [5] and combine these with a linear programming
approach that builds upon Theorem 9.

Acknowledgements

Jasper De Bock is a Ph.D. Fellow of the Fund for Scientific
Research — Flanders (FWO) and wishes to acknowledge
the financial support of the FWO. The authors also wish to
thank three anonymous referees for their helpful comments.



ISIPTA ’13: Allowing for probability zero in credal networks under epistemic irrelevance

117

Is (at least) one of the local models K(X;), i € {1,2},

precise? (p(hi) = p(h;) and p(t;) = p(i))

no

Is (at least) one of the local models K(X;), i € {1,2},
vacuous? (p(h;) = p(t;) = 0 and p(h;) = p(t;) = 1)

K(X1)
and
K(Xz)

yes no

DSt PS2,
Ps3, Ps4

p(h)p(t1)p(h2)p(t2) ? p(h)p(t1)p(h2)p(t2)

p(h2) =0or p(t2) =0?

Psi, Ps2 p(h2) p(t2) Psi, Ps2

PS3, Ps4, PS3, Ps4,

PA2, PA4 PA1, PA3
no

PS1, PS2> PS3, PS4
PA1, PA2, DA3, PA4

Ps1> PS2,
PSs3, PS4,
PB3, PB4

no

PS1, PS2> PS3, PS4
PB1, PB2, PB3, PB4

p(h2) =0or p(t2) =0?

p(h2) =0or p(t2) =0?

Ps1, Ps2,
DS3, PS4,
PA3=B3

Pst» Ps2, p(ha)
Ps3» Ps4

PA4=B4

no

Ps1, Ps2,
PS3> PS4
PA2=B2

PS1, PS2> PS3, PS4
PA1=A4=B1=B4,

yes

K(X1) = K(X2)?

no

PA2=A3=B2=B3

Figure 1:

p(t2)

PS1, PS2> PS3, PS4
PA1=A4, PB1=B4.,
PA2=A3, PB2=B3

K(X2)

PS1=82;
PS3=s4

Ps1> PS2,
Ps3, Ps4,
PB1, PB2

Ps1, Ps2,
DS3, PS4,
PA1=B1

Diagram to obtain the extreme points of the independent natural extension of two binary variables
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Abstract

We consider multi-attribute utility functions, particu-
larly applied to the choice of a design and sample sizes
for an experiment. We extend earlier work, which al-
lowed imprecision in the trade-offs between attributes,
to allow imprecision also in the shape of marginal util-
ity functions. The method is illustrated with a sim-
ple example involving a two-group binomial experi-
ment.

Keywords. Design of experiments, imprecise utility,
risk aversion, sample size.

1 Introduction

In earlier work [8, 9, 10] a method for decision analysis
with multiattribute utilities has been developed which
does not require the specification of precise trade-offs
between different risks. The original motivation for
this work was the design of experiments [7, 8]. Multi-
attribute utilities may be imprecisely specified, due to
an unwillingness or inability on the part of the client
to specify fixed trade-offs or precise marginal utility
functions or because of disagreement within a group
with responsibility for the decision. In particular this
may be so when the decision is the choice of a de-
sign or sample size for an experiment. For example,
in the design of a medical experiment, participants in
the decision-making process may have different view-
points, may put different weights on such attributes
as the information gain and the risks to trial subjects
and may be more or less risk averse in terms of these
attributes.

An approach to constructing imprecise multi-
attribute utility hierarchies and finding the Pareto op-
timal rules was introduced in [8]. The structure used
was based on a utility hierarchy with utility indepen-
dence at each node and used the notion of impre-
cise utility trade-offs within such a hierarchy, based
on limited collections of stated preferences between

outcomes. Pareto optimality, over the set of possible
trade-off specifications, was used to reduce the set of
alternatives.

Many real decision problems, for example in exper-
imental design, have very large spaces of possible
choices. Relaxing the requirement for precise utility
specification reduces our ability to eliminate choices
by dominance and can leave us with a large class
of choices, none of which is dominated by any other
over the whole range of possible utility functions al-
lowed by the imprecise specification. Methods were
described in [9] to reduce the class of alternatives that
must be considered, by eliminating choices which are
“e-dominated” and combining choices which are “e-
equivalent.” The effects of different values of € and of
different parts of the hierarchy were explored to see
when and why choices were eliminated.

To choose a single alternative d* from our reduced
list, we can use the boundary linear utility approach
described in [8], or select the choice which is the last
to be eliminated as we increase the value of our ¢
criterion as described in [9]. We can then find the
set D* of choices which are “almost equivalent” to d*
and perhaps use secondary considerations to choose
among them. In [10] methods based on the boundary
linear utility for exploring the sensitivity of possible
choices to variation in the utility trade-offs were de-
scribed. This helps us to find a decision which, as far
as possible, is a good choice over the whole range of
possible trade-offs.

For some other approaches to imprecise utility, see, for
example, [12, 2, 13, 16, 17, 5]. A particular feature of
the approach used in [8, 9, 10] and this paper is the
generality of the form of the utility hierarchy and of
the shape of the feasible region.

The purpose of this paper is twofold. Firstly we show
how the imprecise utility structure can be extended
in a simple way to include imprecision in the shape
of the marginal utility functions for attributes, and
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therefore in the degree of risk aversion, and that this
extension preserves all of the results derived for the
structure in previous work. Secondly, we return to
the original motivation of the work by applying the
methods to the choice of design and determination of
sample size for experiments.

In Section 2 we briefly outline the Bayesian approach
to experimental design, viewing it as a multi-attribute
decision problem. In Section 3 we review the earlier
work on decisions with imprecise utility trade-offs. In
Section 4 we introduce the extension to include impre-
cision in the shape of the marginal utility functions.
Finally, in Section 5, we apply the ideas to sample-size
determination for a simple two-group experiment.

2 Bayesian Experimental Design

2.1 Introduction

The problem of experimental design is essentially that
of choosing a design for an experiment from a, pos-
sibly infinite, set of possibilities. In simple cases this
might just be a matter of choosing a sample size. In
more complicated cases it may involve choosing sev-
eral sample sizes, for observations of different types,
or even of selecting types of observations to make, for
example determining the values of covariates to use.
In any case, this is clearly a decision and, usually, the
values of various attributes, typically more than one,
which are relevant to us, are unknown before the ex-
periment and our distributions for them depend on
the choice of design. We therefore formulate exper-
imental design as a multi-attribute decision problem
and choose the design which maximises our expecta-
tion of a multi-attribute utility function.

A recent, brief, introduction to this view of experi-
mental design is given by [6]. For a more technical
introduction to the field of Bayesian experimental de-
sign see, for example, [3]. A discussion of sample-size
determination in clinical trials is given in Chapter 6
of [19]. See also, for example, [15, 20].

In much published work on Bayesian experimental de-
sign, a fixed total number of observations N is as-
sumed. The problem is then to allocate these ob-
servations to design points (ie types of observation)
while keeping the total fixed (sometimes allowing non-
integer allocations on the grounds that it is the pro-
portions of the total sample size which are being de-
termined). Often some measure of information gain
is used to provide a utility function and costs are as-
sumed to depend only on the total sample size and
therefore need not be considered. This is described as
the “design problem” (although, perhaps, “allocation
problem” might be a better name).

4

In contrast, in the “ sample size problem”, the trade-
off between costs and benefits is explicitly considered
so a utility function is required which involves both, eg
[20]. Usually, relatively simple designs are considered.

In many real practical problems we need both to de-
termine a total sample size and how the observations
should be allocated to different design points. In this
paper we do not distinguish between these two types
of problem.

Typically, in experimental design we require a multi-
attribute utility function where the attributes include
costs and benefits. Each of these may be of more than
one kind.

In some cases we might represent the “benefit” from
an experiment in terms of some measure of informa-
tion. For example we might use the posterior preci-
sion for some quantity of interest. We may, of course,
be interested in several different unknown quatities
so each would have its respective marginal utility and
these utilities need to be combined. In other cases we
might base our benefit utility directly on the pay-off
from some terminal decision, in which our choice is
informed by the result of the experiment. In fact the
information-measure approach is (usually, at least)
a special case of the terminal-decision approach, in
which the terminal decision is to declare a value for
some unknown (vector) quantity. The benefit utility
is then based on the difference between our declared
value and the true value.

Figure 1 shows an influence diagram for a typical
problem in experimental design. For example this
could refer to the design of a clinical trial in which
we wish to compare two or more treatments. There
could also be several groups of patients, for example
divided by age-group, severity-group, sex etc. The ini-
tial decision Dy consists of the choice of design dx.
Often the set of possible choices will include the op-
tion of no experiment at all. In the experiment, we
observe data X. The distribution of X depends on dx
and on unknown quantities (parameters) 6. A vector
of pay-offs C'x refers to various attributes, for example
financial costs or effects on subjects. The distribution
of these depends on dx and X. Having seen the data
X we make a terminal decision Dy . This may well be
the choice of treatment for future patients. We choose
dy . The outcomes Y of this terminal decision may be,
for example, the clinical outcomes for some future pa-
tients but may also include other attributes such as
costs of future treatments. The distribution of these
depends on dy and on the unknown 6 . These out-
comes lead to rewards (pay-offs) Cy which depend on
dy and Y. (More generally, they may also depend on
). There may, of course, be a potentially unbounded
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Figure 1: Influence diagram for a typical problem in
experimental design.

number of future patients. However, in our utility
function, we might discount outcomes as we look fur-
ther into the future. This might be justified on the
grounds that, further into the future, it becomes less
likely that our choice of treatment will still be dic-
tated by this experiment. Finally, our overall utility
U =U(Cx,Cy) depends on Cx and on Cy.

To determine our choice of design d(X) we work our
way backwards through the influence diagram. Af-
ter observing the data X = z in our experiment, we
choose

dy = argdineagy[Edy{U(CX,CY)\33}]

= arg max [U(dy;Cx, Cy | z)].

vy €Dy

Our expected utility at this stage is

d)I/Ilea[))(y[U(dY; Cx, Cy) | !L‘]

Before observing the data, we choose the design

dx = arg max Eg
gdeDX X{d eD

max [U(dy;Cx,Cy) | X]}.
Y Y

A useful variation on this is to use two different prior
distributions, an inference or fitting or terminal prior,
which is used for choosing dy, and a design or sam-
pling prior which is used for choosing dx. This ap-
proach was suggested by [21]. Similarly we can have
different utility functions for the two decisions.

2.2 Risks in Experimental Design

Since we are concerned in this paper with degrees of
risk aversion, let us briefly consider some of the many
risks associated with experimental design.

We have already mentioned the financial cost of the
experiment, which may not be known in advance with
certainty, and the effects on experimental subjects.

Particularly in the cases of human and animal sub-
jects we are likely to be concerned about the possi-
bility of adverse reactions but, even in other exper-
iments, there might be other costs concerned with
effects on valuable material or equipment. We may
come to a conclusion, based on our experiment, which
is far from the truth. This could lead to a bad choice
in a terminal decision and therefore to a bad pay-off.
A type of risk which seems to have had little formal
consideration is that something may go wrong with
the experiment and that this leads to less useful in-
formation than expected or perhaps to none at all. In
particular we may suffer from missing observations.
Some designs, for example those for microarray ex-
periments, could be very sensitive to missingness. See

eg [1].

In choosing an experimental design we will be seeking
to optimise our expectation of a utility function which
involves some or all of these risks. Our choice will
therefore depend on how we are willing to trade these
risks against each other and this, in turn, depends
on our attitudes to these risks, including the shapes
of our marginal utility functions since these shapes
describe our degrees of risk aversion with respect to
the various attributes.

2.3 Utility Hierarchy

A Thierarchical structure for utilities in a multi-
attribute problem was suggested by [14] and 8]
adopted such a structure. In [8], an example was used
in which there were financial costs of the experiment
and also “ethical costs” which related to possible ef-
fects on the experimental subjects. The marginal util-
ities of these are combined into a Cost utility. In an
experiment we potentially learn about a number of
quantities and, in their example, [8] represented this
collection in four groups, each of which had a marginal
utility based on the distance of our posterior expec-
tation from the true value. These were combined into
a Benefit utility. Finally the Cost and Benefit utili-
ties were combined in an overall utility for the chosen
design.

3 Imprecision in utility trade-offs

3.1 Mutually utility independent hierarchies

In order to introduce imprecision into the trade-offs
between attributes, [8] proposed a general class of
multi-attribute utility functions which uses the con-
cept of mutual utility independence among sets of at-
tributes in order to impose a structure on the utility
function. Attributes Y = (Y3,...,Y%) are wutility in-
dependent of the attributes Z = (74, ..., Z,) if condi-
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tional preferences over lotteries with differing values
of Y but fixed values, z, of Z, do not depend on the
particular choice of z. Attributes X = (X, ..., X)
are mutually utility independent if every subset of X
is utility independent of its complement. If attributes
X are mutually utility independent, then [14] showed
that the utility function for X must be given by the
multiplicative form

i=1
where B does not depend on Uy (Xy),...,Us(Xs), or
the additive form

UX) = ZaiUi(Xi), (2)

where U;(X;) is a conditional utility function for at-
tribute X;, namely an evaluation of the utility of X;
for fixed values of the other attributes. The coef-
ficients in (1) and (2) are the trade-off parameters;
the a; reflect the relative importance of the attributes
and k reflects the degree to which rewards may be re-
garded as complementary, if k£ > 0, or as substitutes,
if £ <0.

The assumption of mutual utility independence is
enough in itself to reduce the problem to one of con-
sidering a finite number of parameters.

The next step is to form a hierarchical structure, in
which, at each node, several utilities are merged into
a combined utility. This combined utility is merged
with others at a node in the next level until, finally,
one overall utility function is formed. If, at each node,
we have mutual utility independence for the utilities
combined at that node, then we term such a util-
ity function a Mutually Utility Independent Hierar-
chic (MUIH) utility. Thus, in a MUTH utility, at each
node we combine utilities using either (1) or (2).

This hierarchical structure allows us to relax the re-
quirement for overall mutual utility independence by
allowing the user to specify utility independence just
at the nodes of the hierarchy and, of course, the user
can choose this structure.

Nodes in the hierarchy, other than the marginal nodes,
are termed child nodes and classified by [8] into the
following three types:

1. an additive node, where utilities are combined
as in (2) with >0 ;a; = 1 and a; > 0 for
1=1,...,8

2. a binary node, where precisely two utilities are
combined, where we rescale the combined utility

as
U =a,U; + axUs + hU Uy (3)

where 0 < a; < 1 and —a; < h < 1 — a4, for
i = 1,2, and a1 + as + h = 1. Note that (3) is
derived by setting s = 2 and h = kajas in (1).

3. a multiplicative node, where more than two utili-
ties are combined and the parameter k in (1) may
be nonzero. We scale the utility using

B:f[(Hkai)—l (4)

i=1

withay =1,k > —1 and, fori =1,..., s, we have
a; > 0 and ka; > —1. When k = 0 we obtain (2).

At each child node n, we have a collection Qn =
(dn1s---, Pnr,) of trade-off parameters which deter-
mine how the parent utilities at node n are combined
to give the value at the child node. If there are N
child nodes, then we denote by § = @1’ - ,QN) the
collection of all the trade-off parameters in the hier-
archy. A hierarchy in which imprecision is allowed in
some of the elements of € is called an imprecise in-
dependence hierarchy (IIH). If the hierarchy contains
only additive and binary nodes, then the specification
is a simple imprecise independence hierarchy (SIIH)

So that the interpretation of utility values does not de-
pend on the choice of trade-off parameters, we place
all utilities in the hierarchy on a standard scale. Each
marginal utility is normed to lie between 0, the worst
outcome that we shall consider for the problem, and
1, the best outcome. The relative weights of the
marginal utilities are governed by the trade-off pa-
rameters at the nodes of the hierarchy and these are
chosen to reflect this norming. Consider a child node
n. Let C,, be an outcome such that all marginal pre-
decessor nodes have utility 1, and ¢, be an outcome
such that all marginal predecessor nodes have utility
0. The scalings described above for additive, binary
and multiplicative nodes ensure that, at n, the utili-
ties of C), and ¢,, are 1 and 0 respectively. Therefore, a
utility value of u at node n may always be interpreted
as the utility of a gamble giving C,, with probability
u and ¢, with probability 1 — u, irrespective of the
chain of trade-off parameters in the hierarchy.

3.2 Specification of imprecise utility
trade-offs

In standard utility theory, the decision maker must
make statements which define the preferences between
all combinations of outcomes. In the case of impre-
cise utility, the decision maker may state preferences
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just for some, but not all, choices of outcome com-
binations. Imprecise utility is defined by obeying all
of the constraints implied by the stated preferences.
In [8, 9, 10] it was supposed that the decision maker
could make preference statements over all outcomes
of each individual attribute, and so could specify pre-
cise marginal utilities, but could only make preference
statements for some, but not all, combinations of the
various attributes. Each such preference statement
imposed constraints on the tradeoff parameters which
are used to combine the individual attributes into an
imprecise multi-attribute utility. These constraints
together specify a feasible region R for . Comments
on the process of elicitation are made in [8, 9, 10].

In Section 4 below we will drop the assumption that
the decision maker has to specify precise marginal
utilities.

3.3 Analysis with imprecise utility trade-offs

In earlier work [8, 9, 10], methods have been devel-
oped which exploit the ITH structure to reduce the
number of choices to be considered and select choices
and to explore the sensitivity of choices. Our aim in
Section 4 below will be to extend the structure to al-
low imprecision in the marginal utility functions while
preserving the various results derived and retaining
our ability to carry out these analyses. In this section
we briefly summarise these results and methods.

Having obtained our imprecise specification for the
parameters of our multi-attribute utility function we
can reduce the number of possible choices, that is de-
signs, by retaining only choices which are Pareto op-
timal (non-dominated) with respect to the range R of
the parameters 6.

We have to choose from a set D of choices. We de-
note the utility of a particular choice A € D, evaluated
with trade-off parameters 0 as Uag. This is evaluated
as the expected value of Uy, with respect to the prob-
ability distribution, induced by the choice A, over the
marginal attributes involved in U. For two alterna-
tives, A, B, let dAB(Q) = UAQ — UBQ.

We write A = B,if Usg > Upg V8 € R. We say that A
is preferred to B over R, written A = B, if A > B and
Uagp > Upg for some § € R, and that A is equivalent
to B, written A ~ B, if Ugg = Upg V0l € R. We call
alternative A Pareto optimal for R if there is no other
allowable alternative B for which B = A over R. We
restrict attention to Pareto optimal alternatives. Fur-
thermore, if we form equivalence classes of equivalent
decisions Ay ~ Ay ~ ... ~ A,., then it is reasonable to
restrict attention to only one representative member
of each equivalence class.

To reduce the number of choices further, [9] intro-
duced the concept of e-preference as follows. Let
€ > 0 be a value chosen to indicate a practical indif-
ference between utility values. For two alternatives A
and B, we say that A is almost-preferable with toler-
ance €, or, more concisely, “e-preferable” to B, written
A =, B, over the set R of parameter specifications if
infr(dap(f)) > —e. Two alternatives A, B are said to
be almost-equivalent with tolerance e, or, more con-
cisely, “e-equivalent”, written A ~. B, if both A =. B
and B =. A. Note that e-preference does not define
a complete ordering of the alternatives and nor does
e-equivalence define an equivalence relation. Alter-
native A is said to e-dominate alternative B, written
A . B,if A>. Bbut B . A, where the negation of
the relationship is indicated in the usual way. Setting
€ = 0, an alternative which is not 0-dominated by any
other is Pareto optimal. The notation is extended to
collections of alternatives as follows. The collection
A is e-preferable to the collection B of alternatives,
written A =, B if, for each B € B, there is at least
one A € A for which A >, B.

In [9] a number of results are derived concerning the
properties and uses of e-preference in ITH utilities.
In particular, an algorithm is presented for gradually
reducing the number of choices by increasing € from
zero and eliminating choices while our retained list
remains an e-Pareto set. Eventually we are left with
a single choice d*. Notice that this choice is made
without having to specify a value for € in advance.

In [10] methods for exploring the sensitivity of choices
are presented. In particular the boundary linear util-
ity, which had been introduced in [8], is described and
results concerning its properties and uses with ITH
utilities are given. Let P be the set of vertices of R.
In [8] it is shown that, for a SIIH utility, Pareto opti-
mal alternatives for R are the same as Pareto optimal
alternatives for P. This forms part of the motivation
for the boundary linear utility

0y =3 AU
i=1

where U; is the utility function determined by the
choice of trade-offs §, € P = {6;,...,0,} an
A1,...,As are nonnegative constants with Zle A =
1.

The results and methods which are developed, some
of which may be extended to the case of general ITH
utilities, allow us to exploit the idea that, by varying
the \ weights, we can change the emphasis which is
placed on different parts of the feasible region.
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4 Imprecise risk aversion

4.1 Use of basis functions

Now we consider dropping the assumption that the
decision maker can give a precise specification of each
marginal utility function. Recall that two utility
functions, U4 and Upg, are strategically equivalent if
Up = ¢+dU 4 where c and d are constants with d > 0.
Therefore, without loss of generality we can rescale a
marginal utility function to be on the standard scale,
asin [8, 9, 10]. Without loss of generality we can also
rescale a scalar attribute Z so that the “worst value”
is z = 0 and the “best value” is z = 1. All that is left
is to determine the shape of the utility curve between
the points (0,0) and (1, 1). The shape will typically re-
flect the degree of risk aversion, with a concave curve
representing a risk-averse utility function and a con-
vex curve representing a risk-seeking utility function,
with respect to the (rescaled) attribute Z. See, for
example, Section 4.4.1 of [14].

We could introduce imprecision into the shape of a
marginal utility function U(z) by introducing a collec-
tion of basis functions Uy (2), ..., Us(2) so that U(z) =
Zle bZUl(Z) with bl Z 0 for all 7+ and Z::l bl = 1.
We would then elicit a feasible region for the weights
b1,...,bs. An important feature of this approach is
that, in effect, we are simply adding an extra layer to
the utility hierarchy by making each marginal utility
an additive node and introducing the basis functions
as new marginal quantities which are parents to the
previously marginal nodes. Therefore all of the theory
and methods developed previously for the case where
imprecision applied only to the trade-offs extends to
cover imprecision in the marginal utility functions as
well.

A simple example of basis functions is given by
quadratic functions. Consider U;(2) = co+c12+c222.
The constraints U(0) = 0 and U(1) = 1 simplify this
to U(z) = cz+(1—c)z2. The constraints U’(0) > 0 and
U'(1) > 0, where U'(z) = dU(z)/dz, imply 0 < ¢ < 2.
With ¢ = 0, we obtain Up(z) = 22 and, with ¢ = 2,
we obtain Us(z) = 2z — 22. Let b = ¢/2. Then

U(z) = (1 = b)Ui(2) + bUz(z)

with 0 < b < 1. If b > 1/2 we have a risk averse
utility function, with b = 1/2 it is risk neutral and
with b < 1/2 it is risk seeking. Curves with b =
0, 0.25, 0.5, 0.75, 1 are shown in Figure 2.

Note that we can rewrite the basis functions as
Ui(z) = z — h(z) and Usz(z) = z + h(z) with, in
this case, h(z) = z — 22. It can be seen from Fig-
ure 2 that this offers a rather limited range of shapes.
While restricting ourselves to monotonic functions,

0.8 1.0
1

0.2 0.4 0.6
1

0.0
1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Quadratic utility curves with b =
0.0,0.25,0.5,0.75, 1.

the greatest range that we can obtain in this form
is with h(z) = 2 (0 < 2 < 1/2) and h(z) = 1 — 2
(1/2 < z < 1). Even this is somewhat restricted in
range and certainly in shape. We can obtain greater
flexibility with a more direct approach to eliciting the
utility function.

While an elicitation procedure for use in practice
might involve more refined questions, in principle we
can use the probability-equivalent method. In its sim-
plest form, to determine a range for U(z*) where
0 < z* < 1, we offer the decision maker a choice
between d, : the attribute value corresponding to
z = z*, with certainty, and dp : with probability «,
the attribute value corresponding to z = 1 and, with
probability 1 — «, the attribute value corresponding
to z = 0. For large « the decision maker will choose
dp, for small a the decision maker will choose d 4 but
for an intermediate range the decision maker may ex-
press no clear preference. The lower utility for z*,
Ui(z*) is the largest value of « at which the decision
maker would choose d4 and the upper utility for z*,
Us(2z*) is the smallest value of a at which the decision
maker would choose dp. By repeating this process at
a range of values z* and using suitable interpolation,
we obtain lower and upper utility functions, U; (z) and
Us(z). These can then be our two basis functions. Lin-
ear interpolation may well be adequate.

With two basis functions, all allowable utility func-
tions are weighted averages of these two. We could ob-
tain more degrees of flexibility in the shape by adding
additional basis functions, for example one which is
closer to Uj(z) for some of the range of z and oth-
erwise closer to Us(z). This would, of course, require
more sophisticated elicitation procedures.
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4.2 Effect on trade-offs

While the standard scale ensures that all utilities are
in [0, 1], where in that range they are likely to be will
be different for the lower and upper utility functions.
In itself this does not cause a problem. Of more con-
cern is the fact that U’(z) may be different between
the lower and upper marginal utility functions. This
could affect our consideration of the trade-off at the
immediate successor node in the hierarchy. For ex-
ample, suppose that our marginal utility is U, and,
at the child node, this is combined with another util-
ity U, to give U, = a,U, + (1 — an)U,. Then, if
U, = (1-b)Ui(2) +bUs(z), the effect on U, of a fixed
change in z may depend on the choice of b. This may
be acceptable. After all, the average gradient, given
a uniform distribution for Z, will remain 1. However
the decision maker, with the help of the analyst, needs
to consider this consequence of allowing imprecision
in the shape of U,(z). A possible solution would be to
elicit a joint feasible region for a and b (or, more gener-
ally, for all of the parameters involved at the marginal
and child nodes) so that the range of a can depend on
the choice of b. If the child node is an additive node it
can be extended straightforwardly to include all the
basis functions at its parent (marginal) nodes as sepa-
rate parents. If the child node is a binary node then it
can similarly be extended although its new form will
not imply mutual utility independence between all of
its new parents.

5 Sample size example

To illustrate the method we consider a simple exam-
ple. Suppose we wish to design a trial, for example
a clinical trial, with two treatments and binary out-
comes (eg cure/not cure). For g = 1,2, we will give
treatment g to ng subjects and observe the number
Xy of successes. Using these data, a choice will be
made between these treatments for use with future
cases.

Suppose that the unknown success rate with treat-
ment g is 04. For simplicity assume that our ter-
minal prior gives a Beta(asg,b:,4) distribution to 6,
with 6; and 65 independent and that our terminal
utility is such that we will choose whichever treat-
ment has the greater posterior probability of success.
That is we choose treatment g if the posterior ex-
pectation of 6, is greater than that of 6,. We set
a1 = ag2 = bt,l = bt,2 = 1.5.

In our design prior, #; and 65 are not independent. A
number of methods are available for constructing this
joint distribution. For example we could use a bivari-
ate normal distribution for the logits or probits of 6,

Component  Probability Parameters
c Qe 1 bc,l Qc 2 bc,2
1 0.25 75 3.0 45 4.5
2 0.50 45 3.0 3.0 45
3 0.25 45 6.0 3.0 6.0

Table 1: Parameters of design prior mixture distribu-
tion. Within each component 6, ~ Beta(ag, by).
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\
\
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o
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Figure 3: Lower and upper benefit utility functions.

and 03 or we could link beta marginal distributions
using a copula. However, in this example, the prior
is constructed using a mixture distribution. In each
component, ¢, we give 61 and 65 independent beta dis-
tributions, Beta(ac,g,beg), g = 1,2. The effect of the
mixture is to induce correlation between 0; and 65. A
three component mixture is used, with parameters as
given in Table 1. The advantage of this form of prior
distribution is that prior predictive distributions for
the observations can be calculated analytically within
each component leading to simple calculations of ex-
pected utilities. The results can then be averaged over
components.

For simplicity in this example we use a simple (pre-
cise) form for the marginal cost design utility. Let
Nmax,1 and Mmax,2 be the largest sample sizes which
we would consider. Let

(ng =0)
(ng >0) ° 5)

ho,g+h1,gNmax,g

1
ZCA,Q = { 1— ho,gt+h1,gng

Then the marginal cost utility is Uc = ac¢12¢,1 +
GC)QZC’Q. We use Qc1 = Q¢2 = 0.5, hO,l = h072 =
10, h171 = h172 = 1, Nmax,1 = 100 and NMmax,2 = 60.

The overall design utility is U = bcUc + bgUp. We
use 0.03 < bc <0.07and bp =1 —be.
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Order | n1  no € Order | n1  no € Order | n1  no €

17 13 25| 19 15 0.000084 12 | 20 15 0.000022
37 0 0 0.004334 24 | 16 12 0.000067 11 | 25 19 0.000018
36 | 19 16 0.000724 23 | 16 10 0.000048 10 | 25 16 0.000018
35| 14 12 0.000571 22 | 15 11 0.000048 9122 19 0.000013
34118 15 0.000295 21 | 22 18 0.000048 8121 17 0.000010
33 |21 18 0.000271 20 | 18 14 0.000044 7123 17 0.000009
32| 13 10 0.000220 19 | 16 15 0.000043 6| 16 16 0.000008
31|15 12 0.000134 18 | 18 16 0.000043 5123 19 0.000008
30| 21 16 0.000126 17 | 17 15 0.000040 4| 13 13 0.000007
29 | 17 14 0.000114 16 | 16 11 0.000037 3119 17 0.000002
28 | 13 11 0.000095 15 | 15 15 0.000033 2124 18 0.000001
27 | 24 19 0.000092 14 | 15 13 0.000023 1120 16 0.000001
26 | 16 13 0.000088 13 | 12 12 0.000022

Table 2: Results of selection by e-preference. The order of dropping is shown. The last-retained design is

ny = 17, Ng = 13.

The benefit utility depends on the outcomes for fu-
ture patients. For a future patient ¢, let Z; be 1 or
0 depending on the success or failure of the treat-
ment. This suggests an attribute of the form Zp =
Yooei kiZ; with Y .2 k; = 1. For example, we could
use k; = (1 — A\)A™! with 0 < A < 1. Another pos-
sibility is k; = m~! for i = 1,...,m and k; = 0 for
¢ > n. For simplicity in this example we adopt the sec-
ond form and furthermore let m — oo so that, given
a value of 0, Zg — 0.

Using the probability-equivalent method we elicit a
lower and an upper utility function Ug () and
Up,u(0) with evaluations at a range of values of 6
and linear interpolation. At # = 0,0.25,0.5,0.75,1,
the lower values are chosen to be Ug () = 6, giv-
ing risk neutrality. The upper values are Up 1 (6) =
0.00,0.45,0.85,0.95,1.00, giving risk aversion. These
two functions are shown in Figure 3.

Let 0 = (01,02)T and o = (21, 22)T. We can write the
joint probability density of component ¢, parameters
01, 05, observations X7, X5, and the benefit utility Up,
given sample sizes nq,no, as

P = Pr(c)fc,O,X(Q7£ | C)fU(UB | §>Q7 C) (6)

where
2
feox(@z|c) = H fe,g(Og | ) fx10.m, (24 | bg)
g=1
2
= H fX\ng (xg | C)fc,g\m(eg | ng,C)
g=1

where fx|,, (4 | ¢) is the prior predictive probability
function of X, given ¢, and f. 4.(6, | 24,¢) is the
conditional posterior density, using the design prior,

given c, of 0, after observing the data X, = z,. The
density of Up depends on x; and x5 both because we
use the posterior density of ; and 6, and because the
choice of treatment (and hence 6; or 6s) for future
cases depends on the posterior distributions, given x;
and x5, using the terminal prior. From (6) we can see
that we can evaluate conditional expectations within
each component of the mixture straightforwardly and
then average over the mixture components. The con-
ditional posteriors are beta distributions and the con-
ditional prior predictive distributions for Xy can be
evaluated analytically.

With 0 < n; <100 and 0 < ny < 60, there are 6161
potential designs. Of these, 38 are non-dominated.
With the exception of (0, 0), all of the non-dominated
designs have 12 < ny < 25, all have 0.6ny < ny < ny
and all but three have 0.7n; < ng < n;. Applying the
e-preference algorithm described in Section 5.2 of [9],
we obtain the results shown in Table 2. Designs are
eliminated one by one as we increase the value of the
tolerance €. Finally one design, n; = 17, ny = 13,
is left. Interestingly, the last eliminated design is the
null experiment, reflecting the fixed cost of any non-
null experiment given in (5).

6 Concluding comments

Imprecision in the shape of the marginal utility func-
tions is a natural extension of the earlier work on im-
precision in utility trade-offs. In this paper this ex-
tension has been made in a way which preserves the
results from the earlier work.

The remaining extension to give a fully imprecise
analysis would be to allow imprecision in the probabil-
ity distributions for outcomes given choices. In fact,
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if our utility hierarchy is fully additive then we can
work directly in terms of previsions of marginal util-
ities and thus deal with this imprecision in the same
way as we have done in this paper. When our mul-
tiattribute utility involves products of marginal util-
ities then incorporation of imprecision in our beliefs
in this way would still be possible if we were prepared
to regard all of the marginal utilities as uncorrelated.
The generalisation to the case without this assump-
tion awaits further work. See, for example, [4] for a
different approach.

The simple example in this paper presented no serious
computational difficulty. However more complicated
experimental design problems will often present com-
putational challenges, both because of the number of
potential designs to be compared and, particularly in
cases where computationally intensive methods would
normally be used to evaluate posterior distributions,
the difficulty of evaluating the expected utility for any
proposed design. These difficulties apply even with-
out the introduction of imprecision. One possible
approach in such cases is to use a simulation-based
method, as in [18]. Another possibility is to use a
method which does not require such intensive com-
putation, such as Bayes linear methods [8] or Bayes
linear kinematics [11, 22] and such an approach, using
Bayes linear kinematics is under investigation.
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Abstract

Traditional confidence intervals are useful in engineering
because they offer a guarantee of statistical performance
through repeated use. However, it is difficult to employ
them consistently in analyses and assessments because it
is not clear how to propagate them through mathematical
calculations. Confidence structures (c-boxes) generalize
confidence distributions and provide an interpretation by
which confidence intervals at any confidence level can
be specified for a parameter of interest. C-boxes can be
used in calculations using the standard methods of
probability bounds analysis and yield results that also
admit the confidence interpretation. Thus analysts using
them can now literally compute with confidence. We
illustrate the calculation and use of c-boxes for some
elementary inference problems and describe R functions
to compute them and some Monte Carlo simulations
demonstrating the coverage performance of the c-boxes
and calculations based on them.

Keywords. confidence intervals, confidence structures,
c-boxes, p-boxes, probability bounds analysis, binomial
probability, imprecise beta model, t-distribution

1

When frequentist confidence intervals are constructed
across many separate data analyses based on different
experiments, the proportion of such intervals that contain
the true value of the parameter will match® the
confidence level, which can be specified in advance to
produce any statistical performance that may be desired.

Introduction

Mhat is, the average frequency of coverage will be at least the specified
confidence level.
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Such a guarantee is very attractive to engineers because it
allows them to ensure that their conclusions based on
confidence intervals will perform according to a
specified standard. Bayesian methods in general lack
such guarantees that could ensure statistical performance
over the long run, and this fact may explain much of the
reticence among engineers about adopting the Bayesian
framework (Mayo 1996; cf. Vick 2002). On the other
hand, Bayesian methodology allows convenient use of its
posterior estimates in subsequent calculations, which is
usually quite difficult with confidence intervals because
it is not clear how knowledge of confidence intervals for
parameters can be translated into a confidence interval
for an arbitrary function of those parameters using
traditional methods.

This paper introduces the notion of confidence structures,
or c-boxes. These structures are defined by a traditional
confidence interpretation yet admit computations that
produce results that also have the confidence
interpretation. The next section briefly reviews
confidence distributions, which c-boxes generalize. The
following sections informally describe c-boxes, give
some numerical examples, and compare one of these
examples with Walley’s imprecise beta model. The paper
includes a discussion of the prospects of using c-boxes to
compute with confidence, both literally and figuratively,
including how to project c-boxes characterizing
parameters to estimate the distributions of observable
random variates from distributions that depend on those
parameters. We provide software functions to compute
c-boxes for several important cases and simulate their
coverage properties by Monte Carlo methods. Such
simulations are useful to determine whether and how
conservative the c-boxes are, and thus how useful they
are likely to be in practice.
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2 Confidence and Confidence Distributions

The notion of a confidence interval was introduced by
Neyman (1937). A confidence interval for parameter 6
with coverage o has the property that, among all
confidence intervals computed by the same method, at
least a proportion o will contain the true value of 6. A
confidence interval can serve as an estimate of the
parameter that is more sophisticated than any point
estimate could be because it encodes not only the
available data but also the sampling uncertainty they
imply. Valid confidence intervals are more than merely
subjective characterizations of uncertainty; they represent
rigorous claims and their use establishes a standard of
statistical performance that in principle can be checked
empirically with Monte Carlo simulations. Credible
intervals (sometimes called Bayesian confidence
intervals in a usurpation of language) are often
considered to be the Bayesian analogs of confidence
intervals (Lee 1997), but credible intervals have no
general accompanying guarantee like that of the
frequentist notion.

Confidence distributions were introduced by Cox?
(1958), but received little attention in the literature until a
recent spike of interest (Efron 1998; Schweder and Hjort
2002; Singh et al. 2005; Xie et al. 2011; Xie and Singh
2012; inter alia). A confidence distribution is a
distributional estimate for a parameter, in contrast with a
point estimate like a sample mean or an interval estimate
such as a confidence interval. It has the form of a
distribution function on the space of possible parameter
values that depends on a statistical sample in a way that
encodes confidence intervals at all possible confidence
levels. A confidence distribution for a parameter 6€® is
a function C: ® — (0,1) such that, for every a in (0,1),
(—o0, C*(0)] is an exact lower-sided 1000% confidence
interval for O , where the inverse function C (o) =
Co *(Xt,....Xn, @) is increasing in o. This definition
obviously also implies [C™(a), C(B)] is a 100(B—0c))%
confidence for the parameter 6. Although related to many
other ideas in statistical inference (Singh et al. 2005; Xie
et al. 2011), a confidence distribution can be considered a
purely frequentist concept (Schweder and Hjort 2002;
Singh et al. 2005).

An important example of a confidence distribution is for
the parametric mean of a normal distribution based on
random sample data x;, i =1, 2, ..., n. The confidence
distribution in this case is

Co(w) = Frpa((u - ;)\/H/S)

where x is the sample mean, s is the sample standard
deviation, and Fy,_; denotes the cumulative distribution

*Fraser (2011) argues that confidence distributions can be found in the
work of Fisher (1930; 1935) under the name ‘fiducial’, and even in that
of Bayes (1763) namelessly.

function of Student’s t-distribution with n—1 degrees of
freedom. Confidence intervals for the normal’s mean can
be constructed directly from this confidence distribution
as the inverse image of any subset of the confidence
distribution’s range that has measure equal to the
intended confidence level. In particular,

[Co(e0), Co " (B)] = X + S [Fros (), Fros '(B)]/ 0

is a 100(B—a)% confidence interval on the mean. For the
sake of clarity and convenience for readers, these
formulas can be rendered as code for the R statistical
computing language (R Development Core Team 2011):

pcnorm.mu = function(mu, x)
pt(sqrt(length(x))*(mu-mean(x))/sd(x),length(x)-1)

cinorm.mu = function(x, ¢=0.95, alpha=(1-c)/2, beta=1-(1-c)/2)
mean(x)+qt(c(alpha,beta),df=length(x)-1)*sd(x)/sqrt(length(x))

The function pxnorm.mu accepts random normal sample
values in the x array and returns the value of the
confidence distribution for every value in the mu array.
The cinorm.mu function also takes the random samples
in the x array, and returns a confidence interval for the
mean of the normal distribution that generated those
sample values at a confidence level set by the argument
¢, which defaults to 95%, or by alpha and beta if they are
specified.

A Monte Carlo simulation can be implemented using the
following R function to check that the confidence
distribution indeed allows valid confidence intervals at
any level to be constructed from it:

covnorm.mu = function(n,mu,sigma,many=1e4,lots=1e3, ... ) {
ab = alphabeta(...)
m = seq((mu-5*sigma),(mu+5*sigma),length.out=many)
cov=0
for (i in 1:lots) {
X = rnorm(n, mu, sigma)
h = pcnorm.mu(m, x)
ci = range(m[(ab[1]<=h) & (h<=ab[2])])
if ((ci[1]<=mu)&(mu<=ci[2])) cov=cov+1 }
cat(' Intended',diff(ab)*100,'%\n’,'Observed’,100*cov/lots, %\n’)
cov/lots }
alphabeta = function(c=0.95,a=(1-c)/2,b=1-(1-c)/2) sort(c(a, b))

This function can be exercised with a call like
covnorm.mu(n, p, o), specifying just a positive integer n
and the true mean and standard deviation to use in the
simulation, which will return a value around 0.95, or a
call like covnorm.mu(n, u, o, a=a, b=p) may also specify
particular o and 3 levels.

Although a confidence distribution has the form of a
probability distribution, it is usually not considered to be
a probability distribution. It corresponds to no randomly
varying quantity; the parameter it describes is presumed
to be fixed and nonrandom. Some also emphasize that
the value of the function C is not probability of 6, but



ISIPTA '13: Computing with Confidence 131

rather confidence® about 6 (Cox 2006; cf. Lindley 1958).
A confidence distribution is merely a ciphering device
that encodes confidence intervals for each possible
confidence level. Nevertheless, it might be reasonable
and convenient to adopt a notation that only implicitly
denotes the confidence distribution, so that, for instance,
in the case of the normal mean, we can write

n-~ ; +S Tn,ll\/n

where T,_; denotes a random variable from Student’s t-
distribution (Student 1908) with n—1 degrees of freedom.
This notation avoids the need to name the confidence
distribution function. Note that this use of the tilde ~
extends conventional uses in statistics. We suggest that
it can still be read as “has the distribution”, or perhaps
“has uncertainty like”, but it obviously does not suggest
that the left-hand side is a random variable. The left-
hand side after all is a value that is fixed, though
unknown. Instead, it says that the inferential uncertainty
about the fixed parameter p is characterized by the
transformed t-distribution.

Despite their intimate connection with t-distributions,
confidence distributions are not widely known in
statistics, at least not under that name. Efron (1998)
characterized bootstrap distributions as (approximate)
confidence distributions, and so confidence distributions
are widely used in modern statistics, albeit under the
guise of bootstrap distributions.

The notion of confidence distributions is not without
critics. Early association with fiducial inference has led
to some confusion. Some readers seem to have difficulty
accepting confidence distributions on their own terms.
The arguments of Robert (2012) are paraphrased a bit
more bluntly in his blog (http://xianblog.wordpress.
com/2012/06/11/confidence-distributions/): “Either the
confidence distribution corresponds to a genuine
posterior distribution, in which case | think the only
possible interpretation is a Bayesian one. Or the
confidence distribution does not correspond to a genuine
posterior distribution, because no prior can lead to this
distribution, in which case there is a probabilistic
impossibility in using this distribution.” Of course
confidence distributions are not trying to be Bayesian
posterior distributions, so it should hardly be disquieting
if they fail to be. The requisite interpretation of
confidence distributions is of course Neyman confidence,
which Bayesian posteriors do not generally have.

One potential practical disadvantage of confidence
distributions is that they are not unique. Multiple
functions may fill the bill, and there seems to be no

3of course, confidence is a probability in a different domain;
confidence is the probability realized by frequency that those defined
intervals (—oo, C™(at)] actually enclose the parameter over some in
some future, perhaps hypothetical series of experiments.

general way to pick the best confidence distribution from
among them. Of course, confidence intervals themselves
are not unique either. There are usually lots of
reasonable ways to construct a confidence interval for
any parameter, even for fixed data and model. Neither
form of non-uniqueness seems to impede the purpose of
guaranteeing long-term statistical performance.

Another significant limitation on the use of confidence
distributions is that not every important inferential
problem has a solution. Confidence distributions are
often constructed by inverting the upper limits of lower
one-sided confidence intervals of all levels, but this is not
possible for all important inferential problems. Notably,
in particular, there is no confidence distribution for the
binomial probability.

3 Confidence Structures (C-boxes)

Confidence distributions are special cases of more
general confidence structures (Balch 2012), which we
call ‘confidence boxes’ or ‘c-boxes’ because they may
often be characterized by two bounding distributions like
probability boxes (Ferson et al. 2003). A c-box
represents inferential uncertainty about a parameter that
characterizes some distribution from which limited or
poor or discrete data have been randomly sampled. Like
a confidence distribution, a c-box is defined by the
property that it can be used to construct Neyman
confidence intervals at any confidence level for that
parameter. C-boxes generalize confidence distributions
because both are estimators of unobservable parameters,
but c-boxes can be applied to problems with discrete
observations, interval-censored data, and even inference
problems in which no assumption about the distribution
shape can be made.

Methods for deriving c-boxes are varied (Balch 2012).
Generally, wherever a meaningful and valid confidence
interval can be defined, a c-box can also be defined. If a
confidence interval is based on a pivot, that pivot can be
used to directly define a c-box. Any defined confidence
distribution can be generalized to a c-box when its data
are encoded not as point values but as intervals to
account for mensurational uncertainty from the inability
to measure individual quantities with perfect precision
(Nguyen et al. 2012; Ferson et al. 2007). When a
confidence interval is based on a significance function,
i.e., a function (of parameters and data) that produces p-
values in a significance test, the significance function can
be used to construct a consonant confidence structure,
encoded as a Dempster—Shafer structure which can then
be transformed, with some loss of information (Ferson et
al. 2003), into a p-box (Balch 2012).

The formula and R function for this c-box of the normal
mean can be generalized for the case of interval-censored
data using a straightforward but non-trivial algorithm that
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extremizes C,(u) over possible configurations of point x-
values within their respective interval ranges (Nguyen et
al. 2012; Ferson et al. 2007). In case the intervals all
overlap any value of p, the result is vacuous (i.e., the
interval [0,1]) for that value. For example, if interval-
censored random samples from a normal distribution are
{[8,11], [5.5,6.9], [-1.3,0.3], [3.5,7.5], [0.8,1], [2.8,4.2],
[1.8,5.2], [2.2,5.2], [3.5,5.7], [5.3,6.1]}, a c-box for the
normal mean is shown in Figure 1.

Confidence

O‘ T T T T T
0 10

Figure 1: C-box for the normal mean from interval data.

To extract a confidence interval from a c-box, select
values of o and B that imply a desired confidence level
100(B—0)%, and map these values from the confidence
axis to the x-axis. The larger value 3 is mapped through
the right bound, and the smaller value o is mapped
through the left bound.

4 Computing with Confidence

Many authors (e.g., Grosof 1986) have suggested using
ordinary confidence procedures to obtain interval inputs
for use with interval analysis (Moore 1966) for bounding
numerical results that depend on sample data. For
example, EPA (2002) guidance instructs risk analysts to
use the upper bound from the 95% confidence interval
for a pollutant’s mean concentration rather than the
actual sample mean of observed concentration values in
order to be protective of the public health in the face of
sampling uncertainty arising from sometimes very small
sample sizes. Although this may be a reasonable strategy
when there is only a single variable for which sampling
uncertainty is a major concern, it is not statistically
defensible when such uncertainties for several variables
must be combined together.  Statistical confidence
intervals are not rigorous intervals guaranteed to enclose
the value they estimate, and therefore confidence
intervals do not formally admit interval calculation in the
sense of Moore (1966).

Some limited statements are possible using ad hoc
application of Bonferroni or Sidak corrections or Boole
or Fréchet inequalities (e.g., Ferson 1996). For example,
if we combine, say by addition, two 95% confidence
intervals using simple interval arithmetic, we might
expect the result to be a ~90% confidence interval for the
sum because the conjunction of the two probability
statements would imply multiplying the two probability
levels, at least assuming independence between them. If

seven such confidence intervals were combined in some
mathematical function, the implied probability level
under independence would be less than 70%. Without
the independence assumption, the level could fall as low
as 65%. To achieve 95% confidence for the result, one
would presumably have to use input confidence intervals
with confidence level equal to the seventh root of 95%,
which is greater than 99%. Because confidence intervals
often get substantially wider as the confidence level rises,
this approach is rarely workable in practice.

The alternative approach of computing with confidence
distributions is also not practical just because (precise)
confidence distributions often do not exist for important
problems. This limitation may be alleviated by c-boxes
because they generalize confidence distributions and
more easily provide solutions. Although Cox (2006)
counseled that analysts should not try to use confidence
distributions in calculations as though they were true
probability distributions, Balch (2012) proved that two or
more independent c-boxes can be propagated through a
function to yield a valid c-box. This is much more
efficient than propagating individual confidence intervals
because the combinations do not require application of
the Bonferroni or Sidak corrections and they deliver
results at all confidence levels all at once.

For example, suppose one were interested in computing a
95% confidence interval on the mean difference between
two normal populations with both unknown mean p and
unknown standard deviation c. Suppose we collect four
random samples from each population, say, {2.71, 5.46,
5.45, 5.50}, and {1.88, 1.54, 1.15, 0.46}. One approach
to obtaining the desired interval would be to take the
interval-difference of the 97.468% confidence intervals
on the two population means. The resulting estimate
would be P, — py = [0.37, 6.67] with 95% confidence.
Alternatively, one could take the stochastic difference of
the two c-boxes on the uncertain means which are
(shifted and scaled) t-distributions. This yields a much
tighter 95% central confidence interval on the difference,
[1.10, 5.94], although it is somewhat more difficult to
compute because it involves a subtractive convolution
rather than merely an interval difference. Still, it can be
calculated via Monte Carlo simulation in R using only
three lines:

rcnorm.mu = function(m, z)

mean(z)+sd(z)*rt(m, length(z)-1)/sqrt(length(z))
d = sort(rcnorm.mu(m, X) - rcnorm.mu(m, y))
range(d[round(c(0.025*m, (1-0.025)*m))])

where x and y are the vectors of sample values, m is the
number of Monte Carlo simulations. In fact, this result is
the same as the 95% credible interval that would be
obtained using Bayesian inference with a Jeffreys prior.
The convolution of the confidence distributions yields
confidence intervals by a purely frequentist analysis that
supports a traditional confidence interpretation in this
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and other cases generally. The following R function can
be used to implement straightforward Monte Carlo
simulations that demonstrate the confidence intervals
produced by this approach have the prescribed coverage:

covnorm.mudiff=function(n,mu,sigma,many=1e4,lots=1e3,...{
ab = alphabeta(...)
truediff = mu[1] - mu[2]
cov=0
for (i in 1:lots) {
x = rnorm(n[1], mu[1], sigma[1])
y = rnorm(n[2], mu[2], sigma[2])
ci=range(sort(rcnorm.mu(many,x)-
rcnorm.mu(many,y))[round(many*ab)])
if ((ci[1] <= truediff) & (truediff <= ci[2])) cov = cov + 1}
cat(' Intended',diff(ab)*100,'%\n",'Observed',100*cov/lots,'%\n")
cov/lots }

This function can be called like covnorm.mudiff(n, p, o),
where n, u and o are now each pairs describing the
sample sizes and parameters for the two populations. For
instance, covnorm.mudiff(c(10,20),c(5,1),¢(2,3)) will return a
value around 0.95.

5 C-box for the Binomial Probability

A Bernoulli random variable has only two possible
values, perhaps designated {failure, success}, or more
conveniently {0, 1}. A binomial random variable is a
random variable whose value is a count of Bernoulli
successes observed over n > 0 independent identical
trials, each of which has the same probability p of
success, which produces k successes from those n trials
(where 0 < k < n). A fundamental problem in risk
analysis and statistics generally is to characterize what
can be inferred about p from observing k successes out of
n trials, under the assumption that the trials are
independent and the binomial probability p is fixed
across the trials.

In fact, the original problem in the famous paper of
Bayes (1763) was about the estimation of the binomial
probability. The paper begins “Given the number of
times in which an unknown event has happened and
failed: Required the chance that the probability of its
happening in a single trial lies somewhere between any
two degrees of probability that can be named” (Bayes
1763, page 376). The same page also says “By chance |
mean the same as probability.” We take this to be asking,
given k successes and n—Kk failures out of n trials where
k~binomial(n, p), what is Pr(p € [p1, p2]), for any values
p1 and p,?

Balch (2012) offers a c-box solution to this problem:

p ~ [beta(k, n—k + 1), beta(k + 1, n —K)],

where p is the binomial parameter (which is a fixed but
unknown value), and the two beta distributions are the
left and right edges of the c-box that characterizes the

inferential uncertainty about p. Note that we continue to
use the ~ symbol even though the right-hand side has the
form of a p-box. The ~ can be read as “has uncertainty
like”. We understand this to entail that the parameter on
the left-hand side has inferential uncertainty
characterized by a confidence distribution consistent with
or inside the c-box, that is, a distribution that is bounded
in the cumulative by the two edge distributions of the c-
box.

Figure 2 depicts an example using k=2 and n=10 in a
graph whose abscissa consists of the possible values of
the parameter p and whose ordinate is confidence
(probability).
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Figure 2: C-box and a 100(B—a)% confidence interval
for probability from 2 successes in 10 trials.

The c-box in Figure 2 has a confidence interpretation,
which means that one can generate from it true
confidence intervals for the binomial probability p at any
desired level of confidence. For example, the depicted
interval is the symmetric 90% confidence interval [0.037,
0.507]. The confidence intervals obtained in this way are
identical to the classical Clopper—Pearson (1934)
confidence intervals on the binomial probability. One-
sided confidence intervals can be obtained by setting o to
zero or B to one. The c-box approach readily provides
results for cases involving k=0 and k=n, and even the
no-data case where n = 0, without the overthinking
required by a Bayesian analysis constrained to a single
precise distribution (Winkler et al. 2002).

Of course the Bayesian and frequentist approaches are
trying to do different things. In the c-box approach, p;
and p, are sought to be functions of the data and
probabilities are conditional on some hypothetical (but
unknown) value of p. In contrast, Bayes explicitly
conditions on the data, and asks about the probability of
p as a latent variable. These approaches are asking a very
different questions: c-boxes ask about coverage for a
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fixed value of p, whereas Bayes is asking about the
probability of p as a latent random variable.

The c-box and arbitrary confidence intervals for the
binomial probability given k successes out of n trials can
be computed in R with the functions:

pcbinom.p = function(p, k, n)
list(left=pbeta(p, k, n-k+1), right=pbeta(p, k+1,n-k))

cibinom.p = function(k, n, ¢=0.95, alpha=(1-c)/2, beta=1-(1-c)/2)
gbeta(c(alpha,beta), c(k,k+1), c(n-k+1,n-k))

Straightforward Monte Carlo simulation can demonstrate
the confidence intervals perform statistically.

Note that the c-box also answers Bayes’ question about
the chance p is in some range, but it gives an interval
rather than a single precise probability. The c-box says
Pr(p € [p1, p2]) € [Min(0, Br(p2) — BL(p1)), BL(p2)— Br(P1)],
where B, denotes the cumulative beta distribution with
parameters k and n—k+1, and Bg is the cumulative beta
with parameters k+1 and n—k. The lower bound can be
called confidence, and the upper bound plausibility, and
together they characterize the chance sought by Bayes.
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Figure 3: C-boxes for the binomial probability implied
by k/n successes out of trials.

Figure 3 shows the first few c-boxes for sample sizes
between zero and three. Notice that the c-box for the null
case when n =0 corresponds to the entire unit square.
Thereafter, the possible c-boxes for any given sample
size partition the unit square. As sample size increases, of
course the c-box approaches a precisely specified beta
distribution which becomes steeper and steeper and
centered on the observed frequency k/n.

What determines whether the solution to an inference
problem is a precise confidence distribution or a non-
degenerate, imprecise c-box? For the normal mean the
solution is precise unless the data are themselves
imprecise from interval-censoring (as in Figure 1). For
binomial probability, however, the solution is imprecise
even for well identified data. The reason is what
ecologists call “demographic” uncertainty (Akcakaya
1991), which is the variation that arises simply because
of the constraint that data must come as integers. The
discrete nature of binomial sampling means that evidence
cannot reflect patterns as well as continuous data can.
Demographic uncertainty is only important for small
sample sizes, but it cannot be neglected in such cases.

5.1 Comparison with the Imprecise Beta Model

The c-box solution to the binomial probability estimation
problem can be compared to the imprecise beta model
(IBM) first suggested by Dempster (1966) but elaborate